1
|
Sriphochanart W, Krusong W, Samuela N, Somboon P, Sirisomboon P, Onmankhong J, Pornpukdeewattana S, Charoenrat T. Enhancing small-scale acetification processes using adsorbed Acetobacter pasteurianus UMCC 2951 on κ-carrageenan-coated luffa sponge. PeerJ 2024; 12:e17650. [PMID: 38952965 PMCID: PMC11216191 DOI: 10.7717/peerj.17650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Background This study explored the utilization of luffa sponge (LS) in enhancing acetification processes. LS is known for having high porosity and specific surface area, and can provide a novel means of supporting the growth of acetic acid bacteria (AAB) to improve biomass yield and acetification rate, and thereby promote more efficient and sustainable vinegar production. Moreover, the promising potential of LS and luffa sponge coated with κ-carrageenan (LSK) means they may represent effective alternatives for the co-production of industrially valuable bioproducts, for example bacterial cellulose (BC) and acetic acid. Methods LS and LSK were employed as adsorbents for Acetobacter pasteurianus UMCC 2951 in a submerged semi-continuous acetification process. Experiments were conducted under reciprocal shaking at 1 Hz and a temperature of 32 °C. The performance of the two systems (LS-AAB and LSK-AAB respectively) was evaluated based on cell dry weight (CDW), acetification rate, and BC biofilm formation. Results The use of LS significantly increased the biomass yield during acetification, achieving a CDW of 3.34 mg/L versus the 0.91 mg/L obtained with planktonic cells. Coating LS with κ-carrageenan further enhanced yield, with a CDW of 4.45 mg/L. Acetification rates were also higher in the LSK-AAB system, reaching 3.33 ± 0.05 g/L d as opposed to 2.45 ± 0.05 g/L d for LS-AAB and 1.13 ± 0.05 g/L d for planktonic cells. Additionally, BC biofilm formation during the second operational cycle was more pronounced in the LSK-AAB system (37.0 ± 3.0 mg/L, as opposed to 25.0 ± 2.0 mg/L in LS-AAB). Conclusions This study demonstrates that LS significantly improves the efficiency of the acetification process, particularly when enhanced with κ-carrageenan. The increased biomass yield, accelerated acetification, and enhanced BC biofilm formation highlight the potential of the LS-AAB system, and especially the LSK-AAB variant, in sustainable and effective vinegar production. These systems offer a promising approach for small-scale, semi-continuous acetification processes that aligns with eco-friendly practices and caters to specialized market needs. Finally, this innovative method facilitates the dual production of acetic acid and bacterial cellulose, with potential applications in biotechnological fields.
Collapse
Affiliation(s)
- Wiramsri Sriphochanart
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Warawut Krusong
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Nialmas Samuela
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pichayada Somboon
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Panmanas Sirisomboon
- Department of Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Jiraporn Onmankhong
- Department of Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Soisuda Pornpukdeewattana
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
2
|
Shahabivand S, Mortazavi SS, Mahdavinia GR, Darvishi F. Phenol biodegradation by immobilized Rhodococcus qingshengii isolated from coking effluent on Na-alginate and magnetic chitosan-alginate nanocomposite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114586. [PMID: 35085972 DOI: 10.1016/j.jenvman.2022.114586] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Phenol is a hazardous organic solvent to living organisms, even in its small amounts. In order to bioremediation of phenol from aqueous solution, a novel bacterial strain was isolated from coking wastewater, identified as Rhodococcus qingshengii based on 16S rRNA sequence analysis and named as strain Sahand110. The phenol-biodegrading capabilities of the free and immobilized cells of Sahand110 on the beads of Na-alginate (NA) and magnetic chitosan-alginate (MCA) nanocomposite were evaluated under different initial phenol concentrations (200, 400, 600, 800 and 1000 mg/L). Results illustrated that Sahand110 was able to grow and complete degrade phenol up to 600 mg/L, as the sole carbon and energy source. Immobilized cells of Sahand110 on NA and MCA were more competent than its free cells in degradation of high phenol concentrations, 100% of 1000 mg/L phenol within 96 h, indicating the improved tolerance and performance of the immobilized cells against phenol toxicity. Therefore, the immobilized Sahand110 on the studied beads, especially MCA bead regarding its suitable properties, has significant potential to enhanced bioremediation of phenol-rich wastewaters.
Collapse
Affiliation(s)
- Saleh Shahabivand
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | | | - Farshad Darvishi
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
3
|
Repeated-batch simultaneous saccharification and fermentation of cassava pulp for ethanol production using amylases and Saccharomyces cerevisiae immobilized on bacterial cellulose. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Consecutive bacterial cellulose production by luffa sponge enmeshed with cellulose microfibrils of Acetobacter xylinum under continuous aeration. 3 Biotech 2021; 11:6. [PMID: 33442505 DOI: 10.1007/s13205-020-02569-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
The bacterial cellulose production (BCP) process, using cellulose microfibrils (CM) of Acetobacter xylinum enmeshed on luffa sponge matrices (LSM) as LSM-CM starter, has been successfully developed where the LSM-CM production process can be recycled through consecutive cycles in limited dissolved oxygen (DO) under continuous aeration. In this study, incremental aeration rates impacted the consecutive cycles. Gluconic acid production, during the process, resulting in the reduction of BCP, was increasingly generated at high aeration from 0.28 to 0.34% at 3 L/min to 0.83-0.97% and 1.52-1.99% at 6 and 9 L/min after 7 d culture at 30 ± 2 °C. To compensate for the negative impact of aeration, 0.10 and 0.15% (w/v) carboxymethyl cellulose (CMC) was found to create a microenvironment for recycled LSM-CM at both high aeration (6 and 9 L/min, respectively). Under nine consecutive BCP cycles, acceptable BC yields (from 5.54 ± 0.5 to 5.89 ± 0.5 g/L) were associated with high biomass at 6 L/min aeration. These results confirm that LSM-CM, combined with CMC called as LSM-CM-CMC, created microenvironments low in DO under high aeration rates and that the recycled LSM-CM-CMC with aeration is an alternative, sustainable, economic process that could be applied for mass BCP.
Collapse
|
5
|
Krusong W, Vichitraka A, Sriphochanart W, Pornpukdeewattana S. Increasing the acetification rate of Acetobacter aceti adsorbed on luffa sponge using recycle of incremental oxygenated medium. 3 Biotech 2020; 10:95. [PMID: 32099736 DOI: 10.1007/s13205-020-2093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/23/2020] [Indexed: 11/24/2022] Open
Abstract
Speeding up the production of vinegar from rice wine by acetification, using a packed-bed bioreactor with a luffa sponge matrix (LSM) as adsorption carrier of acetic acid bacteria (AAB), and the effect of oxygenation of the recycled medium were investigated. The 0.06 L/min recycle of medium resulted in a high oxygen-transfer coefficient, while optimal dissolved oxygen (DO) of the medium maximized planktonic AAB cell growth with no contamination due to high acid in an external reservoir without LSM. The highest acetification rate (ETA) of 2.857 ± 0.1 g/L/day was achieved with DO 3.5-4.5 ppm at 35 ± 1 °C. To increase ETA, the optimized oxygenated medium was externally supplied and recycled at the ratio of 0.1. Therefore, acetification was conducted in both the bioreactor and reservoir resulting in an increased ETA (6 ± 0.2 g/L/day). This also aligned with the highest system AAB biomass (confirmed by scanning electron microscopy). Under the recycled oxygenated medium supply consistently high biotransformation yields (average 77.3%) were observed over nine sequential cycles. Meanwhile, an average ETA of 6.3 ± 0.2 g/L/day was obtained. This method can have practical applications in improving the efficiency and speeding up small-scale vinegar production.
Collapse
Affiliation(s)
- Warawut Krusong
- Fermentation Technology Division, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang District, Bangkok 10520 Thailand
| | - Assanee Vichitraka
- Fermentation Technology Division, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang District, Bangkok 10520 Thailand
| | - Wiramsri Sriphochanart
- Fermentation Technology Division, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang District, Bangkok 10520 Thailand
| | - Soisuda Pornpukdeewattana
- Fermentation Technology Division, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang District, Bangkok 10520 Thailand
| |
Collapse
|
6
|
Bacterial Cellulose-Alginate Composite Beads as Yarrowia lipolytica Cell Carriers for Lactone Production. Molecules 2020; 25:molecules25040928. [PMID: 32093025 PMCID: PMC7070387 DOI: 10.3390/molecules25040928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 01/22/2023] Open
Abstract
The demand for natural lactone gamma-decalactone (GDL) has increased in the fields of food and cosmetic products. However, low productivity during bioprocessing limits its industrial production. In this study, a novel composite porous cell carrier, bacterial cellulose-alginate (BC-ALG), was used for long-term biotransformation and production of GDL. The effects of this carrier on biotransformation and related mechanisms were investigated. BC-ALG carriers showed improved mechanical strength over ALG carriers, with their internal embedded cell pattern changed to an interconnected porous structure. In five repeated-batch biotransformation experiments, the maximum concentration of GDL obtained in culture with BC-ALG carriers was 8.37 g/L, approximately 3.7 times higher than that from the medium with an ALG carrier alone. The result indicated that multiple hydrogen bonding interactions at the interface between BC and ALG contributed to the compatibility and stability of BC-ALG carriers. On the basis of the above results, the BC-ALG composite carrier can be considered ideal for immobilisation of cells for the production of GDL on an industrial scale, and has the potential to be utilised in other biological processes.
Collapse
|
7
|
DERA in Flow: Synthesis of a Statin Side Chain Precursor in Continuous Flow Employing Deoxyribose-5-Phosphate Aldolase Immobilized in Alginate-Luffa Matrix. Catalysts 2020. [DOI: 10.3390/catal10010137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Statins, cholesterol-lowering drugs used for the treatment of coronary artery disease (CAD), are among the top 10 prescribed drugs worldwide. However, the synthesis of their characteristic side chain containing two chiral hydroxyl groups can be challenging. The application of deoxyribose-5-phosphate aldolase (DERA) is currently one of the most promising routes for the synthesis of this side chain. Herein, we describe the development of a continuous flow process for the biosynthesis of a side chain precursor. Design of experiments (DoE) was used to optimize the reaction conditions (pH value and temperature) in batch. A pH of 7.5 and a temperature of 32.5 °C were identified to be the optimal process settings within the reaction space considered. Additionally, an immobilization method was developed using the alginate-luffa matrix (ALM), which is a fast, simple, and inexpensive method for enzyme immobilization. Furthermore, it is non-toxic, biodegradable, and from renewable resources. The final continuous process was operated stable for 4 h and can produce up to 4.5 g of product per day.
Collapse
|
8
|
Immobilized Cells of Bacillus circulans ATCC 21783 on Palm Curtain for Fermentation in 5 L Fermentation Tanks. Molecules 2018; 23:molecules23112888. [PMID: 30404135 PMCID: PMC6278285 DOI: 10.3390/molecules23112888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Palm curtain was selected as carrier to immobilize Bacillus circulans ATCC 21783 to produce β-cyclodextrin (β-CD). The influence for immobilization to CGTase activity was analyzed to determine the operation stability. 83.5% cyclodextrin glycosyltransferases (CGTase) of the 1st cycle could be produced in the 7th cycle for immobilized cells, while only 28.90% CGTase was produced with free cells. When palm curtain immobilized cells were reused at the 2th cycle, enzyme activities were increased from 5003 to 5132 U/mL, which was mainly due to physical adsorption of cells on palm curtain with special concave surface structure. Furthermore, conditions for expanded culture of immobilized cells in a 5 L fermentation tank were optimized through specific rotation speed procedure (from 350 r/min to 450 r/min with step size of 50 r/min) and fixed ventilation capacity (4.5 L/min), relations between biomass, enzyme activity, pH, and oxygen dissolution was investigated, and the fermentation periods under the two conditions were both 4 h shorter. Compared with free cell, immobilized cell was more stable, effective, and had better application potential in industries.
Collapse
|
9
|
Nuanpeng S, Thanonkeo S, Klanrit P, Thanonkeo P. Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. Braz J Microbiol 2018; 49 Suppl 1:140-150. [PMID: 29588196 PMCID: PMC6328710 DOI: 10.1016/j.bjm.2017.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 10/05/2017] [Accepted: 12/14/2017] [Indexed: 11/23/2022] Open
Abstract
Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20×20×5mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54g/L and 1.36g/Lh, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.
Collapse
Affiliation(s)
- Sunan Nuanpeng
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand
| | - Sudarat Thanonkeo
- Mahasarakham University, Walai Rukhavej Botanical Research Institute, Mahasarakham, Thailand
| | - Preekamol Klanrit
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand; Khon Kaen University, Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen, Thailand
| | - Pornthap Thanonkeo
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand; Khon Kaen University, Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen, Thailand.
| |
Collapse
|
10
|
Lai WJ, Lin SC. Hydroxyethyl cellulose-grafted loofa sponge-based metal affinity adsorbents for protein purification and enzyme immobilization. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Vučurović VM, Puškaš VS, Miljić UD. Bioethanol production from sugar beet molasses and thick juice by free and immobilisedSaccharomyces cerevisiae. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vesna M. Vučurović
- Department of Biotechnology and Pharmaceutical engineering, Faculty of Technology; University of Novi Sad; Boulevard Cara Lazara 1 21000 Novi Sad Republic of Serbia
| | - Vladimir S. Puškaš
- Department of Biotechnology and Pharmaceutical engineering, Faculty of Technology; University of Novi Sad; Boulevard Cara Lazara 1 21000 Novi Sad Republic of Serbia
| | - Uroš D. Miljić
- Department of Biotechnology and Pharmaceutical engineering, Faculty of Technology; University of Novi Sad; Boulevard Cara Lazara 1 21000 Novi Sad Republic of Serbia
| |
Collapse
|
12
|
Shi X, Zhou G, Liao S, Shan S, Wang G, Guo Z. Immobilization of cadmium by immobilized Alishewanella sp. WH16-1 with alginate-lotus seed pods in pot experiments of Cd-contaminated paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:431-439. [PMID: 29929096 DOI: 10.1016/j.jhazmat.2018.06.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/18/2018] [Accepted: 06/11/2018] [Indexed: 05/13/2023]
Abstract
This study prepared immobilized Alishewanella sp. WH16-1 using alginate and lotus seed pods as a matrix and investigated the effects of its immobilization on Cd2+ in a culture solution and in soil. Compared with the free WH16-1 strain, the immobilized WH16-1 strain possessed greater stability for long-term use and storage and higher removal ability for Cd2+ in the culture solution. A model of Cd2+ removal by the immobilized WH16-1 strain was proposed. The immobilized WH16-1 strain was incubated in the pot experiments of Cd-contaminated paddy soil for 120 days, and the pot experiments of Cd-contaminated paddy soil without the immobilized WH16-1 strain were used as a control. Compared with the control, the exchangeable and carbonate-bound Cd in the paddy soil incubated with the immobilized WH16-1 strain significantly decreased by 33.6% (P < 0.05) and 17.36%, respectively, and the Cd concentrations in the rice significantly decreased by 78.31% (P < 0.05). The results indicate that alginate-lotus seed pods can be used as excellent cost-effective cell carriers for the immobilization of Alishewanella sp. WH16-1 and that the immobilized WH16-1 strain may be applicable for the biological stabilization of Cd in Cd-contaminated paddy soil.
Collapse
Affiliation(s)
- Xiongying Shi
- Department of State Key Laboratory of Agricultural Microbiology and College of Basic Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Gaoting Zhou
- Department of State Key Laboratory of Agricultural Microbiology and College of Basic Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuijiao Liao
- Department of State Key Laboratory of Agricultural Microbiology and College of Basic Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Shiping Shan
- Department of Hunan Institute of Microbiology, Changsha, Hunan, 410009, China
| | - Gejiao Wang
- Department of State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhaohui Guo
- Department of Hunan Institute of Microbiology, Changsha, Hunan, 410009, China
| |
Collapse
|
13
|
Orrego D, Zapata-Zapata AD, Kim D. Ethanol production from coffee mucilage fermentation by S. cerevisiae immobilized in calcium-alginate beads. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Gao Y, Zheng H, Hu N, Hao M, Wu Z. Technology of fermentation coupling with foam separation for improving the production of nisin using a κ-carrageenan with loofa sponges matrix and an hourglass-shaped column. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Sar T, Seker G, Erman AG, Stark BC, Yesilcimen Akbas M. Repeated batch fermentation of immobilized E. coli expressing Vitreoscilla hemoglobin for long-term use. Bioengineered 2017; 8:651-660. [PMID: 28394725 PMCID: PMC5639835 DOI: 10.1080/21655979.2017.1303024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 10/19/2022] Open
Abstract
This study describes an efficient and reusable process for ethanol production from medium containing whey powder, using alginate immobilized ethanologenic E. coli strains either expressing (TS3) or not expressing (FBR5) Vitreoscilla hemoglobin. Reuseabilities of the FBR5 and TS3 strains were investigated regarding their ethanol production capacities over the course of 15 successive 96-h batch fermentations. The ethanol production was fairly stable over the entire duration of the experiment, with strain TS3 maintaining a substantial advantage over strain FBR5. Storage of both strains in 2 different solutions for up to 60 d resulted in only a modest loss of ethanol production, with strain TS3 consistently outperforming strain FBR5 by a substantial amount. Strains stored for 15 or 30 d maintained their abilities to produce ethanol without dimunition over the course of 8 successive batch fermentations; again strain TS3 maintained a substantial advantage over strain FBR5 throughout the entire experiment. Thus, immobilization is a useful strategy to maintain the advantage in ethanol productivity afforded by expression of Vitreoscilla hemoglobin over long periods of time and large numbers of repeated batch fermentations, including, as in this case, using media with food processing wastes as the carbon source.
Collapse
Affiliation(s)
- Taner Sar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Gamze Seker
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ayse Gokce Erman
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Benjamin C. Stark
- Biology Department, Illinois Institute of Technology, Chicago, IL, USA
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
- Institute of Biotechnology, Gebze Technical University, Gebze-Kocaeli, Turkey
| |
Collapse
|
16
|
Sar T, Stark BC, Yesilcimen Akbas M. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin. Bioengineered 2017; 8:171-181. [PMID: 27579556 PMCID: PMC5398575 DOI: 10.1080/21655979.2016.1218581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022] Open
Abstract
Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48-96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli.
Collapse
Affiliation(s)
- Taner Sar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Benjamin C. Stark
- Biology Department, Illinois Institute of Technology, Chicago, IL, USA
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| |
Collapse
|
17
|
El-Dalatony MM, Kurade MB, Abou-Shanab RAI, Kim H, Salama ES, Jeon BH. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2016; 219:98-105. [PMID: 27479800 DOI: 10.1016/j.biortech.2016.07.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Separate hydrolysis fermentation (SHF) and simultaneous saccharification fermentation (SSF) processes were studied for bioethanol production from microalgal biomass. SSF was selected as an efficient process to enhance the bioethanol yield through repeated-batches using immobilized yeast cells. Combined sonication and enzymatic hydrolysis of Chlamydomonas mexicana generated 10.5 and 8.48g/L of ethanol in SSF and SHF, respectively. Yeast utilized maximum portion of total reducing sugar (TRS) reaching a consumption efficiency of 91-98%. A bioethanol yield of 0.5g/g (88.2% of theoretical yield) and volumetric productivity of 0.22g/L/h was obtained after 48h of SSF. Immobilized yeast cells enabled repetitive production of ethanol for 7 cycles displaying a fermentation efficiency up to 79% for five consecutive cycles. The maximum ethanol production was 9.7g/L in 2nd-4th cycles. A total energy recovery of 85.81% was achieved from microalgal biomass in the form of bioethanol. Repeated-batch SSF demonstrated the possibility of cost-effective bioethanol production.
Collapse
Affiliation(s)
- Marwa M El-Dalatony
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 133-791, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 133-791, South Korea
| | - Reda A I Abou-Shanab
- Department of Environmental Biotechnology, City of Scientific Research and Technology Applications, New Borg El Arab City, Alexandria 21934, Egypt
| | - Hoo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 133-791, South Korea
| | - El-Sayed Salama
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 133-791, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 133-791, South Korea.
| |
Collapse
|
18
|
Krusong W, Kerdpiboon S, Pornpukdeewattana S, Jindaprasert A. Luffa sponge offsets the negative effects of aeration on bacterial cellulose production. J Appl Microbiol 2016; 121:1665-1672. [PMID: 27611470 DOI: 10.1111/jam.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 11/26/2022]
Abstract
AIMS To offset the negative effects of aeration on bacterial cellulose (BC) production by acetic acid bacteria using enmeshed cellulose microfibrils (CM) on luffa sponge matrices (LSM). METHODS AND RESULTS The CM were enmeshed on LSM (LSM-CM). The optimal amount of LSM-CM was determined for BC production under aerated conditions. Without LSM-CM, no BC was produced in seven out of nine production cycles at the highest aeration rate (9 l min-1 ). However, with 0·5% LSM-CM and an aeration rate of 3 l min-1 , a satisfactory oxygen transfer coefficient was achieved, and also a good yield of BC (5·24 g l-1 ). Moreover, the LSM-CM was able to be recycled through nine consecutive BC production cycles. The highest BC yields (from 5·8 ± 0·4 to 6·6 ± 0·4 g l-1 ) were associated with high bacterial biomass and this was confirmed by scanning electron microscopy. CONCLUSIONS We confirm that LSM-CM works well as a starter. Microenvironments low in dissolved oxygen within the matrices of LSM-CM are important for BC production under aeration conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The LSM-CM provides a microenvironment which offsets the negative effects of aeration on BC production. A sustainable, economic process for mass BC production is described using recycled LSM-CM with aeration.
Collapse
Affiliation(s)
- W Krusong
- Fermentation Technology Division, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - S Kerdpiboon
- Food Science Division, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - S Pornpukdeewattana
- Fermentation Technology Division, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - A Jindaprasert
- Fermentation Technology Division, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
19
|
|
20
|
Liu YK, Lien PM. Bioethanol production from potato starch by a novel vertical mass-flow type bioreactor with a co-cultured-cell strategy. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Khamkeaw A, Phisalaphong M. Hydrolysis of cassava starch by co-immobilized multi-microorganisms of Loog-Pang (Thai rice cake starter) for ethanol fermentation. Food Sci Biotechnol 2016; 25:509-516. [PMID: 30263299 DOI: 10.1007/s10068-016-0071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/07/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022] Open
Abstract
Loog-Pang (Thai rice cake starter) is an effective and inexpensive microbial source for the hydrolysis of cassava starch to glucose. A process for hydrolysis of cassava starch to glucose by Loog- Pang was improved by co-immobilized multi-microorganisms (IC) using thin shell silk cocoon (TSC). After incubation at 35°C for 120 h, the IC-TSC system converted 20% w/v cassava starch slurry into clear glucose syrup containing a glucose concentration of 145.5 g/L (composed of 98.8% glucose and 1.2% oligosaccharides), with little or no contamination by microorganisms. The glucose concentration from the starch hydrolysis process using the IC-TSC system was approximately 1.3 times more than that of suspended cultures (SC). The starch hydrolysate could be used as the carbon source for ethanol fermentation without sterilization. A concentration of ethanol of 71.2 g/L (9.1%, v/v) was obtained at 36 h fermentation of the starch hydrolysate by Saccharomyces cerevisiae M30.
Collapse
Affiliation(s)
- Arnon Khamkeaw
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Muenduen Phisalaphong
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
22
|
Suratago T, Taokaew S, Kanjanamosit N, Kanjanaprapakul K, Burapatana V, Phisalaphong M. Development of bacterial cellulose/alginate nanocomposite membrane for separation of ethanol–water mixtures. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Kittithanesuan N, Phisalaphong M. Enhanced acetone-butanol production from sugarcane juice by immobilized Clostridium acetobutylicum (ATCC 824) on thin-shell silk cocoons. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0709-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Effective Immobilization of Agrobacterium sp. IFO 13140 Cells in Loofa Sponge for Curdlan Biosynthesis. Molecules 2015; 20:7957-73. [PMID: 25946555 PMCID: PMC6272340 DOI: 10.3390/molecules20057957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 11/17/2022] Open
Abstract
Curdlan production by Agrobacterium sp. IFO13140 immobilized on loofa sponge, alginate and loofa sponge with alginate was investigated. There was no statistically-significant difference in curdlan production when the microorganism was immobilized in different matrices. The loofa sponge was chosen because of its practical application and economy and because it provides a high stability through its continued use. The best conditions for immobilization on loofa sponge were 50 mg of cell, 200 rpm and 72 h of incubation, which provided a curdlan production 1.50-times higher than that obtained by free cells. The higher volumetric productivity was achieved by immobilized cells (0.09 g/L/h) at 150 rpm. The operating stability was evaluated, and until the fourth cycle, immobilized cells retained 87.40% of the production of the first cycle. The immobilized cells remained active after 300 days of storage at 4 °C. The results of this study demonstrate success in immobilizing cells for curdlan biosynthesis, making the process potentially suitable for industrial scale-up. Additional studies may show a possible contribution to the reduction of operating costs.
Collapse
|
25
|
Saratale RG, Saratale GD, Govindwar SP, Kim DS. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:176-192. [PMID: 25560264 DOI: 10.1080/10934529.2014.975536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.
Collapse
Affiliation(s)
- Rijuta G Saratale
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | | | | | | |
Collapse
|
26
|
Krusong W, Tantratian S. Acetification of rice wine by Acetobacter aceti using loofa sponge in a low-cost reciprocating shaker. J Appl Microbiol 2014; 117:1348-57. [PMID: 25176134 DOI: 10.1111/jam.12634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 11/29/2022]
Abstract
AIMS To maximize acetification rate (ETA) by adsorption of acetic acid bacteria (AAB) on loofa sponge matrices (LSM). METHODS AND RESULTS AAB were adsorbed on LSM, and the optimal shaking rate was determined for maximized AAB growth and oxygen availability. Results confirm that the 1 Hz reciprocating shaking rate with 40% working volume (liquid volume 24 l, tank volume 60 l) achieved a high oxygen transfer coefficient (k(L)a). The highest ETA was obtained at 50% (w:v) LSM-AAB:culture medium at 30 ± 2°C (P ≤ 0·05). To test process consistency, nine sequential acetification cycles were run using LSM-AAB and comparing it with no LSM. The highest ETA (1·701-2·401 g l(-1) d(-1)) was with LSM-AAB and was associated with the highest biomass of AAB, confirmed by SEM images. CONCLUSIONS Results confirm that LSM-AAB works well as an inert substrate for AAB. High oxygenation was maintained by a reciprocating shaker. Both shaking and LSM were important in increasing ETA. SIGNIFICANCE AND IMPACT OF THE STUDY High cell biomass in LSM-AAB provides good conditions for higher ETAs of quick acetification under adequate oxygen transfer by reciprocating shaker. It is a sustainable process for small-scale vinegar production system requiring minimal set-up cost.
Collapse
Affiliation(s)
- W Krusong
- Fermentation Technology Division, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, Thailand
| | | |
Collapse
|
27
|
Jiang PL, Chien MY, Sheu MT, Huang YY, Chen MH, Su CH, Liu DZ. Dried fruit of the Luffa sponge as a source of chitin for applications as skin substitutes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:458287. [PMID: 24812618 PMCID: PMC4000938 DOI: 10.1155/2014/458287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/05/2014] [Indexed: 11/17/2022]
Abstract
LUFFACHITIN obtained from the residue of the sponge-like dried fruit of Luffa aegyptiaca was developed as a weavable skin substitute in this study. A chemical analysis revealed that LUFFACHITIN was composed of a copolymer containing N-acetyl-glucosamine (~40%) as a major monomer with a filamentary structure as demonstrated by both optical and scanning electron microscopy. The pulp-like white residue of the sponge-like dried fruit of Luffa aegyptiaca after treatment was then woven into a thin, porous membrane by filtration and lyophilization as a skin substitute for conducting wound-healing study on rats. The results indicated that the LUFFACHITIN membrane showed significant wound-healing enhancement (25 days to complete healing) compared to cotton gauze (>30 days), but not inferior to that of SACCHACHITIN. Furthermore, the LUFFACHITIN membrane had advantages of having a high yield, better physical properties for fabrication, and a more attractive appearance.
Collapse
Affiliation(s)
- Ping-Lun Jiang
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Mei-Yin Chien
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ko Da Pharmaceutical Co., Taoyuan 324, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Clinical Research Center and Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yi-You Huang
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Meng-Hsun Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Hua Su
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for General Education, Hsuan Chuang University, Hsinchu 300, Taiwan
| |
Collapse
|
28
|
Tran VN, Le VVM. Comparison of alcoholic fermentation performance of the free and immobilized yeast on water hyacinth stem pieces in medium with different glucose contents. Appl Biochem Biotechnol 2013; 172:963-72. [PMID: 24122709 DOI: 10.1007/s12010-013-0574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/30/2013] [Indexed: 11/29/2022]
Abstract
Ethanol fermentation with Saccharomyces cerevisiae cells was performed in medium with different glucose concentrations. As the glucose content augmented from 200 to 250 g/L, the growth of the immobilized cells did not change while that of the free cells was reduced. At higher glucose concentration (300, 350, and 400 g/L), the cell proliferation significantly decreased and the residual sugar level sharply augmented for both the immobilized and free yeast. The specific growth rate of the immobilized cells was 27–65 % higher than that of the free cells, and the final ethanol concentration in the immobilized yeast cultures was 9.7–18.5 % higher than that in the free yeast cultures. However, the immobilized yeast demonstrated similar or slightly lower ethanol yield in comparison with the free yeast. High fermentation rate of the immobilized yeast was associated with low unsaturation degree of fatty acids in cellular membrane. Adsorption of S. cerevisiae cells on water hyacinth stem pieces in the nutritional medium decreased the unsaturation degree of membrane lipid and the immobilized yeast always exhibited lower unsaturation degree of membrane lipid than the free yeast in ethanol fermentation.
Collapse
|
29
|
Kirdponpattara S, Phisalaphong M. Bacterial cellulose–alginate composite sponge as a yeast cell carrier for ethanol production. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Saeed A, Iqbal M. Loofa (Luffa cylindrica) sponge: Review of development of the biomatrix as a tool for biotechnological applications. Biotechnol Prog 2013; 29:573-600. [DOI: 10.1002/btpr.1702] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/11/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Asma Saeed
- Environmental Biotechnology Group; Biotechnology and Food Research Centre; Lahore 54600 Pakistan
| | - Muhammad Iqbal
- Environmental Biotechnology Group; Biotechnology and Food Research Centre; Lahore 54600 Pakistan
| |
Collapse
|
31
|
Watanabe I, Miyata N, Ando A, Shiroma R, Tokuyasu K, Nakamura T. Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. BIORESOURCE TECHNOLOGY 2012; 123:695-8. [PMID: 22939189 DOI: 10.1016/j.biortech.2012.07.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 05/26/2023]
Abstract
Repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized yeast was developed to produce ethanol. Saccharomyces cerevisiae cells were immobilized by entrapping in photocrosslinkable resin beads, and we evaluated the possibility of its reuse and ethanol production ability. In batch SSF of 20% (w/w) rice straw, the ethanol yields based on the glucan content of the immobilized cells were slightly low (76.9% of the theoretical yield) compared to free cells (85.2% of the theoretical yield). In repeated-batch SSF of 20% (w/w) rice straw, stable ethanol production of approx. 38gL(-1) and an ethanol yield of 84.7% were obtained. The immobilizing carrier could be reused without disintegration or any negative effect on ethanol production ability.
Collapse
Affiliation(s)
- Itsuki Watanabe
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | |
Collapse
|
32
|
de Oliveira Delani TC, Pazzetto R, Mangolim CS, Carvalho Fenelon V, Moriwaki C, Matioli G. Improved production of cyclodextrins by alkalophilic bacilli immobilized on synthetic or loofa sponges. Int J Mol Sci 2012. [PMID: 23202953 PMCID: PMC3497327 DOI: 10.3390/ijms131013294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aimed to improve the production of β-cyclodextrin (β-CD) by microbial cells immobilized on synthetic or loofa sponges both with and without the use of alginate or chitosan. The most suitable matrix for the immobilization of Bacillus firmus strain 7B was synthetic sponge and for Bacillus sphaericus strain 41 was loofa sponge. After 330 days of storage, the β-CD production by Bacillus firmus and Bacillus sphaericus remained at around 41% and 49%, respectively, of initial levels. After 24 days of immobilization on loofa sponge, Bacillus sphaericus strain 41 achieved an improved operational stability, reaching 86.6 mM β-CD after 20 days of production, compared to only 32.8 mM of β-CD produced by free Bacillus sphaericus strain 41 cells. The expected increase in β-CD production by immobilized cells of Bacillus firmus strain 7B on synthetic sponge for 4 days was not statistically different to that for cells immobilized for 24 days. The application of this process on an industrial scale using loofa sponge, an inexpensive and renewable matrix, will allow the stable production of β-CD.
Collapse
|
33
|
İnal M, Yiğitoğlu M. Improvement of bioethanol productivity of immobilized Saccharomyces bayanus with using sodium alginate-graft-poly(N-vinyl-2-pyrrolidone) matrix. Appl Biochem Biotechnol 2012; 168:266-78. [PMID: 22717770 DOI: 10.1007/s12010-012-9770-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 06/05/2012] [Indexed: 11/26/2022]
Abstract
In this study, immobilization conditions and bioethanol production characteristics of immobilized Saccharomyces bayanus were investigated into sodium alginate-graft-poly(N-vinyl-2-pyrrolidone; NaAlg-g-PVP) matrix. The matrix that crosslinked with calcium clorid was used for immobilization of S. bayanus. Bioethanol productivity of the NaAlg-g-PVP matrix was found to increase from 4.21 to 4.84 gL(-1) h(-1) when compared with the convential sodium alginate matrix. The production of bioethanol was affected by initial glucose concentration and percentage of immobilized cell beads in fermentation medium. Bioethanol productivity was increased from 3.62 to 4.84 gL(-1) h(-1) while the glucose concentration increasing from 50 to 100 gL(-1). Due to the increase in percentage from 10 to 20 % of immobilized cell beads in the fermentation medium, bioethanol productivity was increased from 4.84 to 8.68 gL(-1) h(-1). The cell immobilized NaAlg-g-PVP beads were protected 92 % of initial activity after six repeated fermentation.
Collapse
Affiliation(s)
- Murat İnal
- Science and Art Faculty, Department of Chemistry, Kirikkale University, Yahşihan 71450 Kirikkale, Turkey.
| | | |
Collapse
|
34
|
Behera S, Mohanty RC, Ray RC. Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices. Braz J Microbiol 2012; 43:1499-507. [PMID: 24031981 PMCID: PMC3769043 DOI: 10.1590/s1517-838220120004000034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/25/2011] [Accepted: 06/07/2012] [Indexed: 11/24/2022] Open
Abstract
Bio-ethanol production from cane molasses (diluted to 15 % sugar w/v) was studied using the bacterium, Zymomonas mobilis MTCC 92 entrapped in luffa (Luffa cylindrica L.) sponge discs and Ca-alginate gel beads as the immobilizing matrices. At the end of 96 h fermentation, the final ethanol concentrations were 58.7 ± 0.09 and 59.1 ± 0.08 g/l molasses with luffa and Ca-alginate entrapped Z. mobilis cells, respectively exhibiting 83.25 ± 0.03 and 84.6 ± 0.02 % sugar conversion. There was no statistical significant difference (Fischer’s LSD) in sugar utilization (t = 0.254, p<0.801) and ethanol production (t =-0.663, p<0.513) between the two immobilization matrices used. Further, the immobilized cells in both the matrices were physiologically active for three more cycles of operation with less than 15 % decrease in ethanol yield in the 4th cycle, which was due to some leakage of cells. In conclusion, luffa sponge was found to be equally good as Ca-alginate as a carrier material for bacterial (Z. mobilis) cell immobilization for ethanol production. Further, it has added advantages such as it is cheap, non-corrosive and has no environmental hazard.
Collapse
Affiliation(s)
- Shuvashish Behera
- Department of Botany, Utkal University , Vanivihar, Bhubaneswar -751004, Orissa , India
| | | | | |
Collapse
|
35
|
Eiadpum A, Limtong S, Phisalaphong M. High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae. J Biosci Bioeng 2012; 114:325-9. [PMID: 22608995 DOI: 10.1016/j.jbiosc.2012.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
Suspended and immobilized cocultures of the thermotolerant yeast, Kluyveromyces marxianus DMKU 3-1042 and the mesophilic flocculent yeast, Saccharomyces cerevisiae M30 were studied for their abilities to improve production and stability of ethanol fermentation. Sugarcane juice and blackstrap molasses, at initial sugar concentrations of 220 g/L, were used as carbon sources. The results indicated that the coculture system could improve ethanol production from both sugarcane juice and blackstrap molasses when the operating temperature ranged between 33 °C and 45 °C. High temperature tolerances were achieved when the coculture was immobilized. The immobilized coculture was more effective in high-temperature ethanol fermentation than the suspended cultures. The coculture immobilized on thin-shell silk cocoon and fermented at 37 °C and 40 °C generated maximal ethanol concentrations of 81.4 and 77.3 g/L, respectively, which were 5.9-8.7% and 16.8-39.0% higher than those of the suspended cultures, respectively.
Collapse
Affiliation(s)
- Akekasit Eiadpum
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
36
|
Repeated-Batch Ethanol Production from Sweet Sorghum Juice by Saccharomyces cerevisiae Immobilized on Sweet Sorghum Stalks. ENERGIES 2012. [DOI: 10.3390/en5041215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk. Appl Microbiol Biotechnol 2012; 94:829-38. [DOI: 10.1007/s00253-012-3990-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/19/2012] [Accepted: 02/20/2012] [Indexed: 11/30/2022]
|
38
|
Alumina-doped alginate gel as a cell carrier for ethanol production in a packed-bed bioreactor. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0404-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Ethanol production from sweet sorghum juice in repeated-batch fermentation by Saccharomyces cerevisiae immobilized on corncob. World J Microbiol Biotechnol 2011; 28:559-66. [PMID: 22806851 DOI: 10.1007/s11274-011-0848-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/09/2011] [Indexed: 10/18/2022]
Abstract
Ethanol fermentation from sweet sorghum juice containing 240 g/l of total sugar by Saccharomyces cerevisiae TISTR 5048 and S. cerevisiae NP 01 immobilized on low-cost support materials, corncob pieces, was investigated. In batch fermentation, S. cerevisiae TISTR 5048 immobilized on 6 × 6 × 6 mm(3) corncobs gave higher ethanol production than those immobilized on 12 × 12 × 12 mm(3) corncobs in terms of ethanol concentration (P), yield (Y ( p/s )) and productivity (Q ( p )) with the values of 102.39 ± 1.11 g/l, 0.48 ± 0.01 and 2.13 ± 0.02 g/l h, respectively. In repeated-batch fermentation, the yeasts immobilized on the 6 × 6 × 6 mm(3) corncobs could be used at least eight successive cycles with the average P, Y ( p/s ) and Q ( p ) of 97.19 ± 5.02 g/l, 0.48 ± 0.02 and 2.02 ± 0.11 g/l h, respectively. Under the same immobilization and repeated-batch fermentation conditions, P (90.75 ± 3.05 g/l) and Q ( p ) (1.89 ± 0.06 g/l h) obtained from S. cerevisiae NP 01 were significantly lower than those from S. cerevisiae TISTR 5048 (P < 0.05), while Y ( p/s ) from both strains were not different. S. cerevisiae TISTR 5048 immobilized on the corncobs also gave significantly higher P, Y ( p/s ) and Q ( p ) than those immobilized on calcium alginate beads (P < 0.05).
Collapse
|
40
|
Immobilization of Saccharomyces cerevisiae on to modified carboxymethylcellulose for production of ethanol. Bioprocess Biosyst Eng 2011; 34:849-57. [PMID: 21461947 DOI: 10.1007/s00449-011-0535-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
In this work, modified carboxymethylcellulose (CMC) was used as a new support material for production of ethanol. Crosslinked graft copolymers of CMC with N-vinyl-2-pyrrolidone (N-VP) were prepared in different grafting yields. The beads material was characterized by means of fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and swelling experiment. Saccharomyces cerevisiae was immobilized using entrapment method in the graft copolymers of carboxymethylcellulose-g-poly(N-vinyl-2-pyrrolidone) (CMC-g-PVP) for ethanol fermentation. The effects of grafting yield, initial glucose concentration and crosslinker concentration on the yield of ethanol process were investigated. Reusability of the immobilized yeasts was investigated and found that the materials can be used four times without losing their activity. Ethanol production increased to 59.3 g/L from 46.4 g/L when percentage of N-VP in the graft copolymer was increased. The highest ethanol productivity was found to be 1.75-2.25 g/L h. Fermentation time decreased with the decreasing of crosslinker concentration. The results suggest that the proposed method for immobilization of Saccharomyces cerevisiae has potential in industrial applications for ethanol process.
Collapse
|
41
|
Razmovski R, Vučurović V. Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Enzyme Microb Technol 2011; 48:378-85. [PMID: 22112953 DOI: 10.1016/j.enzmictec.2010.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/30/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
A new alginate-maize stem ground tissue matrix was developed as a Saccharomyces cerevisiae carrier for ethanol fermentation from sugar beet molasses. There were several fermentation procedures in the present study: using free cells and alginate-entrapped cells with and without maize stem ground tissue supplementation (F; F+C; AB; AB+C), and using a new combined alginate-maize stem ground tissue carrier (ABC). It was found that addition of maize stem ground tissue meal (C), with honeycomb configuration, provided high surface areas for cell attachment and biofilm growth, and also increased alginate matrix porosity, enabling better mass transfer characteristic, better physical strength and stability of beads. The highest values of process parameters were obtained in the case of new carrier (ABC): the ethanol concentration of 60.36 g/l, percentage of the theoretical ethanol yield of 96.56%, ethanol yield of 0.493 g/g and the volumetric ethanol productivity of 2.51 g/lh. The medium supplementation with maize stem ground tissue significantly decreased acetaldehyde and acetic acid content, did not affect fusel alcohol and ethylacetate content of the distillate.
Collapse
Affiliation(s)
- R Razmovski
- University of Novi Sad, Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia.
| | | |
Collapse
|
42
|
Behera S, Mohanty RC, Ray RC. Ethanol production from mahula (Madhuca latifolia L.) flowers using free and immobilized (in Luffa cylindrical L. sponge discs) cells of Zymomonas mobilis MTCC 92. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-010-0160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
|
44
|
Saab HB, Fouchard S, Boulanger A, Llopiz P, Neunlist S. Performance ofLuffa cylindricaas an immobilization matrix for the biotransformation of cholesterol byMycobacteriumspecies. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.3109/10242422.2010.537326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Chandel AK, Narasu ML, Chandrasekhar G, Manikyam A, Rao LV. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. BIORESOURCE TECHNOLOGY 2009; 100:2404-10. [PMID: 19114303 DOI: 10.1016/j.biortech.2008.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/28/2008] [Accepted: 11/01/2008] [Indexed: 05/05/2023]
Abstract
Saccharum spontaneum is a wasteland weed consists of 45.10+/-0.35% cellulose and 22.75+/-0.28% of hemicellulose on dry solid (DS) basis. Aqueous ammonia delignified S. spontaneum yielded total reducing sugars, 53.91+/-0.44 g/L (539.10+/-0.55 mg/g of substrate) with a hydrolytic efficiency of 77.85+/-0.45%. The enzymes required for hydrolysis were prepared from culture supernatants of Aspergillus oryzae MTCC 1846. A maximum of 0.85+/-0.07 IU/mL of filter paperase (FPase), 1.25+/-0.04 IU/mL of carboxy methyl cellulase (CMCase) and 55.56+/-0.52 IU/mL of xylanase activity was obtained after 7 days of incubation at 28+/-0.5 degrees C using delignified S. spontaneum as carbon source under submerged fermentation conditions. Enzymatic hydrolysate of S. spontaneum was then tested for ethanol production under batch and repeated batch production system using "in-situ" entrapped Saccharomyces cerevisiae VS3 cells in S. spontaneum stalks (1 cm x 1 cm) size. Immobilization was confirmed by the scanning electron microscopy (SEM). Batch fermentation of VS3 free cells and immobilized cells showed ethanol production, 19.45+/-0.55 g/L (yield, 0.410+/-0.010 g/g) and 21.66+/-0.62 g/L (yield, 0.434+/-0.021 g/g), respectively. Immobilized VS3 cells showed maximum ethanol production (22.85+/-0.44 g/L, yield, 0.45+/-0.04 g/g) up to 8th cycle during repeated batch fermentation followed by a gradual reduction in subsequent cycles of fermentation.
Collapse
Affiliation(s)
- Anuj K Chandel
- Department of Microbiology, Osmania University, Hyderabad-500 007, India
| | | | | | | | | |
Collapse
|