1
|
Revault J, Desdevises Y, Magnanou É. Link between bacterial communities and contrasted loads in ectoparasitic monogeneans from the external mucus of two wild sparid species (Teleostei). Anim Microbiome 2024; 6:42. [PMID: 39080784 PMCID: PMC11290237 DOI: 10.1186/s42523-024-00329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND While teleost fishes represent two thirds of marine vertebrates, the role of their external microbiota in relationship with their environment remains poorly studied, especially in wild populations. Hence, the interaction of their microbiota with ectoparasites is largely unknown. Microbiota can act as a protective barrier against pathogens, and/or be involved in host recognition by parasites. Thus, host-parasite associations should now be considered as a tripartite interplay where the microbiota shapes the host phenotype and its relation to parasites. Monogeneans (Platyhelminthes) are direct life cycle ectoparasites commonly found on teleost skin and gills. The role of bacterial communities within skin and gill mucus which either pre-exist monogeneans infestation or follow it remain unclear. This is investigated in this study using the association between Sparidae (Teleostei) and their specific monogenean ectoparasites of the Lamellodiscus genus. We are exploring specificity mechanisms through the characterization of the external mucus microbiota of two wild sparid species using 16s rRNA amplicon sequencing. We investigated how these bacterial communities are related to constrated Lamellodiscus monogeneans parasitic load. RESULTS Our results revealed that the increase in Lamellodiscus load is linked to an increase in bacterial diversity in the skin mucus of D. annularis specimens. The date of capture of D. annularis individuals appears to influence the Lamellodiscus load. Correlations between the abundance of bacterial taxa and Lamellodiscus load were found in gill mucus of both species. Abundance of Flavobacteriaceae family was strongly correlated with the Lamellodiscus load in gill mucus of both species, as well as the potentially pathogenic bacterial genus Tenacibaculum in D. annularis gill mucus. Negative correlations were observed between Lamellodiscus load and the abundance in Vibrionaceae in gill mucus of D. annularis, and the abundance in Fusobacteria in gill mucus of P. acarne specimens, suggesting potential applications of these bacteria in mitigating parasitic infections in fish. CONCLUSIONS Our findings highlight the dynamic nature of fish microbiota, in particular in relation with monogeneans infestations in two wild sparid species. More generally, this study emphasizes the links between hosts, bacterial communities and parasites, spanning from the dynamics of co-infection to the potential protective role of the host's microbiota.
Collapse
Affiliation(s)
- Judith Revault
- Sorbonne Université, CNRS, Biologie Intégrative des organismes marins, BIOM, Observatoire Océanologique, Banyuls/Mer, F-66650, France.
| | - Yves Desdevises
- Sorbonne Université, CNRS, Biologie Intégrative des organismes marins, BIOM, Observatoire Océanologique, Banyuls/Mer, F-66650, France
| | - Élodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des organismes marins, BIOM, Observatoire Océanologique, Banyuls/Mer, F-66650, France
| |
Collapse
|
2
|
Fieschi-Méric L, van Leeuwen P, Denoël M, Lesbarrères D. Encouraging news for in situ conservation: Translocation of salamander larvae has limited impacts on their skin microbiota. Mol Ecol 2023. [PMID: 36872055 DOI: 10.1111/mec.16914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The key role of symbiotic skin bacteria communities in amphibian resistance to emerging pathogens is well recognized, but factors leading to their dysbiosis are not fully understood. In particular, the potential effects of population translocations on the composition and diversity of hosts' skin microbiota have received little attention, although such transfers are widely carried out as a strategy for amphibian conservation. To characterize the potential reorganization of the microbiota over such a sudden environmental change, we conducted a common-garden experiment simulating reciprocal translocations of yellow-spotted salamander larvae across three lakes. We sequenced skin microbiota samples collected before and 15 days after the transfer. Using a database of antifungal isolates, we identified symbionts with known function against the pathogen Batrachochytrium dendrobatidis, a major driver of amphibian declines. Our results indicate an important reorganization of bacterial assemblages throughout ontogeny, with strong changes in composition, diversity and structure of the skin microbiota in both control and translocated individuals over the 15 days of monitoring. Unexpectedly, the diversity and community structure of the microbiota were not significantly affected by the translocation event, thus suggesting a strong resilience of skin bacterial communities to environmental change-at least across the time-window studied here. A few phylotypes were more abundant in the microbiota of translocated larvae, but no differences were found among pathogen-inhibiting symbionts. Taken together, our results support amphibian translocations as a promising strategy for this endangered animal class, with limited impact on their skin microbiota.
Collapse
Affiliation(s)
- Léa Fieschi-Méric
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium.,Biology Department, Laurentian University, Sudbury, Ontario, Canada
| | - Pauline van Leeuwen
- Biology Department, Laurentian University, Sudbury, Ontario, Canada.,Conservation Genetics Laboratory, University de Liège, Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium
| | - David Lesbarrères
- Biology Department, Laurentian University, Sudbury, Ontario, Canada.,Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Microbial Diversity of the Chinese Tiger Frog (Hoplobatrachus rugulosus) on Healthy versus Ulcerated Skin. Animals (Basel) 2022; 12:ani12101241. [PMID: 35625087 PMCID: PMC9137582 DOI: 10.3390/ani12101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary As amphibians’ skin is highly sensitive to the environment, skin defects such as ulceration may pose a particular threat to them. Our study has found a stark difference in the microbial communities between healthy and ulcerated Hoplobatrachus rugulosus skin. The proportion and type of bacteria differed between the two groups, and we suggest that ulceration on the skin may lead to changes in skin microbial communities. The functional pathways of skin microbes may be influenced by ulceration on the skin surface of H. rugulosus. We also found that Vogesella is more abundant in healthy H. rugulosus, which may be a potential probiotic candidate for the reduction or removal of pathogens. Abstract The Chinese tiger frog (Hoplobatrachus rugulosus) is extensively farmed in southern China. Due to cramped living conditions, skin diseases are prevalent among unhealthy tiger frogs which thereby affects their welfare. In this study, the differences in microbiota present on healthy versus ulcerated H. rugulosus skin were examined using 16S rRNA sequences. Proteobacteria were the dominant phylum on H. rugulosus skin, but their abundance was greater on the healthy skin than on the ulcerated skin. Rhodocyclaceae and Comamonadaceae were the most dominant families on the healthy skin, whereas Moraxellaceae was the most dominant family on the ulcerated skin. The abundance of these three families was different between the groups. Acidovorax was the most dominant genus on the healthy skin, whereas Acinetobacter was the most dominant genus on the ulcerated skin, and its abundance was greater on the ulcerated skin than on the healthy skin. Moreover, the genes related to the Kyoto Encyclopedia of Genes and Genomes pathways of levels 2–3, especially those genes that are involved in cell motility, flagellar assembly, and bacterial chemotaxis in the skin microbiota, were found to be greater on the healthy skin than on the ulcerated skin, indicating that the function of skin microbiota was affected by ulceration. Overall, the composition, abundance, and function of skin microbial communities differed between the healthy and ulcerated H. rugulosus skin. Our results may assist in developing measures to combat diseases in H. rugulosus.
Collapse
|
4
|
Mayer M, Schlippe Justicia L, Shine R, Brown GP. Host defense or parasite cue: Skin secretions mediate interactions between amphibians and their parasites. Ecol Lett 2021; 24:1955-1965. [PMID: 34176205 DOI: 10.1111/ele.13832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Amphibian skin secretions (substances produced by the amphibian plus microbiota) plausibly act as a first line of defense against parasite/pathogen attack, but may also provide chemical cues for pathogens. To clarify the role of skin secretions in host-parasite interactions, we conducted experiments using cane toads (Rhinella marina) and their lungworms (Rhabdias pseudosphaerocephala) from the range-core and invasion-front of the introduced anurans' range in Australia. Depending on the geographical area, toad skin secretions can reduce the longevity and infection success of parasite larvae, or attract lungworm larvae and enhance their infection success. These striking differences between the two regions were due both to differential responses of the larvae, and differential effects of the skin secretions. Our data suggest that skin secretions play an important role in host-parasite interactions in anurans, and that the arms race between a host and parasite can rapidly generate spatial variation in critical features of that interaction.
Collapse
Affiliation(s)
- Martin Mayer
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lia Schlippe Justicia
- Department of Animal Biology, University of La Laguna, Tenerife, Canary Islands, Spain
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Proença DN, Fasola E, Lopes I, Morais PV. Characterization of the Skin Cultivable Microbiota Composition of the Frog Pelophylax perezi Inhabiting Different Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052585. [PMID: 33807539 PMCID: PMC7967507 DOI: 10.3390/ijerph18052585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Microorganisms that live in association with amphibian skin can play important roles in protecting their host. Within the scenarios of global change, it is important to understand how environmental disturbances, namely, metal pollution, can affect this microbiota. The aim of this study is to recognize core bacteria in the skin cultivable microbiota of the Perez frog (Pelophylax perezi) that are preserved regardless of the environmental conditions in which the frogs live. The characterization of these isolates revealed characteristics that can support their contributions to the ability of frogs to use metal impacted environments. Frog’s skin swabs were collected from P. perezi populations that inhabit a metal-polluted site and three reference (non-metal polluted) sites. Bacterial strains were isolated, identified, and subjected to an acid mine drainage tolerance (AMD) test, collected upstream from a site heavily contaminated with metals, and tested to produce extracellular polymeric substances (exopolysaccharide, EPS). All frog populations had Acinetobacter in their cutaneous cultivable microbiota. Significant growth inhibition was observed in all bacterial isolates exposed to 75% of AMD. EPS production was considered a characteristic of several isolates. The data obtained is a preliminary step but crucial to sustain that the cultivable microbiota is a mechanism for protecting frogs against environmental contamination.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Emanuele Fasola
- CESAM and Department of Biology, University of Aveiro, 3810-005 Aveiro, Portugal; (E.F.); (I.L.)
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-005 Aveiro, Portugal; (E.F.); (I.L.)
| | - Paula V. Morais
- Department of Life Sciences and Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Correspondence: ; Tel.: +35-1239240700
| |
Collapse
|
6
|
First line of defence: Skin microbiota may protect anurans from infective larval lungworms. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:185-189. [PMID: 33898219 PMCID: PMC8056135 DOI: 10.1016/j.ijppaw.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Functional roles of the rich microbiota of the skin are not fully understood, but include protection against microbial diseases and other environmental challenges. In experimental studies, we show that reducing the microbiota from cane toad (Rhinella marina) skin by gently wiping with absorptive gauze resulted in threefold higher rates of infection by lungworms (Rhabdias pseudosphaerocephala) following standardised exposure to infective skin-penetrating larvae. Higher concentrations of microbial DNA were associated with lower rates of lungworm entry. Our data suggest that microbial activity on the anuran skin comprises an important line of defence against attack by macroparasites as well as by fungi and other microbes.
Collapse
|
7
|
Jiménez RR, Alvarado G, Sandoval J, Sommer S. Habitat disturbance influences the skin microbiome of a rediscovered neotropical-montane frog. BMC Microbiol 2020; 20:292. [PMID: 32962670 PMCID: PMC7509932 DOI: 10.1186/s12866-020-01979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The skin microbiome serves as a first line defense against pathogens in vertebrates. In amphibians, it has the potential to protect against the chytrid fungus Batrachochytrium dendrobatis (Bd), a likely agent of amphibian declines. Alteration of the microbiome associated with unfavorable environmental changes produced by anthropogenic activities may make the host more susceptible to pathogens. Some amphibian species that were thought to be "extinct" have been rediscovered years after population declines in the late 1980s probably due to evolved Bd-resistance and are now threatened by anthropogenic land-use changes. Understanding the effects of habitat disturbance on the host skin microbiome is relevant for understanding the health of these species, along with its susceptibility to pathogens such as Bd. Here, we investigate the influence of habitat alteration on the skin bacterial communities as well as specifically the putative Bd-inhibitory bacterial communities of the montane frog Lithobates vibicarius. This species, after years of not being observed, was rediscovered in small populations inhabiting undisturbed and disturbed landscapes, and with continuous presence of Bd. RESULTS We found that cutaneous bacterial communities of tadpoles and adults differed between undisturbed and disturbed habitats. The adults from disturbed habitats exhibited greater community dispersion than those from undisturbed habitats. We observed a higher richness of putative Bd-inhibitory bacterial strains in adults from disturbed habitats than in those from undisturbed habitats, as well as a greater number of these potential protective bacteria with a high relative abundance. CONCLUSIONS Our findings support the microbial "Anna Karenina principle", in which disturbance is hypothesized to cause greater microbial dispersion in communities, a so-called dysbiosis, which is a response of animal microbiomes to stress factors that decrease the ability of the host or its microbiome to regulate community composition. On the positive side, the high richness and relative abundance of putative Bd-inhibitory bacteria may indicate the development of a defense mechanism that enhances Bd-protection, attributed to a co-occurrence of more than 30-years of host and pathogen in these disturbed habitats. Our results provide important insight into the influence of human-modified landscapes on the skin microbiome and health implications of Bd-survivor species.
Collapse
Affiliation(s)
- Randall R Jiménez
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89069, Ulm, Germany.
| | - Gilbert Alvarado
- Laboratory of Comparative Wildlife Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Orlando Marques de Paiva 87, São Paulo, Brazil
- Laboratory of Experimental and Comparative Pathology (LAPECOM), Biology School, University of Costa Rica, San José, Costa Rica
| | - José Sandoval
- Laboratory of Experimental and Comparative Pathology (LAPECOM), Biology School, University of Costa Rica, San José, Costa Rica
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89069, Ulm, Germany
| |
Collapse
|
8
|
Rebollar EA, Martínez-Ugalde E, Orta AH. The Amphibian Skin Microbiome and Its Protective Role Against Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Emanuel Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Alberto H. Orta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
9
|
Assessing similarities and disparities in the skin microbiota between wild and laboratory populations of house mice. ISME JOURNAL 2020; 14:2367-2380. [PMID: 32518248 PMCID: PMC7490391 DOI: 10.1038/s41396-020-0690-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022]
Abstract
The house mouse is a key model organism in skin research including host–microbiota interactions, yet little is known about the skin microbiota of free-living mice. It is similarly unclear how closely laboratory mice, which typically live under exceptionally hygienic conditions, resemble the ancestral state of microbial variation in the wild. In this study, we sampled an area spanning 270 km2 in south-west France and collected 203 wild Mus musculus domesticus. We profiled the ear skin microbiota on standing and active communities (DNA-based and RNA-based 16 rRNA gene sequencing, respectively), and compared multiple community aspects between wild-caught and laboratory-reared mice kept in distinct facilities. Compared to lab mice, we reveal the skin microbiota of wild mice on the one hand to be unique in their composition within the Staphylococcus genus, with a majority of sequences most closely matching known novobiocin-resistant species, and display evidence of a rare biosphere. On the other hand, despite drastic disparities between natural and laboratory environments, we find that shared taxa nonetheless make up the majority of the core skin microbiota of both wild- and laboratory skin communities, suggesting that mammalian skin is a highly specialized habitat capable of strong selection from available species pools. Finally, the influence of environmental factors suggests RNA-based profiling as a preferred method to reduce environmental noise.
Collapse
|
10
|
Kostanjšek R, Prodan Y, Stres B, Trontelj P. Composition of the cutaneous bacterial community of a cave amphibian, Proteus anguinus. FEMS Microbiol Ecol 2020; 95:5288338. [PMID: 30649314 DOI: 10.1093/femsec/fiz007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The European cave salamander Proteus anguinus is a charismatic amphibian endemic to the concealed and inaccessible subterranean waters of the Dinaric Karst. Despite its exceptional conservation importance not much is known about its ecology and interactions with the groundwater microbiome. The cutaneous microbiota of amphibians is an important driver of metabolic capabilities and immunity, and thus a key factor in their wellbeing and survival. We used high-throughput 16S rRNA gene sequencing based on seven variable regions to examine the bacteriome of the skin of five distinct evolutionary lineages of P. anguinus and in their groundwater environment. The skin bacteriomes turned out to be strongly filtered subsamples of the environmental microbial community. The resident microbiota of the analyzed individuals was dominated by five bacterial taxa. Despite an indicated functional redundancy, the cutaneous bacteriome of P. anguinus presumably provides protection against invading microbes by occupying the niche, and thus could serve as an indicator of health status. Besides conservation implications for P. anguinus, our results provide a baseline for future studies on other endangered neotenic salamanders.
Collapse
Affiliation(s)
- Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ylenia Prodan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Toxinology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Characterization of Dermotheca sp. Infection in a midwestern state-endangered salamander ( Ambystoma platineum) and a co-occurring common species ( Ambystoma texanum). Parasitology 2020; 147:360-370. [PMID: 31840622 DOI: 10.1017/s0031182019001677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ichthyosporean parasites (order Dermocystida) can cause morbidity and mortality in amphibians, but their ecology and epidemiology remain understudied. We investigated the prevalence, gross and histologic appearance, and molecular phylogeny of a novel dermocystid in the state-endangered silvery salamander (Ambystoma platineum) and the co-occurring, non-threatened small-mouthed salamander (Ambystoma texanum) from Illinois. Silvery salamanders (N = 610) were sampled at six ephemeral wetlands from 2016 to 2018. Beginning in 2017, 1-3 mm raised, white skin nodules were identified in 24 silvery salamanders and two small-mouthed salamanders from five wetlands (prevalence = 0-11.1%). Skin biopsy histology (N = 4) was consistent with dermocystid sporangia, and necropsies (N = 3) identified infrequent hepatic sporangia. Parasitic 18S rRNA sequences (N = 5) from both salamander species were identical, and phylogenetic analysis revealed a close relationship to Dermotheca viridescens. Dermocystids were not identified in museum specimens from the same wetlands (N = 125) dating back to 1973. This is the first report of Dermotheca sp. affecting caudates in the Midwestern United States. Future research is needed to determine the effects of this pathogen on individual and population health, and to assess whether this organism poses a threat to the conservation of ambystomatid salamanders.
Collapse
|
12
|
Campbell LJ, Garner TWJ, Hopkins K, Griffiths AGF, Harrison XA. Outbreaks of an Emerging Viral Disease Covary With Differences in the Composition of the Skin Microbiome of a Wild United Kingdom Amphibian. Front Microbiol 2019; 10:1245. [PMID: 31281291 PMCID: PMC6597677 DOI: 10.3389/fmicb.2019.01245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
There is growing appreciation of the important role of commensal microbes in ensuring the normal function and health of their hosts, including determining how hosts respond to pathogens. A range of infectious diseases are threatening amphibians worldwide, and evidence is accumulating that the host-associated bacteria that comprise the microbiome may be key in mediating interactions between amphibian hosts and infectious pathogens. We used 16S rRNA amplicon sequencing to quantify the skin microbial community structure of over 200 individual wild adult European common frogs (Rana temporaria), from ten populations with contrasting history of the lethal disease ranavirosis, caused by emerging viral pathogens belonging to the genus Ranavirus. All populations had similar species richness irrespective of disease history, but populations that have experienced historical outbreaks of ranavirosis have a distinct skin microbiome structure (beta diversity) when compared to sites where no outbreaks of the disease have occurred. At the individual level, neither age, body length, nor sex of the frog could predict the structure of the skin microbiota. Our data potentially support the hypothesis that variation among individuals in skin microbiome structure drive differences in susceptibility to infection and lethal outbreaks of disease. More generally, our results suggest that population-level processes are more important for driving differences in microbiome structure than variation among individuals within populations in key life history traits such as age and body size.
Collapse
Affiliation(s)
- Lewis J Campbell
- Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Ross AA, Rodrigues Hoffmann A, Neufeld JD. The skin microbiome of vertebrates. MICROBIOME 2019; 7:79. [PMID: 31122279 PMCID: PMC6533770 DOI: 10.1186/s40168-019-0694-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/08/2019] [Indexed: 05/05/2023]
Abstract
The skin constitutes the primary physical barrier between vertebrates and their external environment. Characterization of skin microorganisms is essential for understanding how a host evolves in association with its microbial symbionts, modeling immune system development, diagnosing illnesses, and exploring the origins of potential zoonoses that affect humans. Although many studies have characterized the human microbiome with culture-independent techniques, far less is known about the skin microbiome of other mammals, amphibians, birds, fish, and reptiles. The aim of this review is to summarize studies that have leveraged high-throughput sequencing to better understand the skin microorganisms that associate with members of classes within the subphylum Vertebrata. Specifically, links will be explored between the skin microbiome and vertebrate characteristics, including geographic location, biological sex, animal interactions, diet, captivity, maternal transfer, and disease. Recent literature on parallel patterns between host evolutionary history and their skin microbial communities, or phylosymbiosis, will also be analyzed. These factors must be considered when designing future microbiome studies to ensure that the conclusions drawn from basic research translate into useful applications, such as probiotics and successful conservation strategies for endangered and threatened animals.
Collapse
Affiliation(s)
- Ashley A Ross
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
- Present address: Ontario Veterinary College, University of Guelph, 419 Gordon St, Guelph, Ontario, N1G 2W1, Canada
| | - Aline Rodrigues Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 660 Raymond Stotzer Pkwy, College Station, TX, USA
| | - Josh D Neufeld
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
14
|
Li Z, Wang G, Zhang K, Gong W, Yu E, Tian J, Xie J, Yu D. Epizootic ulcerative syndrome causes cutaneous dysbacteriosis in hybrid snakehead ( Channa maculata♀ × Channa argus♂). PeerJ 2019; 7:e6674. [PMID: 30972254 PMCID: PMC6450373 DOI: 10.7717/peerj.6674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/23/2019] [Indexed: 01/09/2023] Open
Abstract
Cutaneous microbiota play an important role in protecting fish against pathogens. Aphanomyces infection causes epizootic ulcerative syndrome (EUS) in fish, and by perturbing the integrity of the cutaneous microbiota, increases the potential for infection by pathogenic bacteria. However, whether the composition of the cutaneous microbiota is altered in fish with EUS, and if so, which species are changed and how this might influence infected fish, is still largely unclear. Considering the importance of cutaneous microbiota in maintaining host health, we hypothesized that Aphanomyces infection significantly enhances the presence of certain bacterial pathogens in the cutaneous microbiota and causes cutaneous dysbacteriosis. To test this hypothesis, we compared the cutaneous microbiota compositions of hybrid snakehead (Channa maculata♀ × Channa argus♂) with and without Aphanomyces infection using Illumina Miseq sequencing of the 16S rRNA gene. Our results showed that the cutaneous microbiota of hybrid snakehead were significantly altered subsequent to EUS infection and that the numbers of potentially pathogenic bacteria classified into the genera Anaerosinus, Anaerovorax, Dorea, and Clostridium were significantly enhanced in the cutaneous microbiota of hybrid snakehead with EUS, whereas bacteria classified into the genera Arthrobacter, Dysgonomonas, Anoxybacillus, Bacillus, Solibacillus, Carnobacterium, Lactococcus, Streptococcus, Achromobacter, Polynucleobacter, Vogesella, and Pseudomonas were significantly reduced. These results imply that treatment for EUS should not only take into consideration the control of Aphanomyces reproduction but should also focus on regulating the cutaneous microbiota of infected fish.
Collapse
Affiliation(s)
- Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Ermeng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Deguang Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| |
Collapse
|
15
|
Longitudinal study of Amphibiocystidium sp. infection in a natural population of the Italian stream frog (Rana italica). Parasitology 2019; 146:903-910. [DOI: 10.1017/s0031182019000076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractMesomycetozoean-induced infections (order Dermocystida, genus Amphibiocystidium) in European and North American amphibians are causing alarm. To date, the pathogenicity of these parasites in field conditions has been poorly studied, and demographic consequences on amphibian populations have not been explored. In this study, an Amphibiocystidium sp. infection is reported in a natural population of the Italian stream frog (Rana italica) of Central Italy, over a 7-year period from 2008 to 2014. Light and electron microscope examinations, as well as partial 18S rDNA sequence analysis were used to characterize the parasite. Moreover, a capture-mark-recapture study was conducted to assess the frog demographics in response to infection. Negative effects of amphibiocystidiosis on individual survival and population fitness were absent throughout the sampling period, despite the high estimates of disease prevalence. This might have been due to resistance and/or tolerance strategies developed by the frogs in response to the persistence of Amphibiocystidium infection in this system. We hypothesized that in the examined R. italica population, amphibiocystidiosis is an ongoing endemic/epidemic infection. However, ecological and host-specific factors, interacting in a synergistic fashion, might be responsible for variations in the susceptibility to Amphibiocystidium infection of both conspecific populations and heterospecific individuals of R. italica.
Collapse
|
16
|
Christian K, Weitzman C, Rose A, Kaestli M, Gibb K. Ecological patterns in the skin microbiota of frogs from tropical Australia. Ecol Evol 2018; 8:10510-10519. [PMID: 30464823 PMCID: PMC6238143 DOI: 10.1002/ece3.4518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022] Open
Abstract
The microbiota of frog skin can play an important role in protecting against diseases and parasites. The frog skin microbial community represents a complex mix of microbes that are promoted by the chemical environment of the frog skin and influenced by the animal's immediate past environment. The microbial communities of six species of frogs sampled from the campus of Charles Darwin University (CDU) were more similar within species than between species. The microbiota of the introduced cane toad (Rhinella marina) was most dissimilar among the species. Pairwise comparisons showed that the microbial communities of each species were different, except for the terrestrial Litoria nasuta and the arboreal L. rothii. The microbial communities of the six species were not related to ecological habit (arboreal or terrestrial), and neither was the alpha diversity of the microbes. The core microbes (defined as being on ≥90% of individuals of a species or group) were significantly different among all species, although 89 microbial operational taxonomic units (OTUs) were core microbes for all six species at CDU. Two species, Rhinella marina and Litoria rothii, were sampled at additional sites approximately 10 and 30 km from CDU. The microbial communities and the core OTU composition were different among the sites, but there were nevertheless 194 (R. marina) and 181 (L. rothii) core OTUs present at all three sites. Thus, the core microbiota varied with respect to geographic range and sample size.
Collapse
Affiliation(s)
- Keith Christian
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | - Alea Rose
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Mirjam Kaestli
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Karen Gibb
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| |
Collapse
|
17
|
Hernández-Gómez O, Briggler JT, Williams RN. Influence of immunogenetics, sex and body condition on the cutaneous microbial communities of two giant salamanders. Mol Ecol 2018; 27:1915-1929. [PMID: 29411437 DOI: 10.1111/mec.14500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
The complex association between hosts and microbial symbionts requires the implementation of multiple approaches to evaluate variation in host physiology. Within amphibians, heterogeneity in immunogenetic traits and cutaneous microbiota is associated with variation in disease resistance. Ozark (Cryptobranchus alleganiensis bishopi) and eastern hellbenders (C. a. alleganiensis) provide a model system to assess variation in host traits and microbial communities. Ozark hellbenders have experienced declines throughout their range, are federally endangered and experience wound retardation that is absent in the eastern subspecies. Previous microbial investigations indicate differentiation in the composition of the skin microbiota of both hellbender subspecies, but it is not clear whether these patterns are concurrent with diversity in the major histocompatibility complex (MHC) genes. We characterized the MHC IIB and the skin microbiota of hellbenders in Missouri, where both subspecies co-occur though not sympatric. We compared the microbiota composition and MHC diversity between both subspecies and investigated whether individual-level MHC diversity, sex and body condition were associated with microbiota composition. Overall, MHC IIB diversity was lower in Ozark hellbenders compared to the eastern subspecies. Multivariate statistical comparisons identified microbiota differentiation between Ozark and eastern hellbenders. MHC IIB allele presence/absence, allele divergence, body composition and sex defined grouping of hellbender microbiotas within populations. Differentiation of the cutaneous microbiotas and MHC IIB genes between eastern and Ozark hellbenders suggests that differences exist in immunity between the two subspecies. This study demonstrates how simultaneous assessments of host genetic traits and microbiotas can inform patterns of microbial community structure in natural systems.
Collapse
Affiliation(s)
- Obed Hernández-Gómez
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | | | - Rod N Williams
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
18
|
Legrand TPRA, Catalano SR, Wos-Oxley ML, Stephens F, Landos M, Bansemer MS, Stone DAJ, Qin JG, Oxley APA. The Inner Workings of the Outer Surface: Skin and Gill Microbiota as Indicators of Changing Gut Health in Yellowtail Kingfish. Front Microbiol 2018; 8:2664. [PMID: 29379473 PMCID: PMC5775239 DOI: 10.3389/fmicb.2017.02664] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
The mucosal surfaces and associated microbiota of fish are an important primary barrier and provide the first line of defense against potential pathogens. An understanding of the skin and gill microbial assemblages and the factors which drive their composition may provide useful insights into the broad dynamics of fish host–microbial relationships, and may reveal underlying changes in health status. This is particularly pertinent to cultivated systems whereby various stressors may led to conditions (like enteritis) which impinge on productivity. As an economically important species, we assessed whether the outer-surface bacterial communities reflect a change in gut health status of cultivated Yellowtail Kingfish (Seriola lalandi). Active bacterial assemblages were surveyed from RNA extracts from swabs of the skin and gills by constructing Illumina 16S rRNA gene amplicon libraries. Proteobacteria and Bacteroidetes were predominant in both the skin and gills, with enrichment of key β-proteobacteria in the gills (Nitrosomonadales and Ferrovales). Fish exhibiting early stage chronic lymphocytic enteritis comprised markedly different global bacterial assemblages compared to those deemed healthy and exhibiting late stages of the disease. This corresponded to an overall loss of diversity and enrichment of Proteobacteria and Actinobacteria, particularly in the gills. In contrast, bacterial assemblages of fish with late stage enteritis were generally similar to those of healthy individuals, though with some distinct taxa. In conclusion, gut health status is an important factor which defines the skin and gill bacterial assemblages of fish and likely reflects changes in immune states and barrier systems during the early onset of conditions like enteritis. This study represents the first to investigate the microbiota of the outer mucosal surfaces of fish in response to underlying chronic gut enteritis, revealing potential biomarkers for assessing fish health in commercial aquaculture systems.
Collapse
Affiliation(s)
- Thibault P R A Legrand
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia.,School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Sarah R Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Melissa L Wos-Oxley
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany.,South Australian Museum, Adelaide, SA, Australia
| | | | - Matt Landos
- Future Fisheries Veterinary Service Pty Ltd., East Ballina, NSW, Australia
| | - Matthew S Bansemer
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - David A J Stone
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia.,School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Andrew P A Oxley
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| |
Collapse
|
19
|
Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability. Appl Environ Microbiol 2017; 83:AEM.00186-17. [PMID: 28213545 DOI: 10.1128/aem.00186-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022] Open
Abstract
Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders.IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis, called anti-B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti-B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti-B. dendrobatidis bacterial species among three salamander species (n = 61) sampled at three localities. We identified 50 unique anti-B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis Five anti-B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti-B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti-B. dendrobatidis bacterial community. These anti-B. dendrobatidis bacteria may serve a protective function for their salamander hosts.
Collapse
|
20
|
Hernández-Gómez O, Kimble SJA, Briggler JT, Williams RN. Characterization of the Cutaneous Bacterial Communities of Two Giant Salamander Subspecies. MICROBIAL ECOLOGY 2017; 73:445-454. [PMID: 27677893 DOI: 10.1007/s00248-016-0859-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/09/2016] [Indexed: 05/21/2023]
Abstract
Pathogens currently threaten the existence of many amphibian species. In efforts to combat global declines, researchers have characterized the amphibian cutaneous microbiome as a resource for disease management. Characterization of microbial communities has become useful in studying the links between organismal health and the host microbiome. Hellbender salamanders (Cryptobranchus alleganiensis) provide an ideal system to explore the cutaneous microbiome as this species requires extensive conservation management across its range. In addition, the Ozark hellbender subspecies (Cryptobranchus alleganiensis bishopi) exhibits chronic wounds hypothesized to be caused by bacterial infections, whereas the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) does not. We assessed the cutaneous bacterial microbiome of both subspecies at two locations in the state of Missouri, USA. Through 16S rRNA gene-based amplicon sequencing, we detected more than 1000 distinct operational taxonomic units (OTUs) in the cutaneous and environmental bacterial microbiome. Phylogenetic and abundance-based dissimilarity matrices identified differences in the bacterial communities between the two subspecies, but only the abundance-based dissimilarity matrix identified differences between wounds and healthy skin on Ozark hellbenders. The higher abundance of OTUs on Ozark wounds suggests that commensal bacteria present on the skin and environment may be opportunistically colonizing the wounds. This brief exploration of the hellbender cutaneous bacterial microbiome provides foundational support for future studies seeking to understand the hellbender cutaneous bacterial microbiome and the role of the bacterial microbiota on chronic wounds of Ozark hellbenders.
Collapse
Affiliation(s)
- Obed Hernández-Gómez
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA.
| | - Steven J A Kimble
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| | - Jeffrey T Briggler
- Missouri Department of Conservation, 2901 W. Truman Blvd, Jefferson City, MO, 65109, USA
| | - Rod N Williams
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Affiliation(s)
- Jenifer B. Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|