1
|
Xu Z, Hattori S, Masuda Y, Toyoda S, Koba K, Yu P, Yoshida N, Du ZJ, Senoo K. Unprecedented N 2O production by nitrate-ammonifying Geobacteraceae with distinctive N 2O isotopocule signatures. mBio 2024; 15:e0254024. [PMID: 39475233 PMCID: PMC11633192 DOI: 10.1128/mbio.02540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA), driven by nitrate-ammonifying bacteria, is an increasingly appreciated nitrogen-cycling pathway in terrestrial ecosystems. This process reportedly generates nitrous oxide (N2O), a strong greenhouse gas with ozone-depleting effects. However, it remains poorly understood how N2O is produced by environmental nitrate-ammonifiers and how to identify DNRA-derived N2O. In this study, we characterize two novel enzymatic pathways responsible for N2O production in Geobacteraceae strains, which are predominant nitrate-ammonifying bacteria in paddy soils. The first pathway involves a membrane-bound nitrate reductase (Nar) and a hybrid cluster protein complex (Hcp-Hcr) that catalyzes the conversion of NO2- to NO and subsequently to N2O. The second pathway is observed in Nar-deficient bacteria, where the nitrite reductase (NrfA) generates NO, which is then reduced to N2O by Hcp-Hcr. These enzyme combinations are prevalent across the domain Bacteria. Moreover, we observe distinctive isotopocule signatures of DNRA-derived N2O from other established N2O production pathways, especially through the highest 15N-site preference (SP) values (43.0‰-49.9‰) reported so far, indicating a robust means for N2O source partitioning. Our findings demonstrate two novel N2O production pathways in DNRA that can be isotopically distinguished from other pathways.IMPORTANCEStimulation of DNRA is a promising strategy to improve fertilizer efficiency and reduce N2O emission in agriculture soils. This process converts water-leachable NO3- and NO2- into soil-adsorbable NH4+, thereby alleviating nitrogen loss and N2O emission resulting from denitrification. However, several studies have noted that DNRA can also be a source of N2O, contributing to global warming. This contribution is often masked by other N2O generation processes, leading to a limited understanding of DNRA as an N2O source. Our study reveals two widespread yet overlooked N2O production pathways in Geobacteraceae, the predominant DNRA bacteria in paddy soils, along with their distinctive isotopocule signatures. These findings offer novel insights into the role of the DNRA bacteria in N2O production and underscore the significance of N2O isotopocule signatures in microbial N2O source tracking.
Collapse
Affiliation(s)
- Zhenxing Xu
- Marine College, Shandong University, Weihai, China
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Hattori
- International Center for Isotope Effects Research (ICIER), Nanjing University, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling, State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Sakae Toyoda
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | - Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, China
| | - Naohiro Yoshida
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- National Institute of Information and Communications Technology, Tokyo, Japan
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, China
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Masuda Y, Mise K, Xu Z, Zhang Z, Shiratori Y, Senoo K, Itoh H. Global soil metagenomics reveals distribution and predominance of Deltaproteobacteria in nitrogen-fixing microbiome. MICROBIOME 2024; 12:95. [PMID: 38790049 PMCID: PMC11127431 DOI: 10.1186/s40168-024-01812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/09/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Biological nitrogen fixation is a fundamental process sustaining all life on earth. While distribution and diversity of N2-fixing soil microbes have been investigated by numerous PCR amplicon sequencing of nitrogenase genes, their comprehensive understanding has been hindered by lack of de facto standard protocols for amplicon surveys and possible PCR biases. Here, by fully leveraging the planetary collections of soil shotgun metagenomes along with recently expanded culture collections, we evaluated the global distribution and diversity of terrestrial diazotrophic microbiome. RESULTS After the extensive analysis of 1,451 soil metagenomic samples, we revealed that the Anaeromyxobacteraceae and Geobacteraceae within Deltaproteobacteria are ubiquitous groups of diazotrophic microbiome in the soils with different geographic origins and land usage types, with particular predominance in anaerobic soils (paddy soils and sediments). CONCLUSION Our results indicate that Deltaproteobacteria is a core bacterial taxon in the potential soil nitrogen fixation population, especially in anaerobic environments, which encourages a careful consideration on deltaproteobacterial diazotrophs in understanding terrestrial nitrogen cycling. Video Abstract.
Collapse
Affiliation(s)
- Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kazumori Mise
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, 2-17-2-1 Tsukisamu-higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.
| | - Zhenxing Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Zhengcheng Zhang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaka Shiratori
- Niigata Agricultural Research Institute, 857 Nagakura-machi, Nagaoka, Niigata, 940-0826, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hideomi Itoh
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, 2-17-2-1 Tsukisamu-higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
3
|
Tang R, Yang S, Narsing Rao MP, Xie CJ, Han S, Yang QE, Rensing C, Liu GH, Yuan Y, Zhou SG. Three Fe(III)-reducing and nitrogen-fixing bacteria, Anaeromyxobacter terrae sp. nov., Anaeromyxobacter oryzisoli sp. nov. and Anaeromyxobacter soli sp. nov., isolated from paddy soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38323900 DOI: 10.1099/ijsem.0.006268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Three microaerophilic bacterial strains, designated SG22T, SG63T and SG29T were isolated from paddy soils in PR China. Cells of these strains were Gram-staining-negative and long rod-shaped. SG22T, SG63T and SG29T showed the highest 16S rRNA gene sequence similarities with the members of the genus Anaeromyxobacter. The results of phylogenetic and phylogenomic analysis also indicated that these strains clustered with members of the genus Anaeromyxobacter. The main respiratory menaquinone of SG22T, SG63T and SG29T was MK-8 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 and C16 : 0. SG22T, SG29T and SG63T not only possessed iron reduction ability but also harboured genes (nifHDK) encoding nitrogenase. The genomic DNA G+C contents of SG22T, SG63T and SG29T ranged from 73.3 to 73.5 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between SG22T, SG63T and SG29T and the closely related species of the genus Anaeromyxobacter were lower than the cut-off values (dDDH 70 % and ANI 95-96 %) for prokaryotic species delineation. On the basis of these results, strains SG22T, SG63T and SG29T represent three novel species within the genus Anaeromyxobacter, for which the names Anaeromyxobacter terrae sp. nov., Anaeromyxobacter oryzisoli sp. nov. and Anaeromyxobacter soli sp. nov., are proposed. The type strains are SG22T (= GDMCC 1.3185T = JCM 35581T), SG63T (= GDMCC 1.2914T = JCM 35124T) and SG29T (= GDMCC 1.2911T = JCM 35123T).
Collapse
Affiliation(s)
- Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca 3460000, Chile
| | - Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Guo-Hong Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
4
|
Sorokin DY, Tikhonova TV, Koch H, van den Berg EM, Hinderks RS, Pabst M, Dergousova NI, Soloveva AY, Kuenen GJ, Popov VO, van Loosdrecht MCM, Lücker S. Trichlorobacter ammonificans, a dedicated acetate-dependent ammonifier with a novel module for dissimilatory nitrate reduction to ammonia. THE ISME JOURNAL 2023; 17:1639-1648. [PMID: 37443340 PMCID: PMC10504241 DOI: 10.1038/s41396-023-01473-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) is a common biochemical process in the nitrogen cycle in natural and man-made habitats, but its significance in wastewater treatment plants is not well understood. Several ammonifying Trichlorobacter strains (former Geobacter) were previously enriched from activated sludge in nitrate-limited chemostats with acetate as electron (e) donor, demonstrating their presence in these systems. Here, we isolated and characterized the new species Trichlorobacter ammonificans strain G1 using a combination of low redox potential and copper-depleted conditions. This allowed purification of this DNRA organism from competing denitrifiers. T. ammonificans is an extremely specialized ammonifier, actively growing only with acetate as e-donor and carbon source and nitrate as e-acceptor, but H2 can be used as an additional e-donor. The genome of G1 does not encode the classical ammonifying modules NrfAH/NrfABCD. Instead, we identified a locus encoding a periplasmic nitrate reductase immediately followed by an octaheme cytochrome c that is conserved in many Geobacteraceae species. We purified this octaheme cytochrome c protein (TaNiR), which is a highly active dissimilatory ammonifying nitrite reductase loosely associated with the cytoplasmic membrane. It presumably interacts with two ferredoxin subunits (NapGH) that donate electrons from the menaquinol pool to the periplasmic nitrate reductase (NapAB) and TaNiR. Thus, the Nap-TaNiR complex represents a novel type of highly functional DNRA module. Our results indicate that DNRA catalyzed by octaheme nitrite reductases is a metabolic feature of many Geobacteraceae, representing important community members in various anaerobic systems, such as rice paddy soil and wastewater treatment facilities.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
| | - Tamara V Tikhonova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | | | - Renske S Hinderks
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Natalia I Dergousova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Y Soloveva
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Gijs J Kuenen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Masuda Y, Satoh S, Miyamoto R, Takano R, Ishii K, Ohba H, Shiratori Y, Senoo K. Biological nitrogen fixation in the long-term nitrogen-fertilized and unfertilized paddy fields, with special reference to diazotrophic iron-reducing bacteria. Arch Microbiol 2023; 205:291. [PMID: 37470860 PMCID: PMC10359436 DOI: 10.1007/s00203-023-03631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/22/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Biological nitrogen fixation (BNF) is important to sustain nitrogen fertility of paddy soil and rice yield, while could be affected by nitrogen fertilization. Iron-reducing bacteria, Anaeromyxobacter and Geobacter, are newly found diazotrophic bacteria predominant in paddy soil. Experimental field of this study is a long-term (35 years) nitrogen fertilized (6.0 g N/m2/year) and unfertilized paddy field, where ca. 70% of rice yield was obtained yearly in nitrogen unfertilized plot (443 ± 37 g/m2) compared to fertilized plot (642 ± 64 g/m2). Effects of long-term nitrogen fertilization/unfertilization on soil properties related to BNF were investigated with special reference to diazotrophic iron-reducing bacteria. Soil chemical/biochemical properties, soil nitrogen-fixing activity, and community composition of diazotrophic bacteria were similar between nitrogen fertilized and unfertilized plot soils. In both plot soils, Anaeromyxobacter and Geobacter were the most predominant diazotrophs. Their nifD transcripts were detected at similar level, while those of other general diazotrophs were under detection limit. It was concluded that long-term use/unuse of nitrogen fertilizer in this field did not affect the predominance and nitrogen-fixing activity of diazotrophic iron-reducing bacteria, composition of other general diazotrophs, and the resulting soil nitrogen-fixing activity. BNF, primarily driven by diazotrophic iron-reducing bacteria, might significantly contribute to sustain soil nitrogen fertility and rice yield in both plot soils. Appropriate soil management to maintain BNF, including diazotrophic iron-reducing bacteria, will be important for sustainable soil nitrogen fertility and rice production.
Collapse
Grants
- JP20H00409, JP20H05679, JP20K15423, JP18K19165, JP18K14366, and JP17H01464 Japan Society for the Promotion of Science
- JP20H00409, JP20H05679, JP20K15423, JP18K19165, JP18K14366, and JP17H01464 Japan Society for the Promotion of Science
- JPMJMI20E5 JST-Mirai Program
- JPMJMI20E5 JST-Mirai Program
- CANON Foundation
Collapse
Affiliation(s)
- Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-City, Tokyo, 113-8657, Japan
| | - Sakura Satoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-City, Tokyo, 113-8657, Japan
| | - Ryota Miyamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-City, Tokyo, 113-8657, Japan
| | - Ryo Takano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-City, Tokyo, 113-8657, Japan
| | - Katsuhiro Ishii
- Niigata Agricultural Research Institute, 857 Nagakuramachi, Nagaoka, Niigata, 940-0826, Japan
| | - Hirotomo Ohba
- Niigata Agricultural Research Institute, 857 Nagakuramachi, Nagaoka, Niigata, 940-0826, Japan
| | - Yutaka Shiratori
- Niigata Agricultural Research Institute, 857 Nagakuramachi, Nagaoka, Niigata, 940-0826, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-City, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-City, Tokyo, 113-8657, Japan.
| |
Collapse
|
6
|
Lian T, Cheng L, Liu Q, Yu T, Cai Z, Nian H, Hartmann M. Potential relevance between soybean nitrogen uptake and rhizosphere prokaryotic communities under waterlogging stress. ISME COMMUNICATIONS 2023; 3:71. [PMID: 37433864 PMCID: PMC10336055 DOI: 10.1038/s43705-023-00282-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Waterlogging in soil can limit the availability of nitrogen to plants by promoting denitrification and reducing nitrogen fixation and nitrification. The root-associated microorganisms that determine nitrogen availability at the root-soil interface can be influenced by plant genotype and soil type, which potentially alters the nitrogen uptake capacity of plants in waterlogged soils. In a greenhouse experiment, two soybean genotypes with contrasting capacities to resist waterlogging stress were grown in Udic Argosol and Haplic Alisol soils with and without waterlogging, respectively. Using isotope labeling, high-throughput amplicon sequencing and qPCR, we show that waterlogging negatively affects soybean yield and nitrogen absorption from fertilizer, atmosphere, and soil. These effects were soil-dependent and more pronounced in the waterlogging-sensitive than tolerant genotype. The tolerant genotype harbored more ammonia oxidizers and less nitrous oxide reducers. Anaerobic, nitrogen-fixing, denitrifying and iron-reducing bacteria such as Geobacter/Geomonas, Sphingomonas, Candidatus Koribacter, and Desulfosporosinus were proportionally enriched in association with the tolerant genotype under waterlogging. These changes in the rhizosphere microbiome might ultimately help the plant to improve nitrogen uptake under waterlogged, anoxic conditions. This research contributes to a better understanding of the adaptability of soybean genotypes under waterlogging stress and might help to formulate fertilization strategies that improve nitrogen use efficiency of soybean. Schematic representation of the effects of waterlogging on nitrogen uptake and rhizosphere microbiota in dependence of soil type and soybean genotype.
Collapse
Affiliation(s)
- Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Taobing Yu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Bahulikar RA. Prevalence of Deltaproteobacterial sequences in nifH gene pools associated with the rhizosphere of native switchgrass from Tall Grass Prairie (Oklahoma, USA). 3 Biotech 2023; 13:210. [PMID: 37251732 PMCID: PMC10209375 DOI: 10.1007/s13205-023-03640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
The potential nitrogen-fixing bacterial diversity in the rhizospheric soil of the native switchgrass (Panicum virgatum L.) from Tall Grass Prairies of Northern Oklahoma was studied using a partial region of nitrogenase structural gene-nifH. Eleven clone libraries constructed from nifH amplicons gave 407 good-quality sequences. More than 70% of sequences showed similarity of nifH with uncultured bacteria (< 98%). The dominance of sequences affiliated with Deltaproteobacterial nifH was observed, followed by Betaproteobacterial nifH sequences. The nifH gene library was dominated by the genera Geobacter, Rhizobacter, Paenibacillus, and Azoarcus. Sequences affiliated with rhizobia, such as Bradyrhizobium, Methylocystis, Ensifer, etc., were also in the rhizosphere in small numbers. From Deltaproteobacteria, five genera, namely Geobacter, Pelobacter, Geomonas, Desulfovibrio, and Anaeromyxobacter, contributed to 48% of the total sequences suggesting the dominance of group Deltaproteobacteria in the rhizosphere of native switchgrass. Considering the percent similarity of the nifH sequences with cultivated bacteria, this study demonstrated the presence of novel bacterial species in switchgrass rhizospheric soil from Tall Grass Prairie.
Collapse
Affiliation(s)
- Rahul A. Bahulikar
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- Present Address: BAIF Development Research Foundation, Central Research Station, Urali Kanchan, Pune, 412 202 India
| |
Collapse
|
8
|
Huang W, Li S, Li S, Laanbroek HJ, Zhang Q. Pro- and eukaryotic keystone taxa as potential bio-indicators for the water quality of subtropical Lake Dongqian. Front Microbiol 2023; 14:1151768. [PMID: 37180236 PMCID: PMC10169824 DOI: 10.3389/fmicb.2023.1151768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
The microbial community plays an important role in the biogeochemical cycles in water aquatic ecosystems, and it is regulated by environmental variables. However, the relationships between microbial keystone taxa and water variables, which play a pivotal role in aquatic ecosystems, has not been clarified in detail. We analyzed the seasonal variation in microbial communities and co-occurrence network in the representative areas taking Lake Dongqian as an example. Both pro- and eukaryotic community compositions were more affected by seasons than by sites, and the prokaryotes were more strongly impacted by seasons than the eukaryotes. Total nitrogen, pH, temperature, chemical oxygen demand, dissolved oxygen and chlorophyll a significantly affected the prokaryotic community, while the eukaryotic community was significantly influenced by total nitrogen, ammonia, pH, temperature and dissolved oxygen. The eukaryotic network was more complex than that of prokaryotes, whereas the number of eukaryotic keystone taxa was less than that of prokaryotes. The prokaryotic keystone taxa belonged mainly to Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacteroidetes. It is noteworthy that some of the keystone taxa involved in nitrogen cycling are significantly related to total nitrogen, ammonia, temperature and chlorophyll a, including Polaromonas, Albidiferax, SM1A02 and Leptolyngbya so on. And the eukaryotic keystone taxa were found in Ascomycota, Choanoflagellida and Heterophryidae. The mutualistic pattern between pro- and eukaryotes was more evident than the competitive pattern. Therefore, it suggests that keystone taxa could be as bio-indicators of aquatic ecosystems.
Collapse
Affiliation(s)
- Weihong Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Shuantong Li
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Saisai Li
- Zhejiang Wanli University, Ningbo, China
| | - Hendrikus J. Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Qiufang Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
9
|
Arunrat N, Sereenonchai S, Sansupa C, Kongsurakan P, Hatano R. Effect of Rice Straw and Stubble Burning on Soil Physicochemical Properties and Bacterial Communities in Central Thailand. BIOLOGY 2023; 12:biology12040501. [PMID: 37106702 PMCID: PMC10135879 DOI: 10.3390/biology12040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Rice straw and stubble burning is widely practiced to clear fields for new crops. However, questions remain about the effects of fire on soil bacterial communities and soil properties in paddy fields. Here, five adjacent farmed fields were investigated in central Thailand to assess changes in soil bacterial communities and soil properties after burning. Samples of soil prior to burning, immediately after burning, and 1 year after burning were obtained from depths of 0 to 5 cm. The results showed that the pH, electrical conductivity, NH4-N, total nitrogen, and soil nutrients (available P, K, Ca, and Mg) significantly increased immediately after burning due to an increased ash content in the soil, whereas NO3-N decreased significantly. However, these values returned to the initial values. Chloroflexi were the dominant bacteria, followed by Actinobacteria and Proteobacteria. At 1 year after burning, Chloroflexi abundance decreased remarkably, whereas Actinobacteria, Proteobacteria, Verrucomicrobia, and Gemmatimonadetes abundances significantly increased. Bacillus, HSB OF53-F07, Conexibacter, and Acidothermus abundances increased immediately after burning, but were lower 1 year after burning. These bacteria may be highly resistant to heat, but grow slowly. Anaeromyxobacter and Candidatus Udaeobacter dominated 1 year after burning, most likely because of their rapid growth and the fact that they occupy areas with increased soil nutrient levels after fires. Amidase, cellulase, and chitinase levels increased with increased organic matter levels, whereas β-glucosidase, chitinase, and urease levels positively correlated with the soil total nitrogen level. Although clay and soil moisture strongly correlated with the soil bacterial community’s composition, negative correlations were found for β-glucosidase, chitinase, and urease. In this study, rice straw and standing stubble were burnt under high soil moisture and within a very short time, suggesting that the fire was not severe enough to raise the soil temperature and change the soil microbial community immediately after burning. However, changes in soil properties due to ash significantly increased the diversity indices, which was noticeable 1 year after burning.
Collapse
|
10
|
Denkhaus L, Siffert F, Einsle O. An unusual active site architecture in cytochrome c nitrite reductase NrfA-1 from Geobacter metallireducens. FEMS Microbiol Lett 2023; 370:fnad068. [PMID: 37460131 DOI: 10.1093/femsle/fnad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) is a central pathway in the biogeochemical nitrogen cycle, allowing for the utilization of nitrate or nitrite as terminal electron acceptors. In contrast to the competing denitrification to N2, a major part of the essential nutrient nitrogen in DNRA is retained within the ecosystem and made available as ammonium to serve as a nitrogen source for other organisms. The second step of DNRA is mediated by the pentahaem cytochrome c nitrite reductase NrfA that catalyzes the six-electron reduction of nitrite to ammonium and is widely distributed among bacteria. A recent crystal structure of an NrfA ortholog from Geobacter lovleyi was the first characterized representative of a novel subclass of NrfA enzymes that lacked the canonical Ca2+ ion close to the active site haem 1. Here, we report the structural and functional characterization of NrfA from the closely related G. metallireducens. We established the recombinant production of catalytically active NrfA with its unique, lysine-coordinated active site haem heterologously in Escherichia coli and determined its three-dimensional structure by X-ray crystallography to 1.9 Å resolution. The structure confirmed GmNrfA as a further calcium-independent NrfA protein, and it also shows an altered active site that contained an unprecedented aspartate residue, D80, close to the substrate-binding site. This residue formed part of a loop that also caused a changed arrangement of the conserved substrate/product channel relative to other NrfA proteins and rendered the protein insensitive to the inhibitor sulphate. To elucidate the relevance of D80, we produced and studied the variants D80A and D80N that showed significantly reduced catalytic activity.
Collapse
Affiliation(s)
- Lukas Denkhaus
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Fanny Siffert
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
11
|
Seasonal Hypoxia Enhances Benthic Nitrogen Fixation and Shapes Specific Diazotrophic Community in the Eutrophic Marine Ranch. Processes (Basel) 2023. [DOI: 10.3390/pr11010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently, a growing number of studies have confirmed that biological nitrogen fixation is also an important reactive nitrogen source in coastal regions. However, how benthic nitrogen fixation and diazotrophic community in coastal regions respond to seasonal hypoxia remains largely unknown. In this study, we investigated the spatiotemporal pattern of potential nitrogen fixation rate and diazotrophic abundance and community in sediments of a eutrophic marine ranch experiencing summer hypoxia using 15N tracing and high throughput sequencing techniques. The results showed that potential nitrogen fixation rates ranged from 0.013 to 10.199 μmol kg−1 h−1, and were significantly enhanced by summer hypoxia (ANOVA, p < 0.05). However, nifH gene abundance peaked in June. The diazotrophic community was dominated by Geobacteraceae (>60%), followed by Desulfobulbaceae (13.61%). Bottom water oxygen, pH, Chl-a concentration, and sediment NH4+ significantly regulated benthic nitrogen fixation, while the variation of diazotrophic community was explained by sediment TOC, TN, and Fe content (p < 0.05). This study highlighted that hypoxia stimulated benthic nitrogen fixation, which counteracted the nitrogen removal by denitrification and anammox, and could further aggregate eutrophication of the coastal marine ranch. Moreover, the result emphasized the importance of nitrogen fixation in coastal regions for the global N budget.
Collapse
|
12
|
Liu J, Wan Y, Wei X, She J, Ouyang Q, Deng P, Hu H, Zhang X, Fang M, Wei X, Liu W, Gong J, Wang J. Microbial diversity in paddy rhizospheric soils around a large industrial thallium-containing sulfide utilization zone. ENVIRONMENTAL RESEARCH 2023; 216:114627. [PMID: 36336095 DOI: 10.1016/j.envres.2022.114627] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Thallium (Tl) is a rare and extremely toxic metal whose toxicity is significantly higher than cadmium (Cd), lead (Pb) and antimony (Sb). The extensive utilization of Tl-bearing minerals, such as mining activities, has led to severe Tl pollution in a variety of natural settings, while little is known to date about its effect on the microbial diversity in paddy soils. Also, the geochemical behavior of Tl in the periodical alterations between dry and wet conditions of paddy soils remains largely unknown. Herein, the sequential extraction method and 16S rRNA gene sequence analysis were adopted to analyze Tl's migration and transformation behavior and the microbial diversity in the paddy soils with different pollution levels. The results indicated that Tl was mainly concentrated in reducible fraction, which is different from other types of soils, and may be closely attributed to the abundance of Fe-Mn (hydr)oxides in the paddy rhizospheric soils. Further analysis revealed that pH, total S, Pb, Sb, Tl and Cd were the dominant environmental factors, and the enrichment level of these potentially toxic metal(loid)s (PTMs) exerted obvious impacts on the diversity and abundance of microorganism in the rhizospheric soils, and regulating microbial community. The geochemical fractionation of Tl was closely correlated to soil microorganisms such as Fe reducing bacteria (Geothrix) and sulfate reducing bacteria (Anaerolinea), playing a critical role in Tl geochemical cycle through redox reaction. Hence, further study on microorganisms of paddy rhizospheric soils is of great significance to the countermeasures for remediating Tl-polluted paddy fields and protect the health of residents.
Collapse
Affiliation(s)
- Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuebing Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) University of Padova, Agripolis Campus, Viale Dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Jingye She
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qi'en Ouyang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Pengyuan Deng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haiyao Hu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyin Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mingyang Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoli Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Weifeng Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jian Gong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| |
Collapse
|
13
|
Díaz M, Monfort-Lanzas P, Quiroz-Moreno C, Rivadeneira E, Castillejo P, Arnau V, Díaz W, Agathos SN, Sangari FJ, Jarrín-V P, Molina CA. The microbiome of the ice-capped Cayambe Volcanic Complex in Ecuador. Front Microbiol 2023; 14:1154815. [PMID: 37213502 PMCID: PMC10196084 DOI: 10.3389/fmicb.2023.1154815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
A major challenge in microbial ecology is to understand the principles and processes by which microbes associate and interact in community assemblages. Microbial communities in mountain glaciers are unique as first colonizers and nutrient enrichment drivers for downstream ecosystems. However, mountain glaciers have been distinctively sensitive to climate perturbations and have suffered a severe retreat over the past 40 years, compelling us to understand glacier ecosystems before their disappearance. This is the first study in an Andean glacier in Ecuador offering insights into the relationship of physicochemical variables and altitude on the diversity and structure of bacterial communities. Our study covered extreme Andean altitudes at the Cayambe Volcanic Complex, from 4,783 to 5,583 masl. Glacier soil and ice samples were used as the source for 16S rRNA gene amplicon libraries. We found (1) effects of altitude on diversity and community structure, (2) the presence of few significantly correlated nutrients to community structure, (3) sharp differences between glacier soil and glacier ice in diversity and community structure, where, as quantified by the Shannon γ-diversity distribution, the meta-community in glacier soil showed more diversity than in glacier ice; this pattern was related to the higher variability of the physicochemical distribution of variables in the former substrate, and (4) significantly abundant genera associated with either high or low altitudes that could serve as biomarkers for studies on climate change. Our results provide the first assessment of these unexplored communities, before their potential disappearance due to glacier retreat and climate change.
Collapse
Affiliation(s)
- Magdalena Díaz
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Ingeniería Química, Universidad Central del Ecuador, Quito, Ecuador
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- *Correspondence: Magdalena Díaz,
| | - Pablo Monfort-Lanzas
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Cristian Quiroz-Moreno
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, United States
| | - Erika Rivadeneira
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad Internacional SEK, Quito, Ecuador
| | - Vicente Arnau
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Wladimiro Díaz
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Spiros N. Agathos
- Earth and Life Institute (ELI), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félix J. Sangari
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC – Universidad de Cantabria, Santander, Spain
| | - Pablo Jarrín-V
- Dirección de Innovación, Instituto Nacional de Biodiversidad INABIO, Quito, Ecuador
| | - C. Alfonso Molina
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
- C. Alfonso Molina,
| |
Collapse
|
14
|
Anaeromyxobacter oryzae sp. nov., Anaeromyxobacter diazotrophicus sp. nov. and Anaeromyxobacter paludicola sp. nov., isolated from paddy soils. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three bacterial strains (Red232T, Red267T and Red630T) were isolated from paddy soils sampled in Japan. Cells of these strains were Gram-stain-negative, facultative anaerobic, long rod-shaped with monotrichous flagella or pilus-like structures for motility, and formed red colonies on agar plates. Phylogenetic trees based on 16S rRNA gene and multiple single-copy gene sequences showed that the three strains formed a cluster with the type strains of
Anaeromyxobacter
species, independent from any other strain genera. Similarity values of the 16S rRNA gene sequences and genomes among the three isolated strains and the type strain of
Anaeromyxobacter
,
Anaeromyxobacter dehalogenans
2CP-1T, were 95.4–97.4% for 16S rRNA gene sequence, 75.3–79.5% for average nucleotide identity, 19.6–21.7% for digital DNA–DNA hybridization and 64.1–72.6% for average amino acid identity, all of which are below the species delineation thresholds. Nitrogenase genes were observed in the genomes of the three novel strains, but not in
A. dehalogenans
2CP-1T. Moreover, multiple genomic, physiological and chemotaxonomic features supported the discrimination between these three strains. Based on the evidence in this study, the three isolates represent three novel independent species for which the following names are proposed: Anaeromyxobacter oryzae sp. nov., Anaeromyxobacter diazotrophicus sp. nov. and Anaeromyxobacter paludicola sp. nov. The type strains are Red232T (=NBRC 114074T=MCCC 1K03954T), Red267T (=NBRC 114075T=MCCC 1K04211T), and Red630T (=NBRC 114076T=MCCC 1K03957T), respectively.
Collapse
|
15
|
Bose H, Sahu RP, Sar P. Impact of arsenic on microbial community structure and their metabolic potential from rice soils of West Bengal, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156486. [PMID: 35667424 DOI: 10.1016/j.scitotenv.2022.156486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Paddy soil is a heterogenous ecosystem that harbours diverse microbial communities critical for maintaining ecosystem sustainability and crop yield. Considering the importance of soil in crop production and recent reports on its contamination with arsenic (As) across the South East Asia, its microbial community composition and biogeochemical functions remained inadequately studied. We have characterized the microbial communities of rice soil from eleven paddy fields of As-contaminated sites from West Bengal (India), through metagenomics and amplicon sequencing. 16S rRNA gene sequencing showed considerable bacterial diversity [over 0.2 million Operational Taxonomic Units (OTUs)] and abundance (upto 1.6 × 107 gene copies/g soil). Existence of a core-microbiome (261 OTUs conserved out of a total 141,172 OTUs) across the samples was noted. Most of the core-microbiome members were also found to represent the abundant taxa of the soil. Statistical analyses suggested that the microbial communities were highly constrained by As, Fe K, N, PO43-, SO42- and organic carbon (OC). Members of Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Planctomycetes and Thaumarchaeota constituted the core-microbiome. Co-occurrence network analysis displayed significant interaction among diverse anaerobic, SO42- and NO3- reducing, cellulose and other organic matter or C1 compound utilizing, fermentative and aerobic/facultative anaerobic bacteria and archaea. Correlation analysis suggested that taxa which were positively linked with soil parameters that maintain soil health and productivity (e.g., N, K, PO43- and Fe) were adversely impacted by increasing As concentration. Shotgun metagenomics highlighted major metabolic pathways controlling the C (3-hydroxypropionate bicycle), N (Denitrification, dissimilatory NO3- reduction to ammonium), and S (assimilatory SO42- reduction and sulfide oxidation) cycling, As homeostasis (methylation and reduction) and plant growth promotion (polyphosphate hydrolysis and auxin biosynthesis). All these major biogeochemical processes were found to be catalyzed by the members of most abundant/core-community.
Collapse
Affiliation(s)
- Himadri Bose
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rajendra Prasad Sahu
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
16
|
Mehmood MA, Fu Y, Zhao H, Cheng J, Xie J, Jiang D. Enrichment of bacteria involved in the nitrogen cycle and plant growth promotion in soil by sclerotia of rice sheath blight fungus. STRESS BIOLOGY 2022; 2:32. [PMID: 37676387 PMCID: PMC10441917 DOI: 10.1007/s44154-022-00049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/27/2022] [Indexed: 09/08/2023]
Abstract
Rice sheath blight pathogen, Rhizoctonia solani, produces numerous sclerotia to overwinter. As a rich source of nutrients in the soil, sclerotia may lead to the change of soil microbiota. For this purpose, we amended the sclerotia of R. solani in soil and analyzed the changes in bacterial microbiota within the soil at different time points. At the phyla level, Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chloroflexi and Firmicutes showed varied abundance in the amended soil samples compared to those in the control. An increased abundance of ammonia-oxidizing bacterium (AOB) Nitrosospira and Nitrite oxidizing bacteria (NOB) i.e., Nitrospira was observed, where the latter is reportedly involved in the nitrifier denitrification. Moreover, Thiobacillus, Gemmatimonas, Anaeromyxobacter and Geobacter, the vital players in denitrification, N2O reduction and reductive nitrogen transformation, respectively, depicted enhanced abundance in R. solani sclerotia-amended samples. Furthermore, asymbiotic nitrogen-fixing bacteria, notably, Azotobacter as well as Microvirga and Phenylobacterium with nitrogen-fixing potential also enriched in the amended samples compared to the control. Plant growth promoting bacteria, such as Kribbella, Chitinophaga and Flavisolibacter also enriched in the sclerotia-amended soil. As per our knowledge, this study is of its kind where pathogenic fungal sclerotia activated microbes with a potential role in N transformation and provided clues about the ecological functions of R. solani sclerotia on the stimulation of bacterial genera involved in different processes of N-cycle within the soil in the absence of host plants.
Collapse
Affiliation(s)
- Mirza Abid Mehmood
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
- Plant Pathology, Institute of Plant Protection, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Huizhang Zhao
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
17
|
Investigation of Rice Yields and Critical N Losses from Paddy Soil under Different N Fertilization Rates with Iron Application. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148707. [PMID: 35886559 PMCID: PMC9318169 DOI: 10.3390/ijerph19148707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023]
Abstract
The application of iron powder stimulated the growth of iron-reducing bacteria as a respiratory substrate and enhanced their nitrogen (N)-fixing activity in flooded paddy soils. High N fertilization (urea) in the flooded paddy soils has caused adverse environmental impacts such as ammonia (NH3) volatilization, nitrous oxide (N2O) emissions, and nitrate (NO3−) leaching. This study aims to investigate the effects of N fertilization rates in combination with an iron amendment on rice yields and N losses from flooded paddy fields. We performed a 2-year field plot experiment with traditional rice–wheat rotation in China’s Yangtze River Delta. The investigation consisted of seven treatments, including 100%, 80%, 60%, and 0% of the conventional N (urea and commercial organic manure) fertilization rate, and 80%, 60%, and 0% of the conventional N with the iron powder (≥99% purity) amendment. The rice yields decreased with a reduction in the conventional N fertilization rate, whereas they were comparable after the iron application under the 80% and 60% conventional N rate. The critical N losses, including NH3 volatilization, N2O emissions, and NO3− and NH4+ leaching, generally decreased with a reduction in the conventional N fertilization rate. These N losses were significantly greater after the iron amendment compared with the non-amended treatments under the 80% and 60% conventional N fertilization rate in the first rice-growing season. However, it was comparable between the iron-amended and the non-amended treatments in the second season. Furthermore, NO3− leaching was the most significant N loss throughout the two rice seasons, followed by NH3 volatilization. The iron amendment significantly increased soil Fe2+ content compared with the non-amended treatments irrespective of N fertilization, suggesting the reduction of amended iron by iron-reducing bacteria and their simultaneous N fixation. A combination of the iron application with 60–80% of the conventional N fertilization rate could maintain rice yields similar to the conventional N fertilization rate while reducing the critical N losses in the flooded paddy field tested in this study. Our study leads to the establishment of novel and practical rice cultivation, which is a step towards the development of green agriculture.
Collapse
|
18
|
Sun X, Zhang X, Xia Y, Tao R, Zhang M, Mei Y, Qu M. Simulation of the effects of microplastics on the microbial community structure and nitrogen cycle of paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151768. [PMID: 34808183 DOI: 10.1016/j.scitotenv.2021.151768] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are ubiquitous in farmland soils. However, few studies have evaluated their effects on the microbial community structure and nitrogen cycle of farmland soils. Here, 0.3% and 1% (mass percentage) of polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polylactic acid (PLA) MPs were added to paddy soil to evaluate their impact on the paddy soil microenvironment. The alpha index of the PLA MP treatment was significantly different from that of the control group (p-value < 0.05). In contrast, the indices of the PET and PVC MP treatments were not different from the control (p-value > 0.05). Among the MP treatments, the alpha index of the PLA MP group was significantly different from the PET and PVC MP groups (p-value < 0.05). PCoA analysis also indicated that there were differences between PLA and other MP groups, and different MP concentrations and exposure times had a great impact on microbial composition. The three MPs affected NH4+ metabolism by changing the abundance of a NH2OH-forming gene (amoA) and an organic nitrogen-forming gene (gdh), as well as the abundances of Thiobacillus, Bradyrhizobium, Anaeromyxobacter, Geobacter, and Desulfobacca. Further, the MPs affected NO3- metabolism by regulating the abundance of the nirS and nirK genes and the abundance of Nitrospirae. In contrast, NO2- metabolism was not significantly affected by the MPs due to the low concentration of NO2-, which was attributed to the high abundance of nirS and nirK in the sample. Taken together, our findings indicated that MP addition may have an inhibitory effect on the nitrogen cycle in paddy soils and that the effect of degradable MPs may be greater than that of their non-degradable counterparts. Given the increasing severity of worldwide MP contamination, additional studies are required to assess their impact on global ecosystems and biogeochemical cycles.
Collapse
Affiliation(s)
- Xia Sun
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoying Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuxiang Xia
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ruidong Tao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Meng Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
19
|
Oshiki M, Toyama Y, Suenaga T, Terada A, Kasahara Y, Yamaguchi T, Araki N. N 2O Reduction by Gemmatimonas aurantiaca and Potential Involvement of Gemmatimonadetes Bacteria in N 2O Reduction in Agricultural Soils. Microbes Environ 2022; 37. [PMID: 35418546 PMCID: PMC9530729 DOI: 10.1264/jsme2.me21090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Agricultural soil is the primary N2O sink limiting the emission of N2O gas into the atmosphere. Although Gemmatimonadetes bacteria are abundant in agricultural soils, limited information is currently available on N2O reduction by Gemmatimonadetes bacteria. Therefore, the effects of pH and temperature on N2O reduction activities and affinity constants for N2O reduction were examined by performing batch experiments using an isolate of Gemmatimonadetes bacteria, Gemmatimonas aurantiaca (NBRC100505T). G. aurantiaca reduced N2O at pH 5–9 and 4–50°C, with the highest activity being observed at pH 7 and 30°C. The affinity constant of G. aurantiaca cells for N2O was 4.4 μM. The abundance and diversity of the Gemmatimonadetes 16S rRNA gene and nosZ encoding nitrous oxide reductase in agricultural soil samples were also investigated by quantitative PCR (qPCR) and amplicon sequencing analyses. Four N2O-reducing agricultural soil samples were assessed, and the copy numbers of the Gemmatimonadetes 16S rRNA gene (clades G1 and G3), nosZ DNA, and nosZ mRNA were 8.62–9.65×108, 5.35–7.15×108, and 2.23–4.31×109 copies (g dry soil)–1, respectively. The abundance of the nosZ mRNA of Gemmatimonadetes bacteria and OTU91, OUT332, and OTU122 correlated with the N2O reduction rates of the soil samples tested, suggesting N2O reduction by Gemmatimonadetes bacteria. Gemmatimonadetes 16S rRNA gene reads affiliated with OTU4572 and OTU3759 were predominant among the soil samples examined, and these Gemmatimonadetes OTUs have been identified in various types of soil samples.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College.,Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Yuka Toyama
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | | | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology
| | | | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology
| | - Nobuo Araki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| |
Collapse
|
20
|
Advancement of Metatranscriptomics towards Productive Agriculture and Sustainable Environment: A Review. Int J Mol Sci 2022; 23:ijms23073737. [PMID: 35409097 PMCID: PMC8998989 DOI: 10.3390/ijms23073737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 01/19/2023] Open
Abstract
While chemical fertilisers and pesticides indeed enhance agricultural productivity, their excessive usage has been detrimental to environmental health. In addressing this matter, the use of environmental microbiomes has been greatly favoured as a ‘greener’ alternative to these inorganic chemicals’ application. Challenged by a significant proportion of unidentified microbiomes with unknown ecological functions, advanced high throughput metatranscriptomics is prudent to overcome the technological limitations in unfolding the previously undiscovered functional profiles of the beneficial microbiomes. Under this context, this review begins by summarising (1) the evolution of next-generation sequencing and metatranscriptomics in leveraging the microbiome transcriptome profiles through whole gene expression profiling. Next, the current environmental metatranscriptomics studies are reviewed, with the discussion centred on (2) the emerging application of the beneficial microbiomes in developing fertile soils and (3) the development of disease-suppressive soils as greener alternatives against biotic stress. As sustainable agriculture focuses not only on crop productivity but also long-term environmental sustainability, the second half of the review highlights the metatranscriptomics’ contribution in (4) revolutionising the pollution monitoring systems via specific bioindicators. Overall, growing knowledge on the complex microbiome functional profiles is imperative to unlock the unlimited potential of agricultural microbiome-based practices, which we believe hold the key to productive agriculture and sustainable environment.
Collapse
|
21
|
Yang S, Liu GH, Tang R, Han S, Xie CJ, Zhou SG. Description of two nitrogen-fixing bacteria, Geomonas fuzhouensis sp. nov. and Geomonas agri sp. nov., isolated from paddy soils. Antonie Van Leeuwenhoek 2022; 115:435-444. [PMID: 35094155 DOI: 10.1007/s10482-021-01704-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022]
Abstract
Two strictly anaerobic nitrogen-fixing strains, designated RG17T and RG53T, were isolated from paddy soils in China. Strains RG17T and RG53T showed the highest 16S rRNA gene sequence similarities to the type strain Geomonas paludis (97.9-98.4%). Phylogenetic tree based on 16S rRNA gene sequences showed that two strains clustered with members of the genus Geomonas. Growth of strain RG17T was observed at 20-42 °C, pH 5.5-8.5 and 0-0.3% (w/v) NaCl while strain RG53T growth was observed at 20-42 °C, pH 5.5-9.5 and 0-0.7% (w/v) NaCl. Strains RG17T and RG53T contained MK-8 as main menaquinone and C15:1 ω6c, iso-C15:0, and Summed Feature 3 as the major fatty acids. The genomic DNA G + C content of strains RG17T and RG53T were 61.6 and 60.7%, respectively. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the isolated strains and the closely related Geomonas species were lower than the cut-off value (dDDH 70% and ANI 95-96%) for prokaryotic species delineation. Both strains possessed nif genes nifHDK and nitrogenase activities. Based on the above results, the two strains represent two novel species of the genus Geomonas, for which the names Geomonas fuzhouensis sp. nov. and Geomonas agri sp. nov., are proposed. The type strains are RG17T (= GDMCC 1.2687T = KTCC 25332T) and RG53T (= GDMCC 1.2630T = KCTC 25331T), respectively.
Collapse
Affiliation(s)
- Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, 350002, Fujian Province, People's Republic of China.,Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou City, 350003, Fujian Province, People's Republic of China
| | - Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou City, 350003, Fujian Province, People's Republic of China
| | - Rong Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, 350002, Fujian Province, People's Republic of China.,Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou City, 350003, Fujian Province, People's Republic of China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, 350002, Fujian Province, People's Republic of China.,Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou City, 350003, Fujian Province, People's Republic of China
| | - Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, 350002, Fujian Province, People's Republic of China.,Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou City, 350003, Fujian Province, People's Republic of China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, 350002, Fujian Province, People's Republic of China.
| |
Collapse
|
22
|
Liu GH, Yang S, Tang R, Xie CJ, Zhou SG. Genome Analysis and Description of Three Novel Diazotrophs Geomonas Species Isolated From Paddy Soils. Front Microbiol 2022; 12:801462. [PMID: 35197944 PMCID: PMC8859169 DOI: 10.3389/fmicb.2021.801462] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/14/2021] [Indexed: 12/05/2022] Open
Abstract
Five strictly anaerobic strains, designated RG2T, RG3, RG10T, RF4T, and RG29, were isolated from paddy soils in China. Strains RG2T, RF4T, RG10T, RG3, and RG29 grew at temperatures ranging 5–42°C and pH ranging 5.5–8.5. Strains RG2T, RF4T, RG3, and RG29 could tolerate NaCl up to 0–0.7% (w/v) while strain RG10T could tolerate NaCl up to 0–0.8% (w/v). The isolated strains showed the highest 16S rRNA gene sequence similarities to the type strains of Geomonas terrae Red111T and Geomonas paludis Red736T. In phylogenetic (based on 16S rRNA gene sequence) and phylogenomic trees, strains clustered with the members of the genus Geomonas. Menaquinone-8 was the predominant quinone present in all strains. The major fatty acid profiles of all strains were C15:1 ω6c, C16:0, iso-C15:0, and Summed Feature 3. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the isolated strains and the closely related Geomonas species were lower than the cutoff value (ANI 95–96% and dDDH 70%) for prokaryotic species delineation. Based on physiological, biochemical, and chemotaxonomic properties, strains RG2T, RG10T, and RF4T could easily be differentiated with the members of the genus Geomonas. Additionally, all the isolated strains possessed nifHDK clusters and catalytic compartments of nitrogenase. Based on the above results, the isolated five strains represent three novel species of the genus Geomonas, for which the names Geomonas oryzisoli sp. nov., Geomonas subterranea sp. nov., and Geomonas nitrogeniifigens sp. nov. are proposed. The type strains are RG10T (= GDMCC1.2537T = KCTC 26318T), RG2T (= GDMCC1.2536T = KCTC 25317T), and RF4T (= GDMCC 1.2547T = KCTC 25316T).
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shang Yang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Tang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cheng-Jie Xie
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Shun-Gui Zhou,
| |
Collapse
|
23
|
Oshiki M, Takaki Y, Hirai M, Nunoura T, Kamigaito A, Okabe S. Metagenomic Analysis of Five Phylogenetically Distant Anammox Bacterial Enrichment Cultures. Microbes Environ 2022; 37:ME22017. [PMID: 35811137 PMCID: PMC9530715 DOI: 10.1264/jsme2.me22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria are slow-growing and fastidious bacteria, and limited numbers of enrichment cultures have been established. A metagenomic ana-lysis of our 5 established anammox bacterial enrichment cultures was performed in the present study. Fourteen high-quality metagenome-assembled genomes (MAGs) were obtained, including those of 5 anammox Planctomycetota (Candidatus Brocadia, Ca. Kuenenia, Ca. Jettenia, and Ca. Scalindua), 4 Bacteroidota, and 3 Chloroflexota. Based on the gene sets of metabolic pathways involved in the degradation of polymeric substances found in Chloroflexota and Bacteroidota MAGs, they are expected to be scavengers of extracellular polymeric substances and cell debris.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Atsushi Kamigaito
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. THE ISME JOURNAL 2022; 16:307-320. [PMID: 34331018 PMCID: PMC8692467 DOI: 10.1038/s41396-021-01057-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Deltaproteobacteria, now proposed to be the phyla Desulfobacterota, Myxococcota, and SAR324, are ubiquitous in marine environments and play essential roles in global carbon, sulfur, and nutrient cycling. Despite their importance, our understanding of these bacteria is biased towards cultured organisms. Here we address this gap by compiling a genomic catalog of 1 792 genomes, including 402 newly reconstructed and characterized metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments. Phylogenomic analyses reveal that many of these novel MAGs are uncultured representatives of Myxococcota and Desulfobacterota that are understudied. To better characterize Deltaproteobacteria diversity, metabolism, and ecology, we clustered ~1 500 genomes based on the presence/absence patterns of their protein families. Protein content analysis coupled with large-scale metabolic reconstructions separates eight genomic clusters of Deltaproteobacteria with unique metabolic profiles. While these eight clusters largely correspond to phylogeny, there are exceptions where more distantly related organisms appear to have similar ecological roles and closely related organisms have distinct protein content. Our analyses have identified previously unrecognized roles in the cycling of methylamines and denitrification among uncultured Deltaproteobacteria. This new view of Deltaproteobacteria diversity expands our understanding of these dominant bacteria and highlights metabolic abilities across diverse taxa.
Collapse
|
25
|
Mise K, Masuda Y, Senoo K, Itoh H. Undervalued Pseudo- nifH Sequences in Public Databases Distort Metagenomic Insights into Biological Nitrogen Fixers. mSphere 2021; 6:e0078521. [PMID: 34787447 PMCID: PMC8597730 DOI: 10.1128/msphere.00785-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nitrogen fixation, a distinct process incorporating the inactive atmospheric nitrogen into the active biological processes, has been a major topic in biological and geochemical studies. Currently, insights into diversity and distribution of nitrogen-fixing microbes are dependent upon homology-based analyses of nitrogenase genes, especially the nifH gene, which are broadly conserved in nitrogen-fixing microbes. Here, we report the pitfall of using nifH as a marker of microbial nitrogen fixation. We exhaustively analyzed genomes in RefSeq (231,908 genomes) and KEGG (6,509 genomes) and cooccurrence and gene order patterns of nitrogenase genes (including nifH) therein. Up to 20% of nifH-harboring genomes lacked nifD and nifK, which encode essential subunits of nitrogenase, within 10 coding sequences upstream or downstream of nifH or on the same genome. According to a phenotypic database of prokaryotes, no species and strains harboring only nifH possess nitrogen-fixing activities, which shows that these nifH genes are "pseudo"-nifH genes. Pseudo-nifH sequences mainly belong to anaerobic microbes, including members of the class Clostridia and methanogens. We also detected many pseudo-nifH reads from metagenomic sequences of anaerobic environments such as animal guts, wastewater, paddy soils, and sediments. In some samples, pseudo-nifH overwhelmed the number of "true" nifH reads by 50% or 10 times. Because of the high sequence similarity between pseudo- and true-nifH, pronounced amounts of nifH-like reads were not confidently classified. Overall, our results encourage reconsideration of the conventional use of nifH for detecting nitrogen-fixing microbes, while suggesting that nifD or nifK would be a more reliable marker. IMPORTANCE Nitrogen-fixing microbes affect biogeochemical cycling, agricultural productivity, and microbial ecosystems, and their distributions have been investigated intensively using genomic and metagenomic sequencing. Currently, insights into nitrogen fixers in the environment have been acquired by homology searches against nitrogenase genes, particularly the nifH gene, in public databases. Here, we report that public databases include a significant amount of incorrectly annotated nifH sequences (pseudo-nifH). We exhaustively investigated the genomic structures of nifH-harboring genomes and found hundreds of pseudo-nifH sequences in RefSeq and KEGG. Over half of these pseudo-nifH sequences belonged to members of the class Clostridia, which is supposed to be a prominent nitrogen-fixing clade. We also found that the abundance of nitrogen fixers in metagenomes could be overestimated by 1.5 to >10 times due to pseudo-nifH recorded in public databases. Our results encourage reconsideration of the prevalent use of nifH as a marker of nitrogen-fixing microbes.
Collapse
Affiliation(s)
- Kazumori Mise
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, Japan
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hideomi Itoh
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, Japan
| |
Collapse
|
26
|
Hyun HR, Yoon H, Lyou ES, Kim JJ, Kwon SY, Lee TK. Short-Term Legacy Effects of Mercury Contamination on Plant Growth and nifH-Harboring Microbial Community in Rice Paddy Soil. MICROBIAL ECOLOGY 2021; 82:932-941. [PMID: 33624137 DOI: 10.1007/s00248-021-01722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg), which is formed in rice paddy soil, exhibits strong neurotoxicity through bioaccumulation in the food chain. A few groups of microorganisms drive both mercury methylation and nitrogen fixation in the rhizosphere. Little is known about how the shifted soil microbial community by Hg contamination affects nitrogen fixation rate and plant growth in paddy soil. Here, we examined how stimulated short-term Hg amendment affects the nitrogen fixing microbial community and influences plant-microbe interactions. Soil was treated with low (0.2 mg/kg) and high (1.1 mg/kg) concentrations of Hg for 4 weeks; then, rice (Oryza sativa) was planted and grown for 12 weeks. The nitrogen-fixation rate and rice growth were measured. The diversity and structure of the microbial community were analyzed by sequencing the nifH gene before and after rice cultivation. Hg treatments significantly decreased the nitrogen fixation rate and dry weight of the rice plants. The structure of the nifH-harboring community was remarkably changed after rice cultivation depending on Hg treatments. Iron- or sulfate-reducing bacteria, including Desulfobacca, Desulfoporosimus, and Geobacter, were observed as legacy response groups; their abundances increased in the soil after Hg treatment. The high abundance of those groups were maintained in control, but the abundance drastically decreased after rice cultivation in the soil treated with Hg, indicating that symbiotic behavior of rice plants changes according to the legacy effects on Hg contamination. These results suggested that Hg contamination can persist in soil microbial communities, affecting their nitrogen-fixation ability and symbiosis with rice plants in paddy soil.
Collapse
Affiliation(s)
- Hye Rim Hyun
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hakwon Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Eun Sun Lyou
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Jin Ju Kim
- Department of Systems Biotechnology, Chun-Ang University, Anseong, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
27
|
Xu Z, Masuda Y, Wang X, Ushijima N, Shiratori Y, Senoo K, Itoh H. Genome-Based Taxonomic Rearrangement of the Order Geobacterales Including the Description of Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov. Front Microbiol 2021; 12:737531. [PMID: 34659166 PMCID: PMC8516083 DOI: 10.3389/fmicb.2021.737531] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Geobacterales is a recently proposed order comprising members who originally belonged to the well-known family Geobacteraceae, which is a key group in terrestrial ecosystems involved in biogeochemical cycles and has been widely investigated in bioelectrochemistry and bioenergy fields. Previous studies have illustrated the taxonomic structure of most members in this group based on genomic phylogeny; however, several members are still in a pendent or chaotic taxonomic status owing to the lack of genome sequences. To address this issue, we performed this taxonomic reassignment using currently available genome sequences, along with the description of two novel paddy soil-isolated strains, designated Red51T and Red69T, which are phylogenetically located within this order. Phylogenomic analysis based on 120 ubiquitous single-copy proteins robustly separated the species Geobacter luticola from other known genera and placed the genus Oryzomonas (fam. Geobacteraceae) into the family ‘Pseudopelobacteraceae’; thus, a novel genus Geomobilimonas is proposed, and the family ‘Pseudopelobacteraceae’ was emended. Moreover, genomic comparisons with similarity indexes, including average amino acid identity (AAI), percentage of conserved protein (POCP), and average nucleotide identity (ANI), showed proper thresholds as genera boundaries in this order with values of 70%, 65%, and 74% for AAI, POCP, and ANI, respectively. Based on this, the three species Geobacter argillaceus, Geobacter pelophilus, and Geobacter chapellei should be three novel genera, for which the names Geomobilibacter, Geoanaerobacter, and Pelotalea are proposed, respectively. In addition, the two novel isolated strains phylogenetically belonged to the genus Geomonas, family Geobacteraceae, and shared genomic similarity values higher than those of genera boundaries, but lower than those of species boundaries with each other and their neighbors. Taken together with phenotypic and chemotaxonomic characteristics similar to other Geomonas species, these two strains, Red51T and Red69T, represent two novel species in the genus Geomonas, for which the names Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov. are proposed, respectively.
Collapse
Affiliation(s)
- Zhenxing Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xueding Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Ushijima
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | | | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Hokkaido, Japan
| |
Collapse
|
28
|
Liu Y, Ma W, He H, Wang Z, Cao Y. Effects of Sugarcane and Soybean Intercropping on the Nitrogen-Fixing Bacterial Community in the Rhizosphere. Front Microbiol 2021; 12:713349. [PMID: 34659143 PMCID: PMC8515045 DOI: 10.3389/fmicb.2021.713349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Intercropping between sugarcane and soybean is widely used to increase crop yield and promote the sustainable development of the sugarcane industry. However, our understanding of the soil microenvironment in intercropping systems, especially the effect of crop varieties on rhizosphere soil bacterial communities, remains poor. We selected two excellent sugarcane cultivars, Zhongzhe1 (ZZ1) and Zhongzhe9 (ZZ9), from Guangxi and the local soybean variety GUIZAO2 from Guangxi for field interplanting experiments. These two cultivars of sugarcane have good drought resistance. Rhizosphere soil samples were collected from the two intercropping systems to measure physicochemical properties and soil enzyme activities and to extract total soil DNA for high-throughput sequencing. We found that the diversity of the rhizosphere bacterial community was significantly different between the two intercropping systems. Compared with ZZ1, the ZZ9 intercropping system enriched the nitrogen-fixing bacteria, increasing the available nitrogen content by 18% compared with that with ZZ1. In addition, ZZ9 intercropping with soybean formed a more compact rhizosphere environment than ZZ1, thus providing favorable conditions for sugarcane growth. These results provide guidance for the sugarcane industry, especially for the management of sugarcane and soybean intercropping in Guangxi, China.
Collapse
Affiliation(s)
- Yue Liu
- College of Agronomy, Guangxi University, Nanning, China
| | - Wenqing Ma
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, China
| | - Hongliang He
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, China
| | - Yanhong Cao
- Guangxi Key Laboratory of Livestock Genetic Improvement, The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
29
|
Zhang Z, Xu Z, Masuda Y, Wang X, Ushijima N, Shiratori Y, Senoo K, Itoh H. Geomesophilobacter sediminis gen. nov., sp. nov., Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., three novel members in the family Geobacterecace isolated from river sediment and paddy soil. Syst Appl Microbiol 2021; 44:126233. [PMID: 34311149 DOI: 10.1016/j.syapm.2021.126233] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Bacteria in the family Geobacteraceae have been proven to fill important niches in a diversity of anaerobic environments and global biogeochemical processes. Here, three bacterial strains in this family, designated Red875T, Red259T, and Red421T were isolated from river sediment and paddy soils in Japan. All of them are Gram-staining-negative, strictly anaerobic, motile, flagellum-harboring cells that form red colonies on agar plates and are capable of utilizing Fe(III)-NTA, Fe(III) citrate, ferrihydrite, MnO2, fumarate, and nitrate as electron acceptors with acetate, propionate, pyruvate, and glucose as electron donors. Phylogenetic analysis based on the 16S rRNA gene and 92 concatenated core proteins sequences revealed that strains Red259T and Red421T clustered with the type strains of Geomonas species, whereas strain Red875T formed an independent lineage within the family Geobacteraceae. Genome comparison based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values clearly distinguished these three strains from other Geobacteraceae members, with lower values than the thresholds for species delineation. Moreover, strain Red875T also shared low average amino acid identity (AAI) and percentage of conserved proteins (POCP) values with the type species of the family Geobacteraceae. Based on these physiological, chemotaxonomic, and phylogenetic distinctions, we propose that strain Red875T (=NBRC 114290T = MCCC 1K04407T) represents a novel genus in the family Geobacteraceae, namely, Geomesophilobacter sediminis gen. nov., sp. nov., and strains Red259T (=NBRC 114288T = MCCC 1K05016T) and Red421T (=NBRC 114289T = MCCC 1K06216T) represent two novel independent species in the genus Geomonas, namely, Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., respectively.
Collapse
Affiliation(s)
- Zhengcheng Zhang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Zhenxing Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Xueding Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Ushijima
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Japan
| | | | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan
| |
Collapse
|
30
|
Functional Interrelationships of Microorganisms in Iron-Based Anaerobic Wastewater Treatment. Microorganisms 2021; 9:microorganisms9051039. [PMID: 34065964 PMCID: PMC8151836 DOI: 10.3390/microorganisms9051039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
This study explicated the functional activities of microorganisms and their interrelationships under four previously reported iron reducing conditions to identify critical factors that governed the performance of these novel iron-dosed anaerobic biological wastewater treatment processes. Various iron-reducing bacteria (FeRB) and sulfate reducing bacteria (SRB) were identified as the predominant species that concurrently facilitated organics oxidation and the main contributors to removal of organics. The high organic contents of wastewater provided sufficient electron donors for active growth of both FeRB and SRB. In addition to the organic content, Fe (III) and sulfate concentrations (expressed by Fe/S ratio) were found to play a significant role in regulating the microbial abundance and functional activities. Various fermentative bacteria contributed to this FeRB-SRB synergy by fermenting larger organic compounds to smaller compounds, which were subsequently used by FeRB and SRB. Feammox (ferric reduction coupled to ammonium oxidation) bacterium was identified in the bioreactor fed with wastewater containing ammonium. Organic substrate level was a critical factor that regulated the competitive relationship between heterotrophic FeRB and Feammox bacteria. There were evidences that suggested a synergistic relationship between FeRB and nitrogen-fixing bacteria (NFB), where ferric iron and organics concentrations both promoted microbial activities of FeRB and NFB. A concept model was developed to illustrate the identified functional interrelationships and their governing factors for further development of the iron-based wastewater treatment systems.
Collapse
|
31
|
Park Y, Yu J, Nguyen VK, Park S, Kim J, Lee T. Understanding complete ammonium removal mechanism in single-chamber microbial fuel cells based on microbial ecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144231. [PMID: 33385649 DOI: 10.1016/j.scitotenv.2020.144231] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The removal of organics and ammonium from domestic wastewater was successfully achieved by a flat-panel air-cathode microbial fuel cell (FA-MFC). To elucidate the reason for complete ammonium removal in the single-chamber MFCs, microbial communities were analyzed in biofilms on the surface of each anode, separator, and cathode of separator-electrode assemblies (SEAs). The spatial distribution of bacterial families related to the nitrogen cycle varied based on local conditions. Since oxygen diffusing from the air-cathode created a locally aerobic condition, ammonia-oxidizing bacteria (AOB) Nitrosomonadacea and nitrite-oxidizing bacteria (NOB) Nitrospiraceae were present near the cathode. NOB (~12.1%) was more abundant than AOB (~4.4%), suggesting that the nitrate produced by NOB may be reduced back to nitrite by heterotrophic denitrifiers such as Rhodocyclaceae (~21.7%) and Comamonadaceae (~5%) in the anoxic zone close to the NOB layer. Near that zone, the "nitrite loop" also substantially enriched two nitrite-reducing bacterial families: Ignavibacteriaceae (~18.1%), facultative heterotrophs, and Brocadiaceae (~11.2%), anaerobic ammonium oxidizing autotrophs. A larger inner area of biofilm contained abundant heterotrophic denitrifiers and fermentation bacteria. These results indicate that the large-surface SEA of FA-MFC allows counter-diffusion between substrates and oxygen, resulting in interactions of bacteria involved in the nitrogen cycle for complete ammonium removal.
Collapse
Affiliation(s)
- Younghyun Park
- Korea Testing & Research Institute, Ulsan 44412, Republic of Korea
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Van Khanh Nguyen
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Seonghwan Park
- Future Environmental Research Center, Gyeongnam Department of Environmental Toxicology & Chemistry, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jeongmi Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
32
|
Wang Y, Zhou J, Shi S, Zhou J, He X, He L. Hydraulic flow direction alters nutrients removal performance and microbial mechanisms in electrolysis-assisted constructed wetlands. BIORESOURCE TECHNOLOGY 2021; 325:124692. [PMID: 33453660 DOI: 10.1016/j.biortech.2021.124692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
In this study, an electrolysis-assisted down-flow constructed wetland (E-DFCW) was successfully established, and achieved simultaneously efficient removal of PO43--P (93.6% ± 3.2%), NO3--N (97.1% ± 2.0%) and TN (80.6% ± 5.4%). When compared with electrolysis-assisted up-flow constructed wetland (E-UFCW), E-DFCW allowed significantly lower concentrations of PO43--P, NO3--N, total Fe and SO42--S in effluents. In addition, microbial community and functional genes prediction results indicated that hydraulic flow direction significantly altered microbial nitrogen, sulfur and carbon metabolisms in electrolysis-assisted constructed wetlands (E-CWs). Specifically, multi-path denitrification facilitated NO3--N reduction in cathodic chamber of E-DFCW, whereas autohydrogenotrophic denitrification might dominate NO3--N reduction in cathodic chamber of E-UFCW. More abundant and diverse denitrifiers in cathodic chamber of E-DFCW contributed to enhanced denitrification performance. Overall, this work provides microbial insights into multi-path nitrogen metabolisms in electrolysis-assisted denitrification systems in response to hydraulic flow direction.
Collapse
Affiliation(s)
- Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fujian 350116, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
33
|
Itoh H, Xu Z, Masuda Y, Ushijima N, Hayakawa C, Shiratori Y, Senoo K. Geomonas silvestris sp. nov., Geomonas paludis sp. nov. and Geomonas limicola sp. nov., isolated from terrestrial environments, and emended description of the genus Geomonas. Int J Syst Evol Microbiol 2020; 71. [PMID: 33295856 DOI: 10.1099/ijsem.0.004607] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three bacterial strains, designated Red330T, Red736T and Red745T, were isolated from forest and paddy soils in Japan. Strains Red330T, Red736T and Red745T are flagella-harbouring and strictly anaerobic bacteria forming red colonies. A 16S rRNA gene sequence-based phylogenetic tree showed that all three strains were located in a cluster, including the type strains of Geomonas species, which were recently separated from the genus Geobacter within the family Geobacteraceae. Similarities of the 16S rRNA gene sequences among the three strains and Geomonas oryzae S43T, the type species of the genus Geomonas, were 96.3-98.5 %. The genome-related indexes, average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity, among the three strains and G. oryzae S43T were 74.7-86.8 %, 21.2-33.3 % and 70.4-89.8 %, respectively, which were lower than the species delineation thresholds. Regarding the phylogenetic relationships based on genome sequences, the three strains clustered with the type strains of Geomonas species, which were independent from the type strains of Geobacter species. The distinguishableness of the three isolated strains was supported by physiological and chemotaxonomic properties, with the profile of availability of electron donors and cellular fatty acids composition being particularly different among them. Based on genetic, phylogenetic and phenotypic properties, the three isolates represent three novel independent species in the genus Geomonas, for which the names Geomonas silvestris sp. nov., Geomonas paludis sp. nov. and Geomonas limicola sp. nov. are proposed. The type strains are Red330T (=NBRC 114028T=MCCC 1K03949T), Red736T (=NBRC 114029T=MCCC 1K03950T) and Red745T (=NBRC 114030T=MCCC 1K03951T), respectively.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Zhenxing Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Natsumi Ushijima
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Hokkaido 060-8586, Japan
| | - Chie Hayakawa
- School of Agriculture, Utsunomiya University, Tochigi 321-8505, Japan
| | - Yutaka Shiratori
- Niigata Agricultural Research Institute, Niigata 940-0826, Japan
| | - Keishi Senoo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
34
|
Diazotrophic Anaeromyxobacter Isolates from Soils. Appl Environ Microbiol 2020; 86:AEM.00956-20. [PMID: 32532868 DOI: 10.1128/aem.00956-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation is an essential reaction in a major pathway for supplying nitrogen to terrestrial environments. Previous culture-independent analyses based on soil DNA/RNA/protein sequencing could globally detect the nitrogenase genes/proteins of Anaeromyxobacter (in the class Deltaproteobacteria), commonly distributed in soil environments and predominant in paddy soils; this suggests the importance of Anaeromyxobacter in nitrogen fixation in soil environments. However, direct experimental evidence is lacking; there has been no research on the genetic background and ability of Anaeromyxobacter to fix nitrogen. Therefore, we verified the diazotrophy of Anaeromyxobacter based on both genomic and culture-dependent analyses using Anaeromyxobacter sp. strains PSR-1 and Red267 isolated from soils. Based on the comparison of nif gene clusters, strains PSR-1 and Red267 as well as strains Fw109-5, K, and diazotrophic Geobacter and Pelobacter in the class Deltaproteobacteria contain the minimum set of genes for nitrogenase (nifBHDKEN). These results imply that Anaeromyxobacter species have the ability to fix nitrogen. In fact, Anaeromyxobacter PSR-1 and Red267 exhibited N2-dependent growth and acetylene reduction activity (ARA) in vitro Transcriptional activity of the nif gene was also detected when both strains were cultured with N2 gas as a sole nitrogen source, indicating that Anaeromyxobacter can fix and assimilate N2 gas by nitrogenase. In addition, PSR-1- or Red267-inoculated soil showed ARA activity and the growth of the inoculated strains on the basis of RNA-based analysis, demonstrating that Anaeromyxobacter can fix nitrogen in the paddy soil environment. Our study provides novel insights into the pivotal environmental function, i.e., nitrogen fixation, of Anaeromyxobacter, which is a common soil bacterium.IMPORTANCE Anaeromyxobacter is globally distributed in soil environments, especially predominant in paddy soils. Current studies based on environmental DNA/RNA analyses frequently detect gene fragments encoding nitrogenase of Anaeromyxobacter from various soil environments. Although the importance of Anaeromyxobacter as a diazotroph in nature has been suggested by culture-independent studies, there has been no solid evidence and validation from genomic and culture-based analyses that Anaeromyxobacter fixes nitrogen. This study demonstrates that Anaeromyxobacter harboring nitrogenase genes exhibits diazotrophic ability; moreover, N2-dependent growth was demonstrated in vitro and in the soil environment. Our findings indicate that nitrogen fixation is important for Anaeromyxobacter to survive under nitrogen-deficient environments and provide a novel insight into the environmental function of Anaeromyxobacter, which is a common bacterium in soils.
Collapse
|
35
|
Jia R, Wang K, Li L, Qu Z, Shen W, Qu D. Abundance and community succession of nitrogen-fixing bacteria in ferrihydrite enriched cultures of paddy soils is closely related to Fe(III)-reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137633. [PMID: 32146407 DOI: 10.1016/j.scitotenv.2020.137633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In flooded paddy soils, some metal reducers are also capable of nitrogen (N) fixation, which is essential in ensuring a reliable N-supply for rice growth. Microbial iron [Fe(III)] reduction is an important biogeochemical process that can be stimulated by ferrihydrite amendment to paddy soil. Therefore, this study aimed to investigate the abundance and succession of the N2-fixing bacterial community in ferrihydrite enriched paddy soils collected from Hunan (HN) and Sichuan (SC) provinces, China. The relationship between the N2-fixing bacterial community and Fe(III) reduction was also assessed. When compared with the control treatment, ferrihydrite enrichment significantly enhanced nitrogenase (nifH) gene abundance by 8.05 × 105 to 4.45 × 106 copies g-1 soil during the 40-day flooding of HN soil, while nifH gene abundance in SC soil was remarkably increased by 5.90 × 107 to 9.56 × 107 copies g-1 soil during day 1 to 5 in response to ferrihydrite amendment. The relative abundance of N2-fixing bacteria peaked on day 5 (21.5% in HN soil and 5.4% in SC soil) and gradually decreased to a stable abundance after day 20. Remarkable increases in relative abundance of N2-fixing bacteria during the first 10 days of flooding were detected in both soils with ferrihydrite enrichment, whereas little difference was found after day 10 of flooding. During the early stage of flooding, the Shannon and Simpson indexes of N2-fixing bacteria with ferrihydrite enrichment were significantly decreased, and the community structure changed greatly. Most N2-fixing bacteria in ferrihydrite enriched paddy soils were phylogenetically related to the order Clostridiales, with some of those potentially capable of Fe(III) reduction. The community succession of N2-fixing bacteria closely correlated with Fe(III) reduction. Thus, improving N2-fixation via stimulation of Fe(III) reduction might aid in the reduction of N-fertilizer application to paddy field.
Collapse
Affiliation(s)
- Rong Jia
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, PR China; College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Kun Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Lina Li
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, Shanxi Province 030801, PR China
| | - Zhi Qu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi Province 710048, PR China
| | - Weishou Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Dong Qu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling, Shaanxi Province, PR China.
| |
Collapse
|
36
|
Li L, Jia R, Qu Z, Li T, Shen W, Qu D. Coupling between nitrogen-fixing and iron(III)-reducing bacteria as revealed by the metabolically active bacterial community in flooded paddy soils amended with glucose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137056. [PMID: 32036141 DOI: 10.1016/j.scitotenv.2020.137056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Biological nitrogen fixation can contribute to maintaining the nitrogen balance and reducing the risk of environmental pollution caused by nitrogen fertilizer application in flooded paddy soils. Microorganisms associated with microbial iron [Fe(III)] reduction are prevalent and presumed to be closely linked with biological nitrogen fixation in flooded paddy soils. The relationship between the nitrogen-fixing bacteria (NFB) and Fe(III)-reducing bacteria (FeRB) and their responses to organic carbon addition were investigated based on the metabolically active bacterial community in flooded paddy soils amended with/without glucose (CK: 0 mol C kg-1 soil; OC: 0.1 mol C kg-1 soil). Both putative NFBs and FeRBs were affiliated to the phyla Firmicutes and Proteobacteria, which were the two most abundant phyla in the metabolically active bacterial community. Glucose addition remarkably altered the community structures of the putative NFBs and FeRBs during a 40-day incubation, and the relative abundances of putative NFBs and FeRBs in the OC treatment increased by 0.21%-1.62% and 2.22%-14.82% relative to the CK treatment, respectively, during the later stage of incubation. The putative FeRBs co-occurred with NFBs and hydrogen-oxidizing bacteria, and the relative abundances of NFBs and hydrogen-oxidizing bacteria showed significant positive correlation with that of respiratory FeRBs. Some FeRBs could also be capable of nitrogen fixation and/or hydrogen oxidation. Thus, it might be feasible to enhance biological nitrogen fixation efficiency by promoting the metabolic activities of FeRBs (such as by adding glucose), which contribute directly to biological nitrogen fixation associated with nitrogen-fixing Fe(III) reducers and indirectly by reducing the suppression of hydrogen on nitrogen fixation associated with hydrogen-dependent Fe(III) reducers.
Collapse
Affiliation(s)
- Lina Li
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Rong Jia
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, PR China
| | - Zhi Qu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province 710048, PR China
| | - Tingliang Li
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Weishou Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Dong Qu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
37
|
Description of Three Novel Members in the Family Geobacteraceae, Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. Microorganisms 2020; 8:microorganisms8050634. [PMID: 32349406 PMCID: PMC7285026 DOI: 10.3390/microorganisms8050634] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria of the family Geobacteraceae are particularly common and deeply involved in many biogeochemical processes in terrestrial and freshwater environments. As part of a study to understand biogeochemical cycling in freshwater sediments, three iron-reducing isolates, designated as Red96T, Red100T, and Red88T, were isolated from the soils of two paddy fields and pond sediment located in Japan. The cells were Gram-negative, strictly anaerobic, rod-shaped, motile, and red-pigmented on agar plates. Growth of these three strains was coupled to the reduction of Fe(III)-NTA, Fe(III) citrate, and ferrihydrite with malate, methanol, pyruvate, and various organic acids and sugars serving as alternate electron donors. Phylogenetic analysis based on the housekeeping genes (16S rRNA gene, gyrB, rpoB, nifD, fusA, and recA) and 92 concatenated core genes indicated that all the isolates constituted a coherent cluster within the family Geobacteraceae. Genomic analyses, including average nucleotide identity and DNA–DNA hybridization, clearly differentiated the strains Red96T, Red100T, and Red88T from other species in the family Geobacteraceae, with values below the thresholds for species delineation. Along with the genomic comparison, the chemotaxonomic features further helped distinguish the three isolates from each other. In addition, the lower values of average amino acid identity and percentage of conserved protein, as well as biochemical differences with their relatives, indicated that the three strains represented a novel genus in the family Geobacteraceae. Hence, we concluded that strains Red96T, Red100T, and Red88T represented three novel species of a novel genus in the family Geobacteraceae, for which the names Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. are proposed, with type strains Red96T (= NBRC 114286T = MCCC 1K04376T), Red100T (= NBRC 114287T = MCCC 1K04377T), and Red88T (= MCCC 1K03694T = JCM 33033T), respectively.
Collapse
|
38
|
Chee-Sanford JC, Connor L, Krichels A, Yang WH, Sanford RA. Hierarchical detection of diverse Clade II (atypical) nosZ genes using new primer sets for classical- and multiplex PCR array applications. J Microbiol Methods 2020; 172:105908. [PMID: 32234512 DOI: 10.1016/j.mimet.2020.105908] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/27/2022]
Abstract
The reduction of nitrous oxide (N2O) to N2 represents the key terminal step in canonical denitrification. Nitrous oxide reductase (NosZ), the enzyme associated with this biological step, however, is not always affiliated with denitrifying microorganisms. Such organisms were shown recently to possess a Clade II (atypical) nosZ gene, in contrast to Clade I (typical) nosZ harbored in more commonly studied denitrifiers. Subsequent phylogenetic analyses have shown that Clade II NosZ are affiliated with a much broader diversity of microorganisms than those with Clade I NosZ, the former including both non-denitrifiers and denitrifiers. Most studies attempting to characterize the nosZ gene diversity using DNA-based PCR approaches have only focused on Clade I nosZ, despite recent metagenomic sequencing studies that have demonstrated the dominance of Clade II nosZ genes in many ecosystems, particularly soil. As a result, these studies have greatly underestimated the genetic potential for N2O reduction present in ecosystems. Because the high diversity of Clade II NosZ makes it impossible to design a universal primer set that would effectively amplify all nosZ genes in this clade, we developed a suite of primer sets to specifically target seven of ten designated subclades of Clade II nosZ genes. The new primer sets yield suitable product sizes for paired end amplicon sequencing and qPCR, demonstrated here in their use for both conventional single-reaction and multiplex array platforms. In addition, we show the utility of these primers for detecting nosZ gene transcripts from mRNA extracted from soil.
Collapse
Affiliation(s)
| | | | - Alexander Krichels
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wendy H Yang
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert A Sanford
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
39
|
Nojiri Y, Kaneko Y, Azegami Y, Shiratori Y, Ohte N, Senoo K, Otsuka S, Isobe K. Dissimilatory Nitrate Reduction to Ammonium and Responsible Microbes in Japanese Rice Paddy Soil. Microbes Environ 2020; 35:ME20069. [PMID: 33028782 PMCID: PMC7734399 DOI: 10.1264/jsme2.me20069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 11/29/2022] Open
Abstract
Nitrification-denitrification processes in the nitrogen cycle have been extensively examined in rice paddy soils. Nitrate is generally depleted in the reduced soil layer below the thin oxidized layer at the surface, and this may be attributed to high denitrification activity. In the present study, we investigated dissimilatory nitrate reduction to ammonium (DNRA), which competes with denitrification for nitrate, in order to challenge the conventional view of nitrogen cycling in paddy soils. We performed paddy soil microcosm experiments using 15N tracer analyses to assess DNRA and denitrification rates and conducted clone library analyses of transcripts of nitrite reductase genes (nrfA, nirS, and nirK) in order to identify the microbial populations carrying out these processes. The results obtained showed that DNRA occurred to a similar extent to denitrification and appeared to be enhanced by a nitrate limitation relative to organic carbon. We also demonstrated that different microbial taxa were responsible for these distinct processes. Based on these results and previous field observations, nitrate produced by nitrification within the surface oxidized layer may be reduced not only to gaseous N2 via denitrification, but also to NH4+ via DNRA, within the reduced layer. The present results also indicate that DNRA reduces N loss through denitrification and nitrate leaching and provides ammonium to rice roots in rice paddy fields.
Collapse
Affiliation(s)
- Yosuke Nojiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Kaneko
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoichi Azegami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Nobuhito Ohte
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Keishi Senoo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Shigeto Otsuka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Kazuo Isobe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Affiliation(s)
- Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
41
|
Xu Z, Masuda Y, Itoh H, Ushijima N, Shiratori Y, Senoo K. Geomonas oryzae gen. nov., sp. nov., Geomonas edaphica sp. nov., Geomonas ferrireducens sp. nov., Geomonas terrae sp. nov., Four Ferric-Reducing Bacteria Isolated From Paddy Soil, and Reclassification of Three Species of the Genus Geobacter as Members of the Genus Geomonas gen. nov. Front Microbiol 2019; 10:2201. [PMID: 31608033 PMCID: PMC6773877 DOI: 10.3389/fmicb.2019.02201] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
In paddy soil, bacteria from the family Geobacteraceae have been shown to strongly contribute to the biogeochemical cycle. However, no Geobacteraceae species with validly published names have been isolated from paddy soil. In this study, we isolated and characterized four novel ferric reducing bacteria in the family Geobacteraceae from the paddy soils of three different fields in Japan. The four strains, S43T, Red53T, S62T, and Red111T, were Gram-stain negative, strictly anaerobic, chemoheterotrophic, and motile with peritrichous flagella. Phylogenetic studies based on 16S rRNA gene sequences, five concatenated housekeeping genes (fusA, rpoB, recA, nifD, and gyrB) and 92 concatenated core genes revealed that the four strains belong to the family Geobacteraceae and are most closely related to Geobacter bemidjiensis BemT (97.4-98.2%, 16S rRNA gene sequence similarities) and Geobacter bremensis Dfr1T (97.1-98.0%). Genomic analysis with average nucleotide identity (ANI) and digital DNA-DNA hybridization (GGDC) calculations clearly distinguished the four isolated strains from other species of the family Geobacteraceae and indicated that strains S43T, Red53T, S62T, and Red111T represent independent species, with values below the thresholds for species delineation. Chemotaxonomic characteristics, including major fatty acid and whole cell protein profiles, showed differences among the isolates and their closest relatives, which were consistent with the results of DNA fingerprints and physiological characterization. Additionally, each of the four isolates shared a low 16S rRNA gene sequence similarity (92.4%) and average amino acid identity (AAI) with the type strain of the type species Geobacter metallireducens. Overall, strains S43T, Red53T, S62T, and Red111T represent four novel species, which we propose to classify in a novel genus of the family Geobacteraceae, and the names Geomonas oryzae gen. nov., sp. nov. (type strain S43T), Geomonas edaphica sp. nov. (type strain Red53T), Geomonas ferrireducens sp. nov. (type strain S62T), and Geomonas terrae sp. nov. (type strain Red111T) are proposed. Based on phylogenetic and genomic analyses, we also propose the reclassification of Geobacter bremensis as Geomonas bremensis comb. nov., Geobacter pelophilus as Geomonas pelophila comb. nov., and Geobacter bemidjiensis as Geomonas bemidjiensis comb. nov.
Collapse
Affiliation(s)
- Zhenxing Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology, Hokkaido, Japan
| | - Natsumi Ushijima
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | | | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Abstract
The family Geobacteraceae, with its only valid genus Geobacter, comprises deltaproteobacteria ubiquitous in soil, sediments, and subsurface environments where metal reduction is an active process. Research for almost three decades has provided novel insights into environmental processes and biogeochemical reactions not previously known to be carried out by microorganisms. At the heart of the environmental roles played by Geobacter bacteria is their ability to integrate redox pathways and regulatory checkpoints that maximize growth efficiency with electron donors derived from the decomposition of organic matter while respiring metal oxides, particularly the often abundant oxides of ferric iron. This metabolic specialization is complemented by versatile metabolic reactions, respiratory chains, and sensory networks that allow specific members to adaptively respond to environmental cues to integrate organic and inorganic contaminants in their oxidative and reductive metabolism, respectively. Thus, Geobacteraceae are important members of the microbial communities that degrade hydrocarbon contaminants under iron-reducing conditions and that contribute, directly or indirectly, to the reduction of radionuclides, toxic metals, and oxidized species of nitrogen. Their ability to produce conductive pili as nanowires for discharging respiratory electrons to solid-phase electron acceptors and radionuclides, or for wiring cells in current-harvesting biofilms highlights the unique physiological traits that make these organisms attractive biological platforms for bioremediation, bioenergy, and bioelectronics application. Here we review some of the most notable physiological features described in Geobacter species since the first model representatives were recovered in pure culture. We provide a historical account of the environmental research that has set the foundation for numerous physiological studies and the laboratory tools that had provided novel insights into the role of Geobacter in the functioning of microbial communities from pristine and contaminated environments. We pay particular attention to latest research, both basic and applied, that has served to expand the field into new directions and to advance interdisciplinary knowledge. The electrifying physiology of Geobacter, it seems, is alive and well 30 years on.
Collapse
|
43
|
Toyota K, Shirai S. Growing Interest in Microbiome Research Unraveling Disease Suppressive Soils against Plant Pathogens. Microbes Environ 2019; 33:345-347. [PMID: 30606975 PMCID: PMC6307993 DOI: 10.1264/jsme2.me3304rh] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Koki Toyota
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Sayo Shirai
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|
44
|
Nakagawa T, Tsuchiya Y, Ueda S, Fukui M, Takahashi R. Eelgrass Sediment Microbiome as a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan. Microbes Environ 2018; 34:13-22. [PMID: 30504642 PMCID: PMC6440730 DOI: 10.1264/jsme2.me18103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas; however, limited information is currently available on the microbiomes involved in its sink and source in seagrass meadow sediments. Using laboratory incubations, a quantitative PCR (qPCR) analysis of N2O reductase (nosZ) and ammonia monooxygenase subunit A (amoA) genes, and a metagenome analysis based on the nosZ gene, we investigated the abundance of N2O-reducing microorganisms and ammonia-oxidizing prokaryotes as well as the community compositions of N2O-reducing microorganisms in in situ and cultivated sediments in the non-eelgrass and eelgrass zones of Lake Akkeshi, Japan. Laboratory incubations showed that N2O was reduced by eelgrass sediments and emitted by non-eelgrass sediments. qPCR analyses revealed that the abundance of nosZ gene clade II in both sediments before and after the incubation as higher in the eelgrass zone than in the non-eelgrass zone. In contrast, the abundance of ammonia-oxidizing archaeal amoA genes increased after incubations in the non-eelgrass zone only. Metagenome analyses of nosZ genes revealed that the lineages Dechloromonas-Magnetospirillum-Thiocapsa and Bacteroidetes (Flavobacteriia) within nosZ gene clade II were the main populations in the N2O-reducing microbiome in the in situ sediments of eelgrass zones. Sulfur-oxidizing Gammaproteobacteria within nosZ gene clade II dominated in the lineage Dechloromonas-Magnetospirillum-Thiocapsa. Alphaproteobacteria within nosZ gene clade I were predominant in both zones. The proportions of Epsilonproteobacteria within nosZ gene clade II increased after incubations in the eelgrass zone microcosm supplemented with N2O only. Collectively, these results suggest that the N2O-reducing microbiome in eelgrass meadows is largely responsible for coastal N2O mitigation.
Collapse
Affiliation(s)
| | | | - Shingo Ueda
- College of Bioresource Sciences, Nihon University
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University
| | | |
Collapse
|
45
|
Mino S, Yoneyama N, Nakagawa S, Takai K, Sawabe T. Enrichment and Genomic Characterization of a N 2O-Reducing Chemolithoautotroph From a Deep-Sea Hydrothermal Vent. Front Bioeng Biotechnol 2018; 6:184. [PMID: 30547029 PMCID: PMC6279868 DOI: 10.3389/fbioe.2018.00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/13/2018] [Indexed: 01/24/2023] Open
Abstract
Nitrous oxide (N2O) is a greenhouse gas and also leads to stratospheric ozone depletion. In natural environments, only a single N2O sink process is the microbial reduction of N2O to N2, which is mediated by nitrous oxide reductase (NosZ) encoded by nosZ gene. The nosZ phylogeny has two distinct clades, clade I and formerly overlooked clade II. In deep-sea hydrothermal environments, several members of the class Campylobacteria are shown to harbor clade II nosZ gene and perform the complete denitrification of nitrate to N2; however, little is known about their ability to grow on exogenous N2O as the sole electron acceptor. Here, we obtained an enrichment culture from a deep-sea hydrothermal vent in the Southern Mariana Trough, which showed a respiratory N2O reduction with H2 as an electron donor. The single amplicon sequence variant (ASV) presenting 90% similarity to Hydrogenimonas species within the class Campylobacteria was predominant throughout the cultivation period. Metagenomic analyses using a combination of short-read and long-read sequence data succeeded in reconstructing a complete genome of the dominant ASV, which encoded clade II nosZ gene. This study represents the first cultivation analysis that shows the occurrence of N2O-respiring microorganisms in a deep-sea hydrothermal vent and provides the opportunity to assess their capability to reduce N2O emission from the environments.
Collapse
Affiliation(s)
- Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Naoki Yoneyama
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
46
|
Otwell AE, López García de Lomana A, Gibbons SM, Orellana MV, Baliga NS. Systems biology approaches towards predictive microbial ecology. Environ Microbiol 2018; 20:4197-4209. [DOI: 10.1111/1462-2920.14378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Sean M. Gibbons
- Institute for Systems Biology Seattle WA USA
- eScience Institute, University of Washington Seattle WA USA
- Molecular and Cellular Biology Program University of Washington Seattle WA USA
| | - Mónica V. Orellana
- Institute for Systems Biology Seattle WA USA
- Polar Science Center Applied Physics Lab, University of Washington Seattle WA
| | - Nitin S. Baliga
- Institute for Systems Biology Seattle WA USA
- Molecular and Cellular Biology Program University of Washington Seattle WA USA
- Departments of Biology and Microbiology University of Washington Seattle WA USA
- Lawrence Berkeley National Lab Berkeley CA USA
| |
Collapse
|
47
|
Hayden HL, Savin KW, Wadeson J, Gupta VVSR, Mele PM. Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Rhizoctonia solani AG8. Front Microbiol 2018; 9:859. [PMID: 29780371 PMCID: PMC5945926 DOI: 10.3389/fmicb.2018.00859] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Abstract
The soilborne fungus Rhizoctonia solani anastomosis group (AG) 8 is a major pathogen of grain crops resulting in substantial production losses. In the absence of resistant cultivars of wheat or barley, a sustainable and enduring method for disease control may lie in the enhancement of biological disease suppression. Evidence of effective biological control of R. solani AG8 through disease suppression has been well documented at our study site in Avon, South Australia. A comparative metatranscriptomic approach was applied to assess the taxonomic and functional characteristics of the rhizosphere microbiome of wheat plants grown in adjacent fields which are suppressive and non-suppressive to the plant pathogen R. solani AG8. Analysis of 12 rhizosphere metatranscriptomes (six per field) was undertaken using two bioinformatic approaches involving unassembled and assembled reads. Differential expression analysis showed the dominant taxa in the rhizosphere based on mRNA annotation were Arthrobacter spp. and Pseudomonas spp. for non-suppressive samples and Stenotrophomonas spp. and Buttiauxella spp. for the suppressive samples. The assembled metatranscriptome analysis identified more differentially expressed genes than the unassembled analysis in the comparison of suppressive and non-suppressive samples. Suppressive samples showed greater expression of a polyketide cyclase, a terpenoid biosynthesis backbone gene (dxs) and many cold shock proteins (csp). Non-suppressive samples were characterised by greater expression of antibiotic genes such as non-heme chloroperoxidase (cpo) which is involved in pyrrolnitrin synthesis, and phenazine biosynthesis family protein F (phzF) and its transcriptional activator protein (phzR). A large number of genes involved in detoxifying reactive oxygen species (ROS) and superoxide radicals (sod, cat, ahp, bcp, gpx1, trx) were also expressed in the non-suppressive rhizosphere samples most likely in response to the infection of wheat roots by R. solani AG8. Together these results provide new insight into microbial gene expression in the rhizosphere of wheat in soils suppressive and non-suppressive to R. solani AG8. The approach taken and the genes involved in these functions provide direction for future studies to determine more precisely the molecular interplay of plant-microbe-pathogen interactions with the ultimate goal of the development of management options that promote beneficial rhizosphere microflora to reduce R. solani AG8 infection of crops.
Collapse
Affiliation(s)
- Helen L Hayden
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Keith W Savin
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Jenny Wadeson
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Vadakattu V S R Gupta
- CSIRO Agriculture and Food, Glen Osmond, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Pauline M Mele
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Denitrification by Anaeromyxobacter dehalogenans, a Common Soil Bacterium Lacking the Nitrite Reductase Genes nirS and nirK. Appl Environ Microbiol 2018; 84:AEM.01985-17. [PMID: 29196287 DOI: 10.1128/aem.01985-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022] Open
Abstract
The versatile soil bacterium Anaeromyxobacter dehalogenans lacks the hallmark denitrification genes nirS and nirK (encoding NO2 -→NO reductases) and couples growth to NO3 - reduction to NH4 + (respiratory ammonification) and to N2O reduction to N2 A. dehalogenans also grows by reducing Fe(III) to Fe(II), which chemically reacts with NO2 - to form N2O (i.e., chemodenitrification). Following the addition of 100 μmol of NO3 - or NO2 - to Fe(III)-grown axenic cultures of A. dehalogenans, 54 (±7) μmol and 113 (±2) μmol N2O-N, respectively, were produced and subsequently consumed. The conversion of NO3 - to N2 in the presence of Fe(II) through linked biotic-abiotic reactions represents an unrecognized ecophysiology of A. dehalogenans The new findings demonstrate that the assessment of gene content alone is insufficient to predict microbial denitrification potential and N loss (i.e., the formation of gaseous N products). A survey of complete bacterial genomes in the NCBI Reference Sequence database coupled with available physiological information revealed that organisms lacking nirS or nirK but with Fe(III) reduction potential and genes for NO3 - and N2O reduction are not rare, indicating that NO3 - reduction to N2 through linked biotic-abiotic reactions is not limited to A. dehalogenans Considering the ubiquity of iron in soils and sediments and the broad distribution of dissimilatory Fe(III) and NO3 - reducers, denitrification independent of NO-forming NO2 - reductases (through combined biotic-abiotic reactions) may have substantial contributions to N loss and N2O flux.IMPORTANCE Current attempts to gauge N loss from soils rely on the quantitative measurement of nirK and nirS genes and/or transcripts. In the presence of iron, the common soil bacterium Anaeromyxobacter dehalogenans is capable of denitrification and the production of N2 without the key denitrification genes nirK and nirS Such chemodenitrifiers denitrify through combined biotic and abiotic reactions and have potentially large contributions to N loss to the atmosphere and fill a heretofore unrecognized ecological niche in soil ecosystems. The findings emphasize that the comprehensive understanding of N flux and the accurate assessment of denitrification potential can be achieved only when integrated studies of interlinked biogeochemical cycles are performed.
Collapse
|
49
|
Starke R, Bastida F, Abadía J, García C, Nicolás E, Jehmlich N. Ecological and functional adaptations to water management in a semiarid agroecosystem: a soil metaproteomics approach. Sci Rep 2017; 7:10221. [PMID: 28860535 PMCID: PMC5579227 DOI: 10.1038/s41598-017-09973-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
Climate change models point to a decrease in water availability in semiarid areas that would compromise the maintenance of sustainable agriculture. Here, we used a grapefruit agroecosystem model to evaluate the responses of the active soil microbial community – as a microbial subset directly involved in soil functionality- undergoing strategies to cope with the low water availability in south-east Spain. For this purpose, we tested the impacts of: (i) water quality: transfer-water from a river (TW) or reclaimed-water from a wastewater-treatment plant (RW); and (ii) water quantity: continuous optimal amount of water or reduced irrigation (RDI) in the temporal frame when the crop is less sensitive; and their interactions. Metaproteomics revealed that the phylogenetic diversity of the active community and its functional diversity were lowered in soils with RW. RDI lowered soil respiration and functional diversity while the phylogenetic diversity remained constant. The reestablishment of full irrigation after RDI led to a recovery of soil respiration that was accompanied by an enhanced abundance of resilient bacterial populations. Bacterial populations displayed molecular mechanisms against water stress that have been conserved evolutionarily in plants. Protein-based studies shed light on ecological and functional mechanisms that govern the adaptive responses of soil microbial communities to climate-change friendly water management.
Collapse
Affiliation(s)
- Robert Starke
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Felipe Bastida
- Centro de Edafología y Biología Aplicada del Segura. Spanish Research Council (CEBAS-CSIC). Campus Universitario de Espinardo, CP 30100 PO Box 164, Murcia, Spain.
| | - Joaquín Abadía
- Centro de Edafología y Biología Aplicada del Segura. Spanish Research Council (CEBAS-CSIC). Campus Universitario de Espinardo, CP 30100 PO Box 164, Murcia, Spain
| | - Carlos García
- Centro de Edafología y Biología Aplicada del Segura. Spanish Research Council (CEBAS-CSIC). Campus Universitario de Espinardo, CP 30100 PO Box 164, Murcia, Spain
| | - Emilio Nicolás
- Centro de Edafología y Biología Aplicada del Segura. Spanish Research Council (CEBAS-CSIC). Campus Universitario de Espinardo, CP 30100 PO Box 164, Murcia, Spain
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|