1
|
Chen Y, Liu J, Song T, Zou X, Li L, Nie Q, Zhang P. Gaps in forensic toxicological analysis: The veiled abrin. Toxicon 2024; 242:107684. [PMID: 38513827 DOI: 10.1016/j.toxicon.2024.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Abrus precatorius is an herbaceous, flowering plant that is widely distributed in tropical and subtropical regions. Its toxic component, known as abrin, is classified as one of the potentially significant biological warfare agents and bioterrorism tools due to its high toxicity. Abrin poisoning can be utilized to cause accidents, suicides, and homicides, which necessitates attention from clinicians and forensic scientists. Although a few studies have recently identified the toxicological and pharmacological mechanisms of abrin, the exact mechanism remains unclear. Furthermore, the clinical symptoms and pathological changes induced by abrin poisoning have not been fully characterized, and there is a lack of standardized methods for identifying biological samples of the toxin. Therefore, there is an urgent need for further toxicopathologic studies and the development of detection methods for abrin in the field of forensic medicine. This review provides an overview of the clinical symptoms, pathological changes, metabolic changes, toxicologic mechanisms, and detection methods of abrin poisoning from the perspective of forensic toxicology. Additionally, the evidence on abrin in the field of forensic toxicology and forensic pathology is discussed. Overall, this review serves as a reference for understanding the toxicological mechanism of abrin, highlighting the clinical applications of the toxin, and aiding in the diagnosis and forensic identification of toxin poisoning.
Collapse
Affiliation(s)
- Yinyu Chen
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China
| | - Jiaqi Liu
- Department of Neurology, the First Affiliated Hospital, International School of Public Health and One Health, Hainan Medical University, Haikou, 570102, China
| | - Tao Song
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China
| | - Xing Zou
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China
| | - Leilei Li
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China
| | - Qianyun Nie
- Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China; Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
2
|
Parak M, Asgari A, Hasani Nourian Y, Ghanei M. A review of poisoning with various types of biotoxins and its common clinical symptoms. Toxicon 2024; 240:107629. [PMID: 38336277 DOI: 10.1016/j.toxicon.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/01/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Biotoxins are toxic substances that originate from living organisms and are harmful to humans. Therefore, we need to know the symptoms of biotoxins poisoning to manage the damage. The purpose of this study is to establish a practical diagnostic protocol for dealing with poisoned patients exposed to biotoxins. MATERIALS AND METHODS The present study is a review study. Our studied community is articles and books matching the title of the project and relevant keywords. First, by searching the key words sign, symptom, biotoxins, relevant articles were extracted and studied from valid databases. By reviewing the studies based on the search strategy, four groups of biotoxins that were studied the most were identified. These four groups are marine biotoxins, bacterial biotoxins, fungal biotoxins and plant biotoxins. In each of these biotoxin groups, important toxins were selected and studied. RESULTS A total of 1864 articles were initially identified from the databases searched in present study. After screening titles and abstracts, 26 articles were included in the systematic review. Specifically, 7 articles were included for bacterial toxins, 9 articles for marine toxins, 5 articles for plant toxins and 5 articles for fungal toxins. CONCLUSION The symptoms of plant biotoxins poisoning may include cardiovascular, hematologic, neurologic, respiratory, renal, and gastrointestinal symptoms, while the symptoms of fungal biotoxins poisoning may include hepatic, renal, gastrointestinal, musculoskeletal, metabolic, respiratory, neurological, and cardiovascular symptoms. marine biotoxins poisoning presents with gastrointestinal and neurological symptoms, with varying incubation periods and recovery times. bacterial biotoxins exposure can lead to a wide range of clinical symptoms, with diarrhea, vomiting, and abdominal pain being the most common, and hemoglobinuria or hematuria being a sensitive and specific clinical manifestation for diagnosing ongoing HUS in children.
Collapse
Affiliation(s)
- Mohammadreza Parak
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Asgari
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sharma S, Kaur G, Kumar A, Singh R. Trends in the analysis of abrin poisoning for forensic purposes. J Forensic Leg Med 2023; 98:102564. [PMID: 37459705 DOI: 10.1016/j.jflm.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 09/04/2023]
Abstract
Abrus precatorius is a poisonous plant known since ancient times. Accidental poisoning is more common due to the intake of plant seeds containing deadly abrin which is a highly toxic and a thermolabile plant toxalbumin. Abrin has also been reported to be a potential chemical agent that can be used as bioweapon in military or terrorism. Abrin is a ribosome inactivating protein that contains multiple isotoxic forms of protein subunits called chain A and B. The identification of this toxalbumin in the plant is important to determine cause of death in poisoning cases. Therefore, the present review focuses on the structure, mode of administration, tokicokinetics, extraction procedures and forensic analysis of abrin and other constituents. It is observed that most of the researchers have utilized immunological methods for the detection of plant components. This technique has proved to be more sensitive, reliable and accurate for the detection of extremely low concentrations of toxin.
Collapse
Affiliation(s)
- Spriha Sharma
- Department of Forensic Science, Chandigarh University, Punjab, India.
| | - Gurleen Kaur
- Department of Forensic Science, Punjabi University, Patiala, Punjab, India.
| | - Adarsh Kumar
- Department of Forensic Medicine & Toxicology, AIIMS, New Delhi, India.
| | - Rajinder Singh
- Department of Forensic Science, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
4
|
Li Z, Xu H, Ma B, Luo L, Guo L, Zhang P, Zhao Y, Wang L, Xie J. Neutralizing Monoclonal Antibody, mAb 10D8, Is an Effective Detoxicant against Abrin-a Both In Vitro and In Vivo. Toxins (Basel) 2022; 14:toxins14030164. [PMID: 35324661 PMCID: PMC8955035 DOI: 10.3390/toxins14030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Abrin is a types II ribosome-inactivating protein (RIP) isolated from Abrus precatorious seeds, which comprises a catalytically active A chain and a lectin-like B chain linked by a disulfide bond. Four isotoxins of abrin have been reported with similar amino-acid composition but different cytotoxicity, of which abrin-a is the most potent toxin. High lethality and easy availability make abrin a potential bioterrorism agent. However, there are no antidotes available for managing abrin poisoning, and treatment is only symptomatic. Currently, neutralizing antibodies remain the most effective therapy against biotoxin poisoning. In this study, we prepared, identified, and acquired a high-affinity neutralizing monoclonal antibody (mAb) 10D8 with a potent pre- and post-exposure protective effect against cytotoxicity and animal toxicity induced by abrin-a or abrin crude extract. The mAb 10D8 could rescue the mouse injected intraperitoneally with a 25 × LD50 dose of abrin-a from lethality and prevent tissue damages. Results indicated that 10D8 does not prevent the binding and internalization of abrin-a to cells but inhibits the enzymatic activity of abrin-a and reduces protein synthesis inhibition of cells. The high affinity, good specificity, and potent antitoxic efficiency of 10D8 make it a promising candidate for therapeutic antibodies against abrin.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
- Correspondence: (H.X.); (J.X.); Tel.: +86-10-66930621 (H.X.); +86-10-68225893 (J.X.)
| | - Bo Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Li Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Pingping Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (P.Z.); (Y.Z.)
| | - Yong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (P.Z.); (Y.Z.)
| | - Lili Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
- Correspondence: (H.X.); (J.X.); Tel.: +86-10-66930621 (H.X.); +86-10-68225893 (J.X.)
| |
Collapse
|
5
|
Worbs S, Kampa B, Skiba M, Hansbauer EM, Stern D, Volland H, Becher F, Simon S, Dorner MB, Dorner BG. Differentiation, Quantification and Identification of Abrin and Abrus precatorius Agglutinin. Toxins (Basel) 2021; 13:toxins13040284. [PMID: 33919561 PMCID: PMC8073929 DOI: 10.3390/toxins13040284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Bettina Kampa
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Eva-Maria Hansbauer
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Daniel Stern
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Hervé Volland
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - François Becher
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Correspondence: ; Tel.: +49-30-18754-2500
| |
Collapse
|
6
|
Quan NV, Dang Xuan T, Teschke R. Potential Hepatotoxins Found in Herbal Medicinal Products: A Systematic Review. Int J Mol Sci 2020; 21:E5011. [PMID: 32708570 PMCID: PMC7404040 DOI: 10.3390/ijms21145011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The risk of liver injury associated with the use of herbal medicinal products (HMPs) is well known among physicians caring for patients under a HMP therapy, as documented in case reports or case series and evidenced by using the Roussel Uclaf Causality Assessment Method (RUCAM) to verify a causal relationship. In many cases, however, the quality of HMPs has rarely been considered regarding potential culprits such as contaminants and toxins possibly incriminated as causes for the liver injury. This review aims to comprehensively assemble details of tentative hepatotoxic contaminants and toxins found in HMPs. Based on the origin, harmful agents may be divided according two main sources, namely the phyto-hepatotoxin and the nonphyto-hepatotoxin groups. More specifically, phyto-hepatotoxins are phytochemicals or their metabolites naturally produced by plants or internally in response to plant stress conditions. In contrast, nonphyto-hepatotoxic elements may include contaminants or adulterants occurring during collection, processing and production, are the result of accumulation of toxic heavy metals by the plant itself due to soil pollutions, or represent mycotoxins, herbicidal and pesticidal residues. The phyto-hepatotoxins detected in HMPs are classified into eight major groups consisting of volatile compounds, phytotoxic proteins, glycosides, terpenoid lactones, terpenoids, alkaloids, anthraquinones, and phenolic acids. Nonphyto-hepatotoxins including metals, mycotoxins, and pesticidal and herbicidal residues and tentative mechanisms of toxicity are discussed. In conclusion, although a variety of potential toxic substances may enter the human body through HMP use, the ability of these toxins to trigger human liver injury remains largely unclear.
Collapse
Affiliation(s)
- Nguyen Van Quan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (N.V.Q.); (T.D.X.)
| | - Tran Dang Xuan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (N.V.Q.); (T.D.X.)
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 63450 Hanau, Germany
| |
Collapse
|
7
|
Ninan EC, James E. Acute disseminated encephalomyelitis due to abrus precatorius poisoning - A case report. Saudi Pharm J 2019; 27:521-524. [PMID: 31249468 PMCID: PMC6586723 DOI: 10.1016/j.jsps.2018.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022] Open
Abstract
Abrus precatorius, commonly known as ‘Rosary pea’ or ‘Jequirity pea’ and known as ‘Shisham, Batrah-Hindi or Ain Alfreeth’ in the Middle East, grows wild in the tropical and subtropical areas of the world. The seeds of the plant contain one of the most potent toxins known to man. Poisoning with abrus seeds is a rare occurrence as the harder outer coat of the seeds generally resists digestion and such reports are scarce in the literature. We present here a case of a 22 year old lady who developed severe vomiting, diarrhoea and malena at the initial stages and later seizures and acute disseminated encephalomyelitis due to deliberate chewing and swallowing of abrus seeds. She was rescued with several sessions of membrane plasmapheresis and supportive care. The neuropathological process of acute disseminated encephalomyelitis due to abrus poisoning was reversed by plasmapheresis.
Collapse
Affiliation(s)
- Elizabeth C Ninan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Emmanuel James
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
8
|
Influence of Food Matrices on the Stability and Bioavailability of Abrin. Toxins (Basel) 2018; 10:toxins10120502. [PMID: 30513721 PMCID: PMC6316575 DOI: 10.3390/toxins10120502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 11/16/2022] Open
Abstract
Abrin, a highly toxic plant toxin, is a potential bioterror weapon. Work from our laboratory and others have shown that abrin is highly resistant to both thermal and pH inactivation methods. We sought to evaluate the effectiveness of selected food processing thermal inactivation conditions against abrin in economically important food matrices (whole milk, non-fat milk, liquid egg, and ground beef). The effectiveness of toxin inactivation was measured via three different assays: (1) In vitro cell free translation (CFT) assay, (2) Vero cell culture cytotoxicity; and the in vivo mouse intraperitoneal (ip) bioassay. For both whole and non-fat milk, complete inactivation was achieved at temperatures of ≥80 °C for 3 min or 134 °C for 60 s, which were higher than the normal vat/batch pasteurization or the high temperature short time pasteurization (HTST). Toxin inactivation in liquid egg required temperatures of ≥74 °C for 3 min higher than suggested temperatures for scrambled eggs (22% solids) and plain whole egg. Additionally, the ground beef (80:20%) matrix was found to be inhibitory for full toxin activity in the mouse bioassay while retaining some activity in both the cell free translation assay and Vero cell culture cytotoxicity assay.
Collapse
|
9
|
Ghorani-Azam A, Sepahi S, Riahi-Zanjani B, Alizadeh Ghamsari A, Mohajeri SA, Balali-Mood M. Plant toxins and acute medicinal plant poisoning in children: A systematic literature review. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2018; 23:26. [PMID: 29692823 PMCID: PMC5894275 DOI: 10.4103/jrms.jrms_629_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/21/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND For many years, medicinal plants and herbal therapy have been widely used in different societies for the treatment of various diseases. Besides their therapeutic potency, some of the medicinal plants have strong toxicity in human, especially in children and elderly. Despite common beliefs that natural products are safe, there have been few reports on their toxicities. MATERIALS AND METHODS In the present study, we aimed to systematically review the literature wherein acute plant poisoning and herbal intoxication have been reported in pediatric patients. After literature search and selection of the appropriate documents, the desired data were extracted and described qualitatively. RESULTS A total of 127 articles with overall 1453 intoxicated cases were collected. The results of this study showed that some medicinal plants can cause acute poisoning and complications such as hepatic and renal failure in children. CONCLUSION The findings of this survey showed that acute plant poisoning can be life?threatening in children, and since a single?ingested dose of toxic plants can cause acute poisoning, parents should be aware of these toxic effects and compare the side effects of self?medication with its potential benefits.
Collapse
Affiliation(s)
- Adel Ghorani-Azam
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sepahi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Balali-Mood
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
He X, Patfield S, Cheng LW, Stanker LH, Rasooly R, McKeon TA, Zhang Y, Brandon DL. Detection of Abrin Holotoxin Using Novel Monoclonal Antibodies. Toxins (Basel) 2017; 9:E386. [PMID: 29182545 PMCID: PMC5744106 DOI: 10.3390/toxins9120386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 01/17/2023] Open
Abstract
Abrin, a member of the ribosome-inactivating protein family, is produced by the Abrus precatorius plant. Having the potential to pose a severe threat to both human and animal health, abrin is classified as a Select Agent by the U.S. Department of Health and Human Services. However, an immunoassay that is specific for intact abrin holotoxin has not yet been reported. In this study, seven new monoclonal antibodies (mAbs), designated as Abrin-1 through Abrin-7 have been developed. Isotyping analyses indicate these mAbs have IgG1, IgG2a, or IgG2b heavy-chains and kappa light-chains. Western blot analyses identified two abrin A-chain specific mAbs, Abrin-1 and Abrin-2, and four B-chain specific mAbs (Abrin-3, -5, -6, and -7). A sandwich enzyme-linked immunosorbent assay (ELISA), capable of detecting a mixture of abrin isoforms and agglutinins was developed using B-chain specific Abrin-3 for capture and A-chain specific Abrin-2 as detector. The ELISA is highly sensitive and detects 1 ng/mL of the abrin holotoxin in phosphate-buffered saline, nonfat milk, and whole milk, significantly below concentrations that would pose a health concern for consumers. This ELISA also detects native abrin in plant extracts with a very low background signal. The new abrin mAbs and ELISA should be useful for detecting this potent toxin in the milk supply chain and other complex matrices.
Collapse
Affiliation(s)
- Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Luisa W Cheng
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Larry H Stanker
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Reuven Rasooly
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Thomas A McKeon
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Yuzhu Zhang
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - David L Brandon
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
11
|
Huang J, Zhang W, Li X, Feng S, Ye G, Wei H, Gong X. Acute abrin poisoning treated with continuous renal replacement therapy and hemoperfusion successfully: A case report. Medicine (Baltimore) 2017; 96:e7423. [PMID: 28682903 PMCID: PMC5502176 DOI: 10.1097/md.0000000000007423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Abrin is a highly toxic protein obtained from the seeds of Abrus precatorius, but poisoning due to ingestion of A precatorius is extremely rare in China. PATIENT CONCERNS A 16-year-old girl, perfectly healthy before, was admitted to the department of gastroenterology owing to intentional ingestion of 10 crushed A precatorius seeds, with multiple episodes of somnolent and anxious mental status, vomiting, abdominal pain, diarrhea, hematochezia, and hematuria. DIAGNOSIS Acute abrin poisoning. INTERVENTIONS We immediately took effective measures including gastric lavage, purgation, gastric acid suppression by proton pump inhibitor (PPI), liver protection, hemostasis, blood volume and electrolytes resuscitation, continuous renal replacement therapy (CRRT), and hemoperfusion (HP). OUTCOMES Her unwell mental status was improved to the point at which she became conscious and relaxed. The symptoms of vomiting, abdominal pain, diarrhea, hematochezia, and hematuria disappeared gradually. The girl eventually made an excellent recovery with no complications at her 3-month follow-up. LESSONS The combination of CRRT and HP is an efficient measure in the treatment of abrin poisoning for which there is no specific antidote. This is the first reported case of an abrin poisoning patient successfully treated by CRRT plus HP. Our experience will be useful to other physicians in managing patients of acute abrin poisoning in the future.
Collapse
Affiliation(s)
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Gastroenterology
| | | | - Gang Ye
- Department of Gastroenterology
| | | | | |
Collapse
|
12
|
Sant B, Rao PVL, Nagar DP, Pant SC, Bhasker ASB. Evaluation of abrin induced nephrotoxicity by using novel renal injury markers. Toxicon 2017; 131:20-28. [PMID: 28288935 DOI: 10.1016/j.toxicon.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/22/2022]
Abstract
Abrin is a potent plant toxin analogous to ricin that is derived from the seeds of Abrus precatorius plant. It belongs to the family of type II ribosome-inactivating proteins and causes cell death by irreversibly inactivating ribosomes through site-specific depurination. In this study we examined the in vivo nephrotoxicity potential of abrin toxin in terms of oxidative stress, inflammation, histopathological changes and biomarkers of kidney injury. Animals were exposed to 0.5 and 1.0 LD50 dose of abrin by intraperitoneal route and observed for 1, 3, and 7 day post-toxin exposure. Depletion of reduced glutathione and increased lipid peroxidation levels were observed in abrin treated mice. In addition, abrin also induced inflammation in the kidneys as observed through expression of MMP-9 and MMP-9/NGAL complex in abrin treated groups by using zymography method. Nephrotoxicity was also evaluated by western blot analysis of kidney injury biomarkers including Clusterin, Cystatin C and NGAL, and their results indicate severity of kidney injury in abrin treated groups. Kidney histology confirmed inflammatory changes due to abrin. The data generated in the present study clearly prove the nephrotoxicity potential of abrin.
Collapse
Affiliation(s)
- Bhavana Sant
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - P V Lakshmana Rao
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - D P Nagar
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - S C Pant
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - A S B Bhasker
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
13
|
Diaz JH. Poisoning by Herbs and Plants: Rapid Toxidromic Classification and Diagnosis. Wilderness Environ Med 2017; 27:136-52. [PMID: 26948561 DOI: 10.1016/j.wem.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/28/2015] [Accepted: 11/15/2015] [Indexed: 02/05/2023]
Abstract
The American Association of Poison Control Centers has continued to report approximately 50,000 telephone calls or 8% of incoming calls annually related to plant exposures, mostly in children. Although the frequency of plant ingestions in children is related to the presence of popular species in households, adolescents may experiment with hallucinogenic plants; and trekkers and foragers may misidentify poisonous plants as edible. Since plant exposures have continued at a constant rate, the objectives of this review were (1) to review the epidemiology of plant poisonings; and (2) to propose a rapid toxidromic classification system for highly toxic plant ingestions for field use by first responders in comparison to current classification systems. Internet search engines were queried to identify and select peer-reviewed articles on plant poisonings using the key words in order to classify plant poisonings into four specific toxidromes: cardiotoxic, neurotoxic, cytotoxic, and gastrointestinal-hepatotoxic. A simple toxidromic classification system of plant poisonings may permit rapid diagnoses of highly toxic versus less toxic and nontoxic plant ingestions both in households and outdoors; direct earlier management of potentially serious poisonings; and reduce costly inpatient evaluations for inconsequential plant ingestions. The current textbook classification schemes for plant poisonings were complex in comparison to the rapid classification system; and were based on chemical nomenclatures and pharmacological effects, and not on clearly presenting toxidromes. Validation of the rapid toxidromic classification system as compared to existing chemical classification systems for plant poisonings will require future adoption and implementation of the toxidromic system by its intended users.
Collapse
Affiliation(s)
- James H Diaz
- Department of Environmental and Occupational Health Sciences, School of Public Health; Department of Anesthesiology/Critical Care, School of Medicine, Louisiana State University Health Sciences Center (LSUHSC) in New Orleans, New Orleans, LA.
| |
Collapse
|