1
|
Matarrese P, Puglisi R, Mattia G, Samela T, Abeni D, Malorni W. An Overview of the Biological Complexity of Vitiligo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:3193670. [PMID: 39735711 PMCID: PMC11671640 DOI: 10.1155/omcl/3193670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Vitiligo is a skin disease that affects all ethnicities and genders and is characterized by the loss of pigment essentially due to the selective loss of melanocytes. Although it is generally considered a systemic disease associated with polymorphisms in genes involved in the immune response, vitiligo is also considered an oxidative imbalance-associated disease. It represents a multifactorial pathology in which some genetic predisposition and epigenetic factors coupled with some critical biochemical and molecular pathways could play a pivotal role. The aim of this work was thus to review some of the fine cellular mechanisms involved in the etiopathogenesis of vitiligo, mainly focusing on the nonimmunological ones, extensively highlighted elsewhere. We took into consideration, in addition to oxidative stress, both the cause and the hallmark of the pathology, some less investigated aspects such as the role of epigenetic factors, e.g., microRNAs, of receptors of catecholamines, and the more recently recognized role of the mitochondria. Sex differences associated with vitiligo have also been investigated starting from sex hormones and the receptors through which they exert their influence. From literature analysis, a picture seems to emerge in which vitiligo can be considered not just a melanocyte-affecting disease but a systemic pathology that compromises the homeostasis of a complex tissue such as the skin, in which different cell types reside playing multifaceted physiological roles for the entire organism. The exact sequence of cellular and subcellular events associated with vitiligo is still a matter of debate. However, the knowledge of the individual biological factors implicated in vitiligo could help physicians to highlight useful innovative markers of progression and provide, in the long run, new targets for more tailored treatments based on individual manifestations of the disease.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Rossella Puglisi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Gianfranco Mattia
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Tonia Samela
- Clinical Psychology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Damiano Abeni
- Clinical Epidemiology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore (UCSC), Rome, Italy
| |
Collapse
|
2
|
Li X, Tang S, Wang H, Li X. Tanshinone IIA Inhibits Hydrogen Peroxide-Induced Ferroptosis in Melanocytes through Activating Nrf2 Signaling Pathway. Pharmacology 2024:1-10. [PMID: 39413751 DOI: 10.1159/000541177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Melanocyte ferroptosis has been proven to contribute to the development of vitiligo. Tanshinone IIA (TSA), a Chinese herbal extract, has been shown to inhibit vitiligo progression. Whether TSA regulates ferroptosis in melanocytes remains unclear. METHODS Hydrogen peroxide (H2O2) was used to induce melanocytes to stimulate vitiligo cell model in vitro. Cell proliferation was examined by 5-ethynyl-2'-deoxyuridine assay. The levels of malondialdehyde, reactive oxygen species, glutathione peroxidase, and iron were detected by corresponding commercial kit. The protein levels of ferroptosis-related markers and Nrf2 pathway-related markers were examined using western blot and immunofluorescence staining. Cell viability and cytotoxicity were analyzed using Cell Counting Kit-8 assay and lactate dehydrogenase detection. Mitochondrial morphology was examined using a transmission electron microscope. RESULTS After H2O2 treatment, melanocyte proliferation was reduced, while oxidative stress and ferroptosis were enhanced. TSA treatment could inhibit ferroptosis in H2O2-induced melanocytes. Besides, TSA could activate Nrf2 pathway and promote Nrf2 nuclear translocation, and Nrf2-specific inhibitor (ML385) also reversed the inhibitory effect of TSA on H2O2-induced melanocyte ferroptosis. CONCLUSION Our data showed that TSA alleviated H2O2-induced melanocyte ferroptosis via activating Nrf2 pathway.
Collapse
Affiliation(s)
- Xiaosha Li
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shiyang Tang
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Haizhen Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Diagnostic in Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Science and Education Park, Changsha, China
| |
Collapse
|
3
|
Xerfan EMS, Facina AS, Tomimori J, Tufik S, Andersen ML. The influence of phototherapy on circadian melatonin and sleep regulation and potential benefits of these pathways in the management of vitiligo: a narrative review : Vitiligo, phototherapy, sleep and melatonin. Arch Dermatol Res 2024; 316:632. [PMID: 39305310 DOI: 10.1007/s00403-024-03363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 10/27/2024]
Abstract
Ultraviolet B narrow band (UVB-NB) phototherapy is the gold standard treatment for vitiligo, primarily due to its immunomodulatory effects. Additionally, it may influence circadian melatonin balance, that may indirectly induce sleep regulation, which in turn could potentially contribute to vitiligo improvement. The association between melatonin, vitiligo and phototherapy has been little investigated. The aim of this study was to evaluate the current evidence regarding the effects of circadian melatonin regulation and sleep, particularly during vitiligo treatment with phototherapy. We undertook a narrative review to synthetize the evidence on this association through the MEDLINE/PubMed database, using combined search terms: melatonin, vitiligo, phototherapy, and circadian rhythm (sleep). A total of 56 articles were included. There are few studies on this relationship, and conflicting findings. Some studies have suggested that UV exposure and phototherapy might benefit vitiligo by stimulating melanocytes, which have melatonin receptors, and this could potentially synchronize the circadian regulation of melatonin. This improved melatonin balance could result in better sleep quality further enhancing the antiinflammatory properties of melatonin and contributing to vitiligo improvement. Less is known about the possible effects of the use of topical melatonin, with or without phototherapy, to treat vitiligo lesions. In conclusion, there is some evidence that circadian melatonin regulation plays an important role in the course of vitiligo, both through sleep regulation and its anti-inflammatory properties. The evidence suggests that the systemic and physiological properties of melatonin, especially its circadian behavior regulated by phototherapy, may be more effective in respect of vitiligo improvement than the use of topical melatonin. However, the effects of the oral intake of melatonin are less clear. Phototherapy, as a potential modulator of circadian melatonin rhythm, that influences sleep and clinical improvement of vitiligo, needs further examination, as does the use of melatonin as an adjuvant treatment to UVB phototherapy in vitiligo.
Collapse
Affiliation(s)
- Ellen M S Xerfan
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Anamaria S Facina
- Departamento de Dermatologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jane Tomimori
- Departamento de Dermatologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Sleep Institute, Napoleão de Barros, 925 Vila Clementino, São Paulo, SP, 04024-002, Brazil
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
- Sleep Institute, Napoleão de Barros, 925 Vila Clementino, São Paulo, SP, 04024-002, Brazil.
| |
Collapse
|
4
|
Kibret G, Haile AT, Abebe Y, Admassu E, Haile RG. Proportion Of vitiligo and associated factors among patients visiting dermatology opd in tibebe ghion specialized hospital and addisalem primary hospital, bahirdar city, Ethiopia,2023. BMC Res Notes 2024; 17:274. [PMID: 39300568 DOI: 10.1186/s13104-024-06938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE This study aimed to determine the prevalence of vitiligo and associated factors among patients visiting the dermatologic outpatient departments at Tibebe Ghion Specialized Hospital and Addisalem Primary Hospitals, Bahir Dar, Ethiopia, from September 15 to November 15, 2023. RESULTS Among the 460 patients studied, 243 (52.8%) were female, with the majority (28.9%) aged between 25 and 34 years. The overall prevalence of vitiligo was found to be 7.4% (34 patients). Significant predictors of vitiligo included rural residence (AOR: 3.18; 95% CI: 1.10-9.18), family history of vitiligo (AOR: 2.20; 95% CI: 2.16-4.76), and aggravating factors such as trauma (AOR: 1.08; 95% CI: 1.01-2.08). The highest prevalence was observed in the 14-24 age group. These findings suggest the importance of awareness campaigns focusing on the causes, symptoms, and treatments of vitiligo, particularly among young adults in rural areas.
Collapse
Affiliation(s)
- Girum Kibret
- Departement of Dermatovenrology bahr Dar university, Bahr Dar, Ethiopia.
| | - Abel Teklit Haile
- Research department saint peter specialized hospital, Addis Ababa, Ethiopia
| | - Yared Abebe
- Research department saint peter specialized hospital, Addis Ababa, Ethiopia
| | - Eleni Admassu
- Research department saint peter specialized hospital, Addis Ababa, Ethiopia
| | | |
Collapse
|
5
|
Wang Q, Guo W, Niu L, Zhou Y, Wang Z, Chen J, Chen J, Ma J, Zhang J, Jiang Z, Wang B, Zhang Z, Li C, Jian Z. 3D-hUMSCs Exosomes Ameliorate Vitiligo by Simultaneously Potentiating Treg Cells-Mediated Immunosuppression and Suppressing Oxidative Stress-Induced Melanocyte Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404064. [PMID: 38887870 PMCID: PMC11336971 DOI: 10.1002/advs.202404064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Vitiligo is an autoimmune disease characterized by epidermal melanocyte destruction, with abnormal autoimmune responses and excessive oxidative stress as two cardinal mechanisms. Human umbilical mesenchymal stem cells-derived exosomes (hUMSCs-Exos) are regarded as promising therapeutic choice for autoimmune diseases due to potent immunosuppressive and anti-oxidative properties, which can be potentiated under 3D cell culture condition. Nevertheless, whether exosomes derived from 3D spheroids of hUMSCs (3D-Exos) exhibit considerable therapeutic effect on vitiligo and the underlying mechanism remain elusive. In this study, systemic administration of 3D-Exos showed a remarkable effect in treating mice with vitiligo, as revealed by ameliorated skin depigmentation, less CD8+T cells infiltration, and expanded Treg cells in skin, and 3D-Exos exerted a better effect than 2D-Exos. Mechanistically, 3D-Exos can prominently facilitate the expansion of Treg cells in vitiligo lesion and suppress H2O2-induced melanocytes apoptosis. Forward miRNA profile analysis and molecular experiments have demonstrated that miR-132-3p and miR-125b-5p enriched in 3D-Exos greatly contributed to these biological effects by targeting Sirt1 and Bak1 respectively. In aggregate, 3D-Exos can efficiently ameliorate vitiligo by simultaneously potentiating Treg cells-mediated immunosuppression and suppressing oxidative stress-induced melanocyte damage via the delivery of miR-132-3p and miR-125b-5p. The employment of 3D-Exos will be a promising treament for vitiligo.
Collapse
Affiliation(s)
- Qi Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Weinan Guo
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Liaoran Niu
- Department of Digestive SurgeryXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Yuqi Zhou
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zeqian Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jianru Chen
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jiaxi Chen
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jingjing Ma
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jia Zhang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhaoting Jiang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Bo Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhe Zhang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Chunying Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhe Jian
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
6
|
Jangra S, Gulia H, Singh J, Dang AS, Giri SK, Singh G, Priya K, Kumar A. Chemical leukoderma: An insight of pathophysiology and contributing factors. Toxicol Ind Health 2024; 40:479-495. [PMID: 38814634 DOI: 10.1177/07482337241257273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Chemical leukoderma, or chemical-based vitiligo, is a dermal disease triggered by exposure to chemicals and characterized by the emergence of depigmentation or hypopigmentation of the skin. The etiology of this condition is associated with exposure to various chemical substances present in both occupational and non-occupational settings. The precise mechanism that underlies chemical leukoderma remains elusive and is believed to result from the demise of melanocytes, which are responsible for producing skin pigments. This condition has gained particular prominence in developing countries like India. An interesting connection between chemical leukoderma and vitiligo has been identified; studies suggest that exposure to many household chemicals, which are derivatives of phenols and catechol, may serve as a primary etiological factor for the condition. Similar to autoimmune diseases, its pathogenesis involves contributions from both genetic and environmental factors. Furthermore, over the last few decades, various studies have demonstrated that exposure to chemicals plays a crucial role in initiating and progressing chemical leukoderma, including cases stemming from occupational exposure.
Collapse
Affiliation(s)
- Soniya Jangra
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Heena Gulia
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Jagphool Singh
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Amita S Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Shiv K Giri
- Department of Biotechnology, Maharaja Agrasen University, Solan, India
| | - Gulab Singh
- Department of Bioscience, School of Liberal Arts and Sciences, Mody University, Lakshmangarh, India
| | - Kanu Priya
- Department of Life Sciences, Sharda University, Greater Noida, India
| | - Anil Kumar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
7
|
Hlača N, Vičić M, Kaštelan M, Dekanić A, Prpić-Massari L. Analysis of granulysin expression in vitiligo and halo-nevus. Sci Rep 2024; 14:16580. [PMID: 39020008 PMCID: PMC11254913 DOI: 10.1038/s41598-024-67494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Vitiligo and halo nevus are immune-mediated skin diseases that have a similar pathogenesis and involve cellular cytotoxicity mechanisms that are not yet fully understood. In this study, we investigated the expression patterns of the cytolytic molecule granulysin (GNLY) in different cytotoxic cells in skin samples of vitiligo and halo nevus. Skin biopsies were taken from perilesional and lesional skin of ten vitiligo patients, eight patients with halo nevus and ten healthy controls. We analysed the expression of GNLY by immunohistochemistry in CD8+ and CD56+ NK cells. A significantly higher accumulation of GNLY+, CD8+ GNLY+ and fewer CD56+ GNLY+ cells was found in the lesional skin of vitiligo and halo nevus than in the healthy skin. These cells were localised in the basal epidermis and papillary dermis, suggesting that GNLY may be involved in the immune response against melanocytes. Similarly, but to a lesser extent, upregulation of GNLY+ and CD8+ GNLY+ cells was observed in the perilesional skin of vitiligo and halo nevus compared to healthy controls. In this study, we demonstrated for the first time an increased expression of CD8+ GNLY+ T lymphocytes and CD56+ GNLY+ NK cells in lesions of vitiligo and halo nevus, indicating the role of GNLY in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Nika Hlača
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Marijana Vičić
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia.
| | - Marija Kaštelan
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Andrea Dekanić
- Department of Pathology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Larisa Prpić-Massari
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| |
Collapse
|
8
|
Xie Y, Wu N, Tang S, Zhou Z, Chen J, Li J, Wu F, Xu M, Xu X, Liu Y, Ma X. Endoplasmic Reticulum Dysfunction: An Emerging Mechanism of Vitiligo Pathogenesis. Clin Cosmet Investig Dermatol 2024; 17:1133-1144. [PMID: 38774812 PMCID: PMC11107934 DOI: 10.2147/ccid.s459070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
The endoplasmic reticulum (ER) is the main site of protein synthesis, transport, and modification. Its abnormal status has now emerged as an established cause of many pathological processes, such as tumors and autoimmune diseases. Recent studies also demonstrated that the defective functions of ER may lead to pigmentary diseases. Vitiligo is a depigmenting ailment skin disorder whose pathogenesis is now found to be associated with ER. However, the detailed mechanism is still unclear. In this review, we try to link the association between ER with its inter- and intra-organellar interactions in vitiligo pathogenesis and focus on the function, mechanism, and clinical potential of ER with vitiligo. Expand ER is found in melanocytes of vitiligo and ER stress (ERS) might be a bridge between oxidative stress and innate and adaptive immunity. Meanwhile, the tight association between ER and mitochondria or melanosomes in organelles levels, as well as genes and cytokines, is the new paradigm in the pathogenesis of vitiligo. This undoubtedly adds a new aspect to the understanding of vitiligo, facilitating the design of targeted therapies for vitiligo.
Collapse
Affiliation(s)
- Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Nanhui Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Suwei Tang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhiyu Zhou
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jiashe Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jie Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fei Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Mingyuan Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Hu W, Wang H, Li K, Lei Z, Xiang F, Li J, Kang X. Identification of active compounds in Vernonia anthelmintica (L.) willd by targeted metabolome MRM and kaempferol promotes HaCaT cell proliferation and reduces oxidative stress. Front Pharmacol 2024; 15:1343306. [PMID: 38659590 PMCID: PMC11041372 DOI: 10.3389/fphar.2024.1343306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Vernonia anthelmintica (L.) Willd. is a traditional treatment for vitiligo in Xinjiang. However, its therapeutic mechanism remains unclear owing to its complex composition and limited research on its chemical profile. Methods: We employed a targeted metabolome approach, combining selective reaction monitoring/multiple response monitoring (SRM/MRM) with high-performance liquid chromatography and MRM mass spectrometry to quantitatively analyze the flavonoid constituents of Vernonia anthelmintica. We also used network pharmacology and molecular docking to identify potential vitiligo-linked compounds and targets of V. anthelmintica seeds. Additionally, we assessed HaCaT cell proliferation by AAPH-induced, alongside changes in SOD activity and MDA content, following treatment with V. anthelmintica components. Finally, flow cytometry was used to detect apoptosis and ROS levels. Results and Discussion: We identified 36 flavonoid compounds in V. anthelmintica seeds, with 14 compounds exhibiting druggability. AKT1, VEGFA, ESR1, PTGS2, and IL2 have been identified as key therapeutic target genes, with PI3K/AKT signaling being an important pathway. Notably, kaempferol, one of the identified compounds, exhibited high expression in network pharmacology analysis. Kaempferol exhibited a strong binding affinity to important targets. Further, kaempferol enhanced HaCaT cell viability, inhibited apoptosis, reduced MDA levels, suppressed ROS activity, and upregulated SOD activity, increase the expression of cellular antioxidant genes, including HO-1, GCLC, GCLM, Nrf2, NQO1 and Keap1, providing significant protection against oxidative stress damage in vitro. Here, we present the first comprehensive study integrating SRM/MRM approaches and network analysis to identify active flavonoid compounds within V. anthelmintica (L.) Willd. Moreover, we revealed that its active ingredient, kaempferol, offers protection against AAPH-induced damage in keratinocytes, highlighting its potential as a clinical resource.
Collapse
Affiliation(s)
- Wen Hu
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Hongjuan Wang
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Kaixiao Li
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Jun Li
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
10
|
Zhang J, Xiang F, Ding Y, Hu W, Wang H, Zhang X, Lei Z, Li T, Wang P, Kang X. Identification and validation of RNA-binding protein SLC3A2 regulates melanocyte ferroptosis in vitiligo by integrated analysis of single-cell and bulk RNA-sequencing. BMC Genomics 2024; 25:236. [PMID: 38438962 PMCID: PMC10910712 DOI: 10.1186/s12864-024-10147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The pathogenesis of vitiligo remains unclear. The genes encoding vitiligo-related RNA-binding proteins (RBPs) and their underlying pathogenic mechanism have not been determined. RESULTS Single-cell transcriptome sequencing (scRNA-seq) data from the CNCB database was obtained to identify distinct cell types and subpopulations and the relative proportion changes in vitiligo and healthy samples. We identified 14 different cell types and 28 cell subpopulations. The proportion of each cell subpopulation significantly differed between the patients with vitiligo and healthy groups. Using RBP genes for unsupervised clustering, we obtained the specific RBP genes of different cell types in vitiligo and healthy groups. The RBP gene expression was highly heterogeneous; there were significant differences in some cell types, such as keratinocytes, Langerhans, and melanocytes, while there were no significant differences in other cells, such as T cells and fibroblasts, in the two groups. The melanocyte-specific RBP genes were enriched in the apoptosis and immune-related pathways in the patients with vitiligo. Combined with the bulk RNA-seq data of melanocytes, key RBP genes related to melanocytes were identified, including eight upregulated RBP genes (CDKN2A, HLA-A, RPL12, RPL29, RPL31, RPS19, RPS21, and RPS28) and one downregulated RBP gene (SLC3A2). Cell experiments were conducted to explore the role of the key RBP gene SLC3A2 in vitiligo. Cell experiments confirmed that melanocyte proliferation decreased, whereas apoptosis increased, after SLC3A2 knockdown. SLC3A2 knockdown in melanocytes also decreased the SOD activity and melanin content; increased the Fe2+, ROS, and MDA content; significantly increased the expression levels of TYR and COX2; and decreased the expression levels of glutathione and GPX4. CONCLUSION We identified the RBP genes of different cell subsets in patients with vitiligo and confirmed that downregulating SLC3A2 can promote ferroptosis in melanocytes. These findings provide new insights into the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Wen Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Hongjuan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiangyue Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Tingting Li
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Peng Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China.
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China.
| |
Collapse
|
11
|
Lin Y, Ding Y, Wu Y, Yang Y, Liu Z, Xiang L, Zhang C. The underestimated role of mitochondria in vitiligo: From oxidative stress to inflammation and cell death. Exp Dermatol 2024; 33:e14856. [PMID: 37338012 DOI: 10.1111/exd.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Vitiligo is an acquired depigmentary disorder characterized by the depletion of melanocytes in the skin. Mitochondria shoulder multiple functions in cells, such as production of ATP, maintenance of redox balance, initiation of inflammation and regulation of cell death. Increasing evidence has implicated the involvement of mitochondria in the pathogenesis of vitiligo. Mitochondria alteration will cause the abnormalities of mitochondria functions mentioned above, ultimately leading to melanocyte loss through various cell death modes. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in mitochondrial homeostasis, and the downregulation of Nrf2 in vitiligo may correlate with mitochondria damage, making both mitochondria and Nrf2 promising targets in treatment of vitiligo. In this review, we aim to discuss the alterations of mitochondria and its role in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Yi Lin
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yuecen Ding
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Ziqi Liu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
12
|
Liao FY, Wang YL, Wen YC, Chiu CC, Chang TY, Jaing TH. Vitiligo and Alopecia Areata After Donor Lymphocyte Infusions in a Child With Relapsed Acute Myeloid Leukemia. Cureus 2024; 16:e52810. [PMID: 38389613 PMCID: PMC10883748 DOI: 10.7759/cureus.52810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Rarely do patients with chronic graft-versus-host disease (cGVHD) experience vitiligo and alopecia areata. Nevertheless, the exact cause of vitiligo and alopecia areata is still not fully understood. The patient experienced a relapse of acute myeloid leukemia (AML) following a second complete remission after undergoing HLA-6/8 mismatched unrelated donor hematopoietic cell transplantation (HCT). Achieving full donor chimerism was successful during the initial stages of the transplant. Nevertheless, the molecular evidence of measurable residual disease remained, prompting the administration of donor lymphocyte infusions (DLI) following a dose-escalation protocol. After three cycles of DLI given at two-month intervals, the circulating blasts eventually vanished. After the third DLI dose, vitiligo developed despite achieving molecular remission. The dermatologist confirmed the presence of vitiligo and alopecia areata, along with cutaneous cGVHD. The outcome was the complete elimination of the molecular presence, and the patient experienced both clinical and molecular remission for a period of five years following DLI. Based on our observations, it was found that DLI could effectively eradicate molecular leukemia in cases of AML relapse after HCT. The development of vitiligo and alopecia areata was influenced by the destruction of melanocytes due to autoimmune reactions caused by cGVHD.
Collapse
Affiliation(s)
- Fan-Yu Liao
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, TWN
| | - Yi-Lun Wang
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan, TWN
| | - Yu-Chuan Wen
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, TWN
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, TWN
| | - Tsung-Yen Chang
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan, TWN
| | - Tang-Her Jaing
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan, TWN
| |
Collapse
|
13
|
Peng L, Lu Y, Gu Y, Liang B, Li Y, Li H, Ke Y, Zhu H, Li Z. Mechanisms of action of Lycium barbarum polysaccharide in protecting against vitiligo mice through modulation of the STAT3-Hsp70-CXCL9/CXCL10 pathway. PHARMACEUTICAL BIOLOGY 2023; 61:281-287. [PMID: 36655287 PMCID: PMC9858537 DOI: 10.1080/13880209.2022.2163406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Vitiligo is a common skin disease with a complex pathogenesis, and so far, no effective treatment is available. Lycium barbarum L. (Solanaceae) polysaccharide (LBP), the main active ingredient of goji berries, has been demonstrated to protect keratinocytes and fibroblasts against oxidative stress. OBJECTIVE This study explored the effects and mechanism of LBP on monobenzone-induced vitiligo in mice. MATERIALS AND METHODS C57BL/6 mice were randomly divided into five groups (n = 6): negative control that received vaseline, vitiligo model group induced by monobenzone that treated with vaseline, positive control that received tacrolimus (TAC), LBP groups that received 0.3 and 0.6 g/kg LBP, respectively. We quantified the depigmentation by visual examination and scores, detected the expression of CD8+ T cells, pro-inflammatory cytokines and analysed the STAT3-Hsp70-CXCL9/CXCL10 pathway. RESULTS LBP 0.3 and 0.6 g/kg groups can significantly reduce depigmentation scores and the infiltration of local inflammatory cells in the skin lesions. Moreover, the expression of CXCL9, CXCL3, CXCL10 and HSP70 decreased by 54.3, 20.3, 48.5 and 27.2% in 0.3 g/kg LBP group, which decreased by 62.1, 26.6, 58.2 and 34.5% in 0.6 g/kg LBP group. In addition, 0.3 and 0.6 g/kg LBP decreased the release of IL-8 (9.7%, 22.8%), IL-6 (40.8%, 42.5%), TNF-α (25.7%, 35%), IFN-γ (25.1%, 27.6%) and IL-1β (23.7%, 33.7%) and inhibited the phosphorylation expression of STAT3 by 63.2 and 67.9%, respectively. CONCLUSION These findings indicated LBP might be recommended as a new approach for vitiligo which provide a theoretical basis for the clinical application of LBP in treating vitiligo patients.
Collapse
Affiliation(s)
- Liqian Peng
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China
| | - Yue Lu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Yingming Gu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Bihua Liang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China
| | - Yanhong Li
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China
| | - Huaping Li
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China
| | - Yanan Ke
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China
| | - Huilan Zhu
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China
| | - Zhenjie Li
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Kim NH, Kim HJ, Lee AY. Aquaporin-3 Downregulation in Vitiligo Keratinocytes Increases Oxidative Stress of Melanocytes. Biomol Ther (Seoul) 2023; 31:648-654. [PMID: 37818624 PMCID: PMC10616513 DOI: 10.4062/biomolther.2023.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
Oxidative stress-induced melanocyte apoptosis is linked to the immune system and plays a critical role in the pathogenesis of vitiligo. Aquaporin-3 (AQP3), which is downregulated in vitiligo keratinocytes, regulates intracellular H2O2 accumulation. However, the role of AQP3 in oxidative stress is uncertain in vitiligo. This study investigated the effect of downregulated AQP3 on oxidative stress in vitiligo using lesional and non-lesional skin specimen sets from vitiligo patients and primary cultured adult normal human epidermal keratinocytes, with or without downregulation and overexpression of AQP3 in the presence or absence of H2O2 treatment. The levels of nuclear factor E2-related factor 2 (NRF2) and/or its main target, NAD(P)H quinone dehydrogenase 1 (NQO-1), were lower in the lesional keratinocytes and cultured keratinocytes with AQP3 knockdown, but were increased in keratinocytes upon AQP3 overexpression. Ratios of NRF2 nuclear translocation and NQO-1 expression levels were further reduced in AQP3-knockdown keratinocytes following H2O2 treatment. The conditioned media from AQP3-knockdown keratinocytes treated with H2O2 contained higher concentrations of reactive oxygen species (ROS). Moreover, the number of viable melanocytes was reduced when the conditioned media were added to the culture media. Overall, AQP3 downregulation in the keratinocytes of patients with vitiligo can induce oxidative stress in neighboring melanocytes, leading to melanocyte death.
Collapse
Affiliation(s)
- Nan-Hyung Kim
- Department of Dermatology, Dongguk University School of Medicine, Goyang 10326, Republic of Korea
| | - Ha Jung Kim
- Department of Dermatology, Dongguk University School of Medicine, Goyang 10326, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University School of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
15
|
Li X, Tang S, Wang H, Li X. TanshinoneIIA inhibits melanocyte pyroptosis by regulating the ROS/NLRP3 signaling axis. Skin Res Technol 2023; 29:e13419. [PMID: 37753685 PMCID: PMC10443190 DOI: 10.1111/srt.13419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/13/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Pyroptosis has been implicated in the development of human diseases, including vitiligo. TanshinoneIIA has been confirmed to play anti-vitiligo role. However, whether tanshinoneIIA inhibits vitiligo progression via regulating cell pyroptosis remains unclear. METHODS Hydrogen peroxide (H2 O2 )-induced melanocytes were used to mimic vitiligo cell model in vitro. Cell viability was assessed by cell counting kit 8 assay, and reactive oxygen species (ROS) production was detected by DCFH-DA staining. Nod-like receptor protein 3 (NLRP3) expression was detected by quantitative real-time PCR, western blot and immunofluorescence staining. Cell pyroptosis was measured using flow cytometry, and the contents of interleukin-1β and interleukin-18 were determined by ELISA. Besides, the protein levels of apoptosis-associated speck-like protein containing CARD (ASC) and cleaved-Caspase-1 were examined by western blot analysis. RESULTS H2 O2 could induce ROS production, NLRP3 expression and pyroptosis in melanocytes. TanshinoneIIA inhibited ROS production, pyroptosis, and the expression of NLRP3, ASC and cleaved-caspase-1 in H2 O2 -induced melanocytes. Compared with the function of ROS inhibitor (NAC), tanshinoneIIA acted as a ROS scavenger to relieve melanocyte pyroptosis. In addition, NLRP3 inhibitor (MCC950) also could aggravate the inhibition effect of tanshinoneIIA on melanocyte pyroptosis. CONCLUSION TanshinoneIIA suppressed melanocyte pyroptosis probably through modulating the ROS/NLRP3 signaling axis, which provides the evidence for therapeutic effect in vitiligo.
Collapse
Affiliation(s)
- Xiaosha Li
- Department of DermatologyThe Second Affiliated Hospital of Hunan University of Chinese MedicineChangsha CityP.R. China
| | - Shiyang Tang
- School of Chinese MedicineHunan University of Chinese MedicineChangsha CityP.R. China
| | - Haizhen Wang
- Department of DermatologyThe Second Affiliated Hospital of Hunan University of Chinese MedicineChangsha CityP.R. China
| | - Xin Li
- Hunan Provincial Key Laboratory of Diagnostic in Chinese MedicineHunan University of Chinese MedicineChangsha CityP.R. China
| |
Collapse
|
16
|
Ainiwaer P, Li Z, Zang D, Jiang L, Zou G, Aisa HA. Ruta graveolens: Boost Melanogenic Effects and Protection against Oxidative Damage in Melanocytes. Antioxidants (Basel) 2023; 12:1580. [PMID: 37627575 PMCID: PMC10451875 DOI: 10.3390/antiox12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Vitiligo, an acquired depigmentation disorder, is characterized by the loss of functional melanocytes and epidermal melanin. In recent years, research has focused on promoting melanin biosynthesis and protecting melanocytes to reduce stress-related damage for the purpose of applying it to vitiligo treatment. Ruta graveolens L. has been utilized as a medicinal herb in diverse traditional medicine systems to address conditions like vitiligo. In this investigation, we isolated and purified 16 unique alkaloid compounds from the chloroform extracts of R. graveolens, encompassing a new quinoline alkaloid and several recognized compounds. Bioactivity analysis showed that compound 13, an alkaloid derived from R. graveolens, promotes melanin production while protecting PIG3V melanocytes against 4-tert-butylphenol (4-TBP)-induced oxidative damage by downregulating endoplasmic reticulum (ER) stress and pro-inflammatory cytokines through interleukin-6 (IL-6) regulation. Additionally, the compound suppressed the expression of Bip, IRE1, p-IRE1, and XBP-1 proteins, suggesting a potential antioxidant function. These findings suggest that compound 13 isolated from R. graveolens can augment melanogenesis in melanocytes, reduce endoplasmic reticulum (ER) stress, and ameliorate vitiligo exacerbation. The melanogenic activity observed in the chloroform fraction emphasizes R. graveolens's potential as a novel therapeutic target for vitiligo treatment, warranting further exploration in future studies.
Collapse
Affiliation(s)
- Pazilaiti Ainiwaer
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China; (P.A.); (Z.L.); (D.Z.); (L.J.); (G.Z.)
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Zuopeng Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China; (P.A.); (Z.L.); (D.Z.); (L.J.); (G.Z.)
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China; (P.A.); (Z.L.); (D.Z.); (L.J.); (G.Z.)
| | - Lan Jiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China; (P.A.); (Z.L.); (D.Z.); (L.J.); (G.Z.)
| | - Guoan Zou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China; (P.A.); (Z.L.); (D.Z.); (L.J.); (G.Z.)
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China; (P.A.); (Z.L.); (D.Z.); (L.J.); (G.Z.)
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| |
Collapse
|
17
|
Pang QQ, Kim JH, Kim HY, Kim JH, Cho EJ. Protective Effects and Mechanisms of Pectolinarin against H 2O 2-Induced Oxidative Stress in SH-SY5Y Neuronal Cells. Molecules 2023; 28:5826. [PMID: 37570795 PMCID: PMC10420989 DOI: 10.3390/molecules28155826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
This study aims to investigate the protective effects and mechanisms of pectolinarin against oxidative stress-induced cell damage in SH-SY5Y cells. Neurodegenerative diseases-such as Alzheimer's disease-are potentially associated with oxidative stress, which causes excessive production of reactive oxygen species (ROS) that damage DNA and proteins in neuronal cells. The results of this study demonstrate that pectolinarin can scavenge hydroxyl and nitric oxide radicals in a concentration-dependent manner. Moreover, pectolinarin significantly increased cell viability while reducing ROS production and LDH release in the hydrogen peroxide (H2O2)-induced control group. Additionally, Pectolinarin recovered protein expression from H2O2-altered levels back to close-to-normal SH-SY5Y cell levels for components of the oxidative stress, inflammation, and apoptosis pathways-such as nuclear factor erythroid 2-related factor 2 (Nrf2), kelch-like ECH-associated protein (Keap1), anti-heme oxygenase 1 (HO-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), B-cell lympho-ma-2 (Bcl-2) protein, and Bcl-2-associated X protein (Bax). These findings suggest that pectolinarin has the potential to be used as a plant material for functional foods to be applied in the treatment of neurodegenerative diseases, such as Alzheimer's disease, by mitigating oxidative stress-induced damage to neuronal cells.
Collapse
Affiliation(s)
- Qi Qi Pang
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| | - Ji Hyun Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.H.K.); (H.Y.K.)
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.H.K.); (H.Y.K.)
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
18
|
Elrewiny EM, Shawky A, Mohamed SFF, Ammar AM, Mansour M, Rageh MA. Intralesional methotrexate in the treatment of localized vitiligo: A pilot study. Australas J Dermatol 2023; 64:e207-e211. [PMID: 37166107 DOI: 10.1111/ajd.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND/OBJECTIVES Vitiligo is an immune-mediated skin disorder that targets epidermal melanocytes leading to the appearance of depigmented skin patches. Different treatment modalities have been reported with varied efficacy. We tried to evaluate the safety and efficacy of intralesional methotrexate in treating localized areas of vitiligo. METHODS Thirty participants with localized patches of vitiligo were recruited. They were treated with intralesional injections of methotrexate every 2 weeks for a maximum of six sessions. At the end of the study, the degree of repigmentation was categorized into: excellent improvement (>75% repigmentation), good improvement (50%-75% repigmentation), fair improvement (25%-50% repigmentation) and poor improvement (<25% repigmentation). RESULTS We included 7 males (23.3%) and 23 females (76.7%). Their mean age was 33.6 ± 8.6 years. The duration of the disease ranged from 1 to 22 years. Four patients had a family history of vitiligo. At the end of the study, there was a highly statistically significant improvement (p < 0.001) after treatment regarding repigmentation. CONCLUSIONS This study showed that intralesional methotrexate is a safe and effective treatment option for patients with localized vitiligo lesions. Further studies on a larger scale are needed to evaluate the long-term effects of treatment and detect the ideal dose to be injected.
Collapse
Affiliation(s)
- Emad M Elrewiny
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Shawky
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Amr Mohammad Ammar
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mofreh Mansour
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mahmoud A Rageh
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Prasetyo WE, Triadmojo B, Kusumaningsih T, Marliyana SD, Wibowo FR, Firdaus M. Mechanistic insight into the free radical scavenging and xanthine oxidase (XO) inhibitor potent of monoacetylphloroglucinols (MAPGs). Free Radic Res 2023:1-33. [PMID: 37315300 DOI: 10.1080/10715762.2023.2225731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Three novel antioxidant candidates based on phenolic polyketide, monoacetylphloroglucinol (MAPG), a natural antibiotic compound produced by plant growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens F113 have been proposed. Initially, a green and highly efficient route to the synthesis of MAPG and its two analogues from phloroglucinol (PG) has been developed. Afterward, their rational mechanism of antioxidant activity has been investigated based on thermodynamic descriptors involved in the double ( 2H+/2e-) radical trapping processes. These calculations have been performed using the systematic density functional theory (DFT) method at the B3LYP/Def2-SVP level of theory in the gas phase and aqueous solution. Our findings reveal that the double formal hydrogen atom transfer (df-HAT) mechanism is preferred in the gas phase, while the double sequential proton loss electron transfer (dSPLET) mechanism is preferred in aqueous solution for all MAPGs. The 6-OH group represents the most favourable site for trapping radical species for all MAPGs, which is supported by the pKa values obtained from DFT calculations. The role of acyl substituents on the PG ring has been comprehensively discussed. The presence of acyl substituents has a strong influence on the thermodynamic parameters of the phenolic O-H bond in PG. These results are supported by frontier molecular orbitals (FMOs) analysis, where the addition of acyl substituents increases the chemical reactivity of MAPGs significantly. Based on molecular docking and molecular dynamics simulations (MDs), MAPGs are also predicted to be promising candidates for xanthine oxidase (XO) inhibition.HighlightsThe antioxidant activity of the three synthesised MAPGs has been investigated using the DFT method.Acyl substituents increase the chemical reactivity and antioxidant activity of MAPGs.df-HAT is the preferred mechanism in the gas phase.dSPLET seems to be more favoured in aqueous solution.MAPGs are expected to be promising xanthine oxidase (XO) inhibitors.
Collapse
Affiliation(s)
- Wahyu Eko Prasetyo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Bram Triadmojo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Triana Kusumaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Soerya Dewi Marliyana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Fajar Rakhman Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| |
Collapse
|
20
|
Huang Z, Tan Y. The Potential of Cylindromatosis (CYLD) as a Therapeutic Target in Oxidative Stress-Associated Pathologies: A Comprehensive Evaluation. Int J Mol Sci 2023; 24:8368. [PMID: 37176077 PMCID: PMC10179184 DOI: 10.3390/ijms24098368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress (OS) arises as a consequence of an imbalance between the formation of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to neutralize them. Excessive ROS production can lead to the damage of critical biomolecules, such as lipids, proteins, and DNA, ultimately contributing to the onset and progression of a multitude of diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer's disease, and cancer. Cylindromatosis (CYLD), initially identified as a gene linked to familial cylindromatosis, has a well-established and increasingly well-characterized function in tumor inhibition and anti-inflammatory processes. Nevertheless, burgeoning evidence suggests that CYLD, as a conserved deubiquitination enzyme, also plays a pivotal role in various key signaling pathways and is implicated in the pathogenesis of numerous diseases driven by oxidative stress. In this review, we systematically examine the current research on the function and pathogenesis of CYLD in diseases instigated by oxidative stress. Therapeutic interventions targeting CYLD may hold significant promise for the treatment and management of oxidative stress-induced human diseases.
Collapse
Affiliation(s)
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China;
| |
Collapse
|
21
|
Jarmakiewicz-Czaja S, Ferenc K, Filip R. Antioxidants as Protection against Reactive Oxidative Stress in Inflammatory Bowel Disease. Metabolites 2023; 13:metabo13040573. [PMID: 37110231 PMCID: PMC10146410 DOI: 10.3390/metabo13040573] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) belongs to a group of chronic diseases characterised by periods of exacerbation and remission. Despite many studies and observations, its aetiopathogenesis is still not fully understood. The interactions of genetic, immunological, microbiological, and environmental factors can induce disease development and progression, but there is still a lack of information on these mechanisms. One of the components that can increase the risk of occurrence of IBD, as well as disease progression, is oxidative stress. Oxidative stress occurs when there is an imbalance between reactive oxygen species (ROS) and antioxidants. The endogenous and exogenous components that make up the body's antioxidant defence can significantly affect IBD prophylaxis and reduce the risk of exacerbation by neutralising and removing ROS, as well as influencing the inflammatory state.
Collapse
Affiliation(s)
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
22
|
Xie B, Zhu Y, Shen Y, Xu W, Song X. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection. Expert Opin Ther Targets 2023; 27:189-206. [PMID: 36947026 DOI: 10.1080/14728222.2023.2193329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The treatment of vitiligo remains challenging due to the complexity of its pathogenesis, influenced by genetic factors, oxidative stress and abnormal cell adhesion that collectively impact melanocyte survival and trigger immune system attacks, resulting in melanocyte death. Melanocytes in vitiligo are believed to exhibit genetic susceptibility and defects in cellular mechanisms, such as defects in autophagy, that reduce their ability to resist oxidative stress, leading to increased expression of the pro-inflammatory protein HSP70. The low expression of adhesion molecules, such as DDR1 and E-cadherin, accelerates melanocyte damage and antigen exposure. Consequently, autoimmune attacks centered on IFN-γ-CXCR9/10-CXCR3-CD8+ T cells are initiated, causing vitiligo. AREAS COVERED This review discusses the latest knowledge on the pathogenesis of vitiligo and potential therapeutic targets from the perspective of suppressing autoimmune attacks and activating melanocytes functions. EXPERT OPINION Vitiligo is one of the most challenging dermatological diseases due to its complex pathogenesis with diverse therapeutic targets. Immune suppression, such as corticosteroids and emerging JAK inhibitors, has proven effective in disease progression. However, during the early stages of the disease, it is also important to optimize therapeutic strategies to activate melanocytes for alleviating oxidative stress and improving treatment outcomes.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine; Yuhangtang Rd 866, Hangzhou, 310058, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
23
|
Chang WL, Ko CH. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications. Cells 2023; 12:cells12060936. [PMID: 36980277 PMCID: PMC10047323 DOI: 10.3390/cells12060936] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Vitiligo is an autoimmune skin disorder caused by dysfunctional pigment-producing melanocytes which are attacked by immune cells. Oxidative stress is considered to play a crucial role in activating consequent autoimmune responses related to vitiligo. Melanin synthesis by melanocytes is the main intracellular stressor, producing reactive oxygen species (ROS). Under normal physiological conditions, the antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) pathway functions as a crucial mediator for cells to resist oxidative stress. In pathological situations, such as with antioxidant defects or under inflammation, ROS accumulate and cause cell damage. Herein, we summarize events at the cellular level under excessive ROS in vitiligo and highlight exposure to melanocyte-specific antigens that trigger immune responses. Such responses lead to functional impairment and the death of melanocytes, which sequentially increase melanocyte cytotoxicity through both innate and adaptive immunity. This report provides new perspectives and advances our understanding of interrelationships between oxidative stress and autoimmunity in the pathogenesis of vitiligo. We describe progress with targeted antioxidant therapy, with the aim of providing potential therapeutic approaches.
Collapse
Affiliation(s)
- Wei-Ling Chang
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Hsiang Ko
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
24
|
Management of Stable Vitiligo-A Review of the Surgical Approach. J Clin Med 2023; 12:jcm12051984. [PMID: 36902772 PMCID: PMC10004352 DOI: 10.3390/jcm12051984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
At present, vitiligo is the most common depigmenting skin disorder, characterized by clearly demarcated discolored patches of various shapes and sizes. Depigmentation results from the initial dysfunction and subsequent destruction of melanin-producing cells, called melanocytes, which are located in the basal layer of the epidermis and in hair follicles. This review concludes that the extent of repigmentation, regardless of the treatment method, is greatest in stable localized vitiligo patients. The aim of this review is to provide an overview of the clinical evidence for which the vitiligo treatment method (cellular or tissue) is more effective. The treatment relies on multiple factors, ranging from patient skin predisposition for repigmentation to the experience of the facility performing the procedure. Vitiligo is a significant problem in modern society. Although it is a typically asymptomatic and not life-threatening disease, it may have significant psychological and emotional impacts. Standard treatment relies on pharmacotherapy and phototherapy; however, the treatment of patients with stable vitiligo varies. The stability of vitiligo more than often implies the exhaustion of the potential for skin self-repigmentation. Thus, the surgical methods that distribute normal melanocytes into the skin are crucial elements of these patients' therapy. The most commonly used methods are described in the literature, with an indication of their recent progress and changes. In addition, information on the efficiency of the individual methods at specific locations is compiled in this study, and the prognostic factors indicating repigmentation are presented. Cellular methods are the best therapeutic option for large-sized lesions; although they are more exorbitant than tissue methods, they benefit from more rapid healing times and presenting fewer side effects. Dermoscopy is a valuable tool used to assess the further course of repigmentation, where it is of great value to evaluate the patient prior to and following an operation.
Collapse
|
25
|
Sengupta R, Mitra S, Dighal A, Moulik S, Chaudhuri SJ, Das NK, Chatterjee U, Chatterjee M. Does immune dysregulation contribute towards development of hypopigmentation in Indian post kala-azar dermal leishmaniasis? Exp Dermatol 2023. [PMID: 36760064 DOI: 10.1111/exd.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Post kala-azar dermal leishmaniasis (PKDL), a sequel of apparently cured visceral leishmaniasis (VL) presents with papulonodular (polymorphic) or hypopigmented lesions (macular) and is the proposed disease reservoir. As hypopigmentation appears consistently in PKDL, especially the macular form, this study aimed to delineate immune factors that singly or in combination could contribute towards this hypopigmentation. At lesional sites, the presence of melanocytes and CD8+ T-cells was assessed by immunohistochemistry and mRNA expression of melanogenic markers (tyrosinase, tyrosinase-related protein-1 and MITF) by droplet digital PCR, while plasma levels of cytokines and chemokines were measured by a multiplex assay. In comparison with skin from healthy individuals, macular PKDL demonstrated a near total absence of Melan-A+ cells at dermal sites, while the polymorphic cases demonstrated a 3.2-fold decrease, along with a dramatic reduction in the expression of key enzymes related to the melanogenesis signalling pathway in both forms. The levels of circulating IFN-γ, IL-6, IL-2, IL-1β, TNF-α and IFN-γ-inducible chemokines (CXCL9/10/11) were elevated and was accompanied by an increased lesional infiltration of CD8+ T-cells. The proportion of CD8+ T-cells correlated strongly with plasma levels of IFN-γ (r = 0.8), IL-6 (r = 0.9, p < 0.05), IL-2 (r = 0.7), TNF-α (r = 0.9, p < 0.05) and IL-1β (r = 0.7), as also with CXCL9 (r = 0.5) and CXCL10 (r = 0.6). Taken together, the absence/reduction in Melan-A suggested hypopigmentation in PKDL was associated with the destruction of melanocytes, following the impairment of the melanogenesis pathway. Furthermore, the presence of CD8+ T-cells and an enhanced IFN-γ-associated immune milieu suggested the generation of a pro-inflammatory landscape that facilitated melanocyte dysfunction/destruction.
Collapse
Affiliation(s)
- Ritika Sengupta
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sneha Mitra
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Aishwarya Dighal
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Srija Moulik
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Nilay Kanti Das
- Department of Dermatology, College of Medicine & Sagore Dutta Hospital, Kolkata, India
| | - Uttara Chatterjee
- Department of Pathology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
26
|
Bandopadhyay S, Mandal S, Ghorai M, Jha NK, Kumar M, Radha, Ghosh A, Proćków J, Pérez de la Lastra JM, Dey A. Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review. J Cell Mol Med 2023; 27:593-608. [PMID: 36756687 PMCID: PMC9983323 DOI: 10.1111/jcmm.17635] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023] Open
Abstract
Centella asiatica is an ethnomedicinal herbaceous species that grows abundantly in tropical and sub-tropical regions of China, India, South-Eastern Asia and Africa. It is a popular nutraceutical that is employed in various forms of clinical and cosmetic treatments. C. asiatica extracts are reported widely in Ayurvedic and Chinese traditional medicine to boost memory, prevent cognitive deficits and improve brain functions. The major bioactive constituents of C. asiatica are the pentacyclic triterpenoid glycosides, asiaticoside and madecassoside, and their corresponding aglycones, asiatic acid and madecassic acid. Asiaticoside and madecassoside have been identified as the marker compounds of C. asiatica in the Chinese Pharmacopoeia and these triterpene compounds offer a wide range of pharmacological properties, including neuroprotective, cardioprotective, hepatoprotective, wound healing, anti-inflammatory, anti-oxidant, anti-allergic, anti-depressant, anxiolytic, antifibrotic, antibacterial, anti-arthritic, anti-tumour and immunomodulatory activities. Asiaticoside and madecassoside are also used extensively in treating skin abnormalities, burn injuries, ischaemia, ulcers, asthma, lupus, psoriasis and scleroderma. Besides medicinal applications, these phytocompounds are considered cosmetically beneficial for their role in anti-ageing, skin hydration, collagen synthesis, UV protection and curing scars. Existing reports and experimental studies on these compounds between 2005 and 2022 have been selectively reviewed in this article to provide a comprehensive overview of the numerous therapeutic advantages of asiaticoside and madecassoside and their potential roles in the medical future.
Collapse
Affiliation(s)
| | - Sujata Mandal
- Department of Life SciencesPresidency UniversityKolkataIndia
| | - Mimosa Ghorai
- Department of Life SciencesPresidency UniversityKolkataIndia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaIndia,Department of Biotechnology Engineering and Food TechnologyChandigarh UniversityMohaliIndia,Department of Biotechnology, School of Applied & Life Sciences (SALS)Uttaranchal UniversityDehradunIndia
| | - Manoj Kumar
- Chemical and Biochemical Processing DivisionICAR – Central Institute for Research on Cotton TechnologyMumbaiIndia
| | - Radha
- School of Biological and Environmental SciencesShoolini University of Biotechnology and Management SciencesSolanIndia
| | | | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental BiologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - José M. Pérez de la Lastra
- Instituto de Productos Naturales y Agrobiología (IPNA)Consejo Superior de Investigaciones científicas (CSIS)Santa Cruz de TenerifeSpain
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityKolkataIndia
| |
Collapse
|
27
|
El-Taweel AEA, Abdelrahman A, Hegazy H, Salem R. Granzyme B Gene Polymorphisms Are Associated With Severe Non-segmental Vitiligo. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2023; 16:55-59. [PMID: 36909870 PMCID: PMC10005806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Background Granzyme B (GZMB) gene is related to human immunity and is considered as one of the genes indulged in vitiligo. Objective To evaluate the association between GZMB (R55Q) and (P94Q) gene polymorphisms with vitiligo development in a sample of vitiligo Egyptian patients. Methods This study was a case-control study which included 100 non-segmental vitiligo patients as well as a control group consisted of 100 healthy, sex and age matched vitiligo free individuals. The polymorphism of GZMB gene at (R55Q) and (P94A) were analyzed by polymerase chain reaction. Results P94Q and R55Q gene polymorphisms were significantly associated with higher VASI scores. Conclusion GZMB (Q55R) and P94A) gene polymorphisms are associated with the susceptibility to develop vitiligo in the Egyptian population and could help predicting more extensive forms of the disease.
Collapse
Affiliation(s)
- Abd El-Aziz El-Taweel
- Dr. El-Taweel is with Faculty of Medicine at 6th of October University in Cairo, Egypt
| | - Amira Abdelrahman
- Drs. Abdelrahman and Salem are with the Faculty of Medicine at Benha University in Banha, Egypt
| | | | - Rehab Salem
- Drs. Abdelrahman and Salem are with the Faculty of Medicine at Benha University in Banha, Egypt
| |
Collapse
|
28
|
Urusov AE, Tolmacheva AS, Aulova KS, Nevinsky GA. Autoantibody-Abzymes with Catalase Activity in Experimental Autoimmune Encephalomyelitis Mice. Molecules 2023; 28:1330. [PMID: 36770997 PMCID: PMC9921166 DOI: 10.3390/molecules28031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
The exact mechanisms of the evolution of multiple sclerosis are still unknown. At the same time, the development in C57BL/6 mice of experimental autoimmune encephalomyelitis (EAE, simulating human multiple sclerosis) happens as a result of the violation of bone marrow hematopoietic stem cell differentiation profiles integrated with the production of toxic auto-antibodies splitting the basic myelin protein, myelin oligodendrocyte glycoprotein (MOG), histones, and DNA. It has been shown that IgGs from the plasma of healthy humans and autoimmune patients oxidize many different compounds due to their peroxidase (H2O2-dependent) and oxidoreductase (H2O2-independent) activities. Here, we first analyzed the changes in the relative catalase activity of IgGs from C57BL/6 mice blood plasma over time at different stages of the EAE development (onset, acute, and remission phases). It was shown that the catalase activity of IgGs of 3-month-old mice is, on average, relatively low (kcat = 40.7 min-1), but it increases during 60 days of spontaneous development of EAE 57.4-fold (kcat = 2.3 × 103 min-1). The catalase activity of antibodies increases by a factor of 57.4 by 20 days after the immunization of mice with MOG (kcat = 2.3 × 103 min-1), corresponding to the acute phase of EAE development, and 52.7-fold by 60 days after the treatment of mice with a DNA-histone complex (kcat = 2.1 × 103 min-1). It is the acceleration of the EAE development after the treatment of mice with MOG that leads to the increased production of lymphocytes synthesizing antibodies with catalase activity. All data show that the IgGs' catalase activity can play an essential role in reducing the H2O2 concentration and protecting mice from oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, SB of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
29
|
Deng Q, Zou P, Du P, Shi Y, Pi Z, Xiao Y, Kanekura T, Zhang H, Zhan Y, Qiu X, Ding Y, Zeng Z, Xiao R. Overexpressed perforin contributes to the melanocyte destruction via epigenetic regulation in patients with vitiligo. Int Immunopharmacol 2023; 114:109574. [PMID: 36538850 DOI: 10.1016/j.intimp.2022.109574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Perforin (PRF), a pivotal cytotoxic effector molecule of activated CD8+ T cells, has a crucial role in the pathogenesis of vitiligo. However, the mechanisms leading to the abnormal perforin expression remain poorly understood in the CD8+ T cells of vitiligo patients. OBJECTIVE To investigate the contributions of DNA methylation to the abnormal expression of perforin in CD8+ T cells of vitiligo patients. METHODS Skin samples and CD8+ T cells from peripheral blood were collected to detect the expression levels of perforin in vitiligo patients. The methylation status of the perforin promoter was investigated by bisulfite sequencing. The apoptosis of melanocytes co-cultured with CD8+ T cells was evaluated to determinate the cytotoxic role of perforin. RESULTS Increased CD8+ and perforin+ cells were found in lesion of vitiligo patients. The expression levels of perforin were elevated in the CD8+ T cells from peripheral blood of vitiligo patients and their culture supernatants. The perforin promoter was hypomethylated in vitiligo CD8+ T cells. Treatment of normal CD8+ T cells with the DNA methylation inhibitor 5-Azacytidine (5-Azac) reduced the perforin methylation level and caused perforin overexpression. The methylation levels of perforin were inversely correlated with its mRNA expression in CD8+ T cells. The apoptosis rates of the melanocytes co-cultured with vitiligo- and 5-Azac-treated-normal CD8+ T cells were significantly increased compared with normal-untreated CD8+ T cells. And the apoptosis rates of melanocytes co-cultured with si-PRF-treated-vitiligo CD8+ T cells were significantly decreased compared with vitiligo-untreated CD8+ T cells. CONCLUSION Hypomethylation of the perforin promoter contributes to its overexpression in CD8+ T cells from vitiligo patients, which then mediates the melanocyte destruction in vitiligo.
Collapse
Affiliation(s)
- Qiancheng Deng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China; Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Puyu Zou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Pei Du
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Yaqian Shi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Zixin Pi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Yangfan Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Huiming Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Yi Zhan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Xiangning Qiu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Yan Ding
- Department of Dermatology, Hainan Provincial Hospital of Skin Disease, China.
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China.
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China.
| |
Collapse
|
30
|
Insights into Molecular Structure of Pterins Suitable for Biomedical Applications. Int J Mol Sci 2022; 23:ijms232315222. [PMID: 36499560 PMCID: PMC9737128 DOI: 10.3390/ijms232315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.
Collapse
|
31
|
Tolmacheva AS, Aulova KS, Urusov AE, Doronin VB, Nevinsky GA. Antibodies-Abzymes with Antioxidant Activities in Two Th and 2D2 Experimental Autoimmune Encephalomyelitis Mice during the Development of EAE Pathology. Molecules 2022; 27:7527. [PMID: 36364362 PMCID: PMC9656754 DOI: 10.3390/molecules27217527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 08/30/2023] Open
Abstract
The exact mechanisms of multiple sclerosis development are still unknown. However, the development of EAE (experimental autoimmune encephalomyelitis) in Th and 2D2 mice is associated with the infringement of the differentiation profiles of bone marrow hematopoietic stem cells which are bound with the production of compounds that are harmful for human autoantibodies-abzymes that hydrolyze myelin oligodendrocyte glycoprotein, myelin basic protein, and DNA. It showed that autoimmune patients' antioxidant IgG antibodies oxidise some compounds due to their peroxidase (H2O2-dependent) and oxidoreductase (H2O2-independent) activities more effectively than those in healthy humans can. It was interesting to identify whether the redox activities of the antibodies change during the development of autoimmune diseases. Here, we analyzed the change in these redox activities of the IgGs from the blood of Th and 2D2 mice, which corresponded to different stages of the EAE development. The peroxidase activity in the oxidation of ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) in the Th (4-fold) and 2D2 (2-fold) mice IgGs, on average, is higher than the oxidoreductase activity is. The peroxidase activity of the Th (1.9-fold) and 2D2 (3.5-fold) mice IgGs remarkably increased during the 40 days of the spontaneous development of EAE. Forty days after the immunization of the MOG peroxidase activity, the IgGs of the Th and 2D2 mice increased 5.6-6.0 times when they were compared with those that presented no increase (3 months of age). The mice IgGs were oxidized with 3,3'-diaminobenzidine (2.4-4.3-fold) and o-phenylenediamine (139-143-fold) less efficiently than they were with ABTS. However, the temper of the change in the IgG activity in the oxidation of these substrates during the spontaneous and MOG-induced development of EAE was close to that which occurred for ABTS. All of the data show that the IgG peroxidase and oxidoreductase activities of EAE mice can play an important role in their protection from toxic compounds and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
32
|
Qadir A, Ullah SNMN, Jahan S, Ali A, Khan N. Drug delivery of natural products through nano-carriers for effective vitiligo therapy: A compendia review. J Cosmet Dermatol 2022; 21:5386-5404. [PMID: 35699364 DOI: 10.1111/jocd.15158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vitiligo is a depigmenting illness that causes white areas on the skin. Vitiligo's pathogenetic genesis is based on the melanocyte's autoimmune destruction, in which oxidative stress causes melanocyte molecular, organelle, and exposure of antigen, as well as melanocyte cell death, and so plays a role in vitiligo progression. Natural compounds have recently shown a wide range of therapeutic bioactivities against a number of skin disorders. AIM The aim of this work is drug delivery of natural products through nano-carriers for effective vitiligo therapy: A compendia review. METHODS & MATERIALS An online literature analysis was guided for vitiligo therapy, nanotechnology, phytochemical composition, and, types of vitiligo, types of nanomedicine. Appropriate information were taken from different electronic scientific databases such as Web of Science, Science Direct, Elsevier, Google Scholar, Springer, PubMed, and scripts. RESULTS Nano-carriers-based natural compounds provide a great relationship for the enhancement in the efficacy and safety of pharmacotherapeutic agents for the treatment of vitiligo. DISCUSSION In this study focuses on natural compounds' effects and processes on vitiligo models. Although topical therapy plays an important role in vitiligo treatment, its utility and patient compliance are hampered by adverse effects or inadequate efficacy. Novel drug delivery techniques can help improve topical medication delivery by improving epidermal localization, reducing side effects, and increasing effectiveness. CONCLUSION This paper covers the significant potential of herbal-derived active compounds as anti-vitiligo drugs, as well as new drug delivery as a viable carrier and future possibilities to investigate.
Collapse
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Department of Research and Developments, Herbalfarm Health Care Private Limited, New Delhi, India
| | | | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
33
|
Chaudhary A, Patel M, Singh S. Current Debates on Etiopathogenesis and Treatment Strategies for Vitiligo. Curr Drug Targets 2022; 23:1219-1238. [PMID: 35388753 DOI: 10.2174/1389450123666220406125645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 01/25/2023]
Abstract
Vitiligo is an acquired, chronic, and progressive depigmentation or hypopigmentation characterized by the destruction of melanocytes and the occurrence of white patches or macules in the skin, mucosal surface of eyes, and ears. Melanocytes are the melanin pigment-producing cells of the skin which are destroyed in pathological conditions called vitiligo. Approximately 0.5 - 2.0% of the population is suffering from vitiligo, and a higher prevalence rate of up to 8.8% has been reported in India. It is caused by various pathogenic factors like genetic predisposition, hyperimmune activation, increased oxidative stress, and alteration in neuropeptides level. Genetic research has revealed a multi- genetic inheritance that exhibits an overlap with other autoimmune disorders. However, melanocytes specific genes are also affected (such as DDR1, XBP1, NLRP1, PTPN22, COMT, FOXP3, ACE, APE, GSTP1, TLR, SOD, and CTLA-4). A number of therapeutic options are employed for the treatment of vitiligo. The topical corticosteroids and immunomodulators are currently in practice for the management of vitiligo. Phototherapies alone and in combinations with other approaches are used in those patients who do not respond to the topical treatment. The main focus of this review is on the etiopathological factors, pharmacological management (phototherapy, topical, systemic, and surgical therapy), and herbal drugs used to treat vitiligo.
Collapse
Affiliation(s)
- Ankit Chaudhary
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Mayank Patel
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
34
|
Vitiligo-like Lesions and COVID-19: Case Report and Review of Vaccination- and Infection-Associated Vitiligo. Vaccines (Basel) 2022; 10:vaccines10101647. [PMID: 36298511 PMCID: PMC9607983 DOI: 10.3390/vaccines10101647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 01/24/2023] Open
Abstract
Several cutaneous manifestations in patients undergoing COVID-19 vaccination have been described in the literature. Herein, we presented a case of new-onset vitiligo that occurred after the second dose of the Comirnaty vaccine. An updated literature search revealed the occurrence of a total of 16 cases, including new-onset or worsening of preexisting vitiligo. Given the autoimmune pathogenesis of the disease, we reviewed and discussed the potential role of the vaccine prophylaxis as a trigger for the development of such hypopigmented skin lesions.
Collapse
|
35
|
Gore Karaali M, Karaali S, Demir D, Yazıcı GN, Coban A, Mammadov R, Suleyman B, Suleyman H. The protective effect of carvacrol on bevacizumab-related skin injury in rats: A biochemical and histopathological evaluation. Cutan Ocul Toxicol 2022; 41:285-290. [DOI: 10.1080/15569527.2022.2124413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Muge Gore Karaali
- Department of Dermatology, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Soner Karaali
- Department of Plastic, Reconsctructive and Aesthetic Surgery, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Damla Demir
- Department of Dermatology, Istinye University Faculty of Medicine, Istanbul, Turkey
| | - Gulce Naz Yazıcı
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Abdulkadir Coban
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Bahadır Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| |
Collapse
|
36
|
Dutta T, Mitra S, Saha A, Ganguly K, Pyne T, Sengupta M. A comprehensive meta-analysis and prioritization study to identify vitiligo associated coding and non-coding SNV candidates using web-based bioinformatics tools. Sci Rep 2022; 12:14543. [PMID: 36008553 PMCID: PMC9411560 DOI: 10.1038/s41598-022-18766-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Vitiligo is a prevalent depigmentation disorder affecting around 1% of the general population. So far, various Genome Wide Association Studies (GWAS) and Candidate Gene Association Studies (CGAS) have identified several single nucleotide variants (SNVs) as a risk factor for vitiligo. Nonetheless, little has been discerned regarding their direct functional significance to the disease pathogenesis. In this study, we did extensive data mining and downstream analysis using several experimentally validated datasets like GTEx Portal and web tools like rSNPBase, RegulomeDB, HaploReg and STRING to prioritize 13 SNVs from a set of 291SNVs that have been previously reported to be associated with vitiligo. We also prioritized their underlying/target genes and tried annotating their functional contribution to vitiligo pathogenesis. Our analysis revealed genes like FGFR10P, SUOX, CDK5RAP1 and RERE that have never been implicated in vitiligo previously to have strong potentials to contribute to the disease pathogenesis. The study is the first of its kind to prioritize and functionally annotate vitiligo-associated GWAS and CGAS SNVs and their underlying/target genes, based on functional data available in the public domain database.
Collapse
Affiliation(s)
- Tithi Dutta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Sayantan Mitra
- Department of Genetics, CVM University, Aribas, Aribas Campus, New Vallabh Vidyanagar, Anand, Gujarat, 388121, India
| | - Arpan Saha
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Kausik Ganguly
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Tushar Pyne
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
37
|
Study of Novel Furocoumarin Derivatives on Anti-Vitiligo Activity, Molecular Docking and Mechanism of Action. Int J Mol Sci 2022; 23:ijms23147959. [PMID: 35887323 PMCID: PMC9316487 DOI: 10.3390/ijms23147959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Vitiligo is a common chronic dermatological abnormality that afflicts tens of millions of people. Furocoumarins isolated from Uygur traditional medicinal material Psoralen corylifolia L. have been proven to be highly effective for the treatment of vitiligo. Although many furocoumarin derivatives with anti-vitiligo activity have been synthesized, their targets with respect to the disease are still ambiguous. Fortunately, the JAKs were identified as potential targets for the disease and its inhibitors have been proved to be effective in the treatment of vitiligo in many clinical trials. Thus, sixty-five benzene sulfonate and benzoate derivatives of furocoumarins (7a–7ad, 8a–8ag) with superior anti-vitiligo activity targeting JAKs were designed and synthesized based on preliminary research. The SAR was characterized after the anti-vitiligo-activity evaluation in B16 cells. Twenty-two derivatives showed more potent effects on melanin synthesis in B16 cells than the positive control (8-MOP). Among them, compounds 7y and 8 not only could increase melanin content, but they also improved the catecholase activity of tyrosinase in a concentration-dependent manner. The docking studies indicated that they were able to interact with amino acid residues in JAK1 and JAK2 via hydrogen bonds. Furthermore, candidate 8 showed a moderate inhibition of CXCL−10, which plays an important role in JAK–STAT signaling. The RT-PCR and Western blotting analyses illustrated that compounds 7y and 8 promoted melanogenesis by activating the p38 MAPK and Akt/GSK-3β/β-catenin pathways, as well as increasing the expressions of the MITF and tyrosinase-family genes. Finally, furocoumarin derivative 8 was recognized as a promising candidate for the fight against the disease and worthy of further research in vivo.
Collapse
|
38
|
Hlača N, Žagar T, Kaštelan M, Brajac I, Prpić-Massari L. Current Concepts of Vitiligo Immunopathogenesis. Biomedicines 2022; 10:biomedicines10071639. [PMID: 35884944 PMCID: PMC9313271 DOI: 10.3390/biomedicines10071639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Vitiligo is an acquired immune-mediated disorder of pigmentation clinically characterized by well-defined depigmented or chalk-white macules and patches on the skin. The prevalence of vitiligo varies by geographical area, affecting 0.5% to 2% of the population. The disease imposes a significant psychological burden due to its major impact on patients’ social and emotional aspects of life. Given its autoimmune background, vitiligo is frequently associated with other autoimmune diseases or immune-mediated diseases. Vitiligo is a multifaceted disorder that involves both genetic predisposition and environmental triggers. In recent years, major predisposing genetic loci for the development of vitiligo have been discovered. The current findings emphasize the critical role of immune cells and their mediators in the immunopathogenesis of vitiligo. Oxidative-stress-mediated activation of innate immunity cells such as dendritic cells, natural killer, and ILC-1 cells is thought to be a key event in the early onset of vitiligo. Innate immunity cells serve as a bridge to adaptive immunity cells including T helper 1 cells, cytotoxic T cells and resident memory T cells. IFN-γ is the primary cytokine mediator that activates the JAK/STAT pathway, causing keratinocytes to produce the key chemokines CXCL9 and CXCL10. Complex interactions between immune and non-immune cells finally result in apoptosis of melanocytes. This paper summarizes current knowledge on the etiological and genetic factors that contribute to vitiligo, with a focus on immunopathogenesis and the key cellular and cytokine players in the disease’s inflammatory pathways.
Collapse
|
39
|
Tampa M, Mitran CI, Mitran MI, Amuzescu A, Matei C, Georgescu SR. Ischemia-Modified Albumin—A Potential New Marker of Oxidative Stress in Dermatological Diseases. Medicina (B Aires) 2022; 58:medicina58050669. [PMID: 35630086 PMCID: PMC9147831 DOI: 10.3390/medicina58050669] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022] Open
Abstract
There is growing evidence that oxidative stress is involved in the pathogenesis of numerous conditions, including dermatological diseases. Various markers are available to assess oxidative stress, but none of these can be considered the ideal marker. Recent studies have shown that ischemia-modified albumin (IMA) is not only an indicator of ischemia, but also a marker of oxidative stress. We have conducted a narrative review to evaluate the role of IMA in dermatological diseases. We have identified 24 original articles that evaluated IMA in skin disorders (psoriasis, acne vulgaris, hidradenitis suppurativa, urticaria, vitiligo and Behcet’s disease) and hair disorders (alopecia areata, androgenetic alopecia and telogen effluvium). The results of the studies analyzed reveal that IMA may be considered a new marker of oxidative stress in dermatological diseases and offer new insights into the pathogenesis of these disorders and the theoretical basis for the development of new, effective, targeted therapies. To the best of our knowledge, this is the first review that gathers up data on the role of IMA in dermatological diseases.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.); (S.R.G.)
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Cristina Iulia Mitran
- Department of Microbiology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (C.I.M.); (M.I.M.)
| | - Madalina Irina Mitran
- Department of Microbiology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (C.I.M.); (M.I.M.)
| | - Andreea Amuzescu
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Clara Matei
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.); (S.R.G.)
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| |
Collapse
|
40
|
Essential Protective Role of Catalytically Active Antibodies (Abzymes) with Redox Antioxidant Functions in Animals and Humans. Int J Mol Sci 2022; 23:ijms23073898. [PMID: 35409256 PMCID: PMC8999700 DOI: 10.3390/ijms23073898] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
During the life of aerobic organisms, the oxygen resulting from numerous reactions is converted into reactive oxygen species (ROS). Many ROS are dangerous due to their high reactivity; they are strong oxidants, and react with various cell components, leading to their damage. To protect against ROS overproduction, enzymatic and non-enzymatic systems are evolved in aerobic cells. Several known non-enzymatic antioxidants have a relatively low specific antioxidant activity. Superoxide dismutases, catalase, glutathione peroxidase, glutathione S-transferase, thioredoxin, and the peroxiredoxin families are the most important enzyme antioxidants. Artificial antibodies catalyzing redox reactions using different approaches have been created. During the past several decades, it has been shown that the blood and various biological fluids of humans and animals contain natural antibodies that catalyze different redox reactions, such as classical enzymes. This review, for the first time, summarizes data on existing non-enzymatic antioxidants, canonical enzymes, and artificial or natural antibodies (abzymes) with redox functions. Comparing abzymes with superoxide dismutase, catalase, peroxide-dependent peroxidase, and H2O2-independent oxidoreductase activities with the same activities as classical enzymes was carried out. The features of abzymes with the redox activities are described, including their exceptional diversity in the optimal pH values, dependency and independence on various metal ions, and the reaction rate constants for healthy donors and patients with different autoimmune diseases. The entire body of evidence indicates that abzymes with redox antioxidant activities existing in the blood for a long time compared to enzymes are an essential part of the protection system of humans and animals from oxidative stress.
Collapse
|
41
|
Georgescu SR, Mitran CI, Mitran MI, Matei C, Popa GL, Erel O, Tampa M. Thiol-Disulfide Homeostasis in Skin Diseases. J Clin Med 2022; 11:jcm11061507. [PMID: 35329832 PMCID: PMC8954849 DOI: 10.3390/jcm11061507] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress represents the imbalance between oxidants and antioxidants and has been associated with a wide range of diseases. Thiols are the most important compounds in antioxidant defense. There is an equilibrium between thiols and their oxidized forms, disulfides, known as dynamic thiol-disulfide homeostasis (TDH). In 2014, Erel and Neselioglu developed a novel automated assay to measure thiol and disulfide levels. Subsequently, many researchers have used this simple, inexpensive and fast method for evaluating TDH in various disorders. We have reviewed the literature on the role of TDH in skin diseases. We identified 26 studies that evaluated TDH in inflammatory diseases (psoriasis, seborrheic dermatitis, atopic dermatitis, vitiligo, acne vulgaris and rosacea), allergic diseases (acute and chronic urticaria) and infectious diseases (warts, pityriasis rosea and tinea versicolor). The results are heterogeneous, but in most cases indicate changes in TDH that shifted toward disulfides or toward thiols, depending on the extent of oxidative damage.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (C.M.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Madalina Irina Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Correspondence: (M.I.M.); (G.L.P.)
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (C.M.); (M.T.)
| | - Gabriela Loredana Popa
- Department of Parasitology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (M.I.M.); (G.L.P.)
| | - Ozcan Erel
- Biochemistry Laboratory, Ankara City Hospital, Ankara 06800, Turkey;
- Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara 06010, Turkey
| | - Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (C.M.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
42
|
Rodrigues de Souza I, Savio de Araujo-Souza P, Morais Leme D. Genetic variants affecting chemical mediated skin immunotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:43-95. [PMID: 34979876 DOI: 10.1080/10937404.2021.2013372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
Collapse
Affiliation(s)
| | | | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, Brazil
| |
Collapse
|
43
|
Occludin Promotes Adhesion of CD8+ T Cells and Melanocytes in Vitiligo via the HIF-1α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6732972. [PMID: 35222802 PMCID: PMC8865978 DOI: 10.1155/2022/6732972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Loss of melanocytes induced by activated CD8+ T cells is the pathological hallmark of vitiligo. Melanocyte-specific CD8+ T cells are recruited to the skin via chemokines, thereby releasing perforin, granzyme, and other cytotoxic substances that destroy the melanocytes. However, the mechanism of CD8+ T cells to adhere to melanocytes is unknown. Previous transcriptome sequencing results published by our group showed that the occluding (OCLN) gene was significantly upregulated in CD8+ T cells from skin lesions of vitiligo. Occludin is a crucial component of the tight junction between cells; in cells without tight junction, occludin mediates the adhesion of two cells in the form of a self-ligand. This study demonstrated that OCLN gene expression was elevated in the CD8+ T cells of vitiligo patients, and occludin mediates the adherence of CD8+ T cells to melanocytes. Besides, pathological changes in vitiligo skin lesions reveal that CD8+ T cells continuously persist in the skin lesions, which is related to the persistence of the disease. In this regard, we found that fibroblasts from vitiligo patients significantly express occludin, which may participate in the continuous retention of CD8+ T cells in the skin lesions. The pathogenesis of vitiligo is closely related to oxidative stress, and our data suggest that overexpression of hypoxia-inducible factor-1α (HIF-1α) increases the expression of occludin. Besides, ChIP-qPCR of CD8+ T cells revealed that HIF-1α directly binds to the OCLN promoter. Thus, occludin upregulation promotes the adhesion of CD8+ T cells and melanocytes via the HIF-1α signaling pathway. Our study results suggested a critical role for OCLN in the occurrence, progression, and maintenance of vitiligo. Therefore, inhibiting the expression of OCLN gene may be a potential targeted treatment strategy.
Collapse
|
44
|
Sun X, Wang T, Huang B, Ruan G, Huang J, Xu A. MicroRNA-637 Relieves Oxidative Damage in Human Melanocytes Through Down-Regulating Transient Receptor Potential Melastatin 2 Expression. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Vitiligo, a chronic, autoimmune destruction of melanocytes, caused by the disappearance of epidermal melanocytes, but the mechanism is not fully understood. Although emerging evidence demonstrated that abnormal regulation of microRNAs (miRNAs) were associated with
the pathogenesis of diseases, the functions of miR-637 in vitiligo remain unclear. Objective: This research was designed to explore the potential roles of miR-637 in hydrogen peroxide (H2O2)-induced human primary melanocytes in vitiligo. Methods: Human primary
melanocytes were induced by 250 μmol/L H2O2 for 4 h to establish oxidative injury of melanocytes model. Cell viability and apoptosis analyzed by MTT and flow cytometry assay, respectively. The relevance between miR-637 and transient receptor potential melastatin
2 (TRPM2) was checked using TargetScan and dual luciferase reporter gene assay. The expression of miR-637 and TRPM2 was evaluated using qRT-PCR and/or Western blot analysis. Reactive oxygen species (ROS) accumulation, superoxide dismutase (SOD) and catalase (CAT) activities were measured using
specific assay kits. In addition, the expression of Bcl-2 and Bax were evaluated using Western blot assay. Results: TRPM2 was up-regulated, while miR-637 was down-regulated in H2O2-stimulated human primary melanocytes. TRPM2 directly interacted with miR-637. Up-regulation
of miR-637 memorably increased miR-637 level and inhibited TRPM2 expression. Furthermore, miR-637 mimic fortified cell viability, reduced apoptotic cells, enhanced Bcl-2 expression, reduced Bax level, as well as inhibited the ratio of Bax/Bcl-2 in H2O2-induced melanocytes.
Meanwhile, miR-637 mimic obviously suppressed the accumulation of ROS and increased SOD and CAT activity. Nevertheless, all these findings were inverted by TRPM2-plasmid. Likewise, TRPM2-siRNA led to increased cell viability, reduced apoptotic cells, enhanced Bcl-2 expression, reduced Bax
level, inhibited Bax/Bcl-2 ratio, inhibited ROS production, but increased SOD and CAT activity in H2O2-induced melanocytes. Conclusion: Our findings suggested that TRPM2 was up-regulated, while miR-637 was down-regulated in injurious melanocytes of vitiligo. Up-regulation
of miR-637 relieved oxidative stress-stimulated melanocyte injury via down-regulating TRPM2 expression. Our results provide new insights into the functions of miR-637 in the development of vitiligo, indicating that miR-637 may be a latent target for vitiligo therapy.
Collapse
Affiliation(s)
- Xuecheng Sun
- Department of Dermatology, The Third People’s Hospital of Hangzhou, Hangzhou 310009, China
| | - Tao Wang
- Department of Dermatology, The Third People’s Hospital of Hangzhou, Hangzhou 310009, China
| | - Bo Huang
- Department of Dermatology, The Third People’s Hospital of Hangzhou, Hangzhou 310009, China
| | - Gaobo Ruan
- Department of Dermatology, The Third People’s Hospital of Hangzhou, Hangzhou 310009, China
| | - Jun Huang
- Department of Dermatology, The Third People’s Hospital of Hangzhou, Hangzhou 310009, China
| | - Aie Xu
- Department of Dermatology, The Third People’s Hospital of Hangzhou, Hangzhou 310009, China
| |
Collapse
|
45
|
Faraj S, Kemp EH, Gawkrodger DJ. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Clin Exp Immunol 2022; 207:27-43. [PMID: 35020865 PMCID: PMC8802175 DOI: 10.1093/cei/uxab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermal melanocyte loss in vitiligo, triggered by stresses ranging from trauma to emotional stress, chemical exposure or metabolite imbalance, to the unknown, can stimulate oxidative stress in pigment cells, which secrete damage-associated molecular patterns that then initiate innate immune responses. Antigen presentation to melanocytes leads to stimulation of autoreactive T-cell responses, with further targeting of pigment cells. Studies show a pathogenic basis for cellular stress, innate immune responses and adaptive immunity in vitiligo. Improved understanding of the aetiological mechanisms in vitiligo has already resulted in successful use of the Jak inhibitors in vitiligo. In this review, we outline the current understanding of the pathological mechanisms in vitiligo and locate loci to which therapeutic attack might be directed.
Collapse
Affiliation(s)
- Safa Faraj
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - David John Gawkrodger
- Department of Infection, Immunology and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
46
|
The Promising Role of Chemokines in Vitiligo: From Oxidative Stress to the Autoimmune Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8796735. [PMID: 35096274 PMCID: PMC8791757 DOI: 10.1155/2022/8796735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Vitiligo is a common chronic autoimmune skin disorder featured with depigmented patches and underlying destruction of melanocytes in the lesional skin. Multiple factors and mechanisms have been proposed for the etiopathogenesis of vitiligo, among which oxidative stress has been widely accepted as a key factor in initiating melanocyte loss. The altered redox status caused by oxidative stress, including the overproduction of reactive oxygen species (ROS) and the decreased activity of the antioxidant system in the skin, surrenders the resistance of melanocytes to exogenous or endogenous stimuli and eventually impairs the normal defense mechanism, leading to the absence of melanocytes. Considering the important role of innate and adaptive immunity in vitiligo, there is mounting evidence revealing an association between oxidative stress and autoimmunity. Since the significant changes of chemokines have been documented in vitiligo in many recent studies, it has been suggested that ROS-mediated chemotactic signals are not only the biomarkers of disease progression and prognosis but also are involved in the pathogenesis of vitiligo by facilitating the innate and adaptive immune cells, especially melanocyte-specific T cells, trafficking to the lesional areas of vitiligo. In this review, we discuss the interaction between oxidative stress and autoimmune response orchestrated by chemokines, including CXCL16-CXCR6 axis, CXCL9/CXCL10-CXCR3 axis, and other altered chemokines in vitiligo, and we also try to provide insight into potential therapeutic options through targeting these pathways.
Collapse
|
47
|
Elhalmoushy PM, Elsheikh MA, Matar NA, El-Hadidy WF, Kamel MA, Omran GA, Elnaggar YS. Novel Berberine-Loaded Hyalurosomes as A Promising Nanodermatological Treatment for Vitiligo: Biochemical, Biological and Gene Expression Studies. Int J Pharm 2022; 615:121523. [DOI: 10.1016/j.ijpharm.2022.121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 01/16/2023]
|
48
|
Zhang JZ, Abudoureyimu D, Wang M, Yu SR, Kang XJ. Association between celiac disease and vitiligo: A review of the literature. World J Clin Cases 2021; 9:10430-10437. [PMID: 35004975 PMCID: PMC8686139 DOI: 10.12998/wjcc.v9.i34.10430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/25/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is an autoimmune intestinal disease caused by the intake of gluten-containing cereals and their products by individuals with genetic susceptibility genes. Vitiligo is a commonly acquired depigmentation of the skin; its clinical manifestation are skin patches caused by localized or generalized melanin deficiency. Both diseases have similar global incidence rates (approximately 1%) and are associated to similar diseases, including autoimmune bullous disease, inflammatory bowel disease, autoimmune thyroiditis, autoimmune gastritis, and type 1 diabetes. The relationship between CD and vitiligo has been reported in several studies, but their conclusions are inconsistent. Further, it has also been reported that a gluten-free diet (GFD) can improve the symptoms of immune-related skin diseases such as vitiligo. In this mini-review, we summarize and review the literature on the relationship between CD and vitiligo, assess the therapeutic significance of GFD for patients with vitiligo, and explore their possible physiopathology. We are hopeful that the information summarized here will assist physicians who treat patients with CD or vitiligo, thereby improving the prognosis.
Collapse
Affiliation(s)
- Jing-Zhan Zhang
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Dilinuer Abudoureyimu
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Man Wang
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Shi-Rong Yu
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Jing Kang
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
49
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
50
|
Ding Q, Luo L, Yu L, Huang SL, Wang XQ, Zhang B. The critical role of glutathione redox homeostasis towards oxidation in ermanin-induced melanogenesis. Free Radic Biol Med 2021; 176:392-405. [PMID: 34560247 DOI: 10.1016/j.freeradbiomed.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Vitiligo is a depigmented disease featured as diagnosis simplicity and cure difficulty. Its occurrence and development are associated with a variety of factors, including oxidative stress, heredity and immunity, etc. Existing drugs for the treatment of vitiligo are to reduce the death of melanocytes and induce pigment accumulation as the main treatment strategy. Ermanin, a member of the flavonoids, is extracted from bee glue which is wildly used to treat vitiligo in traditional Chinese medicine. Therefore, this article discusses the relationship between melanogenesis and glutathione redox homeostasis by ermanin via biochemical and free radical approaches in vivo and in vitro. In this study, we found that ermanin effectively increased the melanin content at the in vivo model (zebrafish). Moreover, the melanin levels at the in vitro models (B16F10 cells and primary melanocytes) were also increased significantly accompanied with a shift of glutathione redox homeostasis towards oxidation. Ermanin also significantly enhanced the activity of tyrosinase. Meanwhile, ermanin increased the expression levels of TYR, TRP-1, and DCT genes, while ROS accumulation and glutathione depletion mediated the accumulation of pigments caused by ermanin, which increased the production of pigments and regulated the expression mRNA levels of TYR and DCT genes. From the perspective of pigment production regulation pathways, western blot showed that the pigment accumulation caused by ermanin was closely related to the CREB-MITF pathways, it activated CREB, TYR, TRP-1, and DCT proteins. The use of CREB specific inhibitor 666-15 and MITF inhibitor ML329 confirmed that the pigment accumulation caused by ermanin was positively correlated with CREB and MITF proteins. Our findings revealed the potential mechanisms by which ermanin promoted the production of melanin through activated CREB-MITF signaling pathway and glutathione redox homeostasis towards oxidation function as a signal are beneficial to melanin production and will help develop novel therapeutic approaches for vitiligo.
Collapse
Affiliation(s)
- Qiong Ding
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Lin Luo
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China
| | - Lan Yu
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China
| | - Si-Lu Huang
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China
| | - Xiao-Qin Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| |
Collapse
|