1
|
Tiwari PK, Shanmugam P, Karn V, Gupta S, Mishra R, Rustagi S, Chouhan M, Verma D, Jha NK, Kumar S. Extracellular Vesicular miRNA in Pancreatic Cancer: From Lab to Therapy. Cancers (Basel) 2024; 16:2179. [PMID: 38927885 PMCID: PMC11201547 DOI: 10.3390/cancers16122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer is a prevalent lethal gastrointestinal cancer that generally does not show any symptoms until it reaches advanced stages, resulting in a high mortality rate. People at high risk, such as those with a family history or chronic pancreatitis, do not have a universally accepted screening protocol. Chemotherapy and radiotherapy demonstrate limited effectiveness in the management of pancreatic cancer, emphasizing the urgent need for innovative therapeutic strategies. Recent studies indicated that the complex interaction among pancreatic cancer cells within the dynamic microenvironment, comprising the extracellular matrix, cancer-associated cells, and diverse immune cells, intricately regulates the biological characteristics of the disease. Additionally, mounting evidence suggests that EVs play a crucial role as mediators in intercellular communication by the transportation of different biomolecules, such as miRNA, proteins, DNA, mRNA, and lipids, between heterogeneous cell subpopulations. This communication mediated by EVs significantly impacts multiple aspects of pancreatic cancer pathogenesis, including proliferation, angiogenesis, metastasis, and resistance to therapy. In this review, we delve into the pivotal role of EV-associated miRNAs in the progression, metastasis, and development of drug resistance in pancreatic cancer as well as their therapeutic potential as biomarkers and drug-delivery mechanisms for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Poojhaa Shanmugam
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Vamika Karn
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Sarvesh Rustagi
- School of Applied and Life science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
2
|
Zhong D, Wang Z, Ye Z, Wang Y, Cai X. Cancer-derived exosomes as novel biomarkers in metastatic gastrointestinal cancer. Mol Cancer 2024; 23:67. [PMID: 38561768 PMCID: PMC10983767 DOI: 10.1186/s12943-024-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal cancer (GIC) is the most prevalent and highly metastatic malignant tumor and has a significant impact on mortality rates. Nevertheless, the swift advancement of contemporary technology has not seamlessly aligned with the evolution of detection methodologies, resulting in a deficit of innovative and efficient clinical assays for GIC. Given that exosomes are preferentially released by a myriad of cellular entities, predominantly originating from neoplastic cells, this confers exosomes with a composition enriched in cancer-specific constituents. Furthermore, exosomes exhibit ubiquitous presence across diverse biological fluids, endowing them with the inherent advantages of non-invasiveness, real-time monitoring, and tumor specificity. The unparalleled advantages inherent in exosomes render them as an ideal liquid biopsy biomarker for early diagnosis, prognosticating the potential development of GIC metastasis.In this review, we summarized the latest research progress and possible potential targets on cancer-derived exosomes (CDEs) in GIC with an emphasis on the mechanisms of exosome promoting cancer metastasis, highlighting the potential roles of CDEs as the biomarker and treatment in metastatic GIC.
Collapse
Affiliation(s)
- Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
3
|
Aravindraja C, Jeepipalli S, Duncan W, Vekariya KM, Bahadekar S, Chan EKL, Kesavalu L. Unique miRomics Expression Profiles in Tannerella forsythia-Infected Mandibles during Periodontitis Using Machine Learning. Int J Mol Sci 2023; 24:16393. [PMID: 38003583 PMCID: PMC10671577 DOI: 10.3390/ijms242216393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
T. forsythia is a subgingival periodontal bacterium constituting the subgingival pathogenic polymicrobial milieu during periodontitis (PD). miRNAs play a pivotal role in maintaining periodontal tissue homeostasis at the transcriptional, post-transcriptional, and epigenetic levels. The aim of this study was to characterize the global microRNAs (miRNA, miR) expression kinetics in 8- and 16-week-old T. forsythia-infected C57BL/6J mouse mandibles and to identify the miRNA bacterial biomarkers of disease process at specific time points. We examined the differential expression (DE) of miRNAs in mouse mandibles (n = 10) using high-throughput NanoString nCounter® miRNA expression panels, which provided significant advantages over specific candidate miRNA or pathway analyses. All the T. forsythia-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, along with a significant increase in alveolar bone resorption (ABR) (p < 0.0001). We performed a NanoString analysis of specific miRNA signatures, miRNA target pathways, and gene network analysis. A total of 115 miRNAs were DE in the mandible tissue during 8 and 16 weeks The T. forsythia infection, compared with sham infection, and the majority (99) of DE miRNAs were downregulated. nCounter miRNA expression kinetics identified 67 downregulated miRNAs (e.g., miR-375, miR-200c, miR-200b, miR-34b-5p, miR-141) during an 8-week infection, whereas 16 upregulated miRNAs (e.g., miR-1902, miR-let-7c, miR-146a) and 32 downregulated miRNAs (e.g., miR-2135, miR-720, miR-376c) were identified during a 16-week infection. Two miRNAs, miR-375 and miR-200c, were highly downregulated with >twofold change during an 8-week infection. Six miRNAs in the 8-week infection (miR-200b, miR-141, miR-205, miR-423-3p, miR-141-3p, miR-34a-5p) and two miRNAs in the 16-week infection (miR-27a-3p, miR-15a-5p) that were downregulated have also been reported in the gingival tissue and saliva of periodontitis patients. This preclinical in vivo study identified T. forsythia-specific miRNAs (miR-let-7c, miR-210, miR-146a, miR-423-5p, miR-24, miR-218, miR-26b, miR-23a-3p) and these miRs have also been reported in the gingival tissues and saliva of periodontitis patients. Further, several DE miRNAs that are significantly upregulated (e.g., miR-101b, miR-218, miR-127, miR-24) are also associated with many systemic diseases such as atherosclerosis, Alzheimer's disease, rheumatoid arthritis, osteoarthritis, diabetes, obesity, and several cancers. In addition to DE analysis, we utilized the XGBoost (eXtreme Gradient boost) and Random Forest machine learning (ML) algorithms to assess the impact that the number of miRNA copies has on predicting whether a mouse is infected. XGBoost found that miR-339-5p was most predictive for mice infection at 16 weeks. miR-592-5p was most predictive for mice infection at 8 weeks and also when the 8-week and 16-week results were grouped together. Random Forest predicted miR-592 as most predictive at 8 weeks as well as the combined 8-week and 16-week results, but miR-423-5p was most predictive at 16 weeks. In conclusion, the expression levels of miR-375 and miR-200c family differed significantly during disease process, and these miRNAs establishes a link between T. forsythia and development of periodontitis genesis, offering new insights regarding the pathobiology of this bacterium.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William Duncan
- Department of Community Dentistry, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Sakshee Bahadekar
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32610, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
4
|
Malhotra P, Casari I, Falasca M. Can the molecules carried by extracellular vesicles help to diagnose pancreatic cancer early? Biochim Biophys Acta Gen Subj 2023:130387. [PMID: 37236324 DOI: 10.1016/j.bbagen.2023.130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Pancreatic cancer is a deadly malignancy mainly because of its asymptomatic onset which prevents the implementation of the primary tumour's resection surgery, leading to metastatic spread resistant to chemotherapy. Early-detection of this cancer in its initial stage would represent a game changer in the fight against this disease. The few currently available biomarkers detectable in patients' body fluids lack sensitivity and specificity. SCOPE OF REVIEW The recent discovery of extracellular vesicles and their role in promoting cancer's advancement, has boosted interest in researching their cargo, to find reliable early detection biological markers. This review examines the most recent discoveries in the analysis of potential extra vesicle-carried biological markers for the early detection of pancreatic cancer. MAJOR CONCLUSIONS Despite the advantages of using extracellular vesicles for early diagnosis, and the promising findings of extracellular vesicle-carried molecules possibly functional as biomarkers, until now there are no validated markers derived from extracellular vesicles available to be used in the clinic. GENERAL SIGNIFICANCE Further studies in this direction are urgently required to provide what would be a major asset for defeating pancreatic cancer.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
5
|
Zou X, Huang Z, Guan C, Shi W, Gao J, Wang J, Cui Y, Wang M, Xu Y, Zhong X. Exosomal miRNAs in the microenvironment of pancreatic cancer. Clin Chim Acta 2023; 544:117360. [PMID: 37086943 DOI: 10.1016/j.cca.2023.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Pancreatic cancer (PC) is highly aggressive having an extremely poor prognosis. The tumor microenvironment (TME) of PC is complex and heterogeneous. Various cellular components in the microenvironment are capable of secreting different active substances that are involved in promoting tumor development. Their release may occur via exosomes, the most abundant extracellular vesicles (EVs), that can carry numerous factors as well as act as a mean of intercellular communication. Emerging evidence suggests that miRNAs are involved in the regulation and control of many pathological and physiological processes. They can also be transported by exosomes from donor cells to recipient cells, thereby regulating the TME. Exosomal miRNAs show promise for use as future targets for PC diagnosis and prognosis, which may reveal new treatment strategies for PC. In this paper, we review the important role of exosomal miRNAs in mediating cellular communication in the TME of PC as well as their potential use in clinical applications.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiangang Wang
- Central hospital of Baoji, Baoji, Shaanxi 721000, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Yi Xu
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
6
|
Zhu Y, Sun M, Liu P, Shao W, Xiong M, Xu B. Perioperative stress prolong post-surgical pain via miR-339-5p targeting oprm1 in the amygdala. Korean J Pain 2022; 35:423-432. [PMID: 36175341 PMCID: PMC9530683 DOI: 10.3344/kjp.2022.35.4.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022] Open
Abstract
Background The decreased expression of mu-opioid receptors (MOR) in the amygdala may be a key molecular in chronic post-surgical pain (CPSP). It is known that miR-339-5p expression in the amygdala of a stressed rat model was increased. Analyzed by RNAhybrid, miR-339-5p could target opioid receptor mu 1 (oprm1) which codes MOR directly. So, the authors hypothesized that miR-339-5p could regulate the expression of MOR via targeting oprm1 and cause the effects to CPSP. Methods To simulate perioperative short-term stress, a perioperative stress prolongs incision-induced pain hypersensitivity without changing basal pain perception rat model was built. A pmiR-RB-REPORT™ dual luciferase assay was taken to verify whether miR-339-5p could act on oprm1 as a target. The serum glucocorticoid level of rats was test. Differential expressions of MOR, GFAP, and pERK1/2 in each group of the rats' amygdala were tested, and the expressions of miR-339-5p in each group of rats' amygdalas were also measured. Results Perioperative stress prolonged the recovery time of incision pain. The expression of MOR was down-regulated in the amygdala of rats in stress + incision (S + IN) group significantly compared with other groups (P < 0.050). miR-339-5p was up-regulated in the amygdala of rats in group S + IN significantly compared with other groups (P < 0.050). miR-339-5p acts on oprm1 3'UTR and take MOR mRNA as a target. Conclusions Perioperative stress could increase the expression of miR-339-5p, and miR-339-5p could cause the expression of MOR to decrease via targeting oprm1. This regulatory pathway maybe an important molecular mechanism of CPSP.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Mei Sun
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Peng Liu
- Department of Burns and Plastic Surgery, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Weidong Shao
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Ming Xiong
- Department of Anesthesiology and Peri-Operative Medicine, New Jersey Medical School, Newark, NJ, USA
| | - Bo Xu
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| |
Collapse
|
7
|
Channon LM, Tyma VM, Xu Z, Greening DW, Wilson JS, Perera CJ, Apte MV. Small extracellular vesicles (exosomes) and their cargo in pancreatic cancer: Key roles in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188728. [PMID: 35385773 DOI: 10.1016/j.bbcan.2022.188728] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer (PC) is a devastating disease, offering poor mortality rates for patients. The current challenge being faced is the inability to diagnose patients in a timely manner, where potentially curative resection provides the best chance of survival. Recently, small/nanosized extracellular vesicles (sEVs), including exosomes, have gained significant preclinical and clinical attention due to their emerging roles in cancer progression and diagnosis. Extracellular vesicles (EVs) possess endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype of recipient cells. This review provides an overview of the role of EVs, their subtypes and their oncogenic cargo (as characterised by targeted studies as well as agnostic '-omics' analyses) in the pathobiology of pancreatic cancer. The discussion covers the progress of 'omics technology' that has enabled elucidation of the molecular mechanisms that mediate the role of EVs and their cargo in pancreatic cancer progression.
Collapse
Affiliation(s)
- Lily M Channon
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Victoria M Tyma
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Victoria 3004, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Victoria 3086, Australia; Central Clinical School, Monash University, Australia, Victoria 3800, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria 3000, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia.
| |
Collapse
|
8
|
Zhang W, Xing J, Liu T, Zhang J, Dai Z, Zhang H, Wang D, Tang D. Small extracellular vesicles: from mediating cancer cell metastasis to therapeutic value in pancreatic cancer. Cell Commun Signal 2022; 20:1. [PMID: 34980146 PMCID: PMC8722298 DOI: 10.1186/s12964-021-00806-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor and, is extremely difficult to diagnose and treat. Metastasis is one of the critical steps in the development of cancer and uses cell to cell communication to mediate changes in the microenvironment. Small extracellular vesicles (sEVs)-carry proteins, nucleic acids and other bioactive substances, and are important medium for communication between cells. There are two primary steps in sVEs-mediated metastasis: communication between pancreatic cancer cells and their surrounding microenvironment; and the communication between primary tumor cells and distant organ cells in distant organs that promotes angiogenesis, reshaping extracellular matrix, forming immunosuppressive environment and other ways to form appropriate pre-metastasis niche. Here, we explore the mechanism of localization and metastasis of pancreatic cancer and use sEVs as early biomarkers for the detection and treatment of pancreatic cancer. Video Abstract.
Collapse
Affiliation(s)
- Wenjie Zhang
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Juan Xing
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Tian Liu
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Jie Zhang
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Zhujiang Dai
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Huan Zhang
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Daorong Wang
- grid.268415.cDepartment of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001 China
| | - Dong Tang
- grid.268415.cDepartment of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001 China
| |
Collapse
|
9
|
Bi X, Zhang Y, Yu Y, Yuan J, Xu S, Liu F, Ye J, Liu P. MiRNA-339-5p promotes isoproterenol-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling. Cell Biol Int 2021; 46:288-299. [PMID: 34854520 DOI: 10.1002/cbin.11731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) regulate multiple biological processes and participate in various cardiovascular diseases. This study aims to investigate the role of miR-339-5p in cardiomyocyte hypertrophy and the involved mechanism. Neonatal rat cardiomyocytes (NRCMs) were cultured and stimulated with isoproterenol (ISO). The hypertrophic responses were monitored by measuring the cell surface area and expression of hypertrophic markers including β-myosin heavy chain (β-MHC) and atrial natriuretic factor (ANF). Bioinformatic prediction tools and dual-luciferase reporter assay were performed to identify the target gene of miR-339-5p. Quantitative real-time polymerase chain reaction and western blot analysis were used to determine the levels of miR-339-5p and its downstream effectors. Our data showed that miR-339-5p was upregulated during cardiomyocyte hypertrophy triggered by ISO. MiR-339-5p overexpression resulted in enlargement of cell size and increased the levels of hypertrophic markers. In contrast, inhibition of miR-339-5p significantly attenuated ISO-induced hypertrophic responses of NRCMs. Valosin-containing protein (VCP), a suppressor of cardiac hypertrophy via inhibiting mechanistic target of rapamycin (mTOR) signaling, was validated as a target of miR-339-5p. MiR-339-5p suppressed VCP protein expression, leading to elevated phosphorylation of mTOR and ribosomal protein S6 kinase (S6K). VCP depletion activated the mTOR/S6K cascade and could compromise the anti-hypertrophic effects of miR-339-5p inhibitor. Additionally, the hypertrophic responses caused by miR-339-5p was alleviated in the presence of mTOR inhibitor rapamycin. In conclusion, our research revealed that miR-339-5p promoted ISO-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling, suggesting a promising therapeutic intervention by interfering miR-339-5p.
Collapse
Affiliation(s)
- Xueying Bi
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Yuhong Zhang
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Youhui Yu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jing Yuan
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Siting Xu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Fang Liu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| |
Collapse
|
10
|
Abstract
ABSTRACT Pancreatic cancer is one of the most aggressive malignancies. The poor prognosis of pancreatic cancer patients is mainly attributed to low diagnostic rate at the early stage, highly aggressive nature coupled with the inadequate efficacy of current chemotherapeutic regimens. Novel therapeutic strategies are urgently needed for pancreatic cancer. MicroRNAs (miRNAs) play an important regulatory role in key processes of cancer development. The aberrant expression of miRNAs is often involved in the initiation, progression, and metastasis of pancreatic cancer. The discovery of tumor suppressor miRNAs provides prospects for the development of a novel treatment strategy for pancreatic cancer. We reviewed recent progress on the understanding of the role of miRNAs in pancreatic cancer, highlighted the efficient application of miRNAs-based therapies for pancreatic cancer in animal models and clinical trials, and proposed future prospects. This review focuses on the promise of integrating miRNAs into the treatment of pancreatic cancer and provides guidance for the development of precision medicine for pancreatic cancer.
Collapse
|
11
|
Yuan P, Tang C, Chen B, Lei P, Song J, Xin G, Wang Z, Hui Y, Yao W, Wang G, Zhao G. miR‑32‑5p suppresses the proliferation and migration of pancreatic adenocarcinoma cells by targeting TLDC1. Mol Med Rep 2021; 24:752. [PMID: 34468015 PMCID: PMC8430301 DOI: 10.3892/mmr.2021.12392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most fatal types of cancer in humans. However, the molecular mechanisms underlying the migration and invasion abilities of PAAD cells remain unclear. The aim of the present study was to explore the regulatory roles of microRNA (miR)‑32‑5p in PAAD cells. miR‑32‑5p mimic and inhibitor were used to transfect the human PAAD AsPC‑1 cell line to determine the role of miR‑32‑5p in cell proliferation and metastasis. The starBase database predicted the binding of miR‑32‑5p to the target gene TBC/LysM‑associated domain containing 1 (TLDC1). Further analyses were performed to assess miR‑32‑5p and TLDC1 expression levels in healthy and PAAD tissues, as well as the association between miR‑32‑5p or TLDC1 expression and the prognosis of patients with PAAD. The interaction between miR‑32‑5p and TLDC1 was verified using the dual‑luciferase reporter assay. miR‑32‑5p and TLDC1 expression levels were detected by reverse transcription‑quantitative PCR and western blotting, respectively. The Cell Counting Kit‑8 assay was utilised to assess cell proliferation, whereas the wound‑healing and Transwell assays were conducted to assess cell migration and invasion, respectively. miR‑32‑5p expression levels were markedly lower in PAAD tissue compared with those in healthy tissue, and were significantly lower in PAAD cell lines compared with those in the human pancreatic duct cell line HPDE6, which corresponded with poor prognosis. miR‑32‑5p significantly inhibited the proliferation of PAAD cells and markedly reduced migration and invasion compared with the negative controls. miR‑32‑5p was shown to target TLDC1, with miR‑32‑5p expression in PAAD being negatively correlated with TLDC1 expression. High TLDC1 expression levels were associated with a poorer prognosis compared with low TLDC1 expression levels. Co‑transfection of miR‑32‑5p mimic and pcDNA/TLDC1 demonstrated that TLDC1 significantly reversed miR‑32‑5p‑mediated inhibition of the proliferation, migration and invasion of PAAD cells. Overall, the present study demonstrated that miR‑32‑5p may serve as a tumor‑suppressor gene by inhibiting the proliferation and migration and invasion of PAAD cells via the downregulation of TLDC1. Therefore, miR‑32‑5p may serve as a potential diagnostic or prognostic marker for PAAD.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Chaofeng Tang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Bendong Chen
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Peng Lei
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jianjun Song
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Guojun Xin
- Department of Hepatobiliary Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zuozheng Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Weijie Yao
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Genwang Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Guozhong Zhao
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
12
|
Czerwinska P, Mackiewicz AA. Low Levels of TRIM28-Interacting KRAB-ZNF Genes Associate with Cancer Stemness and Predict Poor Prognosis of Kidney Renal Clear Cell Carcinoma Patients. Cancers (Basel) 2021; 13:cancers13194835. [PMID: 34638319 PMCID: PMC8508054 DOI: 10.3390/cancers13194835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary This is the first report investigating the involvement of TRIM28-interacting KRAB-ZNFs in kidney cancer progression. We demonstrate a significant negative association between KRAB-ZNFs and cancer stemness followed by an attenuated immune-suppressive response and reveal the prognostic role for several KRAB-ZNFs. Our findings may help better understand the molecular basis of kidney cancer and ultimately pave the way to more appropriate prognostic tools and novel therapeutic strategies directly eradicating the dedifferentiated compartment of the tumor. Abstract Krüppel-associated box zinc finger (KRAB-ZNF) proteins are known to regulate diverse biological processes, such as embryonic development, tissue-specific gene expression, and cancer progression. However, their involvement in the regulation of cancer stemness-like phenotype acquisition and maintenance is scarcely explored across solid tumor types, and to date, there are no data for kidney renal clear cell cancer (KIRC). We have harnessed The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database transcriptomic data and used several bioinformatic tools (i.e., GEPIA2, GSCALite, TISIDB, GSEA, CIBERSORT) to verify the relation between the expression and genomic alterations in KRAB-ZNFs and kidney cancer, focusing primarily on tumor dedifferentiation status and antitumor immune response. Our results demonstrate a significant negative correlation between KRAB-ZNFs and kidney cancer dedifferentiation status followed by an attenuated immune-suppressive response. The transcriptomic profiles of high KRAB-ZNF-expressing kidney tumors are significantly enriched with stem cell markers and show a depletion of several inflammatory pathways known for favoring cancer stemness. Moreover, we show for the first time the prognostic role for several KRAB-ZNFs in kidney cancer. Our results provide new insight into the role of selected KRAB-ZNF proteins in kidney cancer development. We believe that our findings may help better understand the molecular basis of KIRC.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; or
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
- Correspondence: or
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; or
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
13
|
Pancreatic Cancer Small Extracellular Vesicles (Exosomes): A Tale of Short- and Long-Distance Communication. Cancers (Basel) 2021; 13:cancers13194844. [PMID: 34638330 PMCID: PMC8508300 DOI: 10.3390/cancers13194844] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Even today, pancreatic cancer still has a dismal prognosis. It is characterized by a lack of early symptoms and thus late diagnosis as well as early metastasis. The majority of patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDACs communicate extensively with cellular components of their microenvironment, but also with distant metastatic niches to facilitate tumor progression and dissemination. This crosstalk is substantially enabled by small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm that are released from the tumor cells. sEVs carry bioactive cargos that reprogram target cells to promote tumor growth, migration, metastasis, immune evasion, or chemotherapy resistance. Interestingly, sEVs also carry novel diagnostic, prognostic and potentially also predictive biomarkers. Moreover, engineered sEVs may be utilized as therapeutic agents, improving treatment options. The role of sEVs for PDAC development, progression, diagnosis, prognosis, and treatment is the focus of this review. Abstract Even with all recent advances in cancer therapy, pancreatic cancer still has a dismal 5-year survival rate of less than 7%. The most prevalent tumor subtype is pancreatic ductal adenocarcinoma (PDAC). PDACs display an extensive crosstalk with their tumor microenvironment (TME), e.g., pancreatic stellate cells, but also immune cells to regulate tumor growth, immune evasion, and metastasis. In addition to crosstalk in the local TME, PDACs were shown to induce the formation of pre-metastatic niches in different organs. Recent advances have attributed many of these interactions to intercellular communication by small extracellular vesicles (sEVs, exosomes). These nanovesicles are derived of endo-lysosomal structures (multivesicular bodies) with a size range of 30–150 nm. sEVs carry various bioactive cargos, such as proteins, lipids, DNA, mRNA, or miRNAs and act in an autocrine or paracrine fashion to educate recipient cells. In addition to tumor formation, progression, and metastasis, sEVs were described as potent biomarker platforms for diagnosis and prognosis of PDAC. Advances in sEV engineering have further indicated that sEVs might once be used as effective drug carriers. Thus, extensive sEV-based communication and applications as platform for biomarker analysis or vehicles for treatment suggest a major impact of sEVs in future PDAC research.
Collapse
|
14
|
Lei S, Zeng Z, He Z, Cao W. miRNA‑7515 suppresses pancreatic cancer cell proliferation, migration and invasion via downregulating IGF‑1 expression. Oncol Rep 2021; 46:200. [PMID: 34296285 PMCID: PMC8317166 DOI: 10.3892/or.2021.8151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/17/2021] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy of the gastrointestinal tract. Previous studies have reported that microRNAs (miRNAs/miRs) are involved in the tumorigenesis of PC. Therefore, the present study aimed to determine the effects of miR‑7515 on PC cell proliferation, invasion and migration in vitro and in vivo, and investigate its underlying molecular mechanism using bioinformatics, double luciferase assay and western blotting. The results revealed that the expression levels of miR‑7515 were downregulated in PC, which predicted a poor clinical outcome. The overexpression of miR‑7515 significantly decreased the proliferation, invasive and migratory abilities of PC cells in vitro and in vivo, while the knockdown of miR‑7515 exerted the opposite effects. miR‑7515 was identified to directly bind to insulin‑like growth factor 1 (IGF‑1) and downregulate its expression, which subsequently downregulated the Ras/Raf/MEK/ERK signalling pathway. The overexpression of IGF‑1 reversed the inhibitory effects of miR‑7515 overexpression on PC cells. In conclusion, the findings of the present study indicated that miR‑7515 may act as a tumor suppressor in PC, as it repressed PC cell proliferation invasion and migration via downregulating the expression of IGF‑1 and the activity of the Ras/Raf/MEK/ERK signalling pathways.
Collapse
Affiliation(s)
- Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Wenpeng Cao
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| |
Collapse
|
15
|
Jiang H, Liu Y, Hu K, Xia Y, Liang L, Zhu X, Cheng X. MiRNA-339 targets and regulates ZNF689 to inhibit the proliferation and invasion of gastric cancer cells. Transl Cancer Res 2021; 10:3516-3526. [PMID: 35116655 PMCID: PMC8799122 DOI: 10.21037/tcr-21-994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/02/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gastric cancer (GC) is the most common malignant tumor of the digestive system, and its mortality rate ranks first among malignant tumors. However, the pathogenesis of GC has not yet been fully elucidated. This study found that microRNA (miRNA)-339 is abnormally expressed in GC tissues. However, the role and molecular mechanism of miRNA-339 in the occurrence and development of GC are still unclear. METHODS Fluorescence quantitative polymerase chain reaction (qPCR) was used to detect the expression level of miRNA-339 in GC tissues and adjacent tissues and analyze the correlation with the clinicopathological characteristics of GC patients. Cell counting kit-8 (CCK-8) and Transwell experiments detected the effect of overexpression of miRNA-339 on the proliferation, invasion, and migration of GC cells. The luciferase reporter gene detected the downstream target molecules regulated by miRNA-339, and western blot was employed to detect the effect of overexpression of miRNA-339 on the expression of ZNF689. RESULTS The results of fluorescence qPCR showed that miRNA-339 was less expressed in GC tissues compared with adjacent tissues, and it was correlated with the patient's clinical tumor, node, metastasis (TNM) grade and lymph node metastasis. Cell function experiments showed that overexpression of miRNA-339 can significantly inhibit the proliferation, invasion, and migration of GC cells. The luciferase reporter gene showed that miRNA-339 can bind to the 3'-UTR region of ZNF689, and overexpression of miRNA-339 can significantly inhibit the expression of ZNF689 in GC cells. Overexpression of ZNF689 can significantly block the ability of overexpression of miRNA-339 to inhibit the proliferation and migration of GC cells. CONCLUSIONS miRNA-339 inhibits the proliferation and invasion of GC cells through targeted regulation of the expression of ZNF689. In addition, the expression level of miRNA-339 can be used as a biomarker for the prognosis of GC.
Collapse
Affiliation(s)
- Houxiang Jiang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital Wannan Medical College) Wuhu, China
| | - Yinhua Liu
- Department of Pathology, the First Affiliated Hospital of Wannan Medical College (YIjishan Hospital of Wanna Medical College), Wuhu, China
| | - Kaifeng Hu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital Wannan Medical College) Wuhu, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital Wannan Medical College) Wuhu, China
| | - Linhu Liang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital Wannan Medical College) Wuhu, China
| | - Xiaoli Zhu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital Wannan Medical College) Wuhu, China
| | - Xianfeng Cheng
- Department of Laboratory Medicine, Dermatology Hospital of Chinese Academy of Medical Sciences (Institute), Nanjing, China
| |
Collapse
|
16
|
Hussain Z, Nigri J, Tomasini R. The Cellular and Biological Impact of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13123040. [PMID: 34207163 PMCID: PMC8235245 DOI: 10.3390/cancers13123040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The increased incidence and global failure of ongoing therapies project pancreatic cancer as the second deadliest cancer worldwide. While our knowledge of pancreatic cancer cells’ abilities and specificities has drastically improved based on multi-scaled omics, one must consider that much more remains to be uncovered on the role and impact of stromal cells and the established network of communication with tumor cells. This review article discusses how tumor cells communicate with the various cells composing the stroma and its implication in tumor cells’ abilities, PDA (pancreatic ductal adenocarcinoma) carcinogenesis and therapeutic response. We will focus on extracellular vesicles-mediated crosstalk and how this multifaceted dialogue impacts both cellular compartments and its subsequent impact on PDA biology. Abstract Deciphering the interactions between tumor and stromal cells is a growing field of research to improve pancreatic cancer-associated therapies and patients’ care. Indeed, while accounting for 50 to 90% of the tumor mass, many pieces of evidence reported that beyond their structural role, the non-tumoral cells composing the intra-tumoral microenvironment influence tumor cells’ proliferation, metabolism, cell death and resistance to therapies, among others. Simultaneously, tumor cells can influence non-tumoral neighboring or distant cells in order to shape a tumor-supportive and immunosuppressive environment as well as influencing the formation of metastatic niches. Among intercellular modes of communication, extracellular vesicles can simultaneously transfer the largest variety of signals and were recently reported as key effectors of cell–cell communication in pancreatic cancer, from its development to its evolution as well as its ability to resist available treatments. This review focuses on extracellular vesicles-mediated communication between different cellular components of pancreatic tumors, from the modulation of cellular activities and abilities to their biological and physiological relevance. Taking into consideration the intra-tumoral microenvironment and its extracellular-mediated crosstalk as main drivers of pancreatic cancer development should open up new therapeutic windows.
Collapse
|
17
|
Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside. Cancers (Basel) 2021; 13:cancers13112777. [PMID: 34204940 PMCID: PMC8199777 DOI: 10.3390/cancers13112777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer is the fourth leading cause of cancer death in the United States and over 90% of the patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDAC is the most lethal gastrointestinal malignancies and only 10% of the people survive more than 5 years, therefore, novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity. Studies have demonstrated microRNAs in bodily fluids that are bound with membranes (exosomes) can act as stable biomarkers both for disease development and metastasis. The diagnostic, prognostic, as well as therapeutic roles of exosomal microRNAs in pancreatic cancer have been discussed in this review. Abstract Pancreatic cancer is the fourth leading cause of cancer death among men and women in the United States, and pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of pancreatic cancer cases. PDAC is one of the most lethal gastrointestinal malignancies with an overall five-year survival rate of ~10%. Developing effective therapeutic strategies against pancreatic cancer is a great challenge. Novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity to increase the survival of pancreatic cancer patients. So far, studies have demonstrated microRNAs (miRNAs) as sensitive biomarkers because of their significant correlation with disease development and metastasis. The miRNAs have been shown to be more stable inside membrane-bound vesicles in the extracellular environment called exosomes. Varieties of miRNAs are released into the body fluids via exosomes depending on the normal physiological or pathological conditions of the body. In this review, we discuss the recent findings on the diagnostic, prognostic, and therapeutic roles of exosomal miRNAs in pancreatic cancer.
Collapse
|
18
|
Romano R, Picca A, Eusebi LHU, Marzetti E, Calvani R, Moro L, Bucci C, Guerra F. Extracellular Vesicles and Pancreatic Cancer: Insights on the Roles of miRNA, lncRNA, and Protein Cargos in Cancer Progression. Cells 2021; 10:1361. [PMID: 34205944 PMCID: PMC8226820 DOI: 10.3390/cells10061361] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer (PC) is among the most devastating digestive tract cancers worldwide. This cancer is characterized by poor diagnostic detection, lack of therapy, and difficulty in predicting tumorigenesis progression. Although mutations of key oncogenes and oncosuppressor involved in tumor growth and in immunosurveillance escape are known, the underlying mechanisms that orchestrate PC initiation and progression are poorly understood or still under debate. In recent years, the attention of many researchers has been concentrated on the role of extracellular vesicles and of a particular subset of extracellular vesicles, known as exosomes. Literature data report that these nanovesicles are able to deliver their cargos to recipient cells playing key roles in the pathogenesis and progression of many pancreatic precancerous conditions. In this review, we have summarized and discussed principal cargos of extracellular vesicles characterized in PC, such as miRNAs, lncRNAs, and several proteins, to offer a systematic overview of their function in PC progression. The study of extracellular vesicles is allowing to understand that investigation of their secretion and analysis of their content might represent a new and potential diagnostic and prognostic tools for PC.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, 171 77 Stockholm, Sweden
| | - Leonardo Henry Umberto Eusebi
- Gastroenterology and Endoscopy Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Gastroenterology and Endoscopy Unit, Sant’Orsola University Hospital, 40138 Bologna, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, 171 77 Stockholm, Sweden
| | - Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; or
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
19
|
Sabouri E, Rajabzadeh A, Enderami SE, Saburi E, Soleimanifar F, Barati G, Rahmati M, Khamisipour G, Enderami SE. The Role of MicroRNAs in the Induction of Pancreatic Differentiation. Curr Stem Cell Res Ther 2021; 16:145-154. [PMID: 32564764 DOI: 10.2174/1574888x15666200621173607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Stem cell-based therapy is one of the therapeutic options with promising results in the treatment of diabetes. Stem cells from various sources are expanded and induced to generate the cells capable of secreting insulin. These insulin-producing cells [IPCs] could be used as an alternative to islets in the treatment of patients with diabetes. Soluble growth factors, small molecules, geneencoding transcription factors, and microRNAs [miRNAs] are commonly used for the induction of stem cell differentiation. MiRNAs are small non-coding RNAs with 21-23 nucleotides that are involved in the regulation of gene expression by targeting multiple mRNA targets. Studies have shown the dynamic expression of miRNAs during pancreatic development and stem cell differentiation. MiR- 7 and miR-375 are the most abundant miRNAs in pancreatic islet cells and play key roles in pancreatic development as well as islet cell functions. Some studies have tried to use these small RNAs for the induction of pancreatic differentiation. This review focuses on the miRNAs used in the induction of stem cells into IPCs and discusses their functions in pancreatic β-cells.
Collapse
Affiliation(s)
- Elham Sabouri
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rajabzadeh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Elnaz Enderami
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology [NIGEB], Tehran, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Gholamreza Khamisipour
- Department of Hematology, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
20
|
Li X, Jiang W, Gan Y, Zhou W. The Application of Exosomal MicroRNAs in the Treatment of Pancreatic Cancer and Its Research Progress. Pancreas 2021; 50:12-16. [PMID: 33370018 DOI: 10.1097/mpa.0000000000001713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Despite great progress in the treatment of pancreatic cancer under the efforts of researchers, the survival time of patients with pancreatic cancer is shorter than that of patients with other cancers. Thus, we have a great need for innovative therapeutic methods, including research and development of new drugs and innovation of administration methods. Exosomes are a type of extracellular vesicles wrapped by a lipid bilayer. Thanks to the low clearance ratio and strong specificity of exosomes in circulation, together with in-depth research on the surface protein of exosomes and a targeted modification method, there is a strong potential to apply exosomes in the transfer and even targeted delivery of chemotherapeutics, RNA, and natural products. Particularly, exosomes carrying microRNA show good application prospects in cancer therapy. This article is intended to summarize the progress of research relating to the treatment of pancreatic cancer via exosomal microRNAs.
Collapse
Affiliation(s)
- Xin Li
- From the The First Clinical Medical College, Lanzhou University
| | - Wenkai Jiang
- From the The First Clinical Medical College, Lanzhou University
| | - Yu Gan
- From the The First Clinical Medical College, Lanzhou University
| | | |
Collapse
|
21
|
Liu Y, Cui Y, Bai X, Feng C, Li M, Han X, Ai B, Zhang J, Li X, Han J, Zhu J, Jiang Y, Pan Q, Wang F, Xu M, Li C, Wang Q. MiRNA-Mediated Subpathway Identification and Network Module Analysis to Reveal Prognostic Markers in Human Pancreatic Cancer. Front Genet 2020; 11:606940. [PMID: 33362865 PMCID: PMC7756031 DOI: 10.3389/fgene.2020.606940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background Pancreatic cancer (PC) remains one of the most lethal cancers. In contrast to the steady increase in survival for most cancers, the 5-year survival remains low for PC patients. Methods We describe a new pipeline that can be used to identify prognostic molecular biomarkers by identifying miRNA-mediated subpathways associated with PC. These modules were then further extracted from a comprehensive miRNA-gene network (CMGN). An exhaustive survival analysis was performed to estimate the prognostic value of these modules. Results We identified 105 miRNA-mediated subpathways associated with PC. Two subpathways within the MAPK signaling and cell cycle pathways were found to be highly related to PC. Of the miRNA-mRNA modules extracted from CMGN, six modules showed good prognostic performance in both independent validated datasets. Conclusions Our study provides novel insight into the mechanisms of PC. We inferred that six miRNA-mRNA modules could serve as potential prognostic molecular biomarkers in PC based on the pipeline we proposed.
Collapse
Affiliation(s)
- Yuejuan Liu
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Yuxia Cui
- School of Nursing, Harbin Medical University, Daqing, China
| | - Xuefeng Bai
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Chenchen Feng
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Meng Li
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Xiaole Han
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Bo Ai
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Jian Zhang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Xuecang Li
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiang Zhu
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Yong Jiang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Qi Pan
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Fan Wang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Mingcong Xu
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Chunquan Li
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Qiuyu Wang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| |
Collapse
|
22
|
Sun W, Ren Y, Lu Z, Zhao X. The potential roles of exosomes in pancreatic cancer initiation and metastasis. Mol Cancer 2020; 19:135. [PMID: 32878635 PMCID: PMC7466807 DOI: 10.1186/s12943-020-01255-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PaCa) is an insidious and highly metastatic malignancy, with a 5-year survival rate of less than 5%. So far, the pathogenesis and progression mechanisms of PaCa have been poorly characterized. Exosomes correspond to a class of extracellular nanovesicles, produced by a broad range of human somatic and cancerous cells. These particular nanovesicles are mainly composed by proteins, genetic substances and lipids, which mediate signal transduction and material transport. A large number of studies have indicated that exosomes may play decisive roles in the occurrence and metastatic progression of PaCa. This article summarizes the specific functions of exosomes and their underlying molecular mechanisms in mediating the initiation and metastatic capability of PaCa.
Collapse
Affiliation(s)
- Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
23
|
Takeda Y, Kobayashi S, Kitakaze M, Yamada D, Akita H, Asai A, Konno M, Arai T, Kitagawa T, Ofusa K, Yabumoto M, Hirotsu T, Vecchione A, Taniguchi M, Doki Y, Eguchi H, Ishii H. Immuno-Surgical Management of Pancreatic Cancer with Analysis of Cancer Exosomes. Cells 2020; 9:cells9071645. [PMID: 32659892 PMCID: PMC7408222 DOI: 10.3390/cells9071645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes (EXs), a type of extracellular vesicles secreted from various cells and especially cancer cells, mesenchymal cells, macrophages and other cells in the tumor microenvironment (TME), are involved in biologically malignant behaviors of cancers. Recent studies have revealed that EXs contain microRNAs on their inside and express proteins and glycolipids on their outsides, every component of which plays a role in the transmission of genetic and/or epigenetic information in cell-to-cell communications. It is also known that miRNAs are involved in the signal transduction. Thus, EXs may be useful for monitoring the TME of tumor tissues and the invasion and metastasis, processes that are associated with patient survival. Because several solid tumors secrete immune checkpoint proteins, including programmed cell death-ligand 1, the EX-mediated mechanisms are suggested to be potent targets for monitoring patients. Therefore, a companion therapeutic approach against cancer metastasis to distant organs is proposed when surgical removal of the primary tumor is performed. However, EXs and immune checkpoint mechanisms in pancreatic cancer are not fully understood, we provide an update on the recent advances in this field and evidence that EXs will be useful for maximizing patient benefit in precision medicine.
Collapse
Affiliation(s)
- Yu Takeda
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Masatoshi Kitakaze
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Ayumu Asai
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
| | - Masamitsu Konno
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Takahiro Arai
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Unitech Co., Ltd., Kashiwa 277-0005, Japan
| | - Toru Kitagawa
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
- Kyowa-kai Medical Corporation, Osaka 540-0008, Japan
| | - Ken Ofusa
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Prophoenix Division, Food and Life-Science Laboratory, Idea Consultants, Inc., Osaka-city, Osaka 559-8519, Japan
| | - Masami Yabumoto
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
- Kinshu-kai Medical Corporation, Osaka 558-0041, Japan
| | - Takaaki Hirotsu
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Hirotsu Bio Science Inc., Tokyo 107-0062, Japan
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, Santo Andrea Hospital, via di Grottarossa, 1035-00189 Rome, Italy;
| | - Masateru Taniguchi
- Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
| | - Yuichiro Doki
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Hidetoshi Eguchi
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
- Correspondence: ; Tel.: +81-(0)6-6210-8406 (ext. 8405); Fax: +81-(0)6-6210-8407
| |
Collapse
|
24
|
Gao XZ, Ma RH, Zhang ZX. miR-339 Promotes Hypoxia-Induced Neuronal Apoptosis and Impairs Cell Viability by Targeting FGF9/CACNG2 and Mediating MAPK Pathway in Ischemic Stroke. Front Neurol 2020; 11:436. [PMID: 32587563 PMCID: PMC7297914 DOI: 10.3389/fneur.2020.00436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke (IS) is a common cerebrovascular disease characterized by insufficient blood blow to the brain and the second leading cause of death as well as disability worldwide. Recent literatures have indicated that abnormal expression of miR-339 is closely related to IS. In this study, we attempted to assess the biological function of miR-339 and its underlying mechanism in IS. By accessing the GEO repository, the expression of miR-339, FGF9, and CACNG2 in middle cerebral artery occlusion (MCAO) and non-MCAO was evaluated. PC12 cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment were prepared to mimic in vitro the IS model. The levels of miR-339, FGF9, CACNG2, and MAPK-related markers were quantitatively measured by qRT-PCR and Western blot. CCK-8 and flow cytometry analyses were performed to examine cell viability and apoptosis, respectively. IS-related potential pathways were identified using KEGG enrichment analysis and GO annotations. Bioinformatics analysis and dual-luciferase reporter assay were used to predict and verify the possible target of miR-339. Our results showed that miR-339 expression was significantly increased in MCAO and OGD/R-treated PC12 cells. Overexpression of miR-339 inhibited cell viability of PC12 cells subjected to OGD/R treatment. FGF9 and CACMG2 are direct targets of miR-339 and can reverse the aggressive effect of miR-339 on the proliferation and apoptosis of OGD/R-treated PC12 cells. Moreover, miR-339 mediated the activation of the MAPK pathway, which was inhibited by the FGF9/CACNG2 axis in PC12 cells treated by OGD/R stimulation. In summary, these findings suggested that miR-339 might act as a disruptive molecule to accelerate the IS progression via targeting the FGF9/CACNG2 axis and mediating the MAPK pathway.
Collapse
Affiliation(s)
- Xiao-Zeng Gao
- Department of Anesthesiology, North China University of Science and Technology, Tangshan, China
| | - Ru-Hua Ma
- Emergency Department, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Zhao-Xia Zhang
- Department of Geriatrics, Shanxian Central Hospital, Heze, China
| |
Collapse
|
25
|
Chen S, Xu M, Zhao J, Shen J, Li J, Liu Y, Cao G, Ma J, He W, Chen X, Shan T. MicroRNA-4516 suppresses pancreatic cancer development via negatively regulating orthodenticle homeobox 1. Int J Biol Sci 2020; 16:2159-2169. [PMID: 32549762 PMCID: PMC7294951 DOI: 10.7150/ijbs.45933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer remains one of the most lethal human cancers without efficient therapeutic strategy. MicoRNAs (miRNAs) are a group of small non-coding RNAs involved in multiple biological processes including tumor development and progression. In this study, we investigated the expression and function of miR-4516 in pancreatic cancer. MiR-4516 was low-expressed in pancreatic cancer tissues and cell lines. Overexpression of miR-4516 inhibited pancreatic cancer cell proliferation, migration and invasion, while promoted cell apoptosis in vitro. Further, overexpression of miR-4516 suppressed xenograft pancreatic tumor growth in vivo. Bioinformatics analysis was performed and miR-4516 was predicted to negatively regulate orthodenticle homeobox 1 (OTX1) expression by binding to its 3'-UTR. Consistently, OTX1 was highly expressed in pancreatic cancer tissues and cell lines. Knockdown of OTX1 expression suppressed pancreatic cancer cell migration and invasion, with down-regulated MMP2 and MMP9 expression. Moreover, we demonstrated that miR-4516 regulated pancreatic cancer cell growth, migration, invasion and apoptosis via targeting OTX1. Overexpression of OTX1 could partially abrogate the inhibitory effect of miR-4516. Taken together, we conclude that miR-4516 could function as a tumor suppressor via targeting OTX1. These findings suggest that miR-4516/OTX1 axis might be a novel therapeutic target for miRNA-based therapy for pancreatic cancer patients.
Collapse
Affiliation(s)
- Shuo Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Jing Zhao
- School of Science, Xi'an Jiaotong University, PR China
| | - Jiaqi Shen
- School of Life Science, Xiamen University, PR China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Gang Cao
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Weizhou He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Tao Shan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| |
Collapse
|