1
|
Chamba C, Mawalla W. The future of lymphoma diagnosis, prognosis, and treatment monitoring in countries with limited access to pathology services. Semin Hematol 2023; 60:215-219. [PMID: 37596119 DOI: 10.1053/j.seminhematol.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
The world is moving towards precision medicine for cancer. This movement goes hand in hand with the development of newer advanced technologies for early, precise diagnosis of cancer and personalized treatment plans with fewer adverse effects for the patient. Liquid biopsy is one such advancement. At the same time, it has the advantage of minimal invasion and avoids serial invasive biopsies. In countries with limited access to pathology services, such as sub-Saharan Africa, liquid biopsy may provide an opportunity for early detection and prognostication of lymphoma. We discuss the current diagnostic modalities for lymphoma, highlighting the existing challenges with tissue biopsy, and how feasible it is for countries with limited pathology resources to leverage advancements made in the clinical application of liquid biopsy to improve lymphoma care.
Collapse
Affiliation(s)
- Clara Chamba
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - William Mawalla
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Vizcarra JC, Burlingame EA, Hug CB, Goltsev Y, White BS, Tyson DR, Sokolov A. A community-based approach to image analysis of cells, tissues and tumors. Comput Med Imaging Graph 2022; 95:102013. [PMID: 34864359 PMCID: PMC8761177 DOI: 10.1016/j.compmedimag.2021.102013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
Emerging multiplexed imaging platforms provide an unprecedented view of an increasing number of molecular markers at subcellular resolution and the dynamic evolution of tumor cellular composition. As such, they are capable of elucidating cell-to-cell interactions within the tumor microenvironment that impact clinical outcome and therapeutic response. However, the rapid development of these platforms has far outpaced the computational methods for processing and analyzing the data they generate. While being technologically disparate, all imaging assays share many computational requirements for post-collection data processing. As such, our Image Analysis Working Group (IAWG), composed of researchers in the Cancer Systems Biology Consortium (CSBC) and the Physical Sciences - Oncology Network (PS-ON), convened a workshop on "Computational Challenges Shared by Diverse Imaging Platforms" to characterize these common issues and a follow-up hackathon to implement solutions for a selected subset of them. Here, we delineate these areas that reflect major axes of research within the field, including image registration, segmentation of cells and subcellular structures, and identification of cell types from their morphology. We further describe the logistical organization of these events, believing our lessons learned can aid others in uniting the imaging community around self-identified topics of mutual interest, in designing and implementing operational procedures to address those topics and in mitigating issues inherent in image analysis (e.g., sharing exemplar images of large datasets and disseminating baseline solutions to hackathon challenges through open-source code repositories).
Collapse
Affiliation(s)
- Juan Carlos Vizcarra
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Erik A Burlingame
- Computational Biology Program, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Clemens B Hug
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
| | - Yury Goltsev
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian S White
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Mohamed SB, Kambal S, Ibrahim SAE, Abdalwhab E, Munir A, Ibrahim A, Ali QM. Bioinformatics in Sudan: Status and challenges case study: The National University-Sudan. PLoS Comput Biol 2021; 17:e1009462. [PMID: 34673773 PMCID: PMC8530284 DOI: 10.1371/journal.pcbi.1009462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ever increasing applications of bioinformatics in providing effective interpretation of large and complex biological data require expertise in the use of sophisticated computational tools and advanced statistical tests, skills that are mostly lacking in the Sudanese research community. This can be attributed to paucity in the development and promotion of bioinformatics, lack of senior bioinformaticians, and the general status quo of inadequate research funding in Sudan. In this paper, we describe the challenges that have encountered the development of bioinformatics as a discipline in Sudan. Additionally, we highlight on specific actions that may help develop and promote its education and training. The paper takes the National University Biomedical Research Institute (NUBRI) as an example of an institute that has tackled many of these challenges and strives to drive powerful efforts in the development of bioinformatics in the country. Bioinformatics is gaining recognition globally and in Sudan as an important subdiscipline of biological sciences, one that enables researchers to efficiently interpret complex biological data. A limited number of Sudanese academic institutions have acknowledged this field despite its increasingly recognized importance. The development of bioinformatics in the country requires interdisciplinary collaborations involving experts in life sciences, research methodology, healthcare, computer, and data sciences. This can be achieved through designing educational programs and workshops alongside proposing and establishing effective collaborative research projects. In this context, we comprehensively discussed the present state of bioinformatics in Sudan, the challenges faced, as well as the efforts exerted by academic institutions including NUBRI, to upgrade infrastructure and establish local and international collaborations.
Collapse
Affiliation(s)
- Sofia B. Mohamed
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
- * E-mail:
| | - Sumaya Kambal
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Sabah A. E. Ibrahim
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Esra Abdalwhab
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Abdalla Munir
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Arwa Ibrahim
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Qurashi Mohamed Ali
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| |
Collapse
|
4
|
Melendrez MC, Shaw S, Brown CT, Goodner BW, Kvaal C. Editorial: Curriculum Applications in Microbiology: Bioinformatics in the Classroom. Front Microbiol 2021; 12:705233. [PMID: 34276638 PMCID: PMC8281245 DOI: 10.3389/fmicb.2021.705233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - C Titus Brown
- Department of Population Health and Reproduction, University of California, Davis, Davis, CA, United States
| | | | - Christopher Kvaal
- Department of Biology, St. Cloud State University, St. Cloud, MN, United States
| |
Collapse
|
5
|
Braune K, Rojas PD, Hofferbert J, Valera Sosa A, Lebedev A, Balzer F, Thun S, Lieber S, Kirchberger V, Poncette AS. Interdisciplinary Online Hackathons as an Approach to Combat the COVID-19 Pandemic: Case Study. J Med Internet Res 2021; 23:e25283. [PMID: 33497350 PMCID: PMC7872325 DOI: 10.2196/25283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/02/2021] [Accepted: 01/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background The COVID-19 outbreak has affected the lives of millions of people by causing a dramatic impact on many health care systems and the global economy. This devastating pandemic has brought together communities across the globe to work on this issue in an unprecedented manner. Objective This case study describes the steps and methods employed in the conduction of a remote online health hackathon centered on challenges posed by the COVID-19 pandemic. It aims to deliver a clear implementation road map for other organizations to follow. Methods This 4-day hackathon was conducted in April 2020, based on six COVID-19–related challenges defined by frontline clinicians and researchers from various disciplines. An online survey was structured to assess: (1) individual experience satisfaction, (2) level of interprofessional skills exchange, (3) maturity of the projects realized, and (4) overall quality of the event. At the end of the event, participants were invited to take part in an online survey with 17 (+5 optional) items, including multiple-choice and open-ended questions that assessed their experience regarding the remote nature of the event and their individual project, interprofessional skills exchange, and their confidence in working on a digital health project before and after the hackathon. Mentors, who guided the participants through the event, also provided feedback to the organizers through an online survey. Results A total of 48 participants and 52 mentors based in 8 different countries participated and developed 14 projects. A total of 75 mentorship video sessions were held. Participants reported increased confidence in starting a digital health venture or a research project after successfully participating in the hackathon, and stated that they were likely to continue working on their projects. Of the participants who provided feedback, 60% (n=18) would not have started their project without this particular hackathon and indicated that the hackathon encouraged and enabled them to progress faster, for example, by building interdisciplinary teams, gaining new insights and feedback provided by their mentors, and creating a functional prototype. Conclusions This study provides insights into how online hackathons can contribute to solving the challenges and effects of a pandemic in several regions of the world. The online format fosters team diversity, increases cross-regional collaboration, and can be executed much faster and at lower costs compared to in-person events. Results on preparation, organization, and evaluation of this online hackathon are useful for other institutions and initiatives that are willing to introduce similar event formats in the fight against COVID-19.
Collapse
Affiliation(s)
- Katarina Braune
- Department of Paediatric Endocrinology and Diabetes, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Hacking Health Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | | | | | - Alvaro Valera Sosa
- Hacking Health Berlin, Berlin, Germany.,CityLAB Berlin, Building Health Lab, Berlin, Germany.,Department of Design and Typologies, Technische Universität Berlin, Berlin, Germany
| | | | - Felix Balzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Intensive Care Medicine, Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| | | | - Sascha Lieber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Intensive Care Medicine, Berlin, Germany.,Executive Board, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Valerie Kirchberger
- Executive Board, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Akira-Sebastian Poncette
- Hacking Health Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Intensive Care Medicine, Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
6
|
Bope CD, Chimusa ER, Nembaware V, Mazandu GK, de Vries J, Wonkam A. Dissecting in silico Mutation Prediction of Variants in African Genomes: Challenges and Perspectives. Front Genet 2019; 10:601. [PMID: 31293624 PMCID: PMC6603221 DOI: 10.3389/fgene.2019.00601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
Genomic medicine is set to drastically improve clinical care globally due to high throughput technologies which enable speedy in silico detection and analysis of clinically relevant mutations. However, the variability in the in silico prediction methods and categorization of functionally relevant genetic variants can pose specific challenges in some populations. In silico mutation prediction tools could lead to high rates of false positive/negative results, particularly in African genomes that harbor the highest genetic diversity and that are disproportionately underrepresented in public databases and reference panels. These issues are particularly relevant with the recent increase in initiatives, such as the Human Heredity and Health (H3Africa), that are generating huge amounts of genomic sequence data in the absence of policies to guide genomic researchers to return results of variants in so-called actionable genes to research participants. This report (i) provides an inventory of publicly available Whole Exome/Genome data from Africa which could help improve reference panels and explore the frequency of pathogenic variants in actionable genes and related challenges, (ii) reviews available in silico prediction mutation tools and the criteria for categorization of pathogenicity of novel variants, and (iii) proposes recommendations for analyzing pathogenic variants in African genomes for their use in research and clinical practice. In conclusion, this work proposes criteria to define mutation pathogenicity and actionability in human genetic research and clinical practice in Africa and recommends setting up an African expert panel to oversee the proposed criteria.
Collapse
Affiliation(s)
- Christian Domilongo Bope
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Departments of Mathematics and Computer Sciences, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Emile R. Chimusa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Victoria Nembaware
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gaston K. Mazandu
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jantina de Vries
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|