1
|
Armstrong A, Tang Y, Mukherjee N, Zhang N, Huang G. Into the storm: the imbalance in the yin-yang immune response as the commonality of cytokine storm syndromes. Front Immunol 2024; 15:1448201. [PMID: 39318634 PMCID: PMC11420043 DOI: 10.3389/fimmu.2024.1448201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
There is a continuous cycle of activation and contraction in the immune response against pathogens and other threats to human health in life. This intrinsic yin-yang of the immune response ensures that inflammatory processes can be appropriately controlled once that threat has been resolved, preventing unnecessary tissue and organ damage. Various factors may contribute to a state of perpetual immune activation, leading to a failure to undergo immune contraction and development of cytokine storm syndromes. A literature review was performed to consider how the trajectory of the immune response in certain individuals leads to cytokine storm, hyperinflammation, and multiorgan damage seen in cytokine storm syndromes. The goal of this review is to evaluate how underlying factors contribute to cytokine storm syndromes, as well as the symptomatology, pathology, and long-term implications of these conditions. Although the recognition of cytokine storm syndromes allows for universal treatment with steroids, this therapy shows limitations for symptom resolution and survival. By identifying cytokine storm syndromes as a continuum of disease, this will allow for a thorough evaluation of disease pathogenesis, consideration of targeted therapies, and eventual restoration of the balance in the yin-yang immune response.
Collapse
Affiliation(s)
- Amy Armstrong
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yuting Tang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Neelam Mukherjee
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Urology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Pathology & Laboratory Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
2
|
Loginova M, Morozova N, Paramonov I. HLA-B*07:510, a novel HLA-B allele identified in two not relative individuals. HLA 2024; 104:e15699. [PMID: 39291352 DOI: 10.1111/tan.15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
HLA-B*07:510, a novel HLA-B allele with one exonic mutation identified in two Russian individuals.
Collapse
Affiliation(s)
- Maria Loginova
- Federal State Budget Research Institution: Kirov Hematology and Blood Transfusion Research Institute under the Federal Medicine and Biology Agency, Kirov, Russia
- Federal State Budget Educational Institution of Higher Professional Education: Vyatka State University, Kirov, Russia
| | - Nadezhda Morozova
- Federal State Budget Research Institution: Kirov Hematology and Blood Transfusion Research Institute under the Federal Medicine and Biology Agency, Kirov, Russia
| | - Igor Paramonov
- Federal State Budget Research Institution: Kirov Hematology and Blood Transfusion Research Institute under the Federal Medicine and Biology Agency, Kirov, Russia
| |
Collapse
|
3
|
Sackstein P, Williams A, Zemel R, Marks JA, Renteria AS, Rivero G. Transplant Eligible and Ineligible Elderly Patients with AML-A Genomic Approach and Next Generation Questions. Biomedicines 2024; 12:975. [PMID: 38790937 PMCID: PMC11117792 DOI: 10.3390/biomedicines12050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
The management of elderly patients diagnosed with acute myelogenous leukemia (AML) is complicated by high relapse risk and comorbidities that often preclude access to allogeneic hematopoietic cellular transplantation (allo-HCT). In recent years, fast-paced FDA drug approval has reshaped the therapeutic landscape, with modest, albeit promising improvement in survival. Still, AML outcomes in elderly patients remain unacceptably unfavorable highlighting the need for better understanding of disease biology and tailored strategies. In this review, we discuss recent modifications suggested by European Leukemia Network 2022 (ELN-2022) risk stratification and review recent aging cell biology advances with the discussion of four AML cases. While an older age, >60 years, does not constitute an absolute contraindication for allo-HCT, the careful patient selection based on a detailed and multidisciplinary risk stratification cannot be overemphasized.
Collapse
Affiliation(s)
- Paul Sackstein
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Alexis Williams
- Department of Medicine, New York University, New York, NY 10016, USA;
| | - Rachel Zemel
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Jennifer A. Marks
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Anne S. Renteria
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Gustavo Rivero
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| |
Collapse
|
4
|
Simoes Torigoe RM, Revzin A, Badley A, Wyles S. Ink-spiring innovations: 3D bioprinting skin models for disease discovery. Regen Med 2024; 19:65-68. [PMID: 38179985 DOI: 10.2217/rme-2023-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Tweetable abstract Inflammatory skin diseases account for most chronic skin conditions. 3D bioprinting is an exciting technology that can revolutionize the understanding and approach to treatment of atopic dermatitis and graft-versus-host disease.
Collapse
Affiliation(s)
| | - Alexander Revzin
- Mayo Clinic Department of Physiology & Biomedical Engineering, Rochester, MN 55905, USA
| | - Andrew Badley
- Mayo Clinic Divison of Infectious Diseases, Rochester, MN 55905, USA
| | - Saranya Wyles
- Mayo Clinic Department of Dermatology, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Giardino Torchia ML, Moody G. DIALing-up the preclinical characterization of gene-modified adoptive cellular immunotherapies. Front Immunol 2023; 14:1264882. [PMID: 38090585 PMCID: PMC10713823 DOI: 10.3389/fimmu.2023.1264882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The preclinical characterization of gene modified adoptive cellular immunotherapy candidates for clinical development often requires the use of mouse models. Gene-modified lymphocytes (GML) incorporating chimeric antigen receptors (CAR) and T-cell receptors (TCR) into immune effector cells require in vivo characterization of biological activity, mechanism of action, and preclinical safety. Typically, this characterization involves the assessment of dose-dependent, on-target, on-tumor activity in severely immunocompromised mice. While suitable for the purpose of evaluating T cell-expressed transgene function in a living host, this approach falls short in translating cellular therapy efficacy, safety, and persistence from preclinical models to humans. To comprehensively characterize cell therapy products in mice, we have developed a framework called "DIAL". This framework aims to enable an end-to-end understanding of genetically engineered cellular immunotherapies in vivo, from infusion to tumor clearance and long-term immunosurveillance. The acronym DIAL stands for Distribution, Infiltration, Accumulation, and Longevity, compartmentalizing the systemic attributes of gene-modified cellular therapy and providing a platform for optimization with the ultimate goal of improving therapeutic efficacy. This review will discuss both existent and emerging examples of DIAL characterization in mouse models, as well as opportunities for future development and optimization.
Collapse
Affiliation(s)
| | - Gordon Moody
- Cell Therapy Unit, Oncology Research, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
6
|
Mehta RS. Pick Your Poison: Higher Risk of Relapse (older MSD) or A Higher Risk of Non-Relapse Mortality (younger MUD)? Transplant Cell Ther 2023; 29:587-588. [PMID: 37827596 DOI: 10.1016/j.jtct.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Rohtesh S Mehta
- Associate Professor, Clinical Research Division Fred Hutch; Associate Professor, University of Washington School of Medicine, Seattle, WA 98109.
| |
Collapse
|
7
|
Houwaart T, Scholz S, Pollock NR, Palmer WH, Kichula KM, Strelow D, Le DB, Belick D, Hülse L, Lautwein T, Wachtmeister T, Wollenweber TE, Henrich B, Köhrer K, Parham P, Guethlein LA, Norman PJ, Dilthey AT. Complete sequences of six major histocompatibility complex haplotypes, including all the major MHC class II structures. HLA 2023; 102:28-43. [PMID: 36932816 PMCID: PMC10986641 DOI: 10.1111/tan.15020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
Accurate and comprehensive immunogenetic reference panels are key to the successful implementation of population-scale immunogenomics. The 5Mbp Major Histocompatibility Complex (MHC) is the most polymorphic region of the human genome and associated with multiple immune-mediated diseases, transplant matching and therapy responses. Analysis of MHC genetic variation is severely complicated by complex patterns of sequence variation, linkage disequilibrium and a lack of fully resolved MHC reference haplotypes, increasing the risk of spurious findings on analyzing this medically important region. Integrating Illumina, ultra-long Nanopore, and PacBio HiFi sequencing as well as bespoke bioinformatics, we completed five of the alternative MHC reference haplotypes of the current (GRCh38/hg38) build of the human reference genome and added one other. The six assembled MHC haplotypes encompass the DR1 and DR4 haplotype structures in addition to the previously completed DR2 and DR3, as well as six distinct classes of the structurally variable C4 region. Analysis of the assembled haplotypes showed that MHC class II sequence structures, including repeat element positions, are generally conserved within the DR haplotype supergroups, and that sequence diversity peaks in three regions around HLA-A, HLA-B+C, and the HLA class II genes. Demonstrating the potential for improved short-read analysis, the number of proper read pairs recruited to the MHC was found to be increased by 0.06%-0.49% in a 1000 Genomes Project read remapping experiment with seven diverse samples. Furthermore, the assembled haplotypes can serve as references for the community and provide the basis of a structurally accurate genotyping graph of the complete MHC region.
Collapse
Affiliation(s)
- Torsten Houwaart
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stephan Scholz
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Nicholas R. Pollock
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - William H. Palmer
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Katherine M. Kichula
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Daniel Strelow
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Duyen B. Le
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Dana Belick
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Lisanna Hülse
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Lautwein
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Thorsten Wachtmeister
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tassilo E. Wollenweber
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl Köhrer
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Peter Parham
- Department of Structural Biology, and Department of Microbiology and ImmunologyStanford UniversityStanfordCaliforniaUSA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, and Department of Microbiology and ImmunologyStanford UniversityStanfordCaliforniaUSA
| | - Paul J. Norman
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Alexander T. Dilthey
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
8
|
Habets DHJ, Al-Nasiry S, Nagelkerke SQ, Voorter CEM, Spaanderman MEA, Kuijpers TW, Wieten L. Analysis of FCGR3A-p.176Val variants in women with recurrent pregnancy loss and the association with CD16a expression and anti-HLA antibody status. Sci Rep 2023; 13:5232. [PMID: 36997584 PMCID: PMC10063683 DOI: 10.1038/s41598-023-32156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
AbstractNatural Killer (NK) cells have been implicated in recurrent pregnancy loss (RPL). The p.Val176Phe (or Val158Phe) Single Nucleotide Polymorphism (SNP) in the FCGR3A gene encoding the FcγRIIIA or CD16a receptor has been associated with an enhanced affinity for IgG and stronger NK-mediated antibody-dependent cellular cytotoxicity. We hypothesized that the presence of at least one p.176Val variant associates with RPL and increased CD16a expression and alloantibodies e.g., against paternal human leukocyte antigen (HLA). In 50 women with RPL, we studied frequencies of the p.Val176Phe FCGR3A polymorphisms. Additionally, CD16a expression and anti-HLA antibody status were analyzed by flowcytometry and Luminex Single Antigens. In woman with RPL, frequencies were: 20% (VV), 42% (VF) and 38% (FF). This was comparable to frequencies from the European population in the NCBI SNP database and in an independent Dutch cohort of healthy women. NK cells from RPL women with a VV (22,575 [18731-24607]) and VF (24,294 [20157-26637]) polymorphism showed a higher expression of the CD16a receptor than NK cells from RPL women with FF (17,367 [13257-19730]). No difference in frequencies of the FCGR3A-p.176 SNP were detected when comparing women with or without class I and class II anti-HLA antibodies. Our study does not provide strong evidence for an association between the p.Val176Phe FCGR3A SNP and RPL.
Collapse
|
9
|
Smirnova D, Loginova M, Druzhinina S, Paramonov I, Abramova A, Simakova T. Distributions of HLA-A, -B, -C, -DRB1 and -DQB1 alleles typed by next generation sequencing in Russian volunteer donors. HLA 2023; 101:623-633. [PMID: 36825428 DOI: 10.1111/tan.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
HLA genes play a major role for successful hematopoietic stem cell transplantation (HSCT). While the success of HSCT depends on a HLA compatibility between donor and patient, finding a suitable donor remains challenging because of the high polymorphic nature of HLA genes. In this study, HLA-A, -B, -C, -DRB1 and -DQB1 alleles were genotyped at the 3-fields resolution level using MiSeq Illumina of 3341 Russian volunteers from the Kirov bone marrow Registry. Full gene of HLA-A, -B and -C, exons 2-4 of HLA-DRB1 and exons 1-5 of HLA-DQB1 were amplified by multiplex long-range polymerase chain reaction (PCR) and each allele was determined by matching the targeted regions and the reference sequence consisting of the IPD-IMGT/HLA Database. A total of 79 alleles of HLA-A, 115 alleles of HLA-B, 67 alleles of HLA-C, 71 alleles of HLA-DRB1 and 34 alleles of HLA-DQB1 were identified. According to common, intermediate and well-documented catalogs, 38 alleles in HLA-A, 69 in HLA-B, 39 in HLA-C, 48 in HLA-DRB1 and 21 in HLA-DQB1 locus were common alleles, and 5, 7, 7, 7, 2 kinds, accordingly, to written above were well-documented alleles. A total of 12 novel alleles including 3 alleles in HLA-A, 3 alleles in HLA-B, 1 allele in HLA-C, 2 alleles in HLA-DRB1 and 3 alleles in HLA-DQB1 loci were found. Six haplotypes with a frequency of more than 1.0% accounted for 13.19% of the total haplotype frequencies. This information on rare and novel alleles found by HLA typing with NGS may be helpful for unrelated HSCT among Russians.
Collapse
Affiliation(s)
- Daria Smirnova
- Federal State Budget Research Institution, Kirov Hematology and Blood Transfusion Research Institute under the Federal Medicine and Biology Agency, Kirov, Russia
| | - Maria Loginova
- Federal State Budget Research Institution, Kirov Hematology and Blood Transfusion Research Institute under the Federal Medicine and Biology Agency, Kirov, Russia.,Federal State Budget Educational Institution of Higher Professional Education, Vyatka State University, Kirov, Russia
| | - Svetlana Druzhinina
- Federal State Budget Research Institution, Kirov Hematology and Blood Transfusion Research Institute under the Federal Medicine and Biology Agency, Kirov, Russia
| | - Igor Paramonov
- Federal State Budget Research Institution, Kirov Hematology and Blood Transfusion Research Institute under the Federal Medicine and Biology Agency, Kirov, Russia
| | | | | |
Collapse
|
10
|
Said R, Sellami MH, Kaabi H, Hmida S. Minor histocompatibility antigens HA-8 and PANE1 in the TUNISIAN population. Mol Genet Genomic Med 2022; 10:e2050. [PMID: 36036171 PMCID: PMC9651600 DOI: 10.1002/mgg3.2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Minor histocompatibility antigens (mHAgs) are endogenous immunogenic peptides initially identified due to complications detected in several contexts of HLA geno-identical hematopoietic stem cell transplantation (HSCT). In this study, we chose to examine the molecular polymorphism of the mHAgs HA-8 and PANE1 in the Tunisian population. MATERIAL AND METHODS This study was conducted on 150 healthy and unrelated individuals. The DNA extraction and Sequence-Specific Primers PCR (PCR-SSP) methods were used for the molecular genotyping of the selected SNPs: PUM3 (rs2173904) and CENPM (rs5758511). RESULTS Our results show that, 94% of Tunisians are carriers of the PANE1R allele (immunogenic variant of the PANE1 mHAg) and 68% of Tunisians are carriers of the HA-8R allele (immunogenic variant of the HA-8 mHAg). Furthermore, this study shows that about 5% of the Tunisians are carrier of the PANE1R antigen and its HLA molecule of presentation (the PANE1R/HLA-A*0301 combination). However, only 2% of Tunisians are carrier of the HA-8R/HLA-A*0201 combination, that is, the HA8 immunogenic variant and its specific HLA molecule of presentation. CONCLUSION Our results are close to those reported in Caucasian, Asiatic, and African populations, this may be explained by the historical events experienced by Tunisia for millennia. These results could be used for further clinical and anthropological studies.
Collapse
Affiliation(s)
- Rahma Said
- Department of ImmunohaematologyNational Blood Transfusion Center of TunisTunisTunisia
| | | | - Houda Kaabi
- Department of ImmunohaematologyNational Blood Transfusion Center of TunisTunisTunisia
| | - Slama Hmida
- Department of ImmunohaematologyNational Blood Transfusion Center of TunisTunisTunisia
| |
Collapse
|
11
|
Timofeeva OA, Philogene MC, Zhang QJ. Current donor selection strategies for allogeneic hematopoietic cell transplantation. Hum Immunol 2022; 83:674-686. [PMID: 36038413 DOI: 10.1016/j.humimm.2022.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/27/2022]
Abstract
Since the first allogeneic hematopoietic stem cell transplantation (HCT) was performed by Dr. E. Donnall Thomas in 1957, the field has advanced with new stem cell sources, immune suppressive regimens, and transplant protocols. Stem cells may be collected from bone marrow, peripheral or cord blood from an identical twin, a sibling, or a related or unrelated donor, which can be human leukocyte antigen (HLA) matched, mismatched, or haploidentical. Although HLA matching is one of the most important criteria for successful allogeneic HCT (allo-HCT) to minimize graft vs host disease (GVHD), prevent relapse, and improve overall survival, the novel immunosuppressive protocols for GVHD prophylaxis offered improved outcomes in haploidentical HCT (haplo-HCT), expanding donor availability for the majority of HCT candidates. These immunosuppressive protocols are currently being tested with the HLA-matched and mismatched donors to improve HCT outcomes further. In addition, fine-tuning the DPB1 mismatching and discovering the B leader genotype and mismatching may offer further optimization of donor selection and transplant outcomes. While the decision about a donor type largely depends on the patient's characteristics, disease status, and the transplant protocols utilized by an individual transplant center, there are general approaches to donor selection dictated by donor-recipient histocompatibility and the urgency for HCT. This review highlights recent advances in understanding critical factors in donor selection strategies for allo-HCT. It uses clinical vignettes to demonstrate the importance of making timely decisions for HCT candidates.
Collapse
Affiliation(s)
- Olga A Timofeeva
- Department of Pathology and Laboratory Medicine, MedStar Georgetown University Hospital, Georgetown University School of Medicine, Georgetown University Medical Center, Washington, DC 20007, United States.
| | - Mary Carmelle Philogene
- Histocompatibility Laboratory Services, American Red Cross, Penn-Jersey Region, Philadelphia, PA 19123, United States.
| | - Qiuheng Jennifer Zhang
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, United States.
| |
Collapse
|
12
|
Grubic Z, Burek Kamenaric M, Maskalan M, Durakovic N, Vrhovac R, Stingl Jankovic K, Serventi Seiwerth R, Zunec R. Various approaches for accessing the influence of human leukocyte antigens disparity in haploidentical stem cell transplantation. Int J Lab Hematol 2022; 44:547-557. [DOI: 10.1111/ijlh.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Zorana Grubic
- Tissue Typing Centre Clinical Department for Transfusion Medicine and Transplantation Biology University Hospital Centre Zagreb Zagreb Croatia
| | - Marija Burek Kamenaric
- Tissue Typing Centre Clinical Department for Transfusion Medicine and Transplantation Biology University Hospital Centre Zagreb Zagreb Croatia
| | - Marija Maskalan
- Tissue Typing Centre Clinical Department for Transfusion Medicine and Transplantation Biology University Hospital Centre Zagreb Zagreb Croatia
| | - Nadira Durakovic
- Department of Hematology Internal Clinic University Hospital Centre Zagreb Zagreb Croatia
| | - Radovan Vrhovac
- Department of Hematology Internal Clinic University Hospital Centre Zagreb Zagreb Croatia
| | - Katarina Stingl Jankovic
- Tissue Typing Centre Clinical Department for Transfusion Medicine and Transplantation Biology University Hospital Centre Zagreb Zagreb Croatia
| | | | - Renata Zunec
- Tissue Typing Centre Clinical Department for Transfusion Medicine and Transplantation Biology University Hospital Centre Zagreb Zagreb Croatia
| |
Collapse
|
13
|
Bastos M, Alcoceba M, Chillón MC, García‐Sanz R, Boix F. Identification of the novel
HLA‐A
*23:01:01:27
allele in an acute myeloid patient and related donor. HLA 2022; 100:62-64. [DOI: 10.1111/tan.14579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Miguel Bastos
- Department of Haematology University Hospital of Salamanca (HUS‐IBSAL) , CIBERONC, and Cancer Research Institute of Salamanca‐IBMCC (CSIC‐USAL University) Salamanca Spain
| | - Miguel Alcoceba
- Department of Haematology University Hospital of Salamanca (HUS‐IBSAL) , CIBERONC, and Cancer Research Institute of Salamanca‐IBMCC (CSIC‐USAL University) Salamanca Spain
| | - M. Carmen Chillón
- Department of Haematology University Hospital of Salamanca (HUS‐IBSAL) , CIBERONC, and Cancer Research Institute of Salamanca‐IBMCC (CSIC‐USAL University) Salamanca Spain
| | - Ramón García‐Sanz
- Department of Haematology University Hospital of Salamanca (HUS‐IBSAL) , CIBERONC, and Cancer Research Institute of Salamanca‐IBMCC (CSIC‐USAL University) Salamanca Spain
| | - Francisco Boix
- Department of Haematology University Hospital of Salamanca (HUS‐IBSAL) , CIBERONC, and Cancer Research Institute of Salamanca‐IBMCC (CSIC‐USAL University) Salamanca Spain
| |
Collapse
|
14
|
Ho JCY, Cheung SKF, Lui Z, Tang IWH, Yang W, Ip P, Lee CK, Middleton D, Kwok JSY. Revisit of Optimal Donor Number Estimation in the Hong Kong Bone Marrow Donor Registry. Front Immunol 2021; 12:638253. [PMID: 33936051 PMCID: PMC8085527 DOI: 10.3389/fimmu.2021.638253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/11/2021] [Indexed: 11/28/2022] Open
Abstract
High resolution typing of the HLA-DPB1 locus for patient who requested for hematopoietic stem cell transplantation (HSCT) workup has recently become mandatory by the National Marrow Donor Program (NMDP) in order to facilitate matching between donors and recipients for better outcomes. The likelihood of identifying HLA matched donors in Hong Kong, on top of the existing HLA-A, -B, -C, and -DRB1 loci, is revisited in this study. HLA-A, -B, -C, -DRB1 and -DPB1 genotypes of 5,266 volunteer unrelated Chinese donors from the Hong Kong Bone Marrow Donor Registry (HKBMDR), were included in this study. Matching models were employed to determine the matching probabilities for 10/10(DPB1) and 9/10(DPB1) HLA match. The matching probabilities are 20% at 10/10(DPB1) HLA match and 55% at 9/10(DPB1) match, based on the existing 130,000 donors in the HKBMDR. The likelihoods of match become 27% and 65% respectively, by increasing the registry to 250,000. However, if DPB T-cell-epitope (TCE) model is considered in the matching, the probability will increase to 46% at 10/10 DPB1 permissive mismatching. Our findings provide vital information about the future planning on the targeted recruitment size, HLA typing and search strategies of the donor registry and arose the transplant physicians’ acceptability to 9/10(DBP1) or 10/10(DBP1) HLA match. Nevertheless, the marrow donor registry has planned for increasing the registry size and bringing down the age of recruited donors which will ultimately enhance patient outcome.
Collapse
Affiliation(s)
- Jenny Chung Yee Ho
- Division of Transplantation and Immunogenetics, Queen Mary Hospital, Hong Kong, Hong Kong
| | | | - Zhongyi Lui
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ivan Wing Hong Tang
- Division of Transplantation and Immunogenetics, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Cheuk Kwong Lee
- Hong Kong Red Cross Blood Transfusion Services, Hong Kong, Hong Kong
| | - Derek Middleton
- Transplant Immunology, Royal Liverpool Hospital, Liverpool, United Kingdom
| | - Janette Siu Yin Kwok
- Division of Transplantation and Immunogenetics, Queen Mary Hospital, Hong Kong, Hong Kong
| |
Collapse
|
15
|
Paczesny S. Post-haematopoietic cell transplantation outcomes: why ST2 became a 'golden nugget' biomarker. Br J Haematol 2021; 192:951-967. [PMID: 32039480 PMCID: PMC7415515 DOI: 10.1111/bjh.16497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapies have emerged as highly promising approaches to treat cancer patients. Allogeneic haematopoietic cell transplantation (HCT) is the most validated tumour immunotherapy available to date but its clinical efficacy is limited by toxicities, such as graft-versus-host disease (GVHD) and treatment resistance leading to relapse. The problems with new cellular therapies and checkpoint inhibitors are similar. However, development of biomarkers post-HCT, particularly for toxicities, has taken off in the last decade and has expanded greatly. Thanks to the advances in genomics, transcriptomics, proteomics and cytomics technologies, blood biomarkers have been identified and validated in promising diagnostic tests, prognostic tests stratifying for future occurrence of GVHD, and predictive tests for responsiveness to GVHD therapy and non-relapse mortality. These biomarkers may facilitate timely and selective therapeutic intervention. This review outlines a path from biomarker discovery to first clinical correlation, focusing on soluble STimulation-2 (sST2) - the interleukin (IL)-33-decoy receptor - which is the most validated biomarker.
Collapse
Affiliation(s)
- Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Little AM, Akbarzad-Yousefi A, Anand A, Diaz Burlinson N, Dunn PPJ, Evseeva I, Latham K, Poulton K, Railton D, Vivers S, Wright PA. BSHI guideline: HLA matching and donor selection for haematopoietic progenitor cell transplantation. Int J Immunogenet 2021; 48:75-109. [PMID: 33565720 DOI: 10.1111/iji.12527] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/18/2023]
Abstract
A review of the British Society for Histocompatibility and Immunogenetics (BSHI) Guideline 'HLA matching and donor selection for haematopoietic progenitor cell transplantation' published in 2016 was undertaken by a BSHI appointed writing committee. Literature searches were performed and the data extracted were presented as recommendations according to the GRADE nomenclature.
Collapse
Affiliation(s)
- Ann-Margaret Little
- Histocompatibility and Immunogenetics Laboratory, Gartnavel General Hospital, Glasgow, UK.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Arash Akbarzad-Yousefi
- Histocompatibility and Immunogenetics Laboratory, NHS Blood and Transplant, Newcastle-Upon-Tyne, UK
| | - Arthi Anand
- Histocompatibility and Immunogenetics Laboratory, North West London Pathology, Hammersmith Hospital, London, UK
| | | | - Paul P J Dunn
- Transplant Laboratory University Hospitals of Leicester, Leicester General Hospital, Leicester, UK.,Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | | | - Katy Latham
- Cellular and Molecular Therapies, NHS Blood and Transplant, Bristol, UK
| | - Kay Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| | - Dawn Railton
- Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Paul A Wright
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
17
|
Zhu J, Campagne O, Torrice CD, Flynn G, Miller JA, Patel T, Suzuki O, Ptachcinski JR, Armistead PM, Wiltshire T, Mager DE, Weiner DL, Crona DJ. Evaluation of the performance of a prior tacrolimus population pharmacokinetic kidney transplant model among adult allogeneic hematopoietic stem cell transplant patients. Clin Transl Sci 2021; 14:908-918. [PMID: 33502111 PMCID: PMC8212733 DOI: 10.1111/cts.12956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract Tacrolimus is a calcineurin inhibitor used to prevent acute graft versus host disease in adult patients receiving allogeneic hematopoietic stem cell transplantation (HCT). Previous population pharmacokinetic (PK) models have been developed in solid organ transplant, yet none exists for patients receiving HCT. The primary objectives of this study were to (1) use a previously published population PK model in adult patients who underwent kidney transplant and apply it to allogeneic HCT; (2) evaluate model‐predicted tacrolimus steady‐state trough concentrations and simulations in patients receiving HCT; and (3) evaluate covariates that affect tacrolimus PK in allogeneic HCT. A total of 252 adult patients receiving allogeneic HCT were included in the study. They received oral tacrolimus twice daily (0.03 mg/kg) starting 3 days prior to transplant. Data for these analyses included baseline clinical and demographic data, genotype data for single nucleotide polymorphisms in CYP3A4/5 and ABCB1, and the first tacrolimus steady‐state trough concentration. A dosing simulation strategy based on observed trough concentrations (rather than model‐based predictions) resulted in 12% more patients successfully achieving tacrolimus trough concentrations within the institutional target range (5–10 ng/ml). Stepwise covariate analyses identified HLA match and conditioning regimen (myeloablative vs. reduced intensity) as significant covariates. Ultimately, a previously published tacrolimus population PK model in kidney transplant provided a platform to help establish a model‐based dose adjustment strategy in patients receiving allogenic HCT, and identified HCT‐specific covariates to be considered for future prospective studies. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Tacrolimus is a cornerstone immunosuppressant used in patients who undergo organ transplantations. However, because of its narrow therapeutic index and wide interpatient pharmacokinetic (PK) variability, optimizing its dose is crucial to maximize efficacy and minimize tacrolimus‐induced toxicities. Prior to this study, no tacrolimus population PK models have been developed for adult patients receiving allogeneic hematopoietic stem cell transplantation (HCT). Therefore, research effort was warranted to develop a population PK model that begins to propose more precision tacrolimus dosing and begins to address both a clinical and scientific gap in this patient population.
WHAT QUESTION DID THIS STUDY ADDRESS?
The study addressed whether there is value in utilizing the observed tacrolimus steady‐state trough concentrations from patients receiving allogeneic HCT within the context of a pre‐existing population PK model developed for kidney transplant. The study also addressed whether there are clinically relevant covariates specific to adult patients receiving allogeneic HCT.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Inclusion of a single steady‐state tacrolimus trough concentration is beneficial to model predictions. The dosing simulation strategy based on observed tacrolimus concentration, rather than the model‐predicted concentration, resulted in more patients achieving the target range at first steady‐state collection. Future studies should evaluate HLA matching and myeloablative conditioning versus reduced intensity conditioning regimens as covariates. These data and model‐informed dose adjustments should be included in future prospective studies. This research could also serve as a template as to how to assess the utility of prior information for other disease settings.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
The M2 model fitting method and D2 dosing simulation method can be applied to other clinical pharmacology studies where only a single steady‐state trough concentration is available per patient in the presence of a previously published population PK model.
Collapse
Affiliation(s)
- Jing Zhu
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chad D Torrice
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Gabrielle Flynn
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Jordan A Miller
- Department of Pharmacy, University of North Carolina Hospitals and Clinics, Chapel Hill, North Carolina, USA
| | - Tejendra Patel
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Oscar Suzuki
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Jonathan R Ptachcinski
- Department of Pharmacy, University of North Carolina Hospitals and Clinics, Chapel Hill, North Carolina, USA.,Division of Practice Advancement and Clinical Education, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Paul M Armistead
- Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Daniel L Weiner
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Daniel J Crona
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA.,Department of Pharmacy, University of North Carolina Hospitals and Clinics, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Chen DP, Wen YH, Wang PN, Hour AL, Lin WT, Hsu FP, Wang WT. The adverse events of haematopoietic stem cell transplantation are associated with gene polymorphism within human leukocyte antigen region. Sci Rep 2021; 11:1475. [PMID: 33446692 PMCID: PMC7809291 DOI: 10.1038/s41598-020-79369-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Adverse reactions may still occur in some patients after receiving haematopoietic stem cell transplantation (HSCT), even when choosing a human leukocyte antigen (HLA)-matched donor. The adverse reactions of transplantation include disease relapse, graft-versus-host disease (GVHD), mortality and CMV infection. However, only the relapse was discussed in our previous study. Therefore, in this study, we investigated the correlation between the gene polymorphisms within the HLA region and the adverse reactions of post-HSCT in patients with acute leukaemia (n = 176), where 72 patients were diagnosed with acute lymphocytic leukaemia (ALL) and 104 were acute myeloid leukaemia (AML). The candidate single nucleotide polymorphisms were divided into three models: donor, recipient, and donor-recipient pairs and the data of ALL and AML were analysed individually. Based on the results, we found 16 SNPs associated with the survival rates, the risk of CMV infection, or the grade of GVHD in either donor, recipient, or donor-recipient matching models. In the ALL group, the rs209132 of TRIM27 in the donor group was related to CMV infection (p = 0.021), the rs213210 of RING1 in the recipient group was associated with serious GVHD (p = 0.003), and the rs2227956 of HSPA1L in the recipient group correlated with CMV infection (p = 0.001). In the AML group, the rs3130048 of BAG6 in the donor-recipient pairs group was associated with serious GVHD (p = 0.048). Moreover, these SNPs were further associated with the duration time of survival after transplantation. These results could be applied to select the best donor in HSCT.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan County, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan County, Taiwan.
| | - Ying-Hao Wen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ai-Ling Hour
- Department of Life Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
| | - Fang-Ping Hsu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
| | - Wei-Ting Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
| |
Collapse
|
19
|
[Chimeric antigen receptors in oncology: clinical applications and new developments]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:1331-1340. [PMID: 33021679 PMCID: PMC7648004 DOI: 10.1007/s00103-020-03222-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
In 2018, two novel cancer therapies based on chimeric antigen receptors (CARs) were granted marketing authorization in the European Union. Authorized for use against advanced lymphoma and/or leukemia, the products were at the center of international attention, not only due to their novel mode of action and their encouraging efficacy but also because of their sometimes severe side effects and the economic and logistic challenges posed by their manufacture. Now, almost two years later, hundreds of active clinical trials emphasize the global drive to harness the full potential of CAR technology.In this article, we describe the mode of action of CAR T and CAR NK cells and review the clinical testing situation as well as early real-world data. In recent years, preclinical studies using advanced animal models have provided first insights into the mechanisms underlying the severe side effects of CAR T therapy. We summarize their results and describe the available models. Additionally, we discuss potential solutions to the hurdles currently limiting CAR technology. So far used as last-line treatment for patients with aggressive disease, CAR technology has the potential to become a new, broadly effective standard for tumor therapy.
Collapse
|
20
|
The importance of MHC class II in allogeneic bone marrow transplantation and chimerism-based solid organ tolerance in a rat model. PLoS One 2020; 15:e0233497. [PMID: 32442182 PMCID: PMC7244129 DOI: 10.1371/journal.pone.0233497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/06/2020] [Indexed: 01/25/2023] Open
Abstract
Mixed hematopoietic chimerism enables donor-specific tolerance for solid organ grafts. This study evaluated the influence of different serological major histocompatibility complex disparities on chimerism development, graft-versus-host disease incidence and subsequently on solid organ tolerance in a rat model. For bone marrow transplantation conditioning total body irradiation was titrated using 10, 8 or 6 Gray. Bone marrow transplantation was performed across following major histocompatibility complex mismatched barriers: complete disparity, MHC class II, MHC class I or non-MHC mismatch. Recipients were clinically monitored for graft-versus-host disease and analyzed for chimerism using flow cytometry. After a reconstitution of 100 days, composition of peripheral leukocytes was determined. Mixed chimeras were challenged with heart grafts from allogeneic donor strains to define the impact of donor MHC class disparities on solid organ tolerance on the basis of stable chimerism. After myeloablation with 10 Gray of total body irradiation, chimerism after bone marrow transplantation was induced independent of MHC disparity. MHC class II disparity increased the incidence of graft-versus-host disease and reduced induction of stable chimerism upon myelosuppressive total body irradiation with 8 and 6 Gray, respectively. Stable mixed chimeras showed tolerance towards heart grafts from donors with MHC matched to either bone marrow donors or recipients. Isolated matching of MHC class II with bone marrow donors likewise led to stable tolerance as opposed to matching of MHC class I. In summary, MHC class II disparity was critically associated with the onset of graft-versus host disease and was identified as obstacle for successful development of chimerism after bone marrow transplantation and subsequent donor-specific solid organ tolerance.
Collapse
|
21
|
Satapornpong P, Jinda P, Jantararoungtong T, Koomdee N, Chaichan C, Pratoomwun J, Na Nakorn C, Aekplakorn W, Wilantho A, Ngamphiw C, Tongsima S, Sukasem C. Genetic Diversity of HLA Class I and Class II Alleles in Thai Populations: Contribution to Genotype-Guided Therapeutics. Front Pharmacol 2020; 11:78. [PMID: 32180714 PMCID: PMC7057685 DOI: 10.3389/fphar.2020.00078] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Human leukocyte antigen (HLA) class I and II are known to have association with severe cutaneous adverse reactions (SCARs) when exposing to certain drug treatment. Due to genetic differences at population level, drug hypersensitivity reactions are varied, and thus common pharmacogenetics markers for one country might be different from another country, for instance, HLA-A*31:01 is associated with carbamazepine (CBZ)-induced SCARs in European and Japanese while HLA-B*15:02 is associated with CBZ-induced Stevens–Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) among Taiwanese and Southeast Asian. Such differences pose a major challenge to prevent drug hypersensitivity when pharmacogenetics cannot be ubiquitously and efficiently translated into clinic. Therefore, a population-wide study of the distribution of HLA-pharmacogenetics markers is needed. This work presents a study of Thai HLA alleles on both HLA class I and II genes from 470 unrelated Thai individuals by means of polymerase chain reaction sequence-specific oligonucleotide (PCR-SSO) in which oligonucleotide probes along the stretches of HLA-A, -B, -C, -DRB1, -DQA1, and -DQB1 genes were genotyped. These 470 individuals were selected according to their regional locations, which were from North, Northeast, South, Central, and a capital city, Bangkok. Top ranked HLA alleles in Thai population include HLA-A*11:01 (26.06%), -B*46:01 (14.04%), -C* 01:02 (17.13%), -DRB1*12:02 (15.32%), -DQA1*01:01 (24.89%), and -DQB1*05:02 (21.28%). The results revealed that the distribution of HLA-pharmacogenetics alleles from the South had more HLA-B75 family that a typical HLA-B*15:02 pharmacogenetics test for SJS/TEN screening would not cover. Besides the view across the nation, when compared HLA alleles from Thai population with HLA alleles from both European and Asian countries, the distribution landscape of HLA-associated drug hypersensitivity across many countries could be observed. Consequently, this pharmacogenetics database offers a comprehensive view of pharmacogenetics marker distribution in Thailand that could be used as a reference for other Southeast Asian countries to validate the feasibility of their future pharmacogenetics deployment.
Collapse
Affiliation(s)
- Patompong Satapornpong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlawat Chaichan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jirawat Pratoomwun
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chalitpon Na Nakorn
- Graduate Program in Translational Medicine, Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wichai Aekplakorn
- Department of Community Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Alisa Wilantho
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group, Bangkok, Thailand
| |
Collapse
|
22
|
Kawase T, Tanaka H, Kojima H, Uchida N, Ohashi K, Fukuda T, Ozawa Y, Ikegame K, Eto T, Mori T, Miyamoto T, Hidaka M, Shiratori S, Takanashi M, Atsuta Y, Ichinohe T, Kanda Y, Kanda J. Impact of High-Frequency HLA Haplotypes on Clinical Cytomegalovirus Reactivation in Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:2482-2489. [PMID: 31400501 DOI: 10.1016/j.bbmt.2019.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022]
Abstract
Some studies support the hypothesis that HLA genes and haplotypes evolved by natural selection through their protective abilities against specific infectious pathogens. However, very little is known regarding the impact of high-frequency HLA haplotypes on the risk of relevant infectious diseases among a given ethnic group. We evaluated the impact of high-frequency HLA haplotypes on cytomegalovirus (CMV) reactivation and infection in allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a Japanese population as a model of infectious disease that has coexisted with humans. A total of 21,127 donor-patient pairs were analyzed. HLA-A-B-DRB1 haplotypes were estimated using the maximum probability algorithm. Seven haplotypes with >1% frequency were defined as high-frequency haplotypes (HfHPs). Homozygotes of HfHP and heterozygotes had significantly lower risk of CMV reactivation and infection (hazard ratio [HR] = 0.88, P = .009 and HR = 0.93, P = .003, respectively) than homozygotes of low-frequency HLA haplotypes (LfHPs). In subgroup analyses of a different donor source, these associations were statistically significant in unrelated donor transplants. Finally, CMV risk for homozygotes and heterozygotes of each HfHP was compared with that of homozygotes of LfHPs. The 2 most predominant HfHP groups (A*24:02-B*52:01-DRB1*15:02 group and A*24:02-B*07:02-DRB1*01:01 group) had a significantly lower risk of CMV reactivation and infection (HR = 0.86, P < .001 and HR = 0.91, P = .033, respectively). Our findings suggest that HfHPs may be protective against CMV reactivation and infection and that increased care regarding CMV reactivation and infection may be necessary for patients with LfHP after allo-HSCT.
Collapse
Affiliation(s)
- Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| | | | | | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Miyamoto
- Hematology, Oncology & Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Michihiro Hidaka
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Souichi Shiratori
- Department of Hematology, Hokkaido University Hospital, Hokkaido, Japan
| | - Minoko Takanashi
- Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Aichi, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Tochigi, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Kumar S, Leigh ND, Cao X. The Role of Co-stimulatory/Co-inhibitory Signals in Graft-vs.-Host Disease. Front Immunol 2018; 9:3003. [PMID: 30627129 PMCID: PMC6309815 DOI: 10.3389/fimmu.2018.03003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapeutic approach for various hematologic and immunologic ailments. Despite the beneficial impact of allo-HCT, its adverse effects cause severe health concerns. After transplantation, recognition of host cells as foreign entities by donor T cells induces graft-vs.-host disease (GVHD). Activation, proliferation and trafficking of donor T cells to target organs and tissues are critical steps in the pathogenesis of GVHD. T cell activation is a synergistic process of T cell receptor (TCR) recognition of major histocompatibility complex (MHC)-anchored antigen and co-stimulatory/co-inhibitory signaling in the presence of cytokines. Most of the currently used therapeutic regimens for GVHD are based on inhibiting the allogeneic T cell response or T-cell depletion (TCD). However, the immunosuppressive drugs and TCD hamper the therapeutic potential of allo-HCT, resulting in attenuated graft-vs.-leukemia (GVL) effect as well as increased vulnerability to infection. In view of the drawback of overbroad immunosuppression, co-stimulatory, and co-inhibitory molecules are plausible targets for selective modulation of T cell activation and function that can improve the effectiveness of allo-HCT. Therefore, this review collates existing knowledge of T cell co-stimulation and co-inhibition with current research that may have the potential to provide novel approaches to cure GVHD without sacrificing the beneficial effects of allo-HCT.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nicholas D Leigh
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
24
|
Fabreti-Oliveira RA, Marsh SGE, Lasmar MF, Nascimento E. Six novel HLA-B, -DRB1, and -DQB1 alleles identified in Brazilian individuals. HLA 2018; 92:171-172. [DOI: 10.1111/tan.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 11/29/2022]
Affiliation(s)
- R. A. Fabreti-Oliveira
- Faculty of Medical Sciences; Belo Horizonte Brazil
- IMUNOLAB-Laboratory of Histocompatibility; Belo Horizonte Brazil
| | - S. G. E. Marsh
- Anthony Nolan Research Institute, UCL Cancer Institute; London UK
| | - M. F. Lasmar
- Faculty of Medical Sciences; Belo Horizonte Brazil
- University Hospital of the Faculty of Medical Science; Belo Horizonte Brazil
| | - E. Nascimento
- Faculty of Medical Sciences; Belo Horizonte Brazil
- IMUNOLAB-Laboratory of Histocompatibility; Belo Horizonte Brazil
| |
Collapse
|
25
|
Biomarkers for posttransplantation outcomes. Blood 2018; 131:2193-2204. [PMID: 29622549 DOI: 10.1182/blood-2018-02-791509] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
During the last decade, the development of biomarkers for the complications seen after allogeneic hematopoietic stem cell transplantation has expanded tremendously, with the most progress having been made for acute graft-versus-host disease (aGVHD), a common and often fatal complication. Although many factors are known to determine transplant outcome (including the age of the recipient, comorbidity, conditioning intensity, donor source, donor-recipient HLA compatibility, conditioning regimen, posttransplant GVHD prophylaxis), they are incomplete guides for predicting outcomes. Thanks to the advances in genomics, transcriptomics, proteomics, and cytomics technologies, blood biomarkers have been identified and validated for us in promising diagnostic tests, prognostic tests stratifying for future occurrence of aGVHD, and predictive tests for responsiveness to GVHD therapy and nonrelapse mortality. These biomarkers may facilitate timely and selective therapeutic intervention. However, such blood tests are not yet available for routine clinical care. This article provides an overview of the candidate biomarkers for clinical evaluation and outlines a path from biomarker discovery to first clinical correlation, to validation in independent cohorts, to a biomarker-based clinical trial, and finally to general clinical application. This article focuses on biomarkers discovered with a large-scale proteomics platform and validated with the same reproducible assay in at least 2 independent cohorts with sufficient sample size according to the 2014 National Institutes of Health consensus on biomarker criteria, as well as on biomarkers as tests for risk stratification of outcomes, but not on their pathophysiologic contributions, which have been reviewed recently.
Collapse
|
26
|
Kwok J, Guo M, Yang W, Ip P, Chan GC, Ho J, Lee C, Middleton D, Lu L. Estimation of optimal donor number in Bone Marrow Donor Registry: Hong Kong’s experience. Hum Immunol 2017; 78:610-613. [DOI: 10.1016/j.humimm.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 07/18/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023]
|