1
|
Stevens AJ, Heiwari TM, Rich FJ, Bradley HA, Gur TL, Galley JD, Kennedy MA, Dixon LA, Mulder RT, Rucklidge JJ. Randomised control trial indicates micronutrient supplementation may support a more robust maternal microbiome for women with antenatal depression during pregnancy. Clin Nutr 2024; 43:120-132. [PMID: 39361984 DOI: 10.1016/j.clnu.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND AIMS We investigated the effects of high dose dietary micronutrient supplementation or placebo on the human gut microbiome in pregnant women who had moderate symptoms of antenatal depression. There is a significant absence of well-controlled clinical studies that have investigated the dynamic changes of the microbiome during pregnancy and the relationship among diet, microbiome and antenatal depression. This research is among the first to provide an insight into this area of research. METHODS This 12 - week study followed a standard double blinded randomised placebo-controlled trial (RCT) design with either high dose micronutrients or active placebo. Matching stool microbiome samples and mood data were obtained at baseline and post-treatment, from participants between 12 and 24 weeks gestation. Stool microbiome samples from 33 participants (17 in the placebo and 16 in the treatment group) were assessed using 16s rRNA sequencing. Data preparation and statistical analysis was predominantly performed using the QIIME2 bioinformatic software tools for 16s rRNA analysis. RESULTS Microbiome community structure became increasingly heterogenous with decreased diversity during the course of the study, which was represented by significant changes in alpha and beta diversity. This effect appeared to be mitigated by micronutrient administration. There were less substantial changes at the genus level, where Coprococcus decreased in relative abundance in response to micronutrient administration. We also observed that a higher abundance of Coprococcus and higher alpha diversity correlated with higher antenatal depression scores. CONCLUSIONS Micronutrient treatment appeared to support a more diverse (alpha diversity) and stable (beta diversity) microbiome during pregnancy. This may aid in maintaining a more resilient or adaptable microbial community, which would help protect against decreases or fluctuations that are observed during pregnancy.
Collapse
Affiliation(s)
- Aaron J Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand.
| | - Thalia M Heiwari
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Fenella J Rich
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Hayley A Bradley
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey D Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, 8011, New Zealand
| | - Lesley A Dixon
- New Zealand College of Midwives, Christchurch, New Zealand
| | - Roger T Mulder
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand; Canterbury District Health Board, Christchurch, New Zealand
| | - Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| |
Collapse
|
2
|
Urrutia-Angulo L, Ocejo M, Oporto B, Aduriz G, Lavín JL, Hurtado A. Unravelling the complexity of bovine milk microbiome: insights into mastitis through enterotyping using full-length 16S-metabarcoding. Anim Microbiome 2024; 6:58. [PMID: 39438939 PMCID: PMC11515664 DOI: 10.1186/s42523-024-00345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Mastitis, inflammation of the mammary gland, is a major disease of dairy cattle and the main cause for antimicrobial use. Although mainly caused by bacterial infections, the aetiological agent often remains unidentified by conventional microbiological culture methods. The aim of this study was to test whether shifts in the bovine mammary gland microbiota can result in initiation or progression of mastitis. METHODS Oxford-Nanopore long-read sequencing was used to generate full-length 16S rRNA gene reads (16S-metabarcoding) to characterise the microbial population of milk from healthy and diseased udder of cows classified into five groups based on their mastitis history and parity. RESULTS Samples were classified into six enterotypes, each characterised by a marker genus and several differentially-abundant genera. Two enterotypes were exclusively composed of clinical mastitis samples and displayed a marked dysbiosis, with a single pathogenic genus predominating and displacing the endogenous bacterial population. Other mastitis samples (all subclinical and half of the clinical) clustered with those from healthy animals into three enterotypes, probably reflecting intermediate states between health and disease. After an episode of clinical mastitis, clinical recovery and microbiome reconstitution do not always occur in parallel, indicating that the clinical definition of the udder health status does not consistently reflect the microbial profile. CONCLUSIONS These results show that mastitis is a dynamic process in which the udder microbiota constantly changes, highlighting the complexity of defining a unique microbiota profile indicative of mastitis.
Collapse
Affiliation(s)
- Leire Urrutia-Angulo
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Medelin Ocejo
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Beatriz Oporto
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Gorka Aduriz
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - José Luís Lavín
- Applied Mathematics Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Ana Hurtado
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
3
|
Tenea GN, Molina D. Deciphering the Cape Gooseberry Fruits Mycobiome for Further Safety Improvement Postharvest. Foods 2024; 13:3248. [PMID: 39456310 PMCID: PMC11506962 DOI: 10.3390/foods13203248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cape gooseberries are exquisitely flavored fruits; their rapid deterioration reduces their shelf life. Understanding the unique mycobiome of fruit peels is an essential step in identifying the taxa causing postharvest loss. The current study proposes to analyze the fungal communities of cape gooseberry peels collected from an organic orchard at unripe and ripe stages and purchased from open-air market sites, using the ITS2 region metabarcoding. According to the Kruskal-Wallis test, there were no statistically significant differences found in either the phylogenetic or non-phylogenetic alpha diversity indices. Significant differences in fungal communities were observed between the market and orchard groups based on beta diversity results. Ascomycota (85.72-96.76%), Basidiomycota (3.21-13.91%), and Chytridiomycota (0.07-9.35%) were the most common fungal phyla, their abundance varying with the ripening stage and origin. Dothideomycetes in the orchard group and Saccharomycetes in the market group were the two most prevalent classes. Furthermore, we investigate which taxa showed a significant difference in abundance between the two conditions (market vs. orchard) using the analysis of compositions of microbiomes with bias correction (ANCOM-BC) test. Regardless of the phase, the orchard samples exhibited a notable increase in the mean absolute abundance of various beneficial fungal taxa, including Tilletiopsis washingtonensis and Articulospora proliferata, whereas the market samples demonstrated a high abundance of harmful yeasts and molds such as Meyerozyma guilliermondii, Candida railenensis, and Botrytis caroliniana. Although it is unclear how these microorganisms augment at the market sites and might impact the fruit quality after harvest, from a fruit safety perspective, it is essential to comprehend the diversity and variation of the mycobiome composition at different ripening stages to further develop strategies to improve food safety postharvest.
Collapse
Affiliation(s)
- Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra 100150, Ecuador
| | | |
Collapse
|
4
|
Brettell LE, Hoque AF, Joseph TS, Dhokiya V, Hornett EA, Hughes GL, Heinz E. Mosquitoes reared in distinct insectaries within an institution in close spatial proximity possess significantly divergent microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610121. [PMID: 39257775 PMCID: PMC11383675 DOI: 10.1101/2024.08.28.610121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The microbiome affects important aspects of mosquito biology and differences in microbial composition can affect the outcomes of laboratory studies. To determine how the biotic and abiotic conditions in an insectary affect the composition of the bacterial microbiome of mosquitoes we reared mosquitoes from a single cohort of eggs from one genetically homogeneous inbred Aedes aegypti colony, which were split into three batches, and transferred to each of three different insectaries located within the Liverpool School of Tropical Medicine. Using three replicate trays per insectary, we assessed and compared the bacterial microbiome composition as mosquitoes developed from these eggs. We also characterised the microbiome of the mosquitoes' food sources, measured environmental conditions over time in each climate-controlled insectary, and recorded development and survival of mosquitoes. While mosquito development was overall similar between all three insectaries, we saw differences in microbiome composition between mosquitoes from each insectary. Furthermore, bacterial input via food sources, potentially followed by selective pressure of temperature stability and range, did affect the microbiome composition. At both adult and larval stages, specific members of the mosquito microbiome were associated with particular insectaries; and the insectary with less stable and cooler conditions resulted in slower pupation rate and higher diversity of the larval microbiome. Tray and cage effects were also seen in all insectaries, with different bacterial taxa implicated between insectaries. These results highlight the necessity of considering the variability and effects of different microbiome composition even in experiments carried out in a laboratory environment starting with eggs from one batch; and highlights the impact of even minor inconsistencies in rearing conditions due to variation of temperature and humidity.
Collapse
Affiliation(s)
- Laura E. Brettell
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK
| | - Ananya F. Hoque
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Tara S. Joseph
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Vishaal Dhokiya
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Emily A. Hornett
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Grant L. Hughes
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| |
Collapse
|
5
|
Thenappan DP, Thompson D, Joshi M, Mishra AK, Joshi V. Unraveling the spatio-temporal dynamics of soil and root-associated microbiomes in Texas olive orchards. Sci Rep 2024; 14:18214. [PMID: 39107341 PMCID: PMC11303695 DOI: 10.1038/s41598-024-68209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the structure and diversity of microbiomes is critical to establishing olives in non-traditional production areas. Limited studies have investigated soil and root-associated microbiota dynamics in olives across seasons or locations in the United States. We explored the composition and spatiotemporal patterns of the olive-associated microbial communities and specificity in two niches (rhizosphere and root endosphere), seasons (spring, summer, and fall), and domains (bacteria and fungi) in the microbiome of the olive cultivar Arbequina across three olive orchards in Texas. Phylum Proteobacteria, followed by Actinobacteriota, dominated the bacterial populations in the rhizosphere and endosphere. Rubrobacter and Actinophytocola were dominant taxa in the rhizosphere and root endosphere at the genus level. Among fungal communities, phylum Ascomycota was prevalent in the rhizosphere and endosphere, while members of the Chaetomiaceae family outnumbered other taxa in the root endosphere. As per the alpha diversity indices, the rhizosphere at Moulton showed much higher richness and diversity than other places, which predicted a significant difference in rhizosphere between locations for bacterial diversity and richness. There was no significant variation in the bacterial diversity in the niches and the fungal diversity within the root endosphere between locations. Beta diversity analysis confirmed the effect of compartments-in influencing community differences. Microbial diversity was apparent within the endosphere and rhizosphere. The seasons influenced only the rhizosphere fungal diversity, contrasting the bacterial diversity in either niche. The research provided a comprehensive overview of the microbial diversity in olive trees' rhizosphere and root endosphere. The abundance and composition of OTUs associated with the rhizosphere soil of Arbequina suggest its role as a source reservoir in defining the potential endophytes.
Collapse
Affiliation(s)
- Dhivya P Thenappan
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA
| | - Dalton Thompson
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA
| | - Madhumita Joshi
- The University of Texas at San Antonio (UTSA), San Antonio, TX, 78249, USA
| | - Amit Kumar Mishra
- Department of Botany, School of Life Sciences, Mizoram University, Aizawl, 796004, India
| | - Vijay Joshi
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA.
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Tenea GN, Molina D. Bacterial community structure of Physalis peruviana L. fruit exocarp and the presence of pathogens with possible implications on food safety. FRONTIERS IN PLANT SCIENCE 2024; 15:1410314. [PMID: 39091311 PMCID: PMC11291218 DOI: 10.3389/fpls.2024.1410314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
Introduction Cape gooseberry (Physalis peruviana L.) is a wellconsumed crop in Ecuador, whose fruits are abundant in bioactive molecules. Its rapid post-harvest deterioration and safety limit its market potential. Methodology To gather baseline data on the prevalence of bacterial taxa among groups, we employed 16S ribosomal RNA (16S rRNA) amplicon gene sequencing to detect changes in the bacterial community structure in cape gooseberry fruits harvested from an organic farm production system (# 270 samples x two ripeness stages), and fruits obtained from an open-air market (#270). Results This is the first report of bacterial taxa inhabiting cape gooseberry fruits. Shannon's diversity index revealed that the fruits purchased from the market and the unripe stage had the highest level of bacterial diversity (average Shannon indices of 3.3 and 3.1) followed by those collected from the field at the mature ripe stage (2.07). Alpha diversity analysis indicated that there were no significant differences in the number of taxa or evenness within the sample, whereas there was a significant difference in beta diversity between the groups. Rhizobiaceae was the most abundant family in fruits originating from the field regardless of the ripe stage, while Acetobacteraceae, Pseudomonadaceae, Fusobacteriaceae, Bacteroidaceae, and Erwiniaceae were the most abundant families in the market group. At the genus level, Liberibacter was the most abundant phytopathogen in fruits originating from the field, while Gluconobacter was the most abundant in samples collected from the market. The phytopathogen Candidatus_Liberibacter was the most abundant in samples collected from the field, while the fruits purchased from the market stands contained opportunistic enteric pathogens such as Escherichia vulneris, Klebsiella pneumoniae, and K. variicola, their relative abundance varied with the sample. In addition, potential pathogens of animal origin such as Fusobacterium necrophorum, Porphyromonas levii, Helcococcus ovis, and Trueperella pyogenes were found in almost all samples at varying relative abundance. Conclusion Our study provides basic information on the microbiome of cape gooseberries from agriculture fields to the table along with the detection of several pathogenic microorganisms with possible impact on food safety and public health therefore, strategies for reducing bacterial contamination in both farm and retail markets are compulsory.
Collapse
Affiliation(s)
- Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra, Ecuador
| | | |
Collapse
|
7
|
Lourenço KS, Suleiman AKA, Pijl A, Dimitrov MR, Cantarella H, Kuramae EE. Mix-method toolbox for monitoring greenhouse gas production and microbiome responses to soil amendments. MethodsX 2024; 12:102699. [PMID: 38660030 PMCID: PMC11041840 DOI: 10.1016/j.mex.2024.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, we adopt an interdisciplinary approach, integrating agronomic field experiments with soil chemistry, molecular biology techniques, and statistics to investigate the impact of organic residue amendments, such as vinasse (a by-product of sugarcane ethanol production), on soil microbiome and greenhouse gas (GHG) production. The research investigates the effects of distinct disturbances, including organic residue application alone or combined with inorganic N fertilizer on the environment. The methods assess soil microbiome dynamics (composition and function), GHG emissions, and plant productivity. Detailed steps for field experimental setup, soil sampling, soil chemical analyses, determination of bacterial and fungal community diversity, quantification of genes related to nitrification and denitrification pathways, measurement and analysis of gas fluxes (N2O, CH4, and CO2), and determination of plant productivity are provided. The outcomes of the methods are detailed in our publications (Lourenço et al., 2018a; Lourenço et al., 2018b; Lourenço et al., 2019; Lourenço et al., 2020). Additionally, the statistical methods and scripts used for analyzing large datasets are outlined. The aim is to assist researchers by addressing common challenges in large-scale field experiments, offering practical recommendations to avoid common pitfalls, and proposing potential analyses, thereby encouraging collaboration among diverse research groups.•Interdisciplinary methods and scientific questions allow for exploring broader interconnected environmental problems.•The proposed method can serve as a model and protocol for evaluating the impact of soil amendments on soil microbiome, GHG emissions, and plant productivity, promoting more sustainable management practices.•Time-series data can offer detailed insights into specific ecosystems, particularly concerning soil microbiota (taxonomy and functions).
Collapse
Affiliation(s)
- Késia Silva Lourenço
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
- Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Av. Barão de Itapura 1481, Campinas 13020-902, SP, Brazil
| | - Afnan Khalil Ahmad Suleiman
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
- Soil Health group, Bioclear Earth B.V., Rozenburglaan 13, Groningen 9727 DL, The Netherlands
| | - Agata Pijl
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
| | - Mauricio R. Dimitrov
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
| | - Heitor Cantarella
- Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Av. Barão de Itapura 1481, Campinas 13020-902, SP, Brazil
| | - Eiko Eurya Kuramae
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Timanikova N, Fletcher K, Han JW, van West P, Woodward S, Kim GH, Küpper FC, Wenzel M. Macroalgal eukaryotic microbiome composition indicates novel phylogenetic diversity and broad host spectrum of oomycete pathogens. Environ Microbiol 2024; 26:e16656. [PMID: 38818657 DOI: 10.1111/1462-2920.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Seaweeds are important components of marine ecosystems with emerging potential in aquaculture and as sources of biofuel, food products and pharmacological compounds. However, an increasingly recognised threat to natural and industrial seaweed populations is infection with parasitic single-celled eukaryotes from the relatively understudied oomycete lineage. Here we examine the eukaryomes of diverse brown, red and green marine macroalgae collected from polar (Baffin Island), cold-temperate (Falkland Islands) and tropical (Ascension Island) locations, with a focus on oomycete and closely related diatom taxa. Using 18S rRNA gene amplicon sequencing, we show unexpected genetic and taxonomic diversity of the eukaryomes, a strong broad-brush association between eukaryome composition and geographic location, and some evidence of association between eukaryome structure and macroalgal phylogenetic relationships (phylosymbiosis). However, the oomycete fraction of the eukaryome showed disparate patterns of diversity and structure, highlighting much weaker association with geography and no evidence of phylosymbiosis. We present several novel haplotypes of the most common oomycete Eurychasma dicksonii and report for the first time a cosmopolitan distribution and absence of host specificity of this important pathogen. This indicates rich diversity in macroalgal oomycete pathogens and highlights that these pathogens may be generalist and highly adaptable to diverse environmental conditions.
Collapse
Affiliation(s)
| | - Kyle Fletcher
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Oceanlab, University of Aberdeen, Newburgh, UK
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and Development, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jon-Wong Han
- Kongju National University, Gongju, South Chungcheong Province, South Korea
| | - Pieter van West
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and Development, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Steve Woodward
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Gwang-Hoon Kim
- Kongju National University, Gongju, South Chungcheong Province, South Korea
| | - Frithjof C Küpper
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Kongju National University, Gongju, South Chungcheong Province, South Korea
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, UK
- Department of Chemistry and Biochemistry, San Diego State University, California, San Diego, California, USA
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
9
|
Kusakabe R, Sasuga M, Yamato M. Ubiquitous arbuscular mycorrhizal fungi in the roots of herbaceous understory plants with hyphal degeneration in Colchicaceae and Gentianaceae. MYCORRHIZA 2024; 34:181-190. [PMID: 38630303 PMCID: PMC11166799 DOI: 10.1007/s00572-024-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 06/12/2024]
Abstract
Due to the loss of photosynthetic ability during evolution, some plant species rely on mycorrhizal fungi for their carbon source, and this nutritional strategy is known as mycoheterotrophy. Mycoheterotrophic plants forming Paris-type arbuscular mycorrhizas (AM) exhibit two distinctive mycorrhizal features: degeneration of fungal materials and specialization towards particular fungal lineages. To explore the possibility that some understory AM plants show partial mycoheterotrophy, i.e., both photosynthetic and mycoheterotrophic nutritional strategies, we investigated 13 green herbaceous plant species collected from five Japanese temperate forests. Following microscopic observation, degenerated hyphal coils were observed in four species: two Colchicaceae species, Disporum sessile and Disporum smilacinum, and two Gentianaceae species, Gentiana scabra and Swertia japonica. Through amplicon sequencing, however, we found that all examined plant species exhibited no specificity toward AM fungi. Several AM fungi were consistently found across most sites and all plant species studied. Because previous studies reported the detection of these AM fungi from various tree species in Japanese temperate forests, our findings suggest the presence of ubiquitous AM fungi in forest ecosystems. If the understory plants showing fungal degeneration exhibit partial mycoheterotrophy, they may obtain carbon compounds indirectly from a wide range of surrounding plants utilizing such ubiquitous AM fungi.
Collapse
Affiliation(s)
- Ryota Kusakabe
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Chiba, Matsudo, 271-8510, Japan
| | - Moe Sasuga
- Graduate School of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Masahide Yamato
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
10
|
Breyer GM, De Carli S, Muterle Varela AP, Mann MB, Frazzon J, Quoos Mayer F, Siqueira FM. Carrier state of enterotoxigenic Escherichia coli virulence markers in pigs: Effects on gut microbiota modulation and immune markers transcription. Microb Pathog 2024; 191:106662. [PMID: 38663640 DOI: 10.1016/j.micpath.2024.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/01/2024] [Accepted: 04/20/2024] [Indexed: 05/24/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in pigs at early age, leading to high mortality rates and significant economic losses in the swine industry. ETEC effect on gut microbiota and immune system is mostly studied in diarrheic model under controlled laboratory conditions, however its impact on asymptomatic carriers remains unknown. Thus, we investigated whether ETEC can modulate gut microbiota or regulate the transcription of immune markers in asymptomatic pigs in farm environment. Stool samples from newborn piglets, nursery and growing pigs, and sows were screened for ETEC markers, then submitted to 16S-rDNA sequencing to explore gut microbiota composition in carriers (ETEC+) and non-carriers (ETEC-) animals. We observed a reduced α-diversity in ETEC+ animals (p < 0.05), while bacterial compositions were mostly driven by ageing (p > 0.05). Prevotella marked ETEC-carrier group, while Rikenellaceae RC9 gut group was a marker for a healthy gut microbiota, suggesting that they might be biomarker candidates for surveillance and supplementation purposes. Furthermore, we observed transcription regulation of il6 and tff2 genes in ETEC+ in newborn and nursery stages, respectively. Our findings indicate that ETEC presence modulate gut microbiota and the immune response in asymptomatic pigs; nevertheless, further studies using a probabilistic design must be performed to assess the effect of ETEC presence on gut imbalance in pigs despite the age bias.
Collapse
Affiliation(s)
- Gabriela Merker Breyer
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal Do Rio Grande Do Sul, Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação Em Ciências Veterinárias, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Silvia De Carli
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal Do Rio Grande Do Sul, Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação Em Ciências Veterinárias, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Paula Muterle Varela
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Michele Bertoni Mann
- Programa de Pós-Graduação Em Microbiologia Agrícola e Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Jeverson Frazzon
- Programa de Pós-Graduação Em Microbiologia Agrícola e Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Laboratório de Bioquímica e Biologia Molecular de Microrganismos, Departamento de Ciência de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa Em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado Do Sul, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Franciele Maboni Siqueira
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal Do Rio Grande Do Sul, Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação Em Ciências Veterinárias, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Sorochkina K, Martens-Habbena W, Reardon CL, Inglett PW, Strauss SL. Nitrogen-fixing bacterial communities differ between perennial agroecosystem crops. FEMS Microbiol Ecol 2024; 100:fiae064. [PMID: 38637314 DOI: 10.1093/femsec/fiae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.
Collapse
Affiliation(s)
- Kira Sorochkina
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
- Southwest Research and Education Center, University of Florida, Immokalee, FL, United States
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, United States
| | - Catherine L Reardon
- Soil and Water Conservation Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pendleton, OR, United States
| | - Patrick W Inglett
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
| | - Sarah L Strauss
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
- Southwest Research and Education Center, University of Florida, Immokalee, FL, United States
| |
Collapse
|
12
|
Tenea GN, Reyes P, Molina D. Fungal Mycobiome of Mature Strawberry Fruits ( Fragaria x ananassa Variety 'Monterey') Suggests a Potential Market Site Contamination with Harmful Yeasts. Foods 2024; 13:1175. [PMID: 38672848 PMCID: PMC11049331 DOI: 10.3390/foods13081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to investigate the diversity of fungi associated with mature strawberries collected from a volcanic orchard and open-air market stands. Based on the Kruskal-Wallis test, no statistically significant differences were observed in both non-phylogenetic and phylogenetic alpha diversity indices. According to beta diversity analyses, significant differences in fungal communities were found between groups (orchard vs. market). Taxonomic assignment of amplicon sequence variables (ASVs) revealed 7 phyla and 31 classes. The prevalent fungal phyla were Basidiomycota (29.59-84.58%), Ascomycota (15.33-70.40%), and Fungi-phy-Insertae-sedis (0.45-2.89%). The most predominant classes among the groups were Saccharomycetes in the market group, and Microbotryomycetes and Tremellomycetes in the orchard group. Based on the analysis of microbiome composition (ANCOM), we found that the most differentially fungal genera were Hanseniaspora, Kurtzmaniella, and Phyllozyma. Endophytic yeasts Curvibasidium cygneicollum were prevalent in both groups, while Candida railenensis was detected in fruits originating only from the market. In addition, Rhodotorula graminis (relative abundance varying from 1.7% to 21.18%) and Papiliotrema flavescens (relative abundance varying from 1.58% to 16.55%) were detected in all samples regardless of origin, while Debaryomyces prosopidis was detected in samples from the market only, their relative abundance varying with the sample (from 0.80% to 19.23%). Their role in fruit quality and safety has not been yet documented. Moreover, several clinically related yeasts, such as Meyerozyma guilliermondii and Candida parapsilosis, were detected in samples only from the market. Understanding the variety and makeup of the mycobiome in ripe fruits during the transition from the orchard to the market is crucial for fruit safety after harvest.
Collapse
Affiliation(s)
- Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, 100150 Ibarra, Ecuador
| | | | | |
Collapse
|
13
|
Stuart J, Ryan KG, Pearman JK, Thomson-Laing J, Hampton HG, Smith KF. A comparison of two gene regions for assessing community composition of eukaryotic marine microalgae from coastal ecosystems. Sci Rep 2024; 14:6442. [PMID: 38499675 PMCID: PMC10948787 DOI: 10.1038/s41598-024-56993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Two gene regions commonly used to characterise the diversity of eukaryotic communities using metabarcoding are the 18S ribosomal DNA V4 and V9 gene regions. We assessed the effectiveness of these two regions for characterising diverisity of coastal eukaryotic microalgae communities (EMCs) from tropical and temperate sites. We binned amplicon sequence variants (ASVs) into the high level taxonomic groups: dinoflagellates, pennate diatoms, radial centric diatoms, polar centric diatoms, chlorophytes, haptophytes and 'other microalgae'. When V4 and V9 generated ASV abundances were compared, the V9 region generated a higher number of raw reads, captured more diversity from all high level taxonomic groups and was more closely aligned with the community composition determined using light microscopy. The V4 region did resolve more ASVs to a deeper taxonomic resolution within the dinoflagellates, but did not effectively resolve other major taxonomic divisions. When characterising these communities via metabarcoding, the use of multiple gene regions is recommended, but the V9 gene region can be used in isolation to provide high-level community biodiversity to reflect relative abundances within groups. This approach reduces the cost of sequencing multiple gene regions whilst still providing important baseline ecosystem function information.
Collapse
Affiliation(s)
- Jacqui Stuart
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand.
| | - Ken G Ryan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - John K Pearman
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | | | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| |
Collapse
|
14
|
Meriggi N, Russo A, Renzi S, Cerasuolo B, Nerini M, Ugolini A, Marvasi M, Cavalieri D. Enhancing seafood traceability: tracking the origin of seabass and seabream from the tuscan coast area by the analysis of the gill bacterial communities. Anim Microbiome 2024; 6:13. [PMID: 38486253 PMCID: PMC10938666 DOI: 10.1186/s42523-024-00300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The seafood consumption and trade have increased over the years, and along its expected expansion pose major challenges to the seafood industry and government institutions. In particular, the global trade in fish products and the consequent consumption are linked to reliable authentication, necessary to guarantee lawful trade and healthy consumption. Alterations or errors in this process can lead to commercial fraud and/or health threats. Consequently, the development of new investigative tools became crucial in ensuring unwanted scenarios. Here we used NGS techniques through targeted metagenomics approach on the V3-V4 region of the 16S rRNA genes to characterize the gill bacterial communities in wild-caught seabream (Sparus aurata) and seabass (Dicentrarchus labrax) within different fisheries areas of the "Costa degli Etruschi'' area in the Tuscan coast. Our challenge involved the possibility of discriminating between the microbiota of both fish species collected from three different fishing sites very close to each other (all within 100 km) in important areas from a commercial and tourist point of view. RESULTS Our results showed a significant difference in the assembly of gill bacterial communities in terms of diversity (alpha and beta diversity) of both seabass and seabream in accordance with the three fishing areas. These differences were represented by a unique site -related bacterial signature, more evident in seabream compared to the seabass. Accordingly, the core membership of seabream specimens within the three different sites was minimal compared to the seabass which showed a greater number of sequence variants shared among the different fishing sites. Therefore, the LRT analysis highlighted the possibility of obtaining specific fish bacterial signatures associated with each site; it is noteworthy that specific taxa showed a unique association with the fishing site regardless of the fish species. This study demonstrates the effectiveness of target-metagenomic sequencing of gills in discriminating bacterial signatures of specimens collected from fishing areas located at a limited distance to each other. CONCLUSIONS This study provides new information relating the structure of the gill microbiota of seabass and seabream in a fishing area with a crucial commercial and tourist interest, namely "Costa degli Etruschi". This study demonstrated that microbiome-based approaches can represent an important tool for validating the seafood origins with a central applicative perspective in the seafood traceability system.
Collapse
Affiliation(s)
- Niccolò Meriggi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, IT56124, Italia
| | - Alessandro Russo
- Department of Biology, University of Florence, Sesto Fiorentino, IT50019, Italy
| | - Sonia Renzi
- Department of Biology, University of Florence, Sesto Fiorentino, IT50019, Italy
| | - Benedetta Cerasuolo
- Department of Biology, University of Florence, Sesto Fiorentino, IT50019, Italy
| | - Marta Nerini
- Department of Biology, University of Florence, Sesto Fiorentino, IT50019, Italy
| | - Alberto Ugolini
- Department of Biology, University of Florence, Florence, IT50125, Italia
| | | | - Duccio Cavalieri
- Department of Biology, University of Florence, Sesto Fiorentino, IT50019, Italy.
| |
Collapse
|
15
|
Fenibo EO, Nkuna R, Matambo T. Impact of artisanal refining activities on bacterial diversity in a Niger Delta fallow land. Sci Rep 2024; 14:3866. [PMID: 38365802 PMCID: PMC10873323 DOI: 10.1038/s41598-024-53147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Hydrocarbon pollution is a major ecological problem facing oil-producing countries, especially in the Niger Delta region of Nigeria. In this study, a site that had been previously polluted by artisanal refining activity was investigated using 16S rRNA Illumina high-throughput sequencing technology and bioinformatics tools. These were used to investigate the bacterial diversity in soil with varying degrees of contamination, determined with a gas chromatography-flame ionization detector (GC-FID). Soil samples were collected from a heavily polluted (HP), mildly polluted (MP), and unpolluted (control sample, CS) portion of the study site. DNA was extracted using the Zymo Research (ZR) Fungi/Bacteria DNA MiniPrep kit, followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized based on the V3 and V4 hypervariable regions of the 16S rRNA gene. QIIME (Quantitative Insights Into Microbial Ecology) 2 software was used to analyse the sequence data. The final data set covered 20,640 demultiplexed high-quality reads and a total of 160 filtered bacterial OTUs. Proteobacteria dominated samples HP and CS, while Actinobacteria dominated sample MP. Denitratisoma, Pseudorhodoplanes, and Spirilospora were the leading genera in samples HP, CS, and MP respectively. Diversity analysis indicated that CS [with 25.98 ppm of total petroleum hydrocarbon (TPH)] is more diverse than HP (with 490,630 ppm of TPH) and MP (with 5398 ppm of TPH). A functional prediction study revealed that six functional modules dominated the dataset, with metabolism covering up to 70%, and 11 metabolic pathways. This study demonstrates that a higher hydrocarbon concentration in soil adversely impacts microbial diversity, creating a narrow bacterial diversity dominated by hydrocarbon-degrading species, in addition to the obvious land and ecosystem degradation caused by artisanal refining activities. Overall, the artisanal refining business is significantly driving ecosystem services losses in the Niger Delta, which calls for urgent intervention, with focus on bioremediation.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence for Oilfield Chemical Research, University of Port Harcourt, Choba, Rivers State, Nigeria.
| | - Rosina Nkuna
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, Gauteng, South Africa
- Centre for Competence in Environmental Biotechnology, College of Animal and Environmental Science, University of South Africa, Florida Science Campus, Roodepoort, South Africa
| | - Tonderayi Matambo
- Centre for Competence in Environmental Biotechnology, College of Animal and Environmental Science, University of South Africa, Florida Science Campus, Roodepoort, South Africa
| |
Collapse
|
16
|
Tenea GN, Reyes P. Bacterial community changes in strawberry fruits ( Fragaria × ananassa variety "Monterey") from farm field to retail market stands, an indicator of postharvest contamination. Front Microbiol 2024; 15:1348316. [PMID: 38435684 PMCID: PMC10904649 DOI: 10.3389/fmicb.2024.1348316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Background Strawberry (Fragaria × ananassa) fruits are vulnerable to bacterial contamination; some species are pathogenic and can affect human health. Comprehending the bacterial composition and diversity at different ripe stages is a key determinant of the fruit health, productivity, and quality. Methodology An amplicon metagenomic approach on the 16S rRNA region was used to identify the bacterial diversity in exocarp of fruits collected from a farm field at two ripe stages: breaking (white, phase two) and ripe (red, phase four) and purchased from different retail market stands at ripe (red, phase four, ready-to-eat) stage. Besides, the fruit quality was assessed. Results Strawberries carries a high microorganisms diversity, with Pseudomonaceae, Yearsiniaceae, and Hafniaceae being the most abundant families across the samples. Among the groups, Pseudomonaceae and Clostridiaceae were the most abundant families at breaking (phase two) and ripe (phase four), whereas Yearsiniaceae, Hafniaceae, Aeromonadaceae, and Streptococcaceae were the most abundant families in the market group. Although samples from group four-field and market were at the same ripe stage, the bacterial species composition was divergent. Serratia spp. were prevalent (above 60%) in samples collected from the market group, and Pseudomonas (above 70%) species were mostly found in the samples collected from the field settings regardless of the phase. Besides, Escherichia coli and Salmonella enterica were detected in the ready-to-eat samples from both the field and the market, while Enterococcus gallinarum was detected in the samples that originated from the market. Interestingly, Shewanella putrefaciens and Shewanella profunda, two human opportunistic pathogens, were detected in the fruits from the market only. According to alpha and beta diversity analyses, strawberry fruits displayed significant differences (P < 0.05) in bacterial communities within the ripe group, with the samples from the market showing the most bacterial diversity. Although we do not directly correlate the quality attributes with bacterial diversity, the results indicated a clear separation between groups according with their ripe stage and origin. Conclusion This study provides a comprehensive framework of the bacterial diversity throughout the transition from unripe to ripe strawberries which may aid in the development of preventative measures to manage the postharvest contamination.
Collapse
Affiliation(s)
- Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra, Ecuador
| | | |
Collapse
|
17
|
Ericson JA, Laroche O, Biessy L, Delorme NJ, Pochon X, Thomson-Laing J, Ragg NLC, Smith KF. Differential responses of selectively bred mussels ( Perna canaliculus) to heat stress-survival, immunology, gene expression and microbiome diversity. Front Physiol 2024; 14:1265879. [PMID: 38425477 PMCID: PMC10902150 DOI: 10.3389/fphys.2023.1265879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024] Open
Abstract
New Zealand's green-lipped mussel (Perna canaliculus) is an ecologically and economically important species. Marine heatwaves are increasing in frequency around NZ's coastline, and these events are correlated with increased stress and mortality of some aquaculture species. This study aimed to identify general biomarkers of heat stress in P. canaliculus and to assess whether responses differed between genetically distinct selectively bred mussels. We exposed three families of selectively bred mussels (families A, B and C) to three seawater temperature regimes in the laboratory: 1) a "control" treatment (ambient 12°C), 2) a 26°C heat challenge with a subsequent recovery period, and 3) a sustained 26°C heat challenge with no recovery. We investigated whether the survival, immune response (hemocyte concentration and viability, oxidative stress and total antioxidant capacity), hemocyte gene expression and gill microbiome differed between the families during the temperature challenges. In the sustained heat-stress treatment, family A had the highest survival rate (42% compared with 25% and 5% for families C and B, respectively). Gene expression levels significantly shifted during thermal stress and differed between families, with family A more dissimilar than families B and C. Family C had substantially more genes impacted by temperature treatment and timepoint than the other families, while family B had very little genes/pathways that responded to thermal stress. Genes related to heat shock proteins and immune responses (e.g., AIF1, CTSC, TOLL8, CASP9, FNTA, AHCY, CRYAB, PPIF) were upregulated in all families during heat stress. Microbiome species-richness differed between families before and during heat-stress, with family A having a distinctly different microbiome flora than the other families. Microbial diversity changed similarly in all families exposed to prolonged heat-stress, with species of Vibrio and Campylobacter increasing in these mussels. Our study highlights the use of non-lethal sampling of hemocytes as a diagnostic tool to explore the immune response and gene expression of selectively bred mussels, to predict their response to ocean warming. This approach can identify potential thermotolerant candidates for further selective breeding, which may increase the resilience of the mussel aquaculture industry in a warming ocean.
Collapse
Affiliation(s)
| | | | | | | | - Xavier Pochon
- Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | | | | | - Kirsty F. Smith
- Cawthron Institute, Nelson, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Anderson SR, Blanco-Bercial L, Carlson CA, Harvey EL. Role of Syndiniales parasites in depth-specific networks and carbon flux in the oligotrophic ocean. ISME COMMUNICATIONS 2024; 4:ycae014. [PMID: 38419659 PMCID: PMC10900894 DOI: 10.1093/ismeco/ycae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Microbial associations that result in phytoplankton mortality are important for carbon transport in the ocean. This includes parasitism, which in microbial food webs is dominated by the marine alveolate group, Syndiniales. Parasites are expected to contribute to carbon recycling via host lysis; however, knowledge on host dynamics and correlation to carbon export remain unclear and limit the inclusion of parasitism in biogeochemical models. We analyzed a 4-year 18S rRNA gene metabarcoding dataset (2016-19), performing network analysis for 12 discrete depths (1-1000 m) to determine Syndiniales-host associations in the seasonally oligotrophic Sargasso Sea. Analogous water column and sediment trap data were included to define environmental drivers of Syndiniales and their correlation with particulate carbon flux (150 m). Syndiniales accounted for 48-74% of network edges, most often associated with Dinophyceae and Arthropoda (mainly copepods) at the surface and Rhizaria (Polycystinea, Acantharea, and RAD-B) in the aphotic zone. Syndiniales were the only eukaryote group to be significantly (and negatively) correlated with particulate carbon flux, indicating their contribution to flux attenuation via remineralization. Examination of Syndiniales amplicons revealed a range of depth patterns, including specific ecological niches and vertical connection among a subset (19%) of the community, the latter implying sinking of parasites (infected hosts or spores) on particles. Our findings elevate the critical role of Syndiniales in marine microbial systems and reveal their potential use as biomarkers for carbon export.
Collapse
Affiliation(s)
- Sean R Anderson
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, United States
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Falmouth, MA 02543, United States
| | | | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, CA 93106, United States
| | - Elizabeth L Harvey
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
19
|
Frankel TE, Tyler E, Willmore C, Odhiambo BK, Giancarlo L. Assessing the presence, concentration, and impacts of trace element contamination in a Chesapeake Bay tributary adjacent to a coal ash landfill (Possum Point, VA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122768. [PMID: 37858702 DOI: 10.1016/j.envpol.2023.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Coal ash (CA) is an industrial waste product that has been shown to contain several neurotoxic constituents such as cadmium, selenium, mercury, lead, and arsenic. Contaminant-laced leachates enter the environment via seepage, runoff, permitted discharge, or accidental spills from CA storage ponds or landfills which may pose a risk to wildlife residing in receiving waterways. In this study, we assessed 1) the presence and concentration of thirteen trace elements (Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, Fe, B) in surface water and sediment grab samples using ICP-OES, 2) the temporal variability of trace elements using Pb-210 dated sediment core samples, 3) differences in species diversity using environmental DNA (eDNA) analyses, and 4) the presence and concentration of trace metals in banded killifish (Fundulus diaphanus) epaxial muscle tissue collected from waterways surrounding the Possum Point Power Station (Stafford, VA). Results showed the highest concentrations of As, Cd, Cr, Cu, Fe, Mg, Se, Zn, and B in Quantico Creek (QC) adjacent to the coal ash ponds and elevated average cadmium and zinc concentrations compared to both upstream and downstream locations along the Potomac River. Sediment core profiles and Pb-210 analyses showed historical enrichment of several trace elements in QC beginning after the commissioning of the power plant in 1948. When compared to upstream and downstream sites, species diversity was drastically reduced in Quantico Creek based on eDNA identification. Muscle tissues of banded killifish collected in Quantico Creek displayed increased Al, Cd, and Zn concentrations compared to upstream and downstream sites. Collectively, our results demonstrate the potential impacts of coal ash landfills on aquatic ecosystems and suggest that further research is needed to fully inform risk assessment and remediation efforts.
Collapse
Affiliation(s)
- T E Frankel
- Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA.
| | - E Tyler
- Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA
| | - C Willmore
- Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA
| | - B K Odhiambo
- Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA
| | - L Giancarlo
- Department of Chemistry and Physics, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA
| |
Collapse
|
20
|
Michel A, Minocher R, Niehoff PP, Li Y, Nota K, Gadhvi MA, Su J, Iyer N, Porter A, Ngobobo-As-Ibungu U, Binyinyi E, Nishuli Pekeyake R, Parducci L, Caillaud D, Guschanski K. Isolated Grauer's gorilla populations differ in diet and gut microbiome. Mol Ecol 2023; 32:6523-6542. [PMID: 35976262 DOI: 10.1111/mec.16663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
The animal gut microbiome has been implicated in a number of key biological processes, ranging from digestion to behaviour, and has also been suggested to facilitate local adaptation. Yet studies in wild animals rarely compare multiple populations that differ ecologically, which is the level at which local adaptation may occur. Further, few studies simultaneously characterize diet and gut microbiome from the same sample, despite their probable interdependence. Here, we investigate the interplay between diet and gut microbiome in three geographically isolated populations of the critically endangered Grauer's gorilla (Gorilla beringei graueri), which we show to be genetically differentiated. We find population- and social group-specific dietary and gut microbial profiles and covariation between diet and gut microbiome, despite the presence of core microbial taxa. There was no detectable effect of age, and only marginal effects of sex and genetic relatedness on the microbiome. Diet differed considerably across populations, with the high-altitude population consuming a lower diversity of plants compared to low-altitude populations, consistent with plant availability constraining dietary choices. The observed pattern of covariation between diet and gut microbiome is probably a result of long-term social and environmental factors. Our study suggests that the gut microbiome is sufficiently plastic to support flexible food selection and hence contribute to local adaptation.
Collapse
Affiliation(s)
- Alice Michel
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Anthropology, University of California, Davis, California, USA
| | - Riana Minocher
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Human Behavior, Ecology and Culture, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Peter-Philip Niehoff
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Yuhong Li
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Kevin Nota
- Plant Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Maya A Gadhvi
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jiancheng Su
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Neetha Iyer
- Department of Anthropology, University of California, Davis, California, USA
| | - Amy Porter
- Department of Anthropology, University of California, Davis, California, USA
| | | | - Escobar Binyinyi
- The Dian Fossey Gorilla Fund International, Kinshasa, Democratic Republic of the Congo
| | - Radar Nishuli Pekeyake
- Institut Congolais pour la Conservation de la Nature, Kinshasa, Democratic Republic of the Congo
| | - Laura Parducci
- Department of Human Behavior, Ecology and Culture, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Damien Caillaud
- Department of Anthropology, University of California, Davis, California, USA
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Ahmed T, Tahir MF, Boden L, Kingston T. Future directions for One Health research: Regional and sectoral gaps. One Health 2023; 17:100584. [PMID: 38024280 PMCID: PMC10665172 DOI: 10.1016/j.onehlt.2023.100584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 12/01/2023] Open
Abstract
Implementation of a One Health approach varies considerably between different geographical regions and remains challenging to implement without greater inclusivity of different disciplinary capacity and expertise. We performed comparative analyses of abstracts presented at the 1st World One Health Congress (WOHC 2011) and 6th WOHC (2020) to explore and describe the evolving demographics and disciplinary scope of One Health research. We classified abstracts into six One Health research categories and twenty-three subcategories. We also recorded corresponding authors' country and regional affiliation as well as study country (i.e., the country in which the research was conducted) to explore potential asymmetries between funding recipients and study subjects. The WOHC has seen a significant expansion in participation over the last 10 years. The numbers of abstracts accepted to the Congress increased threefold over the last decade (i.e., 302 abstracts in 2010, and 932 abstracts in 2020). At both Congresses, "Disease Surveillance" accounted for the largest proportion (105/302 (35%) and 335/932 (36%) in 2010 and 2020, respectively) of all abstracts accepted. However, "Environmental and Ecological Issues" (33/302 (10%) and 94/932 (11%)), and "Sustainable Food Systems" (19/302 (6%) and 44/932 (4%)) were less well-represented categories of One Health research in both 1st and 6th WOHC respectively. In contrast, "Antimicrobial Resistance" related research increased substantially over time (4/302 (1%) in 2011) and (119/932 (13%) in 2020). There were also differences in the type of research by authors based in "Very High Human Development" index countries compared to "Medium and Low Human Development. "Public Policy" dominated the former, whereas "Disease Surveillance" dominated the latter, suggesting potential regional differences regarding One Health research priorities. The results of the study highlight potential regional gaps and differences in One Health research priorities, with respect to emphasis on operational (surveillance) versus strategic (policy) One Health activities.
Collapse
Affiliation(s)
- Touseef Ahmed
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
- Bat Conservation Pakistan, Islamabad, Pakistan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Muhammad Farooq Tahir
- Bat Conservation Pakistan, Islamabad, Pakistan
- Food and Agriculture Organization, United Nation, Islamabad, Pakistan
- Integral Global, Atlanta, Georgia, USA
| | - Lisa Boden
- Global Academy of Agriculture and Food Systems, The University of Edinburgh, Edinburgh, UK
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
22
|
Venegas CA, Saona LA, Urbina K, Quintrel P, Peña TA, Mardones W, Cubillos FA. Addition of Saccharomyces eubayanus to SCOBY fermentations modulates the chemical and volatile compound profiles in kombucha. Food Microbiol 2023; 116:104357. [PMID: 37689417 DOI: 10.1016/j.fm.2023.104357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/11/2023]
Abstract
Kombucha is a fermented beverage derived from a sweetened tea fermentation inoculated with a bacteria-yeast consortium referred to as Symbiotic Culture of Bacteria and Yeast (SCOBY). Different SCOBY cultures can impact the beverage's quality and make the whole process highly variable. Adding Saccharomyces yeast cultures to the fermentation process can avoid stalled fermentations, providing a reproducible beverage. Here, we explored using different Saccharomyces eubayanus strains together with SCOBY in the context of kombucha fermentation. Our results show that yeast x SCOBY co-cultures exhibited a robust fermentation profile, providing ethanol and acetic acid levels ranging from 0,18-1,81 %v/v and 0,35-1,15 g/L, respectively. The kombucha volatile compound profile of co-cultures was unique, where compounds such as Isopentyl acetate where only found in yeast x SCOBY fermentations. Metabarcoding revealed that the SCOBY composition was also dependent on the S. eubayanus genotype, where besides Saccharomyces, amplicon sequence variants belonging to Brettanomyces and Starmerella were detected. These differences concomitated global changes in transcript levels in S. eubayanus related to the metabolism of organic molecules used in kombucha fermentation. This study highlights the potential for exploring different S. eubayanus strains for kombucha fermentation, and the significant yeast genotype effect in the profile differentiation in this process.
Collapse
Affiliation(s)
- Camila A Venegas
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile
| | - Luis A Saona
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Kamila Urbina
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Pablo Quintrel
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Tomás A Peña
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Wladimir Mardones
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Francisco A Cubillos
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| |
Collapse
|
23
|
Mlewski EC, Saona LA, Boidi FJ, Chiappero MF, Vaieretti MV, Soria M, Farías ME, Izquierdo AE. Exploring Soil Bacterial Diversity in Relation to Edaphic Physicochemical Properties of High-altitude Wetlands from Argentine Puna. MICROBIAL ECOLOGY 2023; 87:6. [PMID: 38030916 DOI: 10.1007/s00248-023-02316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
High Andean wetlands, particularly those known as vegas or bofedales, are essential conservation ecosystems due to their significant contribution to ecosystem services. The soil microbial communities in these ecosystems play a crucial role in fundamental processes such as decomposition and nutrient cycling, sustaining life in the region. However, at present, these microbial communities are poorly understood. In order to contribute to this knowledge, we aimed to characterize and compare the microbial communities from soils of seven Argentine Puna vegas and to analyze their association with soil physicochemical characteristics. Proteobacteria (Gamma and Alphaproteobacteria) was the dominant phylum across all vegas, followed in abundance by Actinobacteriota, Desulfobacterota, and Chloroflexi. Furthermore, the abundance of specific bacterial families and genera varied significantly between the vegas; some of them can be associated with plant growth-promoting bacteria such as Rhodomicrobium in La Quebradita and Quebrada del Diablo, Bacillus in Antofalla and Las Quinuas. Laguna Negra showed no shared ASVs with abundance in genera such as Sphingomonas and Pseudonocardia. The studied vegas also differed in their soil physicochemical properties; however, associations between the composition of microbial communities with the edaphic parameters measured were not found. These results suggest that other environmental factors (e.g., geographic, climatic, and plant communities' characteristics) could determine soil microbial diversity patterns. Further investigations are needed to be focused on understanding the composition and function of microorganisms in the soil associated with specific vegetation types in these high-altitude wetlands, which will provide valuable insights into the ecological dynamics of these ecosystems for conservation strategies.
Collapse
Affiliation(s)
- Estela Cecilia Mlewski
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Centro de Ecología y Recursos Naturales Renovables (CERNAR), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luis A Saona
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Flavia Jaquelina Boidi
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Rafaela, Rafaela, Argentina
- Instituto de Investigación de la Cadena Láctea (IDICAL, CONICET-INTA), Rafaela, Argentina
| | - M Fernanda Chiappero
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Victoria Vaieretti
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Soria
- PUNABIO S.A. Campus USP-T Av. Solano Vera y Camino a Villa Nougués San Pablo, Tucumán, Argentina
| | - María Eugenia Farías
- PUNABIO S.A. Campus USP-T Av. Solano Vera y Camino a Villa Nougués San Pablo, Tucumán, Argentina
| | - Andrea E Izquierdo
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
- Facultad de Ciencias Naturales y Exactas e Instituto M. Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
24
|
Merino N, Wasserman NL, Coutelot F, Kaplan DI, Powell BA, Jiao Y, Kersting AB, Zavarin M. Microbial community dynamics and cycling of plutonium and iron in a seasonally stratified and radiologically contaminated pond. Sci Rep 2023; 13:19697. [PMID: 37952079 PMCID: PMC10640648 DOI: 10.1038/s41598-023-45182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Plutonium (Pu) cycling and mobility in the environment can be impacted by the iron cycle and microbial community dynamics. We investigated the spatial and temporal changes of the microbiome in an iron (Fe)-rich, plutonium-contaminated, monomictic reservoir (Pond B, Savannah River Site, South Carolina, USA). The microbial community composition varied with depth during seasonal thermal stratification and was strongly correlated with redox. During stratification, Fe(II) oxidizers (e.g., Ferrovum, Rhodoferax, Chlorobium) were most abundant in the hypoxic/anoxic zones, while Fe(III) reducers (e.g., Geothrix, Geobacter) dominated the deep, anoxic zone. Sulfate reducers and methanogens were present in the anoxic layer, likely contributing to iron and plutonium cycling. Multinomial regression of predicted functions/pathways identified metabolisms highly associated with stratification (within the top 5%), including iron reduction, methanogenesis, C1 compound utilization, fermentation, and aromatic compound degradation. Two sediment cores collected at the Inlet and Outlet of the pond were dominated by putative fermenters and organic matter (OM) degraders. Overall, microbiome analyses revealed the potential for three microbial impacts on the plutonium and iron biogeochemical cycles: (1) plutonium bioaccumulation throughout the water column, (2) Pu-Fe-OM-aggregate formation by Fe(II) oxidizers under microaerophilic/aerobic conditions, and (3) Pu-Fe-OM-aggregate or sediment reductive dissolution and organic matter degradation in the deep, anoxic waters.
Collapse
Affiliation(s)
- Nancy Merino
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA.
| | - Naomi L Wasserman
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Fanny Coutelot
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management, Clemson University, Anderson, SC, 29625, USA
| | - Daniel I Kaplan
- Savannah River Ecology Lab, University of Georgia, Aiken, SC, 29802, USA
| | - Brian A Powell
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management, Clemson University, Anderson, SC, 29625, USA
- Savannah River National Laboratory, Aiken, SC, 29625, USA
| | - Yongqin Jiao
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Annie B Kersting
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA.
| |
Collapse
|
25
|
Afshana, Reshi ZA, Shah MA, Malik RA, Rashid I. Species composition of root-associated mycobiome of ruderal invasive Anthemis cotula L. varies with elevation in Kashmir Himalaya. Int Microbiol 2023; 26:1053-1071. [PMID: 37093323 DOI: 10.1007/s10123-023-00359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Investigating the microbial communities associated with invasive plant species can provide insights into how these species establish and thrive in new environments. Here, we explored the fungal species associated with the roots of the invasive species Anthemis cotula L. at 12 sites with varying elevations in the Kashmir Himalaya. Illumina MiSeq platform was used to identify the species composition, diversity, and guild structure of these root-associated fungi. The study found a total of 706 fungal operational taxonomic units (OTUs) belonging to 8 phyla, 20 classes, 53 orders, 109 families, and 160 genera associated with roots of A. cotula, with the most common genus being Funneliformis. Arbuscular mycorrhizal fungi (AMF) constituted the largest guild at higher elevations. The study also revealed that out of the 12 OTUs comprising the core mycobiome, 4 OTUs constituted the stable component while the remaining 8 OTUs comprised the dynamic component. While α-diversity did not vary across sites, significant variation was noted in β-diversity. The study confirmed the facilitative role of the microbiome through a greenhouse trial in which a significant effect of soil microbiome on height, shoot biomass, root biomass, number of flower heads, and internal CO2 concentration of the host plant was observed. The study indicates that diverse fungal mutualists get associated with this invasive alien species even in nutrient-rich ruderal habitats and may be contributing to its spread into higher elevations. This study highlights the importance of understanding the role of root-associated fungi in invasion dynamics and the potential use of mycobiome management strategies to control invasive species.
Collapse
Affiliation(s)
- Afshana
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India.
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Rayees A Malik
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| |
Collapse
|
26
|
Jabir T, Jain A, Vipindas PV, Krishnan KP. Stochastic Processes Dominate in the Water Mass-Based Segregation of Diazotrophs in a High Arctic Fjord (Svalbard). MICROBIAL ECOLOGY 2023; 86:2733-2746. [PMID: 37532947 DOI: 10.1007/s00248-023-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Nitrogen-fixing or diazotrophic microbes fix atmospheric nitrogen (N2) to ammonia (NH3+) using nitrogenase enzyme and play a crucial role in regulating marine primary productivity and carbon dioxide sequestration. However, there is a lack of information about the diversity, structure, and environmental regulations of the diazotrophic communities in the high Arctic fjords, such as Kongsfjorden. Here, we employed nifH gene sequencing to clarify variations in composition, community structure, and assembly mechanism among the diazotrophs of the salinity-driven stratified waters of Kongsfjorden. The principal environmental and ecological drivers of the observed variations were identified. The majority of the nifH gene sequences obtained in the present study belonged to cluster I and cluster III nifH phylotypes, accounting for 65% and 25% of the total nifH gene sequences. The nifH gene diversity and composition, irrespective of the size fractions (free-living and particle attached), showed a clear separation among water mass types, i.e., Atlantic-influenced versus glacier-influenced water mass. Higher nifH gene diversity and relative abundances of non-cyanobacterial nifH OTUs, affiliated with uncultured Rhizobiales, Burkholderiales, Alteromonadaceae, Gallionellaceae (cluster I) and uncultured Deltaproteobacteria including Desulfuromonadaceae (cluster III), were prevalent in GIW while uncultured Gammaproteobacteria and Desulfobulbaceae were abundant in AIW. The diazotrophic community assembly was dominated by stochastic processes, principally ecological drift, and to lesser degrees dispersal limitation and homogeneous dispersal. Differences in the salinity and dissolved oxygen content lead to the vertical segregation of diazotrophs among water mass types. These findings suggest that water column stratification affects the composition and assembly mechanism of diazotrophic communities and thus could affect nitrogen fixation in the Arctic fjord.
Collapse
Affiliation(s)
- Thajudeen Jabir
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India.
| | - Anand Jain
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| |
Collapse
|
27
|
Colautti A, Civilini M, Contin M, Celotti E, Iacumin L. Organic vs. conventional: impact of cultivation treatments on the soil microbiota in the vineyard. Front Microbiol 2023; 14:1242267. [PMID: 37901804 PMCID: PMC10602642 DOI: 10.3389/fmicb.2023.1242267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
The aim of this study was to compare the effects of two vineyard management practices on the soil and its associated microbiota. The experiments were conducted in two adjacent plots, one completely organically managed and the other conventionally managed in terms of phytosanitary treatments but fertilized with organic amendments. The chemical soil analyses were correlated to the prokaryotic and fungal communities, which were studied using the metabarcoding technique. The main difference between the two treatments was a significantly higher amount of Cu in the organic managed vineyard soil, while conventional managed soil presented higher concentration of Na and Mg and was also associated with higher pH values. Despite these differences, no significant diversities were observed on soil biodiversity and microbial composition considering alpha and beta diversity metrics. However, the percentages of some phyla analyzed individually differed significantly between the two managements. Analyzing the metabolisms of these phyla, it was discovered an increment of species correlated to soils with higher organic matter content or land not used for agricultural purposes in the organic treated soil. The findings indicate that, despite the use of copper-based phytosanitary products, there was no degradation and loss of biodiversity in the organic soil microbial population compared to conventional management with the same type of fertilization, and the observed microbial population was more similar to that of natural soils.
Collapse
Affiliation(s)
| | | | | | | | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| |
Collapse
|
28
|
Lazarova S, Lozanova L, Neov B, Shumkova R, Balkanska R, Palova N, Salkova D, Radoslavov G, Hristov P. Composition and diversity of bacterial communities associated with honey bee foragers from two contrasting environments. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:693-702. [PMID: 37545319 DOI: 10.1017/s0007485323000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The honey bee is associated with a diverse community of microbes (viruses, bacteria, fungi, and protists), commonly known as the microbiome. Here, we present data on honey bee microbiota from two localities having different surrounding landscapes - mountain (the Rhodope Mountains) and lowland (the Danube plain). The bacterial communities of abdomen of adult bees were studied using amplicon sequencing of the 16S rRNA gene. The composition and dominance structure and their variability within and between localities, alpha and beta diversity, and core and differential taxa were compared at different hierarchical levels (operational taxonomic units to phylum). Seven genera (Lactobacillus, Gilliamella, Bifidobacterium, Commensalibacter, Bartonella, Snodgrassella, and Frischella), known to include core gut-associated phylotypes or species clusters, dominated (92-100%) the bacterial assemblages. Significant variations were found in taxa distribution across both geographical regions and within each apiary. Lactobacillus (Firmicutes) prevailed significantly in the mountain locality followed by Gilliamella and Bartonella (Proteobacteria). Bacteria of four genera, core (Bartonella and Lactobacillus) and non-core (Pseudomonas and Morganella), dominated the bee-associated assemblages of the Danube plain locality. Several ubiquitous bacterial genera (e.g., Klebsiella, Serratia, and Providencia), some species known also as potential and opportunistic bee pathogens, had been found in the lowland locality. Beta diversity analyses confirmed the observed differences in the bacterial communities from both localities. The occurrence of non-core taxa contributes substantially to higher microbial richness and diversity in bees from the Danube plain locality. We assume that the observed differences in the microbiota of honey bees from both apiaries are due to a combination of factors specific for each region. The surrounding landscape features of both localities and related vegetation, anthropogenic impact and land use intensity, the beekeeping management practices, and bee health status might all contribute to observed differences in bee microbiota traits.
Collapse
Affiliation(s)
- Stela Lazarova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyudmila Lozanova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Boyko Neov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rositsa Shumkova
- Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria
| | - Ralitsa Balkanska
- Department 'Special Branches', Institute of Animal Science, Agricultural Academy, 2230 Kostinbrod, Bulgaria
| | - Nadezhda Palova
- Scientific Center of Agriculture, Agricultural Academy, Sredets 8300, Bulgaria
| | - Delka Salkova
- Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Radoslavov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
29
|
Pereida-Aguilar JC, Barragán-Vargas C, Domínguez-Sánchez C, Álvarez-Martínez RC, Acevedo-Whitehouse K. Bacterial dysbiosis and epithelial status of the California sea lion (Zalophus californianus) in the Gulf of California. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105474. [PMID: 37356747 DOI: 10.1016/j.meegid.2023.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Despite the high incidence of urogenital carcinoma (UGC) in California sea lions stranded along California, no UGC has been reported in other areas of their distribution; however, cell morphologies typical of premalignant states have been found. Risk factors for UGC include high of organochlorines and infection with a gammaherpesvirus, OtHV-1, but the importance of the bacteriome for epithelial status remains unknown. We characterized the genital bacteriome of adult female California sea lions along their distribution in the Gulf of California and examined whether the diversity and abundance of the bacteriome varied spatially, whether there were detectable differences in the bacteriome between healthy and altered epithelia, and whether the bacteriome was different in California sea lions infected with OtHV-1 or papillomavirus. We detected 2270 ASVs in the genital samples, of which 35 met the criteria for inclusion in the core bacteriome. Fusobacteriia and Clostridia were present in all samples, at high abundances, and Actinobacteria, Alphaproteobacteria, and Campylobacteria were also well-represented. Alpha diversity and abundance of the California sea lion genital bacteriome varied geographically. The abundance of bacterial ASVs varied depending on the genital epithelial status and inflammation, with differences driven by classes Fusobacteriia, Clostridia, Campylobacteria and Alphaproteobacteria. Alpha diversity and abundance were lowest in samples in which OtHV-1 was detected, and highest those with papillomavirus. Our study is the first investigation of how the bacteriome is related to epithelial status in a wild marine species prone to developing cancer.
Collapse
Affiliation(s)
- Juan Carlos Pereida-Aguilar
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Cecilia Barragán-Vargas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Carlos Domínguez-Sánchez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Roberto Carlos Álvarez-Martínez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico.
| |
Collapse
|
30
|
Durand M, Touchette D, Chen YJ, Magnuson E, Wasserscheid J, Greer CW, Whyte LG, Altshuler I. Effects of marine diesel on microbial diversity and activity in high Arctic beach sediments. MARINE POLLUTION BULLETIN 2023; 194:115226. [PMID: 37442053 DOI: 10.1016/j.marpolbul.2023.115226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Global warming induced sea ice loss increases Arctic maritime traffic, enhancing the risk of ecosystem contamination from fuel spills and nutrient loading. The impact of marine diesel on bacterial metabolic activity and diversity, assessed by colorimetric assay, 16S rRNA and metagenomic sequencing, of Northwest Passage (Arctic Ocean) beach sediments was assessed with nutrient amendment at environmentally relevant temperatures (5 and 15 °C). Higher temperature and nutrients stimulated microbial activity, while diesel reduced it, with metabolism inhibited at and above 0.01 % (without nutrients) and at 1 % (with nutrients) diesel inclusions. Diesel exposure significantly decreased microbial diversity and selected for Psychrobacter genus. Microbial hydrocarbon degradation, organic compound metabolism, and exopolysaccharide production gene abundances increased under higher diesel concentrations. Metagenomic binning recovered nine MAGs/bins with hydrocarbon degradation genes. We demonstrate a nutrients' rescue-type effect in diesel contaminated microbial communities via enrichment of microorganisms with stress response, aromatic compound, and ammonia assimilation metabolisms.
Collapse
Affiliation(s)
- Margaux Durand
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada; Université Paris-Saclay, INRAE, AgroParisTech, Paris-Saclay Applied Economics, 91120 Palaiseau, France
| | - David Touchette
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada; River Ecosystems Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ya-Jou Chen
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada
| | - Elisse Magnuson
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada
| | - Jessica Wasserscheid
- Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada
| | - Charles W Greer
- Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada
| | - Lyle G Whyte
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada
| | - Ianina Altshuler
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada; MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
31
|
McCauley M, Goulet TL, Jackson CR, Loesgen S. Systematic review of cnidarian microbiomes reveals insights into the structure, specificity, and fidelity of marine associations. Nat Commun 2023; 14:4899. [PMID: 37580316 PMCID: PMC10425419 DOI: 10.1038/s41467-023-39876-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/30/2023] [Indexed: 08/16/2023] Open
Abstract
Microorganisms play essential roles in the health and resilience of cnidarians. Understanding the factors influencing cnidarian microbiomes requires cross study comparisons, yet the plethora of protocols used hampers dataset integration. We unify 16S rRNA gene sequences from cnidarian microbiome studies under a single analysis pipeline. We reprocess 12,010 cnidarian microbiome samples from 186 studies, alongside 3,388 poriferan, 370 seawater samples, and 245 cultured Symbiodiniaceae, unifying ~6.5 billion sequence reads. Samples are partitioned by hypervariable region and sequencing platform to reduce sequencing variability. This systematic review uncovers an incredible diversity of 86 archaeal and bacterial phyla associated with Cnidaria, and highlights key bacteria hosted across host sub-phylum, depth, and microhabitat. Shallow (< 30 m) water Alcyonacea and Actinaria are characterized by highly shared and relatively abundant microbial communities, unlike Scleractinia and most deeper cnidarians. Utilizing the V4 region, we find that cnidarian microbial composition, richness, diversity, and structure are primarily influenced by host phylogeny, sampling depth, and ocean body, followed by microhabitat and sampling date. We identify host and geographical generalist and specific Endozoicomonas clades within Cnidaria and Porifera. This systematic review forms a framework for understanding factors governing cnidarian microbiomes and creates a baseline for assessing stress associated dysbiosis.
Collapse
Affiliation(s)
- M McCauley
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
- Department of Biology, University of Mississippi, University, MS, USA.
- U.S. Geological Survey, Wetland and Aquatic Research Centre, Gainesville, FL, USA.
| | - T L Goulet
- Department of Biology, University of Mississippi, University, MS, USA
| | - C R Jackson
- Department of Biology, University of Mississippi, University, MS, USA
| | - S Loesgen
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| |
Collapse
|
32
|
Santana-Pereira ALR, Moen FS, Severance B, Liles MR. Influence of soil nutrients on the presence and distribution of CPR bacteria in a long-term crop rotation experiment. Front Microbiol 2023; 14:1114548. [PMID: 37577441 PMCID: PMC10413278 DOI: 10.3389/fmicb.2023.1114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Bacteria affiliated with the Candidate Phyla Radiation (CPR) are a hyper-diverse group of ultra-small bacteria with versatile yet sparse metabolisms. However, most insights into this group come from a surprisingly small number of environments, and recovery of CPR bacteria from soils has been hindered due to their extremely low abundance within complex microbial assemblages. In this study we enriched soil samples from 14 different soil fertility treatments for ultra-small (<0.45 μm) bacteria in order to study rare soil CPR. 42 samples were sequenced, enabling the reconstruction of 27 quality CPR metagenome-assembled genomes (MAGs) further classified as Parcubacteria/Paceibacteria, Saccharibacteria/Saccharimonadia and ABY1, in addition to representative genomes from Gemmatimonadetes, Dependentiae and Chlamydae phyla. These genomes were fully annotated and used to reconstruct the CPR community across all 14 plots. Additionally, for five of these plots, the entire microbiota was reconstructed using 16S amplification, showing that specific soil CPR may form symbiotic relationships with a varied and circumstantial range of hosts. Cullars CPR had a prevalence of enzymes predicted to degrade plant-derived carbohydrates, which suggests they have a role in plant biomass degradation. Parcubacteria appear to be more apt at microfauna necromass degradation. Cullars Saccharibacteria and a Parcubacteria group were shown to carry a possible aerotolerance mechanism coupled with potential for aerobic respiration, which appear to be a unique adaptation to the oxic soil environment. Reconstruction of CPR communities across treatment plots showed that they were not impacted by changes in nutrient levels or microbiota composition, being only impacted by extreme conditions, causing some CPR to dominate the community. These findings corroborate the understanding that soil-dwelling CPR bacteria have a very broad symbiont range and have metabolic capabilities associated to soil environments which allows them to scavenge resources and form resilient communities. The contributions of these microbial dark matter species to soil ecology and plant interactions will be of significant interest in future studies.
Collapse
Affiliation(s)
| | | | | | - Mark R. Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
33
|
Wolfgang A, Tack AJM, Berg G, Abdelfattah A. Reciprocal influence of soil, phyllosphere, and aphid microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:63. [PMID: 37480131 PMCID: PMC10362670 DOI: 10.1186/s40793-023-00515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND The effect of soil on the plant microbiome is well-studied. However, less is known about the impact of the soil microbiome in multitrophic systems. Here we examined the effect of soil on plant and aphid microbiomes, and the reciprocal effect of aphid herbivory on the plant and soil microbiomes. We designed microcosms, which separate below and aboveground compartments, to grow oak seedlings with and without aphid herbivory in soils with three different microbiomes. We used amplicon sequencing and qPCR to characterize the bacterial and fungal communities in soils, phyllospheres, and aphids. RESULTS Soil microbiomes significantly affected the microbial communities of phyllospheres and, to a lesser extent, aphid microbiomes, indicating plant-mediated assembly processes from soil to aphids. While aphid herbivory significantly decreased microbial diversity in phyllospheres independent of soil microbiomes, the effect of aphid herbivory on the community composition in soil varied among the three soils. CONCLUSIONS This study provides experimental evidence for the reciprocal influence of soil, plant, and aphid microbiomes, with the potential for the development of new microbiome-based pest management strategies.
Collapse
Affiliation(s)
- Adrian Wolfgang
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
34
|
Paulson AR, Lougheed SC, Huang D, Colautti RI. Multiomics Reveals Symbionts, Pathogens, and Tissue-Specific Microbiome of Blacklegged Ticks (Ixodes scapularis) from a Lyme Disease Hot Spot in Southeastern Ontario, Canada. Microbiol Spectr 2023; 11:e0140423. [PMID: 37184407 PMCID: PMC10269869 DOI: 10.1128/spectrum.01404-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Ticks in the family Ixodidae are important vectors of zoonoses, including Lyme disease (LD), which is caused by spirochete bacteria from the Borreliella (Borrelia) burgdorferi sensu lato complex. The blacklegged tick (Ixodes scapularis) continues to expand across Canada, creating hot spots of elevated LD risk at the leading edge of its expanding range. Current efforts to understand the risk of pathogen transmission associated with I. scapularis in Canada focus primarily on targeted screens, while natural variation in the tick microbiome remains poorly understood. Using multiomics consisting of 16S metabarcoding and ribosome-depleted, whole-shotgun RNA transcriptome sequencing, we examined the microbial communities associated with adult I. scapularis (n = 32), sampled from four tissue types (whole tick, salivary glands, midgut, and viscera) and three geographical locations within a LD hot spot near Kingston, Ontario, Canada. The communities consisted of both endosymbiotic and known or potentially pathogenic microbes, including RNA viruses, bacteria, and a Babesia sp. intracellular parasite. We show that β-diversity is significantly higher between the bacterial communities of individual tick salivary glands and midguts than that of whole ticks. Linear discriminant analysis effect size (LEfSe) determined that the three potentially pathogenic bacteria detected by V4 16S rRNA sequencing also differed among dissected tissues only, including a Borrelia strain from the B. burgdorferi sensu lato complex, Borrelia miyamotoi, and Anaplasma phagocytophilum. Importantly, we find coinfection of I. scapularis by multiple microbes, in contrast to diagnostic protocols for LD, which typically focus on infection from a single pathogen of interest (B. burgdorferi sensu stricto). IMPORTANCE As a vector of human health concern, blacklegged ticks (Ixodes scapularis) transmit pathogens that cause tick-borne diseases (TBDs), including Lyme disease (LD). Several hot spots of elevated LD risk have emerged across Canada as I. scapularis expands its range. Focusing on a hot spot in southeastern Ontario, we used high-throughput sequencing to characterize the microbiome of whole ticks and dissected salivary glands and midguts. Compared with whole ticks, salivary glands and midguts were more diverse and associated with distinct bacterial communities that are less dominated by Rickettsia endosymbiont bacteria and are enriched for pathogenic bacteria, including a B. burgdorferi sensu lato-associated Borrelia sp., Borrelia miyamotoi, and Anaplasma phagocytophilum. We also found evidence of coinfection of I. scapularis by multiple pathogens. Overall, our study highlights the challenges and opportunities associated with the surveillance of the microbiome of I. scapularis for pathogen detection using metabarcoding and metatranscriptome approaches.
Collapse
Affiliation(s)
- Amber R. Paulson
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | | - David Huang
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | |
Collapse
|
35
|
Park H, Shabarova T, Salcher MM, Kosová L, Rychtecký P, Mukherjee I, Šimek K, Porcal P, Seďa J, Znachor P, Kasalický V. In the right place, at the right time: the integration of bacteria into the Plankton Ecology Group model. MICROBIOME 2023; 11:112. [PMID: 37210505 DOI: 10.1186/s40168-023-01522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/17/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Planktonic microbial communities have critical impacts on the pelagic food web and water quality status in freshwater ecosystems, yet no general model of bacterial community assembly linked to higher trophic levels and hydrodynamics has been assessed. In this study, we utilized a 2-year survey of planktonic communities from bacteria to zooplankton in three freshwater reservoirs to investigate their spatiotemporal dynamics. RESULTS We observed site-specific occurrence and microdiversification of bacteria in lacustrine and riverine environments, as well as in deep hypolimnia. Moreover, we determined recurrent bacterial seasonal patterns driven by both biotic and abiotic conditions, which could be integrated into the well-known Plankton Ecology Group (PEG) model describing primarily the seasonalities of larger plankton groups. Importantly, bacteria with different ecological potentials showed finely coordinated successions affiliated with four seasonal phases, including the spring bloom dominated by fast-growing opportunists, the clear-water phase associated with oligotrophic ultramicrobacteria, the summer phase characterized by phytoplankton bloom-associated bacteria, and the fall/winter phase driven by decay-specialists. CONCLUSIONS Our findings elucidate the major principles driving the spatiotemporal microbial community distribution in freshwater ecosystems. We suggest an extension to the original PEG model by integrating new findings on recurrent bacterial seasonal trends. Video Abstract.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- 20-12496X Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 19-23469S Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 22-33245S Grantová Agentura České Republiky
- 20-12496X Grantová Agentura České Republiky
Collapse
Affiliation(s)
- Hongjae Park
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Lenka Kosová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Porcal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jaromír Seďa
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
36
|
Gupta A, Nair S. Pseudomonas-specific 16S rRNA insect gut-microbiome profiling using next-generation sequencing. STAR Protoc 2023; 4:101941. [PMID: 36527711 PMCID: PMC9792947 DOI: 10.1016/j.xpro.2022.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
We present a detailed protocol for Pseudomonas-specific 16S rRNA gut-microbiome profiling of brown planthopper (BPH) populations collected across changing climates and geographical locations using next-generation sequencing. We provide a technique for comparative analysis of Pseudomonas species structure and composition across BPH populations. Additionally, using qPCR we quantify the titers of Pseudomonas species in BPH. This protocol can be adopted for analyzing microbiome dynamics and monitoring populations of other pests, a crucial aspect for understanding their biodiversity, speciation, and adaptations. For complete details on the use and execution of this protocol, please refer to Gupta et al. (2022).1.
Collapse
Affiliation(s)
- Ayushi Gupta
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
37
|
Douanla-Meli C, Moll J. Bark-inhabiting fungal communities of European chestnut undergo substantial alteration by canker formation following chestnut blight infection. Front Microbiol 2023; 14:1052031. [PMID: 36778875 PMCID: PMC9911167 DOI: 10.3389/fmicb.2023.1052031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Chestnut forests are severely threatened by chestnut blight caused by the fungal pathogen Cryphonectria parasitica and the infected trees exhibit bark canker in the later stage of the disease. European chestnut (Castanea sativa) is further infected by Gnomoniopsis smithogilvyi, another canker-causing fungal pathogen. We explored whether and how chestnut blight is reflected in bark-inhabiting fungal communities of European chestnut and also assessed the co-occurrence of C. parasitica and G. smithogilvyi. Materials and methods We initially investigated the fungal communities of European chestnut bark tissues and further monitored changes in these fungal communities with regard to disease progression from infection to canker formation by analyzing bark samples from asymptomatic trees, asymptomatic trees with latent C. parasitica infection, and infected trees with canker tissues, using amplicon sequencing of the ITS2 region of rDNA. Results The results showed that fungal community composition and diversity differed between the sample types. The fungal community composition was substantially reshaped by canker formation, whereas latent C. parasitica infection and more specifically pre-canker infection period per se had a weak effect. Fungal communities of canker samples was less diverse and more dissimilar to those of other sample types. C. parasitica dominated the mycobiome of canker samples, whereas G. smithogilvyi was found in only 9% of canker samples at very low abundances. However, G. smithogilvyi was a dominant fungus in the bark of healthy plants. Conclusion This study highlights that canker formation is the principal driver of decreasing diversity and altered composition of the mycobiome in bark tissues of European chestnut infected by C. parasitica infection. It additionally emphasizes the scarce co-occurrence of C. parasitica and G. smithogilvyi on European chestnut.
Collapse
Affiliation(s)
- Clovis Douanla-Meli
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Quedlinburg, Germany,*Correspondence: Clovis Douanla-Meli, ✉
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| |
Collapse
|
38
|
Díaz M, Monfort-Lanzas P, Quiroz-Moreno C, Rivadeneira E, Castillejo P, Arnau V, Díaz W, Agathos SN, Sangari FJ, Jarrín-V P, Molina CA. The microbiome of the ice-capped Cayambe Volcanic Complex in Ecuador. Front Microbiol 2023; 14:1154815. [PMID: 37213502 PMCID: PMC10196084 DOI: 10.3389/fmicb.2023.1154815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
A major challenge in microbial ecology is to understand the principles and processes by which microbes associate and interact in community assemblages. Microbial communities in mountain glaciers are unique as first colonizers and nutrient enrichment drivers for downstream ecosystems. However, mountain glaciers have been distinctively sensitive to climate perturbations and have suffered a severe retreat over the past 40 years, compelling us to understand glacier ecosystems before their disappearance. This is the first study in an Andean glacier in Ecuador offering insights into the relationship of physicochemical variables and altitude on the diversity and structure of bacterial communities. Our study covered extreme Andean altitudes at the Cayambe Volcanic Complex, from 4,783 to 5,583 masl. Glacier soil and ice samples were used as the source for 16S rRNA gene amplicon libraries. We found (1) effects of altitude on diversity and community structure, (2) the presence of few significantly correlated nutrients to community structure, (3) sharp differences between glacier soil and glacier ice in diversity and community structure, where, as quantified by the Shannon γ-diversity distribution, the meta-community in glacier soil showed more diversity than in glacier ice; this pattern was related to the higher variability of the physicochemical distribution of variables in the former substrate, and (4) significantly abundant genera associated with either high or low altitudes that could serve as biomarkers for studies on climate change. Our results provide the first assessment of these unexplored communities, before their potential disappearance due to glacier retreat and climate change.
Collapse
Affiliation(s)
- Magdalena Díaz
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Ingeniería Química, Universidad Central del Ecuador, Quito, Ecuador
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- *Correspondence: Magdalena Díaz,
| | - Pablo Monfort-Lanzas
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Cristian Quiroz-Moreno
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, United States
| | - Erika Rivadeneira
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad Internacional SEK, Quito, Ecuador
| | - Vicente Arnau
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Wladimiro Díaz
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Spiros N. Agathos
- Earth and Life Institute (ELI), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félix J. Sangari
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC – Universidad de Cantabria, Santander, Spain
| | - Pablo Jarrín-V
- Dirección de Innovación, Instituto Nacional de Biodiversidad INABIO, Quito, Ecuador
| | - C. Alfonso Molina
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
- C. Alfonso Molina,
| |
Collapse
|
39
|
Van Pee T, Hogervorst J, Dockx Y, Witters K, Thijs S, Wang C, Bongaerts E, Van Hamme JD, Vangronsveld J, Ameloot M, Raes J, Nawrot TS. Accumulation of Black Carbon Particles in Placenta, Cord Blood, and Childhood Urine in Association with the Intestinal Microbiome Diversity and Composition in Four- to Six-Year-Old Children in the ENVIR ONAGE Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17010. [PMID: 36719212 PMCID: PMC9888258 DOI: 10.1289/ehp11257] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The gut microbiome plays an essential role in human health. Despite the link between air pollution exposure and various diseases, its association with the gut microbiome during susceptible life periods remains scarce. OBJECTIVES In this study, we examined the association between black carbon particles quantified in prenatal and postnatal biological matrices and bacterial richness and diversity measures, and bacterial families. METHODS A total of 85 stool samples were collected from 4- to 6-y-old children enrolled in the ENVIRonmental influence ON early AGEing birth cohort. We performed 16S rRNA gene sequencing to calculate bacterial richness and diversity indices (Chao1 richness, Shannon diversity, and Simpson diversity) and the relative abundance of bacterial families. Black carbon particles were quantified via white light generation under femtosecond pulsed laser illumination in placental tissue and cord blood, employed as prenatal exposure biomarkers, and in urine, used as a post-natal exposure biomarker. We used robust multivariable-adjusted linear models to examine the associations between quantified black carbon loads and measures of richness (Chao1 index) and diversity (Shannon and Simpson indices), adjusting for parity, season of delivery, sequencing batch, age, sex, weight and height of the child, and maternal education. Additionally, we performed a differential relative abundance analysis of bacterial families with a correction for sampling fraction bias. Results are expressed as percentage difference for a doubling in black carbon loads with 95% confidence interval (CI). RESULTS Two diversity indices were negatively associated with placental black carbon [Shannon: -4.38% (95% CI: -8.31%, -0.28%); Simpson: -0.90% (95% CI: -1.76%, -0.04%)], cord blood black carbon [Shannon: -3.38% (95% CI: -5.66%, -0.84%); Simpson: -0.91 (95% CI: -1.66%, -0.16%)], and urinary black carbon [Shannon: -3.39% (95% CI: -5.77%, -0.94%); Simpson: -0.89% (95% CI: -1.37%, -0.40%)]. The explained variance of black carbon on the above indices varied from 6.1% to 16.6%. No statistically significant associations were found between black carbon load and the Chao1 richness index. After multiple testing correction, placental black carbon was negatively associated with relative abundance of the bacterial families Defluviitaleaceae and Marinifilaceae, and urinary black carbon with Christensenellaceae and Coriobacteriaceae; associations with cord blood black carbon were not statistically significant after correction. CONCLUSION Black carbon particles quantified in prenatal and postnatal biological matrices were associated with the composition and diversity of the childhood intestinal microbiome. These findings address the influential role of exposure to air pollution during pregnancy and early life in human health. https://doi.org/10.1289/EHP11257.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Katrien Witters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
40
|
Hofmann B, Dreyling L, Dal Grande F, Otte J, Schmitt I. Habitat and tree species identity shape aboveground and belowground fungal communities in central European forests. Front Microbiol 2023; 14:1067906. [PMID: 36950169 PMCID: PMC10025312 DOI: 10.3389/fmicb.2023.1067906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Trees interact with fungi in mutualistic, saprotrophic, and pathogenic relationships. With their extensive aboveground and belowground structures, trees provide diverse habitats for fungi. Thus, tree species identity is an important driver of fungal community composition in forests. Methods Here we investigate how forest habitat (bark surface vs. soil) and tree species identity (deciduous vs. coniferous) affect fungal communities in two Central European forests. We assess differences and interactions between fungal communities associated with bark surfaces and soil, in forest plots dominated either by Fagus sylvatica, Picea abies, or Pinus sylvestris in two study regions in southwestern and northeastern Germany. Results ITS metabarcoding yielded 3,357 fungal amplicon sequence variants (ASVs) in the northern and 6,088 in the southern region. Overall, soil communities were 4.7 times more diverse than bark communities. Habitat type explained 48-69% of the variation in alpha diversity, while tree species identity explained >1-3%. NMDS ordinations showed that habitat type and host tree species structured the fungal communities. Overall, few fungal taxa were shared between habitats, or between tree species, but the shared taxa were highly abundant. Network analyses, based on co-occurrence patterns, indicate that aboveground and belowground communities form distinct subnetworks. Discussion Our study suggests that habitat (bark versus soil) and tree species identity are important factors structuring fungal communities in temperate European forests. The aboveground (bark-associated) fungal community is currently poorly known, including a high proportion of reads assigned to "unknown Ascomycota" or "unknown Dothideomycetes." The role of bark as a habitat and reservoir of unique fungal diversity in forests has been underestimated.
Collapse
Affiliation(s)
- Benjamin Hofmann
- Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Lukas Dreyling
- Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
- Department of Biology, University of Padova, Padua, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Imke Schmitt
- Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
- *Correspondence: Imke Schmitt,
| |
Collapse
|
41
|
Goggans ML, Bilbrey EA, Quiroz-Moreno CD, Francis DM, Jacobi SK, Kovac J, Cooperstone JL. Short-Term Tomato Consumption Alters the Pig Gut Microbiome toward a More Favorable Profile. Microbiol Spectr 2022; 10:e0250622. [PMID: 36346230 PMCID: PMC9769997 DOI: 10.1128/spectrum.02506-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Diets rich in fruits and vegetables have been shown to exert positive effects on the gut microbiome. However, little is known about the specific effect of individual fruits or vegetables on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and their consumption has been associated with positive health outcomes. Using piglets as a physiologically relevant model of human metabolism, 20 animals were assigned to either a control or a tomato powder-supplemented diet (both macronutrient matched and isocaloric) for 14 days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7 (midpoint), and day 14 (end of study). DNA was sequenced using shotgun metagenomics, and reads were annotated using MG-RAST. There were no differences in body weight or feed intake between our two treatment groups. There was a microbial shift which included a higher ratio of Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes, respectively) and higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype. Analyses at both the phylum and genus levels showed global microbiome profile changes (permutational multivariate analysis of variance [PERMANOVA], P ≤ 0.05) over time but not with tomato consumption. These data suggest that short-term tomato consumption can beneficially influence the gut microbial profile, warranting further investigation in humans. IMPORTANCE The composition of the microorganisms in the gut is a contributor to overall health, prompting the development of strategies to alter the microbiome composition. Studies have investigated the role of the diet on the microbiome, as it is a major modifiable risk factor contributing to health; however, little is known about the causal effects of consumption of specific foods on the gut microbiota. A more complete understanding of how individual foods impact the microbiome will enable more evidence-based dietary recommendations for long-term health. Tomatoes are of interest as the most consumed nonstarchy vegetable and a common source of nutrients and phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato consumption on the microbiome, using piglets as a physiologically relevant model to humans. We found that tomato consumption can positively affect the gut microbial profile, which warrants further investigation in humans.
Collapse
Affiliation(s)
- Mallory L. Goggans
- Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Emma A. Bilbrey
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| | | | - David M. Francis
- Horticulture and Crop Science, The Ohio State University, Wooster, Ohio, USA
| | | | - Jasna Kovac
- Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jessica L. Cooperstone
- Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
42
|
Kowallik V, Das A, Mikheyev AS. Experimental inheritance of antibiotic acquired dysbiosis affects host phenotypes across generations. Front Microbiol 2022; 13:1030771. [PMID: 36532456 PMCID: PMC9751584 DOI: 10.3389/fmicb.2022.1030771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 04/12/2024] Open
Abstract
Microbiomes can enhance the health, fitness and even evolutionary potential of their hosts. Many organisms propagate favorable microbiomes fully or partially via vertical transmission. In the long term, such co-propagation can lead to the evolution of specialized microbiomes and functional interdependencies with the host. However, microbiomes are vulnerable to environmental stressors, particularly anthropogenic disturbance such as antibiotics, resulting in dysbiosis. In cases where microbiome transmission occurs, a disrupted microbiome may then become a contagious pathology causing harm to the host across generations. We tested this hypothesis using the specialized socially transmitted gut microbiome of honey bees as a model system. By experimentally passaging tetracycline-treated microbiomes across worker 'generations' we found that an environmentally acquired dysbiotic phenotype is heritable. As expected, the antibiotic treatment disrupted the microbiome, eliminating several common and functionally important taxa and strains. When transmitted, the dysbiotic microbiome harmed the host in subsequent generations. Particularly, naïve bees receiving antibiotic-altered microbiomes died at higher rates when challenged with further antibiotic stress. Bees with inherited dysbiotic microbiomes showed alterations in gene expression linked to metabolism and immunity, among other pathways, suggesting effects on host physiology. These results indicate that there is a possibility that sublethal exposure to chemical stressors, such as antibiotics, may cause long-lasting changes to functional host-microbiome relationships, possibly weakening the host's progeny in the face of future ecological challenges. Future studies under natural conditions would be important to examine the extent to which negative microbiome-mediated phenotypes could indeed be heritable and what role this may play in the ongoing loss of biodiversity.
Collapse
Affiliation(s)
- Vienna Kowallik
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
| | - Ashutosh Das
- Australian National University, Canberra, ACT, Australia
- Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
- Australian National University, Canberra, ACT, Australia
| |
Collapse
|
43
|
Cangioli L, Salobehaj M, Del Duca S, Fagorzi C, Berardi C, Coppini E, Fibbi D, Fani R, Vassallo A. Effect of Wastewater on the Composition of Bacterial Microbiota of Phragmites australis Used in Constructed Wetlands for Phytodepuration. PLANTS (BASEL, SWITZERLAND) 2022; 11:3210. [PMID: 36501250 PMCID: PMC9739656 DOI: 10.3390/plants11233210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Phytodepuration occurs in the plant-mediated remediation processes exploited to remove pollutants from wastewater, and Phragmites australis is one of the most used plants. This goal is achieved using constructed wetlands (CW), which are engineered systems designed to mimic the natural processes of pollutants removal. The aim of this work was to characterize the bacterial communities associated to P. australis, soils, and permeates of the CW of Calice (Prato, Italy), to evaluate the possible effect of wastewaters on the CW bacterial communities, through a next-generation sequencing-based approach. A total of 122 samples were collected from different tissues of P. australis (i.e., roots, aerial parts, and stem), soil (i.e., rhizospheric and bulk soil), and permeates, and analyzed. All samples were collected during five sampling campaigns, with the first one performed before the activation of the plant. Obtained results highlighted a specific microbiota of P. australis, conserved among the different plant tissues and during time, showing a lower alpha diversity than the other samples and not influenced by the more complex and variable environmental (soils and permeates) bacterial communities. These data suggest that P. australis is able to select and maintain a defined microbiota, a capacity that could allow the plant to survive in hostile environments, such as that of CW.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Maria Salobehaj
- Center for Magnetic Resonance (CERM), 50019 Sesto Fiorentino, Italy
| | - Sara Del Duca
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Chiara Berardi
- Gestione Impianti di Depurazione Acque (G.I.D.A.) SpA, 59100 Prato, Italy
| | - Ester Coppini
- Gestione Impianti di Depurazione Acque (G.I.D.A.) SpA, 59100 Prato, Italy
| | - Donatella Fibbi
- Gestione Impianti di Depurazione Acque (G.I.D.A.) SpA, 59100 Prato, Italy
| | - Renato Fani
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
44
|
Pearman JK, Thomson-Laing G, Thompson L, Waters S, Vandergoes MJ, Howarth JD, Duggan IC, Hogg ID, Wood SA. Human access and deterministic processes play a major role in structuring planktonic and sedimentary bacterial and eukaryotic communities in lakes. PeerJ 2022; 10:e14378. [PMID: 36389411 PMCID: PMC9661969 DOI: 10.7717/peerj.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Lakes provide habitat for a diverse array of species and offer a wide range of ecosystem services for humanity. However, they are highly vulnerable as they are not only impacted by adverse actions directly affecting them, but also those on the surrounding environment. Improving knowledge on the processes responsible for community assembly in different biotic components will aid in the protection and restoration of lakes. Studies to date suggested a combination of deterministic (where biotic/abiotic factors act on fitness differences amongst taxa) and stochastic (where dispersal plays a larger factor in community assembly) processes are responsible for structuring biotic communities, but there is no consensus on the relative roles these processes play, and data is lacking for lakes. In the present study, we sampled different biotic components in 34 lakes located on the South Island of New Zealand. To obtain a holistic view of assembly processes in lakes we used metabarcoding to investigate bacteria in the sediment and surface waters, and eukaryotes in the sediment and two different size fractions of the water column. Physicochemical parameters were collected in parallel. Results showed that deterministic processes dominated the assembly of lake communities although the relative importance of variable and homogeneous selection differed among the biotic components. Variable selection was more important in the sediment (SSbact and SSeuks) and for the bacterioplankton (Pbact) while the assembly of the eukaryotic plankton (SPeuks, LPeuks) was driven more by homogeneous selection. The ease of human access to the lakes had a significant effect on lake communities. In particular, clade III of SAR11 and Daphnia pulex were only present in lakes with public access. This study provides insights into the distribution patterns of different biotic components and highlights the value in understanding the drivers of different biological communities within lakes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian D. Hogg
- University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Nunavut, Canada
| | | |
Collapse
|
45
|
Chen KH, Marcón F, Duringer J, Blount A, Mackowiak C, Liao HL. Leaf Mycobiome and Mycotoxin Profile of Warm-Season Grasses Structured by Plant Species, Geography, and Apparent Black-Stroma Fungal Structure. Appl Environ Microbiol 2022; 88:e0094222. [PMID: 36226941 PMCID: PMC9642016 DOI: 10.1128/aem.00942-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Grasses harbor diverse fungi, including some that produce mycotoxins or other secondary metabolites. Recently, Florida cattle farmers reported cattle illness, while the cattle were grazing on warm-season grass pastures, that was not attributable to common causes, such as nutritional imbalances or nitrate toxicity. To understand correlations between grass mycobiome and mycotoxin production, we investigated the mycobiomes associated with five prominent, perennial forage and weed grasses [Paspalum notatum Flügge, Cynodon dactylon (L.) Pers., Paspalum nicorae Parodi, Sporobolus indicus (L.) R. Br., and Andropogon virginicus (L.)] collected from six Florida pastures actively grazed by livestock. Black fungal stromata of Myriogenospora and Balansia were observed on P. notatum and S. indicus leaves and were investigated. High-throughput amplicon sequencing was applied to delineate leaf mycobiomes. Mycotoxins from P. notatum leaves were inspected using liquid chromatography-mass spectrometry (LC-MS/MS). Grass species, cultivars, and geographic localities interactively affected fungal community assemblies of asymptomatic leaves. Among the grass species, the greatest fungal richness was detected in the weed S. indicus. The black fungal structures of P. notatum leaves were dominated by the genus Myriogenospora, while those of S. indicus were codominated by the genus Balansia and a hypermycoparasitic fungus of the genus Clonostachys. When comparing mycotoxins detected in P. notatum leaves with and without M. atramentosa, emodin, an anthraquinone, was the only compound which was significantly different (P < 0.05). Understanding the leaf mycobiome and the mycotoxins it may produce in warm-season grasses has important implications for how these associations lead to secondary metabolite production and their subsequent impact on animal health. IMPORTANCE The leaf mycobiome of forage grasses can have a major impact on their mycotoxin contents of forage and subsequently affect livestock health. Despite the importance of the cattle industry in warm-climate regions, such as Florida, studies have been primarily limited to temperate forage systems. Our study provides a holistic view of leaf fungi considering epibiotic, endophytic, and hypermycoparasitic associations with five perennial, warm-season forage and weed grasses. We highlight that plant identity and geographic location interactively affect leaf fungal community composition. Yeasts appeared to be an overlooked fungal group in healthy forage mycobiomes. Furthermore, we detected high emodin quantities in the leaves of a widely planted forage species (P. notatum) whenever epibiotic fungi occurred. Our study demonstrated the importance of identifying fungal communities, ecological roles, and secondary metabolites in perennial, warm-season grasses and their potential for interfering with livestock health.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Florencia Marcón
- Department of Agronomy, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Jennifer Duringer
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Ann Blount
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
| | - Cheryl Mackowiak
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Hui-Ling Liao
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
46
|
Exploration of bacterial diversity in leaves and rhizosphere soil of flood affected and unaffected apricot trees. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Anderson SR, Harvey EL. Estuarine microbial networks and relationships vary between environmentally distinct communities. PeerJ 2022; 10:e14005. [PMID: 36157057 PMCID: PMC9504456 DOI: 10.7717/peerj.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/14/2022] [Indexed: 01/19/2023] Open
Abstract
Microbial interactions have profound impacts on biodiversity, biogeochemistry, and ecosystem functioning, and yet, they remain poorly understood in the ocean and with respect to changing environmental conditions. We applied hierarchical clustering of an annual 16S and 18S amplicon dataset in the Skidaway River Estuary, which revealed two similar clusters for prokaryotes (Bacteria and Archaea) and protists: Cluster 1 (March-May and November-February) and Cluster 2 (June-October). We constructed co-occurrence networks from each cluster to explore how microbial networks and relationships vary between environmentally distinct periods in the estuary. Cluster 1 communities were exposed to significantly lower temperature, sunlight, NO3, and SiO4; only NH4 was higher at this time. Several network properties (e.g., edge number, degree, and centrality) were elevated for networks constructed with Cluster 1 vs. 2 samples. There was also evidence that microbial nodes in Cluster 1 were more connected (e.g., higher edge density and lower path length) compared to Cluster 2, though opposite trends were observed when networks considered Prokaryote-Protist edges only. The number of Prokaryote-Prokaryote and Prokaryote-Protist edges increased by >100% in the Cluster 1 network, mainly involving Flavobacteriales, Rhodobacterales, Peridiniales, and Cryptomonadales associated with each other and other microbial groups (e.g., SAR11, Bacillariophyta, and Strombidiida). Several Protist-Protist associations, including Bacillariophyta correlated with Syndiniales (Dino-Groups I and II) and an Unassigned Dinophyceae group, were more prevalent in Cluster 2. Based on the type and sign of associations that increased in Cluster 1, our findings indicate that mutualistic, competitive, or predatory relationships may have been more representative among microbes when conditions were less favorable in the estuary; however, such relationships require further exploration and validation in the field and lab. Coastal networks may also be driven by shifts in the abundance of certain taxonomic or functional groups. Sustained monitoring of microbial communities over environmental gradients, both spatial and temporal, is critical to predict microbial dynamics and biogeochemistry in future marine ecosystems.
Collapse
Affiliation(s)
- Sean R. Anderson
- Northern Gulf Institute, Mississippi State University, Mississippi State, MS, United States of America
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States of America
| | - Elizabeth L. Harvey
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States of America
| |
Collapse
|
48
|
Mandal M, Mandal S. Cross-biome metagenomic analyses of the impact of pollutants on taxonomic and functional diversity of bacterial communities from different geographical regions. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Effect of Site and Phenological Status on the Potato Bacterial Rhizomicrobiota. Microorganisms 2022; 10:microorganisms10091743. [PMID: 36144345 PMCID: PMC9501399 DOI: 10.3390/microorganisms10091743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The potato is the fourth major food crop in the world. Its cultivation can encounter problems, resulting in poor growth and reduced yield. Plant microbiota has shown an ability to increase growth and resistance. However, in the development of effective microbiota manipulation strategies, it is essential to know the effect of environmental variables on microbiota composition and function. Here, we aimed to identify the differential impact of the site of cultivation and plant growth stage on potato rhizosphere microbiota. We performed a 16S rRNA gene amplicon sequencing analysis of rhizospheric soil collected from potato plants grown at four sites in central Italy during two phenological stages. Rhizomicrobiota was mainly composed of members of phyla Acidobacteriota, Actinobacteriota, Chloroflexi, and Proteobacteria and was affected by both the site of cultivation and the plant stages. However, cultivation sites overcome the effect of plant phenological stages. The PiCRUST analysis suggested a high abundance of functions related to the biosynthesis of the siderophore enterobactin. The presence of site-specific taxa and functional profiling of the microbiota could be further exploited in long-term studies to evaluate the possibility of developing biomarkers for traceability of the products and to exploit plant growth-promoting abilities in the native potato microbiota.
Collapse
|
50
|
Senn S, Bhattacharyya S, Presley G, Taylor AE, Nash B, Enke RA, Barnard-Kubow KB, Ford J, Jasinski B, Badalova Y. The Functional Biogeography of eDNA Metacommunities in the Post-Fire Landscape of the Angeles National Forest. Microorganisms 2022; 10:microorganisms10061218. [PMID: 35744735 PMCID: PMC9229275 DOI: 10.3390/microorganisms10061218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Wildfires have continued to increase in frequency and severity in Southern California due in part to climate change. To gain a further understanding of microbial soil communities’ response to fire and functions that may enhance post-wildfire resilience, soil fungal and bacterial microbiomes were studied from different wildfire areas in the Gold Creek Preserve within the Angeles National Forest using 16S, FITS, 18S, 12S, PITS, and COI amplicon sequencing. Sequencing datasets from December 2020 and June 2021 samplings were analyzed using QIIME2, ranacapa, stats, vcd, EZBioCloud, and mixomics. Significant differences were found among bacterial and fungal taxa associated with different fire areas in the Gold Creek Preserve. There was evidence of seasonal shifts in the alpha diversity of the bacterial communities. In the sparse partial least squares analysis, there were strong associations (r > 0.8) between longitude, elevation, and a defined cluster of Amplicon Sequence Variants (ASVs). The Chi-square test revealed differences in fungi−bacteria (F:B) proportions between different trails (p = 2 × 10−16). sPLS results focused on a cluster of Green Trail samples with high elevation and longitude. Analysis revealed the cluster included the post-fire pioneer fungi Pyronema and Tremella. Chlorellales algae and possibly pathogenic Fusarium sequences were elevated. Bacterivorous Corallococcus, which secretes antimicrobials, and bacterivorous flagellate Spumella were associated with the cluster. There was functional redundancy in clusters that were differently composed but shared similar ecological functions. These results implied a set of traits for post-fire resiliency. These included photo-autotrophy, mineralization of pyrolyzed organic matter and aromatic/oily compounds, potential pathogenicity and parasitism, antimicrobials, and N-metabolism.
Collapse
Affiliation(s)
- Savanah Senn
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Correspondence:
| | - Sharmodeep Bhattacharyya
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Gerald Presley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Anne E. Taylor
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Bruce Nash
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
| | - Ray A. Enke
- Department of Biology, Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA 22807, USA; (R.A.E.); (K.B.B.-K.)
| | - Karen B. Barnard-Kubow
- Department of Biology, Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA 22807, USA; (R.A.E.); (K.B.B.-K.)
| | - Jillian Ford
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| | - Brandon Jasinski
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| | - Yekaterina Badalova
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| |
Collapse
|