1
|
Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KKL, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L. Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching. Cell 2024; 187:5081-5101.e19. [PMID: 38996528 DOI: 10.1016/j.cell.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yixin Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Takato M, Sakamoto S, Nonaka H, Tanimura Valor FY, Tamura T, Hamachi I. Photoproximity labeling of endogenous receptors in the live mouse brain in minutes. Nat Chem Biol 2024:10.1038/s41589-024-01692-4. [PMID: 39090312 DOI: 10.1038/s41589-024-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Understanding how protein-protein interaction networks in the brain give rise to cognitive functions necessitates their characterization in live animals. However, tools available for this purpose require potentially disruptive genetic modifications and lack the temporal resolution necessary to track rapid changes in vivo. Here we leverage affinity-based targeting and photocatalyzed singlet oxygen generation to identify neurotransmitter receptor-proximal proteins in the live mouse brain using only small-molecule reagents and minutes of photoirradiation. Our photooxidation-driven proximity labeling for proteome identification (named PhoxID) method not only recapitulated the known interactomes of three endogenous neurotransmitter receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), inhibitory γ-aminobutyric acid type A receptor and ionotropic glutamate receptor delta-2) but also uncovered age-dependent shifts, identifying NECTIN3 and IGSF3 as developmentally regulated AMPAR-proximal proteins in the cerebellum. Overall, this work establishes a flexible and generalizable platform to study receptor microenvironments in genetically intact specimens with an unprecedented temporal resolution.
Collapse
Affiliation(s)
- Mikiko Takato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Fátima Yuri Tanimura Valor
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan.
| |
Collapse
|
3
|
Nakayama H, Miyazaki T, Abe M, Yamazaki M, Kawamura Y, Choo M, Konno K, Kawata S, Uesaka N, Hashimoto K, Miyata M, Sakimura K, Watanabe M, Kano M. Direct and indirect pathways for heterosynaptic interaction underlying developmental synapse elimination in the mouse cerebellum. Commun Biol 2024; 7:806. [PMID: 38961250 PMCID: PMC11222442 DOI: 10.1038/s42003-024-06447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.
Collapse
Affiliation(s)
- Hisako Nakayama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshinobu Kawamura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Myeongjeong Choo
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Kawata
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan.
| |
Collapse
|
4
|
Biddinger JE, Elson AET, Fathi PA, Sweet SR, Nishimori K, Ayala JE, Simerly RB. AgRP neurons mediate activity-dependent development of oxytocin connectivity and autonomic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.592838. [PMID: 38895484 PMCID: PMC11185571 DOI: 10.1101/2024.06.02.592838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
During postnatal life, the adipocyte-derived hormone leptin is required for proper targeting of neural inputs to the paraventricular nucleus of the hypothalamus (PVH) and impacts the activity of neurons containing agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus. Activity-dependent developmental mechanisms are known to play a defining role during postnatal organization of neural circuits, but whether leptin-mediated postnatal neuronal activity specifies neural projections to the PVH or impacts downstream connectivity is largely unexplored. Here, we blocked neuronal activity of AgRP neurons during a discrete postnatal period and evaluated development of AgRP inputs to defined regions in the PVH, as well as descending projections from PVH oxytocin neurons to the dorsal vagal complex (DVC) and assessed their dependence on leptin or postnatal AgRP neuronal activity. In leptin-deficient mice, AgRP inputs to PVH neurons were significantly reduced, as well as oxytocin-specific neuronal targeting by AgRP. Moreover, downstream oxytocin projections from the PVH to the DVC were also impaired, despite the lack of leptin receptors found on PVH oxytocin neurons. Blocking AgRP neuron activity specifically during early postnatal life reduced the density of AgRP inputs to the PVH, as well as the density of projections from PVH oxytocin neurons to the DVC, and these innervation deficits were associated with dysregulated autonomic function. These findings suggest that postnatal targeting of descending PVH oxytocin projections to the DVC requires leptin-mediated AgRP neuronal activity, and represents a novel activity-dependent mechanism for hypothalamic specification of metabolic circuitry, with consequences for autonomic regulation. Significance statement Hypothalamic neural circuits maintain homeostasis by coordinating endocrine signals with autonomic responses and behavioral outputs to ensure that physiological responses remain in tune with environmental demands. The paraventricular nucleus of the hypothalamus (PVH) plays a central role in metabolic regulation, and the architecture of its neural inputs and axonal projections is a defining feature of how it receives and conveys neuroendocrine information. In adults, leptin regulates multiple aspects of metabolic physiology, but it also functions during development to direct formation of circuits controlling homeostatic functions. Here we demonstrate that leptin acts to specify the input-output architecture of PVH circuits through an activity-dependent, transsynaptic mechanism, which represents a novel means of sculpting neuroendocrine circuitry, with lasting effects on how the brain controls energy balance.
Collapse
|
5
|
Nonaka H, Sakamoto S, Shiraiwa K, Ishikawa M, Tamura T, Okuno K, Kondo T, Kiyonaka S, Susaki EA, Shimizu C, Ueda HR, Kakegawa W, Arai I, Yuzaki M, Hamachi I. Bioorthogonal chemical labeling of endogenous neurotransmitter receptors in living mouse brains. Proc Natl Acad Sci U S A 2024; 121:e2313887121. [PMID: 38294939 PMCID: PMC10861872 DOI: 10.1073/pnas.2313887121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024] Open
Abstract
Neurotransmitter receptors are essential components of synapses for communication between neurons in the brain. Because the spatiotemporal expression profiles and dynamics of neurotransmitter receptors involved in many functions are delicately governed in the brain, in vivo research tools with high spatiotemporal resolution for receptors in intact brains are highly desirable. Covalent labeling by chemical reaction (chemical labeling) of proteins without genetic manipulation is now a powerful method for analyzing receptors in vitro. However, selective target receptor labeling in the brain has not yet been achieved. This study shows that ligand-directed alkoxyacylimidazole (LDAI) chemistry can be used to selectively tether synthetic probes to target endogenous receptors in living mouse brains. The reactive LDAI reagents with negative charges were found to diffuse well over the whole brain and could selectively label target endogenous receptors, including AMPAR, NMDAR, mGlu1, and GABAAR. This simple and robust labeling protocol was then used for various applications: three-dimensional spatial mapping of endogenous receptors in the brains of healthy and disease-model mice; multi-color receptor imaging; and pulse-chase analysis of the receptor dynamics in postnatal mouse brains. Here, results demonstrated that bioorthogonal receptor modification in living animal brains may provide innovative molecular tools that contribute to the in-depth understanding of complicated brain functions.
Collapse
Affiliation(s)
- Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| | - Kazuki Shiraiwa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Mamoru Ishikawa
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| | - Kyohei Okuno
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Takumi Kondo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| | - Shigeki Kiyonaka
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| | - Etsuo A. Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo113-8421, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-5241, Japan
| | - Chika Shimizu
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-5241, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-5241, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Wataru Kakegawa
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
- Department of Neurophysiology, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Itaru Arai
- Department of Neurophysiology, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| |
Collapse
|
6
|
Dewa KI, Arimura N, Kakegawa W, Itoh M, Adachi T, Miyashita S, Inoue YU, Hizawa K, Hori K, Honjoya N, Yagishita H, Taya S, Miyazaki T, Usui C, Tatsumoto S, Tsuzuki A, Uetake H, Sakai K, Yamakawa K, Sasaki T, Nagai J, Kawaguchi Y, Sone M, Inoue T, Go Y, Ichinohe N, Kaibuchi K, Watanabe M, Koizumi S, Yuzaki M, Hoshino M. Neuronal DSCAM regulates the peri-synaptic localization of GLAST in Bergmann glia for functional synapse formation. Nat Commun 2024; 15:458. [PMID: 38302444 PMCID: PMC10834496 DOI: 10.1038/s41467-023-44579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.
Collapse
Affiliation(s)
- Ken-Ichi Dewa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan.
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masayuki Itoh
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kento Hizawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Natsumi Honjoya
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Haruya Yagishita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Division of Behavioural Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Taisuke Miyazaki
- Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Chika Usui
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Akiko Tsuzuki
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Hirotomo Uetake
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Saitama, 274-8510, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medicine, Nagoya, Aichi, 467-8601, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Yoshiya Kawaguchi
- Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Saitama, 274-8510, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Graduate School of Information Science, University of Hyogo, Kobe, Hyogo, 650-0047, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
- The University of Texas at Austin, Austin, Texas, 78712-0805, USA
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan.
| |
Collapse
|
7
|
Heller DT, Kolson DR, Brandebura AN, Amick EM, Wan J, Ramadan J, Holcomb PS, Liu S, Deerinck TJ, Ellisman MH, Qian J, Mathers PH, Spirou GA. Astrocyte ensheathment of calyx-forming axons of the auditory brainstem precedes accelerated expression of myelin genes and myelination by oligodendrocytes. J Comp Neurol 2024; 532:e25552. [PMID: 37916792 PMCID: PMC10922096 DOI: 10.1002/cne.25552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Early postnatal brain development involves complex interactions among maturing neurons and glial cells that drive tissue organization. We previously analyzed gene expression in tissue from the mouse medial nucleus of the trapezoid body (MNTB) during the first postnatal week to study changes that surround rapid growth of the large calyx of Held (CH) nerve terminal. Here, we present genes that show significant changes in gene expression level during the second postnatal week, a developmental timeframe that brackets the onset of airborne sound stimulation and the early stages of myelination. Gene Ontology analysis revealed that many of these genes are related to the myelination process. Further investigation of these genes using a previously published cell type-specific bulk RNA-Seq data set in cortex and our own single-cell RNA-Seq data set in the MNTB revealed enrichment of these genes in the oligodendrocyte lineage (OL) cells. Combining the postnatal day (P)6-P14 microarray gene expression data with the previously published P0-P6 data provided fine temporal resolution to investigate the initiation and subsequent waves of gene expression related to OL cell maturation and the process of myelination. Many genes showed increasing expression levels between P2 and P6 in patterns that reflect OL cell maturation. Correspondingly, the first myelin proteins were detected by P4. Using a complementary, developmental series of electron microscopy 3D image volumes, we analyzed the temporal progression of axon wrapping and myelination in the MNTB. By employing a combination of established ultrastructural criteria to classify reconstructed early postnatal glial cells in the 3D volumes, we demonstrated for the first time that astrocytes within the mouse MNTB extensively wrap the axons of the growing CH terminal prior to OL cell wrapping and compaction of myelin. Our data revealed significant expression of several myelin genes and enrichment of multiple genes associated with lipid metabolism in astrocytes, which may subserve axon wrapping in addition to myelin formation. The transition from axon wrapping by astrocytes to OL cells occurs rapidly between P4 and P9 and identifies a potential new role of astrocytes in priming calyceal axons for subsequent myelination.
Collapse
Affiliation(s)
| | - Douglas R. Kolson
- WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV
- Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, WV
| | - Ashley N. Brandebura
- WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV
- Biochemistry, West Virginia University School of Medicine, Morgantown, WV
| | - Emily M. Amick
- Medical Engineering, University of South Florida, Tampa, FL
| | - Jun Wan
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Jad Ramadan
- Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, WV
| | - Paul S. Holcomb
- WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV
| | - Sheng Liu
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. Deerinck
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA
- Department of Neuroscience, University of California, San Diego, CA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA
- Department of Neuroscience, University of California, San Diego, CA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter H. Mathers
- WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV
- Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, WV
- Biochemistry, West Virginia University School of Medicine, Morgantown, WV
| | | |
Collapse
|
8
|
Soliño M, Yu A, Della Santina L, Ou Y. Large-scale survey of excitatory synapses reveals sublamina-specific and asymmetric synapse disassembly in a neurodegenerative circuit. iScience 2023; 26:107262. [PMID: 37609630 PMCID: PMC10440711 DOI: 10.1016/j.isci.2023.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 08/24/2023] Open
Abstract
In the nervous system, parallel circuits are organized in part by the lamina-specific compartmentalization of synaptic connections. In sensory systems such as mammalian retina, degenerating third-order neurons remodel their local presynaptic connectivity with second-order neurons. To determine whether there are sublamina-specific perturbations after injury of adult retinal ganglion cells, we comprehensively analyzed excitatory synapses across the inner plexiform layer (IPL) where bipolar cells connect to ganglion cells. Here, we show that pre- and postsynaptic component loss occurs throughout the IPL in a sublamina-dependent fashion after transient intraocular pressure elevation. Partnered synaptic components are lost as neurodegeneration progresses, while unpartnered synaptic components remain stable. Furthermore, presynaptic components are either lost first or simultaneously with the postsynaptic component. Our results demonstrate that this degenerating neural circuit exhibits differential vulnerability of excitatory synapses depending on IPL depth, highlighting the ordered disassembly of synapses that is specific to laminar compartments of the retina.
Collapse
Affiliation(s)
- Manuel Soliño
- Department of Ophthalmology, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Alfred Yu
- Department of Ophthalmology, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Luca Della Santina
- Department of Ophthalmology, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Aimi T, Matsuda K, Yuzaki M. C1ql1-Bai3 signaling is necessary for climbing fiber synapse formation in mature Purkinje cells in coordination with neuronal activity. Mol Brain 2023; 16:61. [PMID: 37488606 PMCID: PMC10367388 DOI: 10.1186/s13041-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Changes in neural activity induced by learning and novel environments have been reported to lead to the formation of new synapses in the adult brain. However, the underlying molecular mechanism is not well understood. Here, we show that Purkinje cells (PCs), which have established adult-type monosynaptic innervation by climbing fibers (CFs) after elimination of weak CFs during development, can be reinnervated by multiple CFs by increased expression of the synaptic organizer C1ql1 in CFs or Bai3, a receptor for C1ql1, in PCs. In the adult cerebellum, CFs are known to have transverse branches that run in a mediolateral direction without forming synapses with PCs. Electrophysiological, Ca2+-imaging and immunohistochemical studies showed that overexpression of C1ql1 or Bai3 caused these CF transverse branches to elongate and synapse on the distal dendrites of mature PCs. Mature PCs were also reinnervated by multiple CFs when the glutamate receptor GluD2, which is essential for the maintenance of synapses between granule cells and PCs, was deleted. Interestingly, the effect of GluD2 knockout was not observed in Bai3 knockout PCs. In addition, C1ql1 levels were significantly upregulated in CFs of GluD2 knockout mice, suggesting that endogenous, not overexpressed, C1ql1-Bai3 signaling could regulate the reinnervation of mature PCs by CFs. Furthermore, the effects of C1ql1 and Bai3 overexpression required neuronal activity in the PC and CF, respectively. C1ql1 immunoreactivity at CF-PC synapses was reduced when the neuronal activity of CFs was suppressed. These results suggest that C1ql1-Bai3 signaling may mediate CF synaptogenesis in mature PCs, potentially in concert with neuronal activity.
Collapse
Affiliation(s)
- Takahiro Aimi
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiko Matsuda
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
10
|
Krausová M, Kreplová M, Banik P, Cvačková Z, Kubovčiak J, Modrák M, Zudová D, Lindovský J, Kubik-Zahorodna A, Pálková M, Kolář M, Procházka J, Sedláček R, Staněk D. Retinitis pigmentosa-associated mutations in mouse Prpf8 cause misexpression of circRNAs and degeneration of cerebellar granule cells. Life Sci Alliance 2023; 6:e202201855. [PMID: 37019475 PMCID: PMC10078954 DOI: 10.26508/lsa.202201855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
A subset of patients with retinitis pigmentosa (RP) carry mutations in several spliceosomal components including the PRPF8 protein. Here, we established two alleles of murine Prpf8 that genocopy or mimic aberrant PRPF8 found in RP patients-the substitution p.Tyr2334Asn and an extended protein variant p.Glu2331ValfsX15. Homozygous mice expressing the aberrant Prpf8 variants developed within the first 2 mo progressive atrophy of the cerebellum because of extensive granule cell loss, whereas other cerebellar cells remained unaffected. We further show that a subset of circRNAs were deregulated in the cerebellum of both Prpf8-RP mouse strains. To identify potential risk factors that sensitize the cerebellum for Prpf8 mutations, we monitored the expression of several splicing proteins during the first 8 wk. We observed down-regulation of all selected splicing proteins in the WT cerebellum, which coincided with neurodegeneration onset. The decrease in splicing protein expression was further pronounced in mouse strains expressing mutated Prpf8. Collectively, we propose a model where physiological reduction in spliceosomal components during postnatal tissue maturation sensitizes cells to the expression of aberrant Prpf8 and the subsequent deregulation of circRNAs triggers neuronal death.
Collapse
Affiliation(s)
- Michaela Krausová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Kreplová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Poulami Banik
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Cvačková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovčiak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Modrák
- Core Facility Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Zudová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Jiří Lindovský
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Agnieszka Kubik-Zahorodna
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Marcela Pálková
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedláček
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Nagappan-Chettiar S, Burbridge TJ, Umemori H. Activity-Dependent Synapse Refinement: From Mechanisms to Molecules. Neuroscientist 2023:10738584231170167. [PMID: 37140155 DOI: 10.1177/10738584231170167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The refinement of immature neuronal networks into efficient mature ones is critical to nervous system development and function. This process of synapse refinement is driven by the neuronal activity-dependent competition of converging synaptic inputs, resulting in the elimination of weak inputs and the stabilization of strong ones. Neuronal activity, whether in the form of spontaneous activity or experience-evoked activity, is known to drive synapse refinement in numerous brain regions. More recent studies are now revealing the manner and mechanisms by which neuronal activity is detected and converted into molecular signals that appropriately regulate the elimination of weaker synapses and stabilization of stronger ones. Here, we highlight how spontaneous activity and evoked activity instruct neuronal activity-dependent competition during synapse refinement. We then focus on how neuronal activity is transformed into the molecular cues that determine and execute synapse refinement. A comprehensive understanding of the mechanisms underlying synapse refinement can lead to novel therapeutic strategies in neuropsychiatric diseases characterized by aberrant synaptic function.
Collapse
Affiliation(s)
- Sivapratha Nagappan-Chettiar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J Burbridge
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Midorikawa M. Developmental and activity-dependent modulation of coupling distance between release site and Ca2+ channel. Front Cell Neurosci 2022; 16:1037721. [DOI: 10.3389/fncel.2022.1037721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Synapses are junctions between a presynaptic neuron and a postsynaptic cell specialized for fast and precise information transfer. The presynaptic terminal secretes neurotransmitters via exocytosis of synaptic vesicles. Exocytosis is a tightly regulated reaction that occurs within a millisecond of the arrival of an action potential. One crucial parameter in determining the characteristics of the transmitter release kinetics is the coupling distance between the release site and the Ca2+ channel. Still, the technical limitations have hindered detailed analysis from addressing how the coupling distance is regulated depending on the development or activity of the synapse. However, recent technical advances in electrophysiology and imaging are unveiling their different configurations in different conditions. Here, I will summarize developmental- and activity-dependent changes in the coupling distances revealed by recent studies.
Collapse
|
13
|
Zhang C, Hellevik A, Takeuchi S, Wong RO. Hierarchical partner selection shapes rod-cone pathway specificity in the inner retina. iScience 2022; 25:105032. [PMID: 36117987 PMCID: PMC9474917 DOI: 10.1016/j.isci.2022.105032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Neurons form stereotyped microcircuits that underlie specific functions. In the vertebrate retina, the primary rod and cone pathways that convey dim and bright light signals, respectively, exhibit distinct wiring patterns. Rod and cone pathways are thought to be assembled separately during development. However, using correlative fluorescence imaging and serial electron microscopy, we show here that cross-pathway interactions are involved to achieve pathway-specific connectivity within the inner retina. We found that A17 amacrine cells, a rod pathway-specific cellular component, heavily bias their synaptogenesis with rod bipolar cells (RBCs) but increase their connectivity with cone bipolar cells (CBCs) when RBCs are largely ablated. This cross-pathway synaptic plasticity occurs during synaptogenesis and is triggered even on partial loss of RBCs. Thus, A17 cells adopt a hierarchical approach in selecting postsynaptic partners from functionally distinct pathways (RBC>CBC), in which contact and/or synaptogenesis with preferred partners (RBCs) influences connectivity with less-preferred partners (CBCs).
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ayana Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Rachel O. Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Sival DA, Noort SAMV, Tijssen MAJ, de Koning TJ, Verbeek DS. Developmental neurobiology of cerebellar and Basal Ganglia connections. Eur J Paediatr Neurol 2022; 36:123-129. [PMID: 34954622 DOI: 10.1016/j.ejpn.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/03/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The high prevalence of mixed phenotypes of Early Onset Ataxia (EOA) with comorbid dystonia has shifted the pathogenetic concept from the cerebellum towards the interconnected cerebellar motor network. This paper on EOA with comorbid dystonia (EOA-dystonia) explores the conceptual relationship between the motor phenotype and the cortico-basal-ganglia-ponto-cerebellar network. METHODS In EOA-dystonia, we reviewed anatomic-, genetic- and biochemical-studies on the comorbidity between ataxia and dystonia. RESULTS In a clinical EOA cohort, the prevalence of dystonia was over 60%. Both human and animal studies converge on the underlying role for the cortico-basal-ganglia-ponto-cerebellar network. Genetic -clinical and -in silico network studies reveal underlying biological pathways for energy production and neural signal transduction. CONCLUSIONS EOA-dystonia phenotypes are attributable to the cortico-basal-ganglia-ponto-cerebellar network, instead of to the cerebellum, alone. The underlying anatomic and pathogenetic pathways have clinical implications for our understanding of the heterogeneous phenotype, neuro-metabolic and genetic testing and potentially also for new treatment strategies, including neuro-modulation.
Collapse
Affiliation(s)
- Deborah A Sival
- Department of Pediatrics, University of Groningen, Groningen, the Netherlands.
| | - Suus A M van Noort
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Tom J de Koning
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Dineke S Verbeek
- Genetics University Medical Center, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Miao Y, Chen X, You F, Jia M, Li T, Tang P, Shi R, Hu S, Zhang L, Chen JF, Gao Y. Adenosine A 2A receptor modulates microglia-mediated synaptic pruning of the retinogeniculate pathway during postnatal development. Neuropharmacology 2021; 200:108806. [PMID: 34562441 DOI: 10.1016/j.neuropharm.2021.108806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Synapse pruning is essential not only for the developmental establishment of synaptic connections in the brain but also for the pathogenesis of neurodevelopmental and neurodegenerative disorders. However, there are no effective pharmacological means to regulate synaptic pruning during early development. Using the eye-specific segregation of the dorsal lateral geniculate nucleus (dLGN) as a model of synaptic pruning coupled with adenosine A2A receptor (A2AR) antagonism and knockout, we demonstrated while genetic deletion of the A2AR throughout the development attenuated eye-specific segregation with the attenuated microglial phagocytosis at postnatal day 5 (P5), selective treatment with the A2AR antagonist KW6002 at P2-P4 facilitated synaptic pruning of visual pathway with microglial activation, increased lysosomal activity in microglia and increased microglial engulfment of retinal ganglion cell (RGC) inputs in the dLGN at P5 (but not P10). Furthermore, KW6002-mediated facilitation of synaptic pruning was activity-dependent since tetrodotoxin (TTX) treatment abolished the KW6002 facilitation. Moreover, the A2AR antagonist also modulated postsynaptic proteins and synaptic density at early postnatal stages as revealed by the reduced immunoreactivity of postsynaptic proteins (Homer1 and metabotropic glutamate receptor 5) and colocalization of presynaptic VGlut2 and postsynaptic Homer1 puncta in the dLGN. These findings suggest that A2AR can control pruning by multiple actions involving the retinal wave, microglia engulfment, and postsynaptic stability. Thus, A2AR antagonists may represent a novel pharmacological strategy to modulate microglia-mediated synaptic pruning and treatment of neurodevelopmental disorders associated with dysfunctional pruning.
Collapse
Affiliation(s)
- Yaxin Miao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Xuhao Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Feng You
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Manli Jia
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ting Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ping Tang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ruyi Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Shisi Hu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Liping Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Ying Gao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
16
|
Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci 2021; 22:657-673. [PMID: 34545240 PMCID: PMC8541743 DOI: 10.1038/s41583-021-00507-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgia Gunner
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
17
|
All-or-none disconnection of pyramidal inputs onto parvalbumin-positive interneurons gates ocular dominance plasticity. Proc Natl Acad Sci U S A 2021; 118:2105388118. [PMID: 34508001 DOI: 10.1073/pnas.2105388118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2021] [Indexed: 12/16/2022] Open
Abstract
Disinhibition is an obligatory initial step in the remodeling of cortical circuits by sensory experience. Our investigation on disinhibitory mechanisms in the classical model of ocular dominance plasticity uncovered an unexpected form of experience-dependent circuit plasticity. In the layer 2/3 of mouse visual cortex, monocular deprivation triggers a complete, "all-or-none," elimination of connections from pyramidal cells onto nearby parvalbumin-positive interneurons (Pyr→PV). This binary form of circuit plasticity is unique, as it is transient, local, and discrete. It lasts only 1 d, and it does not manifest as widespread changes in synaptic strength; rather, only about half of local connections are lost, and the remaining ones are not affected in strength. Mechanistically, the deprivation-induced loss of Pyr→PV is contingent on a reduction of the protein neuropentraxin2. Functionally, the loss of Pyr→PV is absolutely necessary for ocular dominance plasticity, a canonical model of deprivation-induced model of cortical remodeling. We surmise, therefore, that this all-or-none loss of local Pyr→PV circuitry gates experience-dependent cortical plasticity.
Collapse
|
18
|
Wang F, Wang Q, Liu B, Mei L, Ma S, Wang S, Wang R, Zhang Y, Niu C, Xiong Z, Zheng Y, Zhang Z, Shi J, Song X. The long noncoding RNA Synage regulates synapse stability and neuronal function in the cerebellum. Cell Death Differ 2021; 28:2634-2650. [PMID: 33762741 PMCID: PMC8408218 DOI: 10.1038/s41418-021-00774-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
The brain is known to express many long noncoding RNAs (lncRNAs); however, whether and how these lncRNAs function in modulating synaptic stability remains unclear. Here, we report a cerebellum highly expressed lncRNA, Synage, regulating synaptic stability via at least two mechanisms. One is through the function of Synage as a sponge for the microRNA miR-325-3p, to regulate expression of the known cerebellar synapse organizer Cbln1. The other function is to serve as a scaffold for organizing the assembly of the LRP1-HSP90AA1-PSD-95 complex in PF-PC synapses. Although somewhat divergent in its mature mRNA sequence, the locus encoding Synage is positioned adjacent to the Cbln1 loci in mouse, rhesus macaque, and human, and Synage is highly expressed in the cerebella of all three species. Synage deletion causes a full-spectrum cerebellar ablation phenotype that proceeds from cerebellar atrophy, through neuron loss, on to synapse density reduction, synaptic vesicle loss, and finally to a reduction in synaptic activity during cerebellar development; these deficits are accompanied by motor dysfunction in adult mice, which can be rescued by AAV-mediated Synage overexpression from birth. Thus, our study demonstrates roles for the lncRNA Synage in regulating synaptic stability and function during cerebellar development.
Collapse
Affiliation(s)
- Fei Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Qianqian Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Baowei Liu
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Lisheng Mei
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Sisi Ma
- grid.506261.60000 0001 0706 7839National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS and PUMC, Beijing, China
| | - Shujuan Wang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ruoyu Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China ,grid.240145.60000 0001 2291 4776Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX USA
| | - Yan Zhang
- grid.59053.3a0000000121679639Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Chaoshi Niu
- grid.59053.3a0000000121679639Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Zhiqi Xiong
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Zheng
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhi Zhang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Juan Shi
- grid.506261.60000 0001 0706 7839National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS and PUMC, Beijing, China
| | - Xiaoyuan Song
- grid.59053.3a0000000121679639MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Miller-Fleming TW, Cuentas-Condori A, Manning L, Palumbos S, Richmond JE, Miller DM. Transcriptional Control of Parallel-Acting Pathways That Remove Specific Presynaptic Proteins in Remodeling Neurons. J Neurosci 2021; 41:5849-5866. [PMID: 34045310 PMCID: PMC8265810 DOI: 10.1523/jneurosci.0893-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
Synapses are actively dismantled to mediate circuit refinement, but the developmental pathways that regulate synaptic disassembly are largely unknown. We have previously shown that the epithelial sodium channel ENaC/UNC-8 triggers an activity-dependent mechanism that drives the removal of presynaptic proteins liprin-α/SYD-2, Synaptobrevin/SNB-1, RAB-3, and Endophilin/UNC-57 in remodeling GABAergic neurons in Caenorhabditis elegans (Miller-Fleming et al., 2016). Here, we report that the conserved transcription factor Iroquois/IRX-1 regulates UNC-8 expression as well as an additional pathway, independent of UNC-8, that functions in parallel to dismantle functional presynaptic terminals. We show that the additional IRX-1-regulated pathway is selectively required for the removal of the presynaptic proteins, Munc13/UNC-13 and ELKS, which normally mediate synaptic vesicle (SV) fusion and neurotransmitter release. Our findings are notable because they highlight the key role of transcriptional regulation in synapse elimination during development and reveal parallel-acting pathways that coordinate synaptic disassembly by removing specific active zone proteins.SIGNIFICANCE STATEMENT Synaptic pruning is a conserved feature of developing neural circuits but the mechanisms that dismantle the presynaptic apparatus are largely unknown. We have determined that synaptic disassembly is orchestrated by parallel-acting mechanisms that target distinct components of the active zone. Thus, our finding suggests that synaptic disassembly is not accomplished by en masse destruction but depends on mechanisms that dismantle the structure in an organized process.
Collapse
Affiliation(s)
| | - Andrea Cuentas-Condori
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37212
| | - Laura Manning
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Sierra Palumbos
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee 37212
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - David M Miller
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee 37212
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37212
| |
Collapse
|
20
|
Lai ESK, Nakayama H, Miyazaki T, Nakazawa T, Tabuchi K, Hashimoto K, Watanabe M, Kano M. An Autism-Associated Neuroligin-3 Mutation Affects Developmental Synapse Elimination in the Cerebellum. Front Neural Circuits 2021; 15:676891. [PMID: 34262438 PMCID: PMC8273702 DOI: 10.3389/fncir.2021.676891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Neuroligin is a postsynaptic cell-adhesion molecule that is involved in synapse formation and maturation by interacting with presynaptic neurexin. Mutations in neuroligin genes, including the arginine to cystein substitution at the 451st amino acid residue (R451C) of neuroligin-3 (NLGN3), have been identified in patients with autism spectrum disorder (ASD). Functional magnetic resonance imaging and examination of post-mortem brain in ASD patients implicate alteration of cerebellar morphology and Purkinje cell (PC) loss. In the present study, we examined possible association between the R451C mutation in NLGN3 and synaptic development and function in the mouse cerebellum. In NLGN3-R451C mutant mice, the expression of NLGN3 protein in the cerebellum was reduced to about 10% of the level of wild-type mice. Elimination of redundant climbing fiber (CF) to PC synapses was impaired from postnatal day 10–15 (P10–15) in NLGN3-R451C mutant mice, but majority of PCs became mono-innervated as in wild-type mice after P16. In NLGN3-R451C mutant mice, selective strengthening of a single CF relative to the other CFs in each PC was impaired from P16, which persisted into juvenile stage. Furthermore, the inhibition to excitation (I/E) balance of synaptic inputs to PCs was elevated, and calcium transients in the soma induced by strong and weak CF inputs were reduced in NLGN3-R451C mutant mice. These results suggest that a single point mutation in NLGN3 significantly influences the synapse development and refinement in cerebellar circuitry, which might be related to the pathogenesis of ASD.
Collapse
Affiliation(s)
- Esther Suk King Lai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisako Nakayama
- Department of Physiology, Division of Neurophysiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Taisuke Miyazaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Glutamatergic Dysfunction and Synaptic Ultrastructural Alterations in Schizophrenia and Autism Spectrum Disorder: Evidence from Human and Rodent Studies. Int J Mol Sci 2020; 22:ijms22010059. [PMID: 33374598 PMCID: PMC7793137 DOI: 10.3390/ijms22010059] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The correlation between dysfunction in the glutamatergic system and neuropsychiatric disorders, including schizophrenia and autism spectrum disorder, is undisputed. Both disorders are associated with molecular and ultrastructural alterations that affect synaptic plasticity and thus the molecular and physiological basis of learning and memory. Altered synaptic plasticity, accompanied by changes in protein synthesis and trafficking of postsynaptic proteins, as well as structural modifications of excitatory synapses, are critically involved in the postnatal development of the mammalian nervous system. In this review, we summarize glutamatergic alterations and ultrastructural changes in synapses in schizophrenia and autism spectrum disorder of genetic or drug-related origin, and briefly comment on the possible reversibility of these neuropsychiatric disorders in the light of findings in regular synaptic physiology.
Collapse
|
22
|
Nitric oxide controls excitatory/inhibitory balance in the hypoglossal nucleus during early postnatal development. Brain Struct Funct 2020; 225:2871-2884. [PMID: 33130922 PMCID: PMC7674331 DOI: 10.1007/s00429-020-02165-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/17/2020] [Indexed: 01/18/2023]
Abstract
Synaptic remodeling during early postnatal development lies behind neuronal networks refinement and nervous system maturation. In particular, the respiratory system is immature at birth and is subjected to significant postnatal development. In this context, the excitatory/inhibitory balance dramatically changes in the respiratory-related hypoglossal nucleus (HN) during the 3 perinatal weeks. Since, development abnormalities of hypoglossal motor neurons (HMNs) are associated with sudden infant death syndrome and obstructive sleep apnea, deciphering molecular partners behind synaptic remodeling in the HN is of basic and clinical relevance. Interestingly, a transient expression of the neuronal isoform of nitric oxide (NO) synthase (NOS) occurs in HMNs at neonatal stage that disappears before postnatal day 21 (P21). NO, in turn, is a determining factor for synaptic refinement in several physiopathological conditions. Here, intracerebroventricular chronic administration (P7–P21) of the broad spectrum NOS inhibitor l-NAME (N(ω)-nitro-l-arginine methyl ester) differentially affected excitatory and inhibitory rearrangement during this neonatal interval in the rat. Whilst l-NAME led to a reduction in the number of excitatory structures, inhibitory synaptic puncta were increased at P21 in comparison to administration of the inactive stereoisomer d-NAME. Finally, l-NAME decreased levels of the phosphorylated form of myosin light chain in the nucleus, which is known to regulate the actomyosin contraction apparatus. These outcomes indicate that physiologically synthesized NO modulates excitatory/inhibitory balance during early postnatal development by acting as an anti-synaptotrophic and/or synaptotoxic factor for inhibitory synapses, and as a synaptotrophin for excitatory ones. The mechanism of action could rely on the modulation of the actomyosin contraction apparatus.
Collapse
|
23
|
Zhou J, Brown AM, Lackey EP, Arancillo M, Lin T, Sillitoe RV. Purkinje cell neurotransmission patterns cerebellar basket cells into zonal modules defined by distinct pinceau sizes. eLife 2020; 9:55569. [PMID: 32990595 PMCID: PMC7561353 DOI: 10.7554/elife.55569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023] Open
Abstract
Ramón y Cajal proclaimed the neuron doctrine based on circuit features he exemplified using cerebellar basket cell projections. Basket cells form dense inhibitory plexuses that wrap Purkinje cell somata and terminate as pinceaux at the initial segment of axons. Here, we demonstrate that HCN1, Kv1.1, PSD95 and GAD67 unexpectedly mark patterns of basket cell pinceaux that map onto Purkinje cell functional zones. Using cell-specific genetic tracing with an Ascl1CreERT2 mouse conditional allele, we reveal that basket cell zones comprise different sizes of pinceaux. We tested whether Purkinje cells instruct the assembly of inhibitory projections into zones, as they do for excitatory afferents. Genetically silencing Purkinje cell neurotransmission blocks the formation of sharp Purkinje cell zones and disrupts excitatory axon patterning. The distribution of pinceaux into size-specific zones is eliminated without Purkinje cell GABAergic output. Our data uncover the cellular and molecular diversity of a foundational synapse that revolutionized neuroscience.
Collapse
Affiliation(s)
- Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Marife Arancillo
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
24
|
Boyle BR, Melli SE, Altreche RS, Padron ZM, Yousufzai FAK, Kim S, Vasquez MD, Carone DM, Carone BR, Soto I. NPC1 deficiency impairs cerebellar postnatal development of microglia and climbing fiber refinement in a mouse model of Niemann-Pick disease type C. Development 2020; 147:dev.189019. [PMID: 32611604 PMCID: PMC7420841 DOI: 10.1242/dev.189019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/22/2020] [Indexed: 01/30/2023]
Abstract
Little is known about the effects of NPC1 deficiency in brain development and whether these effects contribute to neurodegeneration in Niemann–Pick disease type C (NPC). Degeneration of cerebellar Purkinje cells occurs at an earlier stage and to a greater extent in NPC; therefore, we analyzed the effect of NPC1 deficiency on microglia and on climbing fiber synaptic refinement during cerebellar postnatal development using the Npc1nmf164 mouse. Our analysis revealed that NPC1 deficiency leads to early phenotypic changes in microglia that are not associated with an innate immune response. However, the lack of NPC1 in Npc1nmf164 mice significantly affected the early development of microglia by delaying the radial migration, increasing the proliferation and impairing the differentiation of microglia precursor cells during postnatal development. Additionally, increased phagocytic activity of differentiating microglia was observed at the end of the second postnatal week in Npc1nmf164 mice. Moreover, significant climbing fiber synaptic refinement deficits along with an increased engulfment of climbing fiber synaptic elements by microglia were found in Npc1nmf164 mice, suggesting that profound developmental defects in microglia and synaptic connectivity might precede and predispose Purkinje cells to early neurodegeneration in NPC. Summary: Genetic deficiency of Npc1 impairs postnatal development of microglia and climbing fiber synaptic pruning in the mouse cerebellum.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Sierra E Melli
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ruth S Altreche
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Zachary M Padron
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Fawad A K Yousufzai
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Sarah Kim
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Mariella D Vasquez
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Dawn M Carone
- Swarthmore College, Department of Biology, Swarthmore, PA 19081, USA
| | - Benjamin R Carone
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ileana Soto
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
25
|
Synapse elimination activates a coordinated homeostatic presynaptic response in an autaptic circuit. Commun Biol 2020; 3:260. [PMID: 32444808 PMCID: PMC7244710 DOI: 10.1038/s42003-020-0963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/21/2020] [Indexed: 01/27/2023] Open
Abstract
The number of synapses present in a neuronal circuit is not fixed. Neurons must compensate for changes in connectivity caused by synaptic pruning, learning processes or pathological conditions through the constant adjustment of the baseline level of neurotransmission. Here, we show that cholinergic neurons grown in an autaptic circuit in the absence of glia sense the loss of half of their synaptic contacts triggered by exposure to peptide p4.2, a C-terminal fragment of SPARC. Synaptic elimination is driven by a reorganization of the periodic F-actin cytoskeleton present along neurites, and occurs without altering the density of postsynaptic receptors. Neurons recover baseline neurotransmission through a homeostatic presynaptic response that consists of the coordinated activation of rapid synapse formation and an overall potentiation of presynaptic calcium influx. These results demonstrate that neurons establishing autaptic connections continuously sense and adjust their synaptic output by tweaking the number of functional contacts and neurotransmitter release probability. Cecilia Velasco and Artur Llobet study how autapses respond to synapse elimination. They employ microisland cultures free of glial cells, treat with a SPARC-derived peptide and show that neurons forming autaptic circuits continuously sense and regulate the number of contacts and neurotransmitter release.
Collapse
|
26
|
Aksenov DP, Miller MJ, Dixon CJ, Drobyshevsky A. Impact of anesthesia exposure in early development on learning and sensory functions. Dev Psychobiol 2020; 62:559-572. [PMID: 32115695 DOI: 10.1002/dev.21963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/27/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
Each year, millions of children undergo anesthesia, and both human and animal studies have indicated that exposure to anesthesia at an early age can lead to neuronal damage and learning deficiency. However, disorders of sensory functions were not reported in children or animals exposed to anesthesia during infancy, which is surprising, given the significant amount of damage to brain tissue reported in many animal studies. In this review, we discuss the relationship between the systems in the brain that mediate sensory input, spatial learning, and classical conditioning, and how these systems could be affected during anesthesia exposure. Based on previous reports, we conclude that anesthesia can induce structural, functional, and compensatory changes in both sensory and learning systems. Changes in myelination following anesthesia exposure were observed as well as the neurodegeneration in the gray matter across variety of brain regions. Disproportionate cell death between excitatory and inhibitory cells induced by anesthesia exposure can lead to a long-term shift in the excitatory/inhibitory balance, which affects both learning-specific networks and sensory systems. Anesthesia may directly affect synaptic plasticity which is especially critical to learning acquisition. However, sensory systems appear to have better ability to compensate for damage than learning-specific networks.
Collapse
Affiliation(s)
| | | | - Conor J Dixon
- NorthShore University HealthSystem, Evanston, IL, USA
| | | |
Collapse
|