1
|
Zhang W, Stelinski LL, Mohamed A, Wang G, Tettamanti G, Chen M, Hong M, Daly EZ, Bruin J, Renault D, Keyhani NO, Zhao Q. Unlocking agro-ecosystem sustainability: exploring the bottom-up effects of microbes, plants, and insect herbivores. Integr Zool 2024. [PMID: 39460505 DOI: 10.1111/1749-4877.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Agricultural ecosystem formation and evolution depend on interactions and communication between multiple organisms. Within this context, communication occurs between microbes, plants, and insects, often involving the release and perception of a wide range of chemical cues. Unraveling how this information is coded and interpreted is critical to expanding our understanding of how agricultural ecosystems function in terms of competition and cooperation. Investigations examining dual interactions (e.g. plant-microbe, insect-microbe, and insect-plant) have resolved some basic components of this communication. However, there is a need for systematically examining multitrophic interactions that occur simultaneously between microorganisms, insects, and plants. A more thorough understanding of these multitrophic interactions has been made possible by recent advancements in the study of such ecological interactions, which are based on a variety of contemporary technologies such as artificial intelligence sensors, multi-omics, metabarcoding, and others. Frequently, these developments have led to the discovery of startling examples of each member manipulating the other. Here, we review recent advances in the understanding of bottom-up chemical communication between microorganisms, plants, and insects, and their consequences. We discuss the components of these "chemo-languages" and how they modify outcomes of multi-species interactions across trophic levels. Further, we suggest prospects for translating the current basic understanding of multitrophic interactions into strategies that could be applied in agricultural ecosystems to increase food safety and security.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Lukasz L Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Guangmin Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Napoli, Italy
| | - Moxian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Mingsheng Hong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Ella Z Daly
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553, University of Rennes, Rennes, France
| | - Jan Bruin
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Evolutionary Biology and Population Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - David Renault
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553, University of Rennes, Rennes, France
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA
| | - Qi Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Zhang X, Li P, Tang Y, Mu YP, Liu J, Wang MY, Wang W, Mao YB. The proteomic landscape of fall armyworm oral secretion reveals its role in plant adaptation. PEST MANAGEMENT SCIENCE 2024; 80:4175-4185. [PMID: 38587094 DOI: 10.1002/ps.8117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The fall armyworm (FAW, Spodoptera frugiperda (J.E. Smith)) is a polyphagous agricultural pest with rapidly evolving adaptations to host plants. We found the oral secretion (OS) of FAW from different plants influences plant defense response differentially, suggesting its role in adapting to host plants. However, the protein expression profile of FAW OS respond to different plants is largely unknown. RESULTS Here, from the mass spectrometry assay, we identified a total of 256 proteins in the OS of FAW fed on cotton (Gossypium hirsutum L.), tobacco (Nicotiana benthamiana Domin), maize (Zea mays L.) and artificial diet. The FAW OS primarily comprise of 60 proteases, 32 esterases and 92 non-enzymatic proteins. It displays high plasticity across different diets. We found that more than half of the esterases are lipases which have been reported as insect elicitors to enhance plant defense response. The lipase accumulation in cotton-fed larvae was the highest, followed by maize-fed larvae. In the presence of lipase inhibitors, the enhanced induction on defense genes in wounded leaves by OS was attenuated. However, the putative effectors were most highly accumulated in the OS from FAW larvae fed on maize compared to those fed on other diets. We identified that one of them (VRLP4) reduces the OS-mediated induction on defense genes in wounded leaves. CONCLUSION Together, our investigation presents the proteomic landscape of the OS of FAW influenced by different diets and reveals diet-mediated plasticity of OS is involved in FAW adaptation to host plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xian Zhang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Pai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Yin Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Wang X, Wu H, Yu Z, Wu J, Lu C, Wei T, Chen Q. Plant viruses exploit insect salivary GAPDH to modulate plant defenses. Nat Commun 2024; 15:6918. [PMID: 39134555 PMCID: PMC11319438 DOI: 10.1038/s41467-024-51369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Salivary proteins of insect herbivores can suppress plant defenses, but the roles of many remain elusive. One such protein is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the saliva of the Recilia dorsalis (RdGAPDH) leafhopper, which is known to transmit rice gall dwarf virus (RGDV). Here we show that RdGAPDH was loaded into exosomes and released from salivary glands into the rice phloem through an exosomal pathway as R. dorsalis fed. In infected salivary glands of R. dorsalis, the virus upregulated the accumulation and subsequent release of exosomal RdGAPDH into the phloem. Once released, RdGAPDH consumed H2O2 in rice plants owing to its -SH groups reacting with H2O2. This reduction in H2O2 of rice plant facilitated R. dorsalis feeding and consequently promoted RGDV transmission. However, overoxidation of RdGAPDH could cause potential irreversible cytotoxicity to rice plants. In response, rice launched emergency defense by utilizing glutathione to S-glutathionylate the oxidization products of RdGAPDH. This process counteracts the potential cellular damage from RdGAPDH overoxidation, helping plant to maintain a normal phenotype. Additionally, salivary GAPDHs from other hemipterans vectors similarly suppressed H2O2 burst in plants. We propose a strategy by which plant viruses exploit insect salivary proteins to modulate plant defenses, thus enabling sustainable insect feeding and facilitating viral transmission.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haibo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongkai Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Li J, Li S, Li J, Tan X, Zhao Z, Jiang L, Hoffmann AA, Fang J, Ji R. Egg-associated secretions from the brown planthopper (Nilaparvata lugens) activate rice immune responses. INSECT SCIENCE 2024; 31:1135-1149. [PMID: 38010047 DOI: 10.1111/1744-7917.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
The brown planthopper (BPH, Nilaparvata lugens) is a notorious sap-sucking insect pest that damages rice (Oryza sativa) plants throughout Asia. During BPH feeding, saliva enters rice plant tissues, whereas during oviposition egg-associated secretions (EAS) are deposited in damaged plant tissue. Dynamic changes in rice to planthopper salivary effectors have been widely reported. However, the effects of EAS from planthopper on rice immunity remains largely unexplored. In this study, we found that both infestation of rice by gravid BPH female adults and treatment with the EAS elicited a strong and rapid accumulation of jasmonic acid (JA), JA-isoleucine, and hydrogen peroxide in rice. EAS enhanced plant defenses not only in rice but also in tobacco, and these impaired the performance of BPH on rice, as well as the performance of aphids and whiteflies on tobacco. High-throughput proteome sequencing of EAS led to 110 proteins being identified and 53 proteins with 2 or more unique peptides being detected. Some proteins from BPH EAS were also found in the salivary proteome from herbivores, suggesting potential evolutionary conservation of effector functions across feeding and oviposition; however, others were only identified in EAS, and these are likely specifically related to oviposition. These findings point to novel proteins affecting interactions between planthoppers and rice during oviposition, providing an additional source of information for effector studies.
Collapse
Affiliation(s)
- Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Xinyang Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhichang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Jiangsu Province, China
| |
Collapse
|
5
|
Wang X, Luo X, Guo J, Yang N, Wan F, Lü Z, Liu W. An effector of Phthorimaea absoluta oral secretions inhibits host plant defense. iScience 2024; 27:110154. [PMID: 39050704 PMCID: PMC11267060 DOI: 10.1016/j.isci.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/20/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Insects have evolved effectors to regulate host defenses for efficient feeding, yet their impact on chewing insects, like the tomato leaf miner (Phthorimaea absoluta), a significant pest, is poorly understood. We used RNAi to target the REPAT38 gene in larvae, monitoring changes at 0.5, 1, 2, and 4 h in leaf stomata, plant hormone concentrations (jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-Ile), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA)), and 12 hormone-responsive genes to explore the molecular mechanism of REPAT38-mediated plant-insect interactions. The results showed that the effector induced stomatal closure at 0.5 h and inhibited the synthesis of JA, ET, and ABA at 1 h. Additionally, seven plant hormone-responsive genes-AOC, MYC2, ACS1A, PAL, PR1, EIL2, and SRK2E-were inhibited at various time points. Our data suggest that REPAT38, as an effector with conserved functions, can weaken tomato host defenses and conducive to insect adaptation to host plants.
Collapse
Affiliation(s)
- Xiaodi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuqing Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, P.R. China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Pavithran S, Murugan M, Mannu J, Sathyaseelan C, Balasubramani V, Harish S, Natesan S. Salivary gland transcriptomics of the cotton aphid Aphis gossypii and comparative analysis with other sap-sucking insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22123. [PMID: 38860775 DOI: 10.1002/arch.22123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Aphids are sap-sucking insects responsible for crop losses and a severe threat to crop production. Proteins in the aphid saliva are integral in establishing an interaction between aphids and plants and are responsible for host plant adaptation. The cotton aphid, Aphis gossypii (Hemiptera: Aphididae) is a major pest of Gossypium hirsutum. Despite extensive studies of the salivary proteins of various aphid species, the components of A. gossypii salivary glands are unknown. In this study, we identified 123,008 transcripts from the salivary gland of A. gossypii. Among those, 2933 proteins have signal peptides with no transmembrane domain known to be secreted from the cell upon feeding. The transcriptome includes proteins with more comprehensive functions such as digestion, detoxification, regulating host defenses, regulation of salivary glands, and a large set of uncharacterized proteins. Comparative analysis of salivary proteins of different aphids and other insects with A. gossypii revealed that 183 and 88 orthologous clusters were common in the Aphididae and non-Aphididae groups, respectively. The structure prediction for highly expressed salivary proteins indicated that most possess an intrinsically disordered region. These results provide valuable reference data for exploring novel functions of salivary proteins in A. gossypii with their host interactions. The identified proteins may help develop a sustainable way to manage aphid pests.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chakkarai Sathyaseelan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Venkatasamy Balasubramani
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
7
|
Li JB, Liu Q, Ma S, Wang YY, Liu XZ, Wang CW, Wang DJ, Hu ZZ, Gan JW, Zhu XY, Li BP, Yin MZ, Zhang YN. Binding properties of chemosensory protein 4 in Riptortus pedestris to aggregation pheromones. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105874. [PMID: 38685243 DOI: 10.1016/j.pestbp.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.
Collapse
Affiliation(s)
- Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Suzhou Academy of Agricultural Sciences, Suzhou 234000, China; Suzhou Vocational and Technical College, Suzhou 234000, China
| | - Qiang Liu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yue-Ying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Xing-Zhou Liu
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Chao-Wei Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Da-Jiang Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | | | - Jia-Wen Gan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Bao-Ping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mao-Zhu Yin
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
8
|
Ma X, Yin Z, Li H, Guo J. Roles of herbivorous insects salivary proteins. Heliyon 2024; 10:e29201. [PMID: 38601688 PMCID: PMC11004886 DOI: 10.1016/j.heliyon.2024.e29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| |
Collapse
|
9
|
Pavithran S, Murugan M, Mannu J, Yogendra K, Balasubramani V, Sanivarapu H, Harish S, Natesan S. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104060. [PMID: 38123026 DOI: 10.1016/j.ibmb.2023.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Aphid salivary proteins mediate the interaction between aphids and their host plants. Moreover, these proteins facilitate digestion, detoxification of secondary metabolites, as well as activation and suppression of plant defenses. The cowpea aphid, Aphis craccivora, is an important sucking pest of leguminous crops worldwide. Although aphid saliva plays an important role in aphid plant interactions, knowledge of the cowpea aphid salivary proteins is limited. In this study, we performed transcriptomic and LC-MS/MS analyses to identify the proteins present in the salivary glands and saliva of A. craccivora. A total of 1,08,275 assembled transcripts were identified in the salivary glands of aphids. Of all these assembled transcripts, 53,714 (49.11%) and 53,577 (49.48%) transcripts showed high similarity to known proteins in the Nr and UniProt databases, respectively. A total of 2159 proteins were predicted as secretory proteins from the salivary gland transcriptome dataset, which contain digestive enzymes, detoxification enzymes, previously known effectors and elicitors, and potential proteins whose functions have yet to be determined. The proteomic analysis of aphid saliva resulted in the identification of 171 proteins. Tissue-specific expression of selected genes using RT-PCR showed that three genes were expressed only in the salivary glands. Overall, our results provide a comprehensive repertoire of cowpea aphid salivary proteins from the salivary gland and saliva, which will be a good resource for future effector functional studies and might also be useful for sustainable aphid management.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Venkatasamy Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
10
|
Zhang H, Wang X, Yang Z, Bai Y, Chen L, Wu T. Transcriptome analysis reveals the potential mechanism of the response to scale insects in Camellia sasanqua Thunb. BMC Genomics 2024; 25:106. [PMID: 38267855 PMCID: PMC10807073 DOI: 10.1186/s12864-024-09980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Camellia sasanqua Thunb. is an essential woody ornamental plant. Our continuous observation found that scale insects often infest C. sasanqua all year round in Kunming, China, resulting in poor growth. Scientifically preventing and controlling the infestation of scale insects should be paid attention to, and the mechanism of scale insects influencing C. sasanqua should be used as the research basis. RESULTS The scale insect was identified as Pseudaulacaspis sasakawai Takagi. We analyzed transcriptome sequencing data from leaves of C. sasanqua infested with scale insects. A total of 1320 genes were either up-regulated or down-regulated and differed significantly in response to scale insects. GO (Gene Ontology) annotation analysis showed that the pathway of catalytic activity, binding, membrane part, cell part, and cellular process were affected. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that most DEGs (differentially expressed genes) involved in plant hormone signal transduction, MAPK signaling pathway, flavonoid biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis. We also observed that the expression of galactose metabolism and carotenoid biosynthesis were significantly influenced. In addition, qRT-PCR (quantitative real-time PCR) validated the expression patterns of DEGs, which showed an excellent agreement with the transcriptome sequencing. CONCLUSIONS Our transcriptomic analysis revealed that the C. sasanqua had an intricate resistance strategy to cope with scale insect attacks. After sensing the attack signal of scale insects, C. sasanqua activated the early signal MAPK (mitogen-activated protein kinase) to activate further transcription factors and Auxin, ET, JA, ABA, and other plant hormone signaling pathways, ultimately leading to the accumulation of lignin, scopolin, flavonoids and other secondary metabolites, produces direct and indirect resistance to scale insects. Our results suggested that it provided some potential resources of defense genes that would benefit the following resistance breeding in C. sasanqua to scale insects.
Collapse
Affiliation(s)
- Hongye Zhang
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Xubo Wang
- Yunnan Biodiversity Research Institute, Southwest Forestry University, Kunming, 650224, China
| | - Ziyun Yang
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Yan Bai
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Longqing Chen
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Tian Wu
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
11
|
Xia R, Xu L, Hao J, Zhang L, Wang S, Zhu Z, Yu Y. Transcriptome Dynamics of Brassica juncea Leaves in Response to Omnivorous Beet Armyworm ( Spodoptera exigua, Hübner). Int J Mol Sci 2023; 24:16690. [PMID: 38069011 PMCID: PMC10706706 DOI: 10.3390/ijms242316690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023] Open
Abstract
Cruciferous plants manufacture glucosinolates (GSLs) as special and important defense compounds against insects. However, how insect feeding induces glucosinolates in Brassica to mediate insect resistance, and how plants regulate the strength of anti-insect defense response during insect feeding, remains unclear. Here, mustard (Brassica juncea), a widely cultivated Brassica plant, and beet armyworm (Spodoptera exigua), an economically important polyphagous pest of many crops, were used to analyze the changes in GSLs and transcriptome of Brassica during insect feeding, thereby revealing the plant-insect interaction in Brassica plants. The results showed that the content of GSLs began to significantly increase after 48 h of herbivory by S. exigua, with sinigrin as the main component. Transcriptome analysis showed that a total of 8940 DEGs were identified in mustard challenged with beet armyworm larvae. The functional enrichment results revealed that the pathways related to the biosynthesis of glucosinolate and jasmonic acid were significantly enriched by upregulated DEGs, suggesting that mustard might provide a defense against herbivory by inducing JA biosynthesis and then promoting GSL accumulation. Surprisingly, genes regulating JA catabolism and inactivation were also activated, and both JA signaling repressors (JAZs and JAMs) and activators (MYCs and NACs) were upregulated during herbivory. Taken together, our results indicate that the accumulation of GSLs regulated by JA signaling, and the regulation of active and inactive JA compound conversion, as well as the activation of JA signaling repressors and activators, collectively control the anti-insect defense response and avoid over-stunted growth in mustard during insect feeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (R.X.); (L.X.); (J.H.); (L.Z.); (S.W.)
| | - Youjian Yu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (R.X.); (L.X.); (J.H.); (L.Z.); (S.W.)
| |
Collapse
|
12
|
Yan ZW, Chen FY, Zhang X, Cai WJ, Chen CY, Liu J, Wu MN, Liu NJ, Ma B, Wang MY, Chao DY, Gao CJ, Mao YB. Endocytosis-mediated entry of a caterpillar effector into plants is countered by Jasmonate. Nat Commun 2023; 14:6551. [PMID: 37848424 PMCID: PMC10582130 DOI: 10.1038/s41467-023-42226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Insects and pathogens release effectors into plant cells to weaken the host defense or immune response. While the imports of some bacterial and fungal effectors into plants have been previously characterized, the mechanisms of how caterpillar effectors enter plant cells remain a mystery. Using live cell imaging and real-time protein tracking, we show that HARP1, an effector from the oral secretions of cotton bollworm (Helicoverpa armigera), enters plant cells via protein-mediated endocytosis. The entry of HARP1 into a plant cell depends on its interaction with vesicle trafficking components including CTL1, PATL2, and TET8. The plant defense hormone jasmonate (JA) restricts HARP1 import by inhibiting endocytosis and HARP1 loading into endosomes. Combined with the previous report that HARP1 inhibits JA signaling output in host plants, it unveils that the effector and JA establish a defense and counter-defense loop reflecting the robust arms race between plants and insects.
Collapse
Affiliation(s)
- Zi-Wei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Fang-Yan Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Wen-Juan Cai
- Core Facility Center of CEMPS/SIPPE, CAS, Shanghai, China
| | - Chun-Yu Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Man-Ni Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Ning-Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Cai-Ji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
13
|
Zhu C, Yi X, Yang M, Liu Y, Yao Y, Zi S, Chen B, Xiao G. Comparative Transcriptome Analysis of Defense Response of Potato to Phthorimaea operculella Infestation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3092. [PMID: 37687339 PMCID: PMC10490199 DOI: 10.3390/plants12173092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The potato tuber moth (PTM), Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is one of the most destructive pests of potato crops worldwide. Although it has been reported how potatoes integrate the early responses to various PTM herbivory stimuli by accumulatively adding the components, the broad-scale defense signaling network of potato to single stimuli at multiple time points are unclear. Therefore, we compared three potato transcriptional profiles of undamaged plants, mechanically damaged plants and PTM-feeding plants at 3 h, 48 h, and 96 h, and further analyzed the gene expression patterns of a multitude of insect resistance-related signaling pathways, including phytohormones, reactive oxygen species, secondary metabolites, transcription factors, MAPK cascades, plant-pathogen interactions, protease inhibitors, chitinase, and lectins, etc. in the potato under mechanical damage and PTM infestation. Our results suggested that the potato transcriptome showed significant responses to mechanical damage and potato tuber moth infestation, respectively. The potato transcriptome responses modulated over time and were higher at 96 than at 48 h, so transcriptional changes in later stages of PTM infestation may underlie the potato recovery response. Although the transcriptional profiles of mechanically damaged and PTM-infested plants overlap extensively in multiple signaling pathways, some genes are uniquely induced or repressed. True herbivore feeding induced more and stronger gene expression compared to mechanical damage. In addition, we identified 2976, 1499, and 117 genes that only appeared in M-vs-P comparison groups by comparing the transcriptomes of PTM-damaged and mechanically damaged potatoes at 3 h, 48 h, and 96 h, respectively, and these genes deserve further study in the future. This transcriptomic dataset further enhances the understanding of the interactions between potato and potato tuber moth, enriches the molecular resources in this research area and paves the way for breeding insect-resistant potatoes.
Collapse
Affiliation(s)
- Chunyue Zhu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Xiaocui Yi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Miao Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yiyi Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yao Yao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Shengjiang Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Bin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guanli Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
14
|
Wang H, Shi S, Hua W. Advances of herbivore-secreted elicitors and effectors in plant-insect interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1176048. [PMID: 37404545 PMCID: PMC10317074 DOI: 10.3389/fpls.2023.1176048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 07/06/2023]
Abstract
Diverse molecular processes regulate the interactions between insect herbivores and their host plants. When plants are exposed to insects, elicitors induce plant defenses, and complex physiological and biochemical processes are triggered, such as the activation of the jasmonic acid (JA) and salicylic acid (SA) pathways, Ca2+ flux, reactive oxygen species (ROS) burst, mitogen-activated protein kinase (MAPK) activation, and other responses. For better adaptation, insects secrete a large number of effectors to interfere with plant defenses on multiple levels. In plants, resistance (R) proteins have evolved to recognize effectors and trigger stronger defense responses. However, only a few effectors recognized by R proteins have been identified until now. Multi-omics approaches for high-throughput elicitor/effector identification and functional characterization have been developed. In this review, we mainly highlight the recent advances in the identification of the elicitors and effectors secreted by insects and their target proteins in plants and discuss their underlying molecular mechanisms, which will provide new inspiration for controlling these insect pests.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
15
|
Zeng J, Ye W, Hu W, Jin X, Kuai P, Xiao W, Jian Y, Turlings TCJ, Lou Y. The N-terminal subunit of vitellogenin in planthopper eggs and saliva acts as a reliable elicitor that induces defenses in rice. THE NEW PHYTOLOGIST 2023; 238:1230-1244. [PMID: 36740568 DOI: 10.1111/nph.18791] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Vitellogenins (Vgs) are critical for the development and fecundity of insects. As such, these essential proteins can be used by plants to reliably sense the presence of insects. We addressed this with a combination of molecular and chemical analyses, genetic transformation, bioactivity tests, and insect performance assays. The small N-terminal subunit of Vgs of the planthopper Nilaparvata lugens (NlVgN) was found to trigger strong defense responses in rice when it enters the plants during feeding or oviposition by the insect. The defenses induced by NlVgN not only decreased the hatching rate of N. lugens eggs, but also induced volatile emissions in plants, which rendered them attractive to a common egg parasitoid. VgN of other planthoppers triggered the same defenses in rice. We further show that VgN deposited during planthopper feeding compared with during oviposition induces a somewhat different response, probably to target the appropriate developmental stage of the insect. We also confirm that NlVgN is essential for planthopper growth, development, and fecundity. This study demonstrates that VgN in planthopper eggs and saliva acts as a reliable and unavoidable elicitor of plant defenses. Its importance for insect performance precludes evolutionary adaptions to prevent detection by rice plants.
Collapse
Affiliation(s)
- Jiamei Zeng
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenfeng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Wenhui Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaochen Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yukun Jian
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Ming L, Du YW, Yuan GG, Su Q, Shi XB, Yu H, Chen G. Spodoptera litura larvae are attracted by HvAV-3h-infected S. litura larvae-damaged pepper leaves. PEST MANAGEMENT SCIENCE 2023. [PMID: 36905637 DOI: 10.1002/ps.7449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Herbivore-induced plant volatiles (HIPVs) are important self-defense outputs of pepper plants to resist insect pests. Ascoviruses are pathogenic to the larvae of most lepidopteran vegetable pests. However, whether Heliothis virescens ascovirus 3h (HvAV-3h)-infected Spodoptera litura larvae can change pepper leaf HIPVs is not well understood. RESULTS Spodoptera litura larvae preferred S. litura-infested leaves, and this preference was stronger with longer duration of S. litura infestation. In addition, S. litura larvae significantly chose pepper leaves damaged by HvAV-3h-infected S. litura over the healthy pepper leaves. Results also showed that S. litura larvae preferred leaves mechanically damaged and treated with oral secretions from HvAV-3h infected-S. litura larvae in a simulation test. We captured the volatiles emitted by leaves under six treatments. Results showed that the volatile profile changed with the different treatments. Testing of volatile blends, prepared to the proportion released showed that the blend from simulated HvAV-3h-infected S. litura larvae-damaged plants was the most attractive to S. litura larvae. Further, we also found that some of the compounds significantly attracted S. litura larvae at specific concentrations. CONCLUSION HvAV-3h-infected S. litura can alter the release of HIPVs in pepper plants and thus become more attractive to S. litura larvae. We speculate that this may be due to alterations in the concentration of some compounds (such as geranylacetone and prohydrojasmon) affecting the behavior of S. litura larvae. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lang Ming
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
| | - Yuan-Wen Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
| | - Ge-Ge Yuan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
| | - Qi Su
- College of Agriculture, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Xiao-Bing Shi
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, People's Republic of China
| | - Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
| | - Gong Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
17
|
Wei Z, Guo W, Jiang S, Yan D, Shi Y, Wu B, Xin X, Chen L, Cai Y, Zhang H, Li Y, Huang H, Li J, Yan F, Zhang C, Hou W, Chen J, Sun Z. Transcriptional profiling reveals a critical role of GmFT2a in soybean staygreen syndrome caused by the pest Riptortus pedestris. THE NEW PHYTOLOGIST 2023; 237:1876-1890. [PMID: 36404128 DOI: 10.1111/nph.18628] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Soybean staygreen syndrome, characterized by delayed leaf and stem senescence, abnormal pods, and aborted seeds, has recently become a serious and prominent problem in soybean production. Although the pest Riptortus pedestris has received increasing attention as the possible cause of staygreen syndrome, the mechanism remains unknown. Here, we clarify that direct feeding by R. pedestris, not transmission of a pathogen by this pest, is the primary cause of typical soybean staygreen syndrome and that critical feeding damage occurs at the early pod stage. Transcriptome profiling of soybean indicated that many signal transduction pathways, including photoperiod, hormone, defense response, and photosynthesis, respond to R. pedestris infestation. Importantly, we discovered that members of the FLOWERING LOCUS T (FT) gene family were suppressed by R. pedestris infestation, and overexpression of floral inducer GmFT2a attenuates staygreen symptoms by mediating soybean defense response and photosynthesis. Together, our findings systematically illustrate the association between pest infestation and soybean staygreen syndrome and provide the basis for establishing a targeted soybean pest prevention and control system.
Collapse
Affiliation(s)
- Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Shanshan Jiang
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Dankan Yan
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bin Wu
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiangqi Xin
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Li Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yupeng Cai
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haijian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wensheng Hou
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
18
|
Zhang FB, Ji SX, Yang JG, Wang XW, Han WH. Genome-wide analysis of MYB family in Nicotiana benthamiana and the functional role of the key members in resistance to Bemisia tabaci. Int J Biol Macromol 2023; 235:123759. [PMID: 36812971 DOI: 10.1016/j.ijbiomac.2023.123759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
MYB transcription factors (TFs) play a key role in plant resistance to abiotic and biotical stresses. However, little is currently known about their involvement in the plant defense to piercing-sucking insects. Here, we studied the MYB TFs that responded to and resisted Bemisia tabaci whitefly in the model plant Nicotiana benthamiana. Firstly, a total of 453 NbMYB TFs in N. benthamiana genome were identified and 182 R2R3-MYB TFs were analyzed for molecular characteristics, phylogenetic analysis, genetic structure, motif composition, and cis-elements. Then, six stress-related NbMYB genes were selected for further study. The expression pattern shows they were highly expressed in mature leaves and intensively induced upon whitefly attack. Combined with bioinformatic analysis, overexpression, β-Glucuronidase (GUS) assay, and virus-induced silencing tests, we determined the transcriptional regulation of these NbMYBs on the genes in lignin biosynthesis and SA-signaling pathways. Meanwhile, we tested the performance of whitefly on plants with increased or silenced NbMYB genes expression and found that NbMYB42, NbMYB107, NbMYB163, and NbMYB423 were resistant to whitefly. Our results contribute to a comprehensive understanding of the MYB TFs in N. benthamiana. Furthermore, our findings will facilitate further studies on the role of MYB TFs in the interaction between plants and piercing-sucking insects.
Collapse
Affiliation(s)
- Feng-Bin Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shun-Xia Ji
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Guang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hao Han
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Puri H, Ikuze E, Ayala J, Rodriguez I, Kariyat R, Louis J, Grover S. Greenbug feeding-induced resistance to sugarcane aphids in sorghum. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Plants are attacked by multiple insect pest species and insect herbivory can alter plant defense mechanisms. The plant defense responses to a specific herbivore may also contribute to the herbivore growth/survival on plants. Feeding by one insect species can modulate the plant defenses, which can either facilitate or hamper the colonization of subsequent incoming insects. However, little is known about the effect of sequential herbivory on sorghum plants. In this study, we demonstrate that a specialist aphid, sugarcane aphid (SCA; Melanaphis sacchari) grows faster on sorghum than a generalist aphid species, greenbug (GB; Schizaphis graminum). We also determined how the pre-infestation of SCA on sorghum affected the invasion of GB and vice-versa. Our sequential herbivory experiments revealed that SCA reproduction was lower on GB-primed sorghum plants, however, the reverse was not true. To assess the differences in plant defenses induced by specialist vs. generalist aphids, we monitored the expression of salicylic acid (SA) and jasmonic acid (JA) marker genes, and flavonoid biosynthetic pathway genes after 48 h of aphid infestation. The results indicated that GB infestation induced higher expression of SA and JA-related genes, and flavonoid pathway genes (DFR, FNR, and FNSII) compared to SCA infestation. Overall, our results suggested that GB-infested plants activate the plant defenses via phytohormones and flavonoids at early time points and hampers the colonization of incoming SCA, as well as explain the reproductive success of SCA compared to GB.
Collapse
|
20
|
Chen X, Liu YQ, Wu MN, Yan L, Chen CY, Mu YP, Liu YJ, Wang MY, Chen XY, Mao YB. A highly accumulated secretory protein from cotton bollworm interacts with basic helix-loop-helix transcription factors to dampen plant defense. THE NEW PHYTOLOGIST 2023; 237:265-278. [PMID: 36131553 DOI: 10.1111/nph.18507] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Caterpillar oral secretion (OS) contains active molecules that modulate plant defense signaling. We isolated an effector-like protein (Highly Accumulated Secretory Protein 1, HAS1) from cotton bollworm (Helicoverpa armigera) that is the most highly accumulated secretory protein of the nondigestive components in OS and belongs to venom R-like protein. Elimination of HAS1 by plant-mediated RNA interference reduced the suppression of OS on the defense response in plants. Plants expressing HAS1 are more susceptible to insect herbivory accompanied by the reduced expressions of multiple defense genes. HAS1 binds to the basic helix-loop-helix (bHLH) transcription factors, including GoPGF involved in pigmented gland formation and defense compounds biosynthesis in cotton and MYC3/MYC4 the main regulators in jasmonate (JA) signaling in Arabidopsis. The binding activity is required for HAS1 to inhibit the activation of bHLHs on plant defense gene expressions. Together with our previous study that another venom R-like protein HARP1 in cotton bollworm OS blocks JA signaling by interacting with JASMONATE-ZIM-domain repressors, we conclude that the venom R-like proteins in OS interfere with plant defense in a dual suppression manner. Considering the venom proteins in parasitic wasp assault the immune system of its host animal, our investigation reveals their conserved function in carnivorous and herbivorous insects.
Collapse
Affiliation(s)
- Xueying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Yao-Qian Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Man-Ni Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chun-Yu Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu-Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
21
|
Song H, Li Y, Wang Z, Duan Z, Wang Y, Yang E, Que Q, Chen X, Li P. Transcriptome profiling of Toona ciliata young stems in response to Hypsipyla robusta Moore. FRONTIERS IN PLANT SCIENCE 2022; 13:950945. [PMID: 36105698 PMCID: PMC9465623 DOI: 10.3389/fpls.2022.950945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Toona ciliata is a traditional woody plant that can be used as a medicinal material in China. The extracts of its roots, stems, leaves, and flowers all have a wide range of bioactive compounds. However, T. ciliata has been facing an unresolved pest problem caused by Hypsipyla robusta Moore (HRM), which seriously affects its growth and development. In this study, the expression level of TcMYB3 gene reached the maximum (28-fold) at 12 h and transcriptome sequencing of young stems eaten by HRM for 0, 3, 12, and 21 h were performed. A large number of differentially expressed genes (DEGs) were identified including jointly up-regulated genes (263) and down-regulated genes (378). JA synthesis and signaling transduction, terpene biosynthesis, and MAPKs signaling pathway were analyzed in depth and found that TcOPR3, TcJAR1, TcJAZs, and TcTPS9 genes possessed anti-insect potential. Moreover, MYB and ERF transcription factor (TF) families were significantly strengthened to the point that they may participate in induced defense mechanisms in T. ciliata. These data not only provide insights into the molecular mechanisms in resistance of T. ciliata to HRM but also helps to explore the new biocontrol strategies against insects in eco-friendly woody plants.
Collapse
Affiliation(s)
- Huiyun Song
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yue Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Zhi Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Zhihao Duan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yueyang Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Endian Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Qingmin Que
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Pei Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Jones AC, Felton GW, Tumlinson JH. The dual function of elicitors and effectors from insects: reviewing the 'arms race' against plant defenses. PLANT MOLECULAR BIOLOGY 2022; 109:427-445. [PMID: 34618284 DOI: 10.1007/s11103-021-01203-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
This review provides an overview, analysis, and reflection on insect elicitors and effectors (particularly from oral secretions) in the context of the 'arms race' with host plants. Following injury by an insect herbivore, plants rapidly activate induced defenses that may directly or indirectly affect the insect. Such defense pathways are influenced by a multitude of factors; however, cues from the insect's oral secretions are perhaps the most well studied mediators of such plant responses. The relationship between plants and their insect herbivores is often termed an 'evolutionary arms race' of strategies for each organism to either overcome defenses or to avoid attack. However, these compounds that can elicit a plant defense response that is detrimental to the insect may also benefit the physiology or metabolism of an insect species. Indeed, several insect elicitors of plant defenses (such as the fatty acid-amino acid conjugate, volicitin) are known to enhance an insect's ability to obtain nutritionally important compounds from plant tissue. Here we re-examine the well-known elicitors and effectors from chewing insects to demonstrate not only our incomplete understanding of the specific biochemical and molecular cascades involved in these interactions but also to consider the role of these compounds for the insect species itself. Finally, this overview discusses opportunities for research in the field of plant-insect interactions by utilizing tools such as genomics and proteomics to integrate the future study of these interactions through ecological, physiological, and evolutionary disciplines.
Collapse
Affiliation(s)
- Anne C Jones
- Biological Sciences Department, Virginia Polytechnic State and University, Blacksburg, VA, USA.
| | - Gary W Felton
- Entomology Department, Pennsylvania State University, University Park, PA, USA
| | - James H Tumlinson
- Entomology Department, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Du H, Xu HX, Wang F, Qian LX, Liu SS, Wang XW. Armet from whitefly saliva acts as an effector to suppress plant defences by targeting tobacco cystatin. THE NEW PHYTOLOGIST 2022; 234:1848-1862. [PMID: 35238409 DOI: 10.1111/nph.18063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Arginine rich, mutated in early stage of tumours (Armet), is a well-characterized bifunctional protein as an unfolded protein response component intracellularly and a neurotrophic factor extracellularly in mammals. Recently, a new role of Armet as an effector protein mediating insect-plant interactions has been reported; however, its molecular mechanisms underlying the regulation of plant defences remain unclear. We investigated the molecular mechanisms underlying whitefly-secreted Armet-mediated regulation of insect-plant interaction by agrobacterium-mediated transient expression, RNA interference, electrical penetration graph, protein-protein interaction studies, virus-induced gene silencing assay, phytohormone analysis and whitefly bioassays. Armet, secreted by Bemisia tabaci whitefly, is highly expressed in the primary salivary gland and is delivered into tobacco plants during feeding. Overexpression of the BtArmet gene in tobacco enhanced whitefly performance, while silencing the BtArmet gene in whitefly interrupted whitefly feeding and suppressed whitefly performance on tobacco plants. BtArmet was shown to interact with NtCYS6, a cystatin protein essential for tobacco anti-whitefly resistance, and counteract the negative effects of NtCYS6 on whitefly. These results indicate that BtArmet is a salivary effector and acts to promote whitefly performance on tobacco plants through binding to the tobacco cystatin NtCYS6. Our findings provide novel insight into whitefly-plant interactions.
Collapse
Affiliation(s)
- Hui Du
- State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hong-Xing Xu
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fang Wang
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Li-Xin Qian
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shu-Sheng Liu
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
24
|
Yamazaki K, Fujiwara T. The Effect of Phosphate on the Activity and Sensitivity of Nutritropism toward Ammonium in Rice Roots. PLANTS (BASEL, SWITZERLAND) 2022; 11:733. [PMID: 35336615 PMCID: PMC8955032 DOI: 10.3390/plants11060733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Understanding how plants determine growth direction from environmental cues is important to reveal optimal strategies in plant survival. Nutritropism is the directional growth of plant roots towards nutrient sources. Our previous study showed that an NH4+ gradient stimulates nutritropism in the lateral roots, but not in the main roots, of a rice cultivar. In the present study, we report nutritropism in the main roots of rice accessions among the World Rice Core Collection, including WRC 25. We investigated the effects of components in nutrient sources on nutritropism in WRC 25. Nutritropism in main roots was stimulated by NH4+ and significantly enhanced by Pi. We found that roots required more NH4+ stimulation for nutritropic responses in the presence of higher Pi, meaning that Pi desensitized root nutritropism. These results indicate that Pi acts as an activator and a desensitizer in nutritropism. Such a regulation of nutritropism would be important for plants to decide their optimum growth directions towards nutrient sources, gravity, moisture, or other stimuli.
Collapse
Affiliation(s)
- Kiyoshi Yamazaki
- Graduate School of Agricultural and Life Science, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | | |
Collapse
|
25
|
Kallure GS, Shinde BA, Barvkar VT, Kumari A, Giri AP. Dietary influence on modulation of Helicoverpa armigera oral secretion composition leading to differential regulation of tomato plant defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111120. [PMID: 34895549 DOI: 10.1016/j.plantsci.2021.111120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Little is known about how different plant-based diets influence the insect herbivores' oral secretion (OS) composition and eventually the plant defense responses. We analyzed the OS composition of the generalist Lepidopteran insect, Helicoverpa armigera feeding on the host plant tomato (OSH), non-host plant capsicum (OSNH), and artificial diet (OSAD) using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry. Higher numbers and levels of alkaloids and terpenoids were observed in OSH and OSNH, respectively while OSAD was rich in phospholipids. Interestingly, treatment of H. armigera OSAD, OSH and OSNH on wounded tomato leaves showed differential expression of (i) genes involved in JA and SA biosynthesis and their responsive genes, and (ii) biosynthetic pathway genes of chlorogenic acid (CGA) and trehalose, which exhibited increased accumulation along with several other plant defensive metabolites. Specifically, high levels of CGA were detected after OSH and OSNH treatments in tomato leaves. There was higher expression of the genes involved in phenylpropanoid biosynthesis, which may lead to the increased accumulation of CGA and related metabolites. In the insect bioassay, CGA significantly inhibited H. armigera larval growth. Our results underline the differential accumulation of plant and insect OS metabolites and identified potential plant metabolite(s) affecting insect growth and development.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Balkrishna A Shinde
- Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
26
|
Yadav M, Pandey J, Chakraborty A, Hassan MI, Kundu JK, Roy A, Singh IK, Singh A. A Comprehensive Analysis of Calmodulin-Like Proteins of Glycine max Indicates Their Role in Calcium Signaling and Plant Defense Against Insect Attack. FRONTIERS IN PLANT SCIENCE 2022; 13:817950. [PMID: 35371141 PMCID: PMC8965522 DOI: 10.3389/fpls.2022.817950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 05/09/2023]
Abstract
The calcium (Ca2+) signaling is a crucial event during plant-herbivore interaction, which involves a transient change in cytosolic Ca2+ concentration, which is sensed by Ca2+-sensors, and the received message is transduced to downstream target proteins leading to appropriate defense response. Calmodulin-like proteins (CMLs) are calcium-sensing plant-specific proteins. Although CMLs have been identified in a few plants, they remained uncharacterized in leguminous crop plants. Therefore, a wide-range analysis of CMLs of soybean was performed, which identified 41 true CMLs with greater than 50% similarity with Arabidopsis CMLs. The phylogenetic study revealed their evolutionary relatedness with known CMLs. Further, the identification of conserved motifs, gene structure analysis, and identification of cis-acting elements strongly supported their identity as members of this family and their involvement in stress responses. Only a few Glycine max CMLs (GmCMLs) exhibited differential expression in different tissue types, and rest of them had minimal expression. Additionally, differential expression patterns of GmCMLs were observed during Spodoptera litura-feeding, wounding, and signaling compound treatments, indicating their role in plant defense. The three-dimensional structure prediction, identification of interactive domains, and docking with Ca2+ ions of S. litura-inducible GmCMLs, indicated their identity as calcium sensors. This study on the characterization of GmCMLs provided insights into their roles in calcium signaling and plant defense during herbivory.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Amrita Chakraborty
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions Group, Crop Research Institute, Prague, Czechia
| | - Amit Roy
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Amit Roy,
| | - Indrakant Kumar Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- DBC-i4 Center, Deshbandhu College, University of Delhi, New Delhi, India
- Indrakant Kumar Singh,
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
- Archana Singh,
| |
Collapse
|
27
|
Insight into maize gene expression profiles responses to symbiotic bacteria derived from Helicoverpa armigera and Ostrinia furnacalis. Arch Microbiol 2021; 204:56. [DOI: 10.1007/s00203-021-02667-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
|
28
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the detoxification enzymes of the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21850. [PMID: 34750851 DOI: 10.1002/arch.21850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Detoxification enzymes are necessary for insects to metabolize toxic substances and maintain physiological activities. Cytochromes P450 (CYPs), glutathione S-transferases (GSTs), and carboxylesterase (CarEs) are the main detoxification enzymes in insects. In addition, UDP-glucosyltransferase and ATP-binding cassette transporter also participate in the process of material metabolism. This study collected proteins related to detoxification in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). And we performed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on these proteins to understand their biological function. We constructed the protein-protein interaction network for the silkworm's detoxification enzymes and analyzed the network's topological properties. We found that BGIBMGA014046-TA, BGIBMGA003221-TA, BGIBMGA011092-TA, BGIBMGA000074-TA, and LOC732976 are the essential proteins in the network. These proteins are primarily involved in the process of ribosome biogenesis and may be related to protein synthesis. We integrated GO, KEGG, and network analysis and found that ribosome-associated protein and GSTs played a vital role in the detoxification process.
Collapse
Affiliation(s)
- ShangHong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - WenJun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Huang HJ, Ye ZX, Lu G, Zhang CX, Chen JP, Li JM. Identification of salivary proteins in the whitefly Bemisia tabaci by transcriptomic and LC-MS/MS analyses. INSECT SCIENCE 2021; 28:1369-1381. [PMID: 32757245 DOI: 10.1111/1744-7917.12856] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 05/13/2023]
Abstract
The whitefly Bemisia tabaci is a notorious agricultural pest of many crops worldwide. Although it is thought that B. tabaci secretes saliva into the host plant to counter plant defenses, knowledge on the whitefly salivary proteome is limited. Here, we characterized the gene/protein repertoires of B. tabaci salivary glands and secreted saliva by transcriptomic and liquid chromatography tandem mass spectroscopy analyses. A total of 698 salivary gland-enriched unigenes and 171 salivary proteins were identified. Comparative analysis between the B. tabaci salivary proteins and those of different arthropod species revealed numerous similarities in proteins associated with binding, hydrolysis, and oxidation-reduction, which demonstrates a degree of conservation across herbivorous saliva. There were 74 proteins only identified in B. tabaci saliva, of which 34 were B. tabaci-specific. In addition, 13 salivary proteins, of which 11 were B. tabaci-specific, were differentially regulated when B. tabaci fed on different hosts. Our results provide a good resource for future functional studies of whitefly salivary effectors, and might be useful in pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
30
|
Huang HJ, Yan XT, Wei ZY, Wang YZ, Chen JP, Li JM, Sun ZT, Zhang CX. Identification of Riptortus pedestris Salivary Proteins and Their Roles in Inducing Plant Defenses. BIOLOGY 2021; 10:biology10080753. [PMID: 34439985 PMCID: PMC8389542 DOI: 10.3390/biology10080753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary The bean bug, Riptortus pedestris (Fabricius) is a notorious pest of soybean crops in Asia. During the feeding process, the bug secretes a mixture of salivary components, which play critical roles in the insect–plant interactions. In the present study, a total of 136 salivary proteins were identified by transcriptomic and proteomic approaches. Among them, five proteins (RpSP10.3, RpSP13.4, RpSP13.8, RpSP17.8, and RpSP10.2) were capable of inducing cell death, reactive oxygen species (ROS) burst, and hormone signal changes, indicating the potential roles of these proteins in eliciting plant defenses. Our results provide a good resource for future functional studies of bug salivary effectors and might be useful in pest management. Abstract The bean bug, Riptortus pedestris (Fabricius), is one of the most important soybean pests. It damages soybean leaves and pods with its piercing-sucking mouthparts, causing staygreen-like syndromes in the infested crops. During the feeding process, R. pedestris secretes a mixture of salivary proteins, which play critical roles in the insect–plant interactions and may be responsible for staygreen-like syndromes. The present study aimed to identify the major salivary proteins in R. pedestris saliva by transcriptomic and proteomic approaches, and to screen the proteins that potentially induced plant defense responses. Altogether, 136 salivary proteins were identified, and a majority of them were involved in hydrolase and binding. Additionally, R. pedestris saliva contained abundant bug-specific proteins with unknown function. Transient expression of salivary proteins in Nicotiana benthamiana leaves identified that RpSP10.3, RpSP13.4, RpSP13.8, RpSP17.8, and RpSP10.2 were capable of inducing cell death, reactive oxygen species (ROS) burst, and hormone signal changes, indicating the potential roles of these proteins in eliciting plant defenses. Our results will shed more light on the molecular mechanisms underlying the plant–insect interactions and are useful for pest management.
Collapse
|
31
|
Cusumano A, Urbach S, Legeai F, Ravallec M, Dicke M, Poelman EH, Volkoff AN. Plant-phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars. Mol Ecol 2021; 30:4567-4583. [PMID: 34245612 PMCID: PMC8518489 DOI: 10.1111/mec.16072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022]
Abstract
There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant‐insect interactions are restricted to a few cases belonging to parasitoid‐associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour. Yet, the function of these symbionts in plant‐based trophic webs remains largely overlooked. Here, we provide the first evidence of a parasitoid‐associated symbiont belonging to the group of ichnoviruses which affects the strength of plant‐insect interactions. A comparative proteomic analysis shows that, upon parasitoid injection of calyx fluid containing ichnovirus particles, the composition of salivary glands of caterpillars changes both qualitatively (presence of two viral‐encoded proteins) and quantitatively (abundance of several caterpillar‐resident enzymes, including elicitors such as glucose oxidase). In turn, plant phenotypic changes triggered by the altered composition of caterpillar oral secretions affect the performance of herbivores. Ichnovirus manipulation of plant responses to herbivory leads to benefits for their parasitoid partners in terms of reduced developmental time within the parasitized caterpillar. Interestingly, plant‐mediated ichnovirus‐induced effects also enhance the performances of unparasitized herbivores which in natural conditions may feed alongside parasitized ones. We discuss these findings in the context of ecological costs imposed to the plant by the viral symbiont of the parasitoid. Our results provide intriguing novel findings about the role played by carnivore‐associated symbionts on plant‐insect‐parasitoid systems and underline the importance of placing mutualistic associations in an ecological perspective.
Collapse
Affiliation(s)
- Antonino Cusumano
- DGIMI Université de Montpellier, INRAE, Montpellier, France.,Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.,Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Serge Urbach
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,BCM, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, Le Rheu, France.,Université Rennes 1, INRIA, CNRS, IRISA, Rennes, France
| | - Marc Ravallec
- DGIMI Université de Montpellier, INRAE, Montpellier, France
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
32
|
Garcia A, Santamaria ME, Diaz I, Martinez M. Disentangling transcriptional responses in plant defense against arthropod herbivores. Sci Rep 2021; 11:12996. [PMID: 34155286 PMCID: PMC8217245 DOI: 10.1038/s41598-021-92468-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/03/2021] [Indexed: 01/21/2023] Open
Abstract
The success in the response of a plant to a pest depends on the regulatory networks that connect plant perception and plant response. Meta-analyses of transcriptomic responses are valuable tools to discover novel mechanisms in the plant/herbivore interplay. Considering the quantity and quality of available transcriptomic analyses, Arabidopsis thaliana was selected to test the ability of comprehensive meta-analyses to disentangle plant responses. The analysis of the transcriptomic data showed a general induction of biological processes commonly associated with the response to herbivory, like jasmonate signaling or glucosinolate biosynthesis. However, an uneven induction of many genes belonging to these biological categories was found, which was likely associated with the particularities of each specific Arabidopsis-herbivore interaction. A thorough analysis of the responses to the lepidopteran Pieris rapae and the spider mite Tetranychus urticae highlighted specificities in the perception and signaling pathways associated with the expression of receptors and transcription factors. This information was translated to a variable alteration of secondary metabolic pathways. In conclusion, transcriptomic meta-analysis has been revealed as a potent way to sort out relevant physiological processes in the plant response to herbivores. Translation of these transcriptomic-based analyses to crop species will permit a more appropriate design of biotechnological programs.
Collapse
Affiliation(s)
- Alejandro Garcia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|