1
|
Tripathi M, Diwan D, Shukla AC, Gaffey J, Pathak N, Dashora K, Pandey A, Sharma M, Guleria S, Varjani S, Nguyen QD, Gupta VK. Valorization of dragon fruit waste to value-added bioproducts and formulations: A review. Crit Rev Biotechnol 2024; 44:1061-1079. [PMID: 37743323 DOI: 10.1080/07388551.2023.2254930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 09/26/2023]
Abstract
Owing to the increasing worldwide population explosion, managing waste generated from the food sector has become a cross-cutting issue globally, leading to environmental, economic, and social issues. Circular economy-inspired waste valorization approaches have been increasing steadily, generating new business opportunities developing valuable bioproducts using food waste, especially fruit wastes, that may have several applications in energy-food-pharma sectors. Dragon fruit waste is one such waste resource, which is rich in several value-added chemicals and oils, and can be a renewable resource to produce several value-added compounds of potential applications in different industries. Pretreatment and extraction processes in biorefineries are important strategies for recovering value-added biomolecules. There are different methods of valorization, including green extractions and biological conversion approaches. However, microbe-based conversion is one of the advanced technologies for valorizing dragon fruit waste into bioethanol, bioactive products, pharmaceuticals, and other valued products by reusing or recycling them. This state-of-the-art review briefly overviews the dragon fruit waste management strategies and advanced eco-friendly and cost-effective valorization technologies. Furthermore, various applications of different valuable bioactive components obtained from dragon fruit waste have been critically discussed concerning various industrial sectors. Several industrial sectors, such as food, pharmaceuticals, and biofuels, have been critically reviewed in detail.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Deepti Diwan
- School of Medicine, Washington University, Saint Louis, MO, USA
| | | | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Sanjay Guleria
- Sher-e- Kashmir University of Agricultural Sciences and Technology of Jammu, Union Territory of Jammu and Kashmir, India
| | - Sunita Varjani
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
- School of Energy and Environment, City University of Hon Kong, Kowloon, Hong Kong
| | - Quang D Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Dumfries, UK
| |
Collapse
|
2
|
Nishikito DF, Borges ACA, Laurindo LF, Otoboni AMMB, Direito R, Goulart RDA, Nicolau CCT, Fiorini AMR, Sinatora RV, Barbalho SM. Anti-Inflammatory, Antioxidant, and Other Health Effects of Dragon Fruit and Potential Delivery Systems for Its Bioactive Compounds. Pharmaceutics 2023; 15:159. [PMID: 36678789 PMCID: PMC9861186 DOI: 10.3390/pharmaceutics15010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Dragon fruit (Hylocereus genus) has the potential for the prevention of diseases associated with inflammatory and oxidative processes. We aimed to comprehensively review dragon fruit health effects, economic importance, and possible use in delivery systems. Pubmed, Embase, and Google Scholar were searched, and PRISMA (Preferred Reporting Items for a Systematic Review and Meta-Analysis) guidelines were followed. Studies have shown that pitaya can exert several benefits in conditions such as diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and cancer due to the presence of bioactive compounds that may include vitamins, potassium, betacyanin, p-coumaric acid, vanillic acid, and gallic acid. Moreover, pitaya has the potential to be used in food and nutraceutical products as functional ingredients, natural colorants, ecologically correct and active packaging, edible films, preparation of photoprotective products, and additives. Besides the importance of dragon fruit as a source of bioactive compounds, the bioavailability is low. The development of delivery systems such as gold nanoparticles with these compounds can be an alternative to reach target tissues.
Collapse
Affiliation(s)
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | | | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra M. Barbalho
- School of Food and Technology of Marilia (FATEC), São Paulo 17500-000, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| |
Collapse
|