1
|
Papavassiliou KA, Basdra EK, Papavassiliou AG. The emerging promise of tumour mechanobiology in cancer treatment. Eur J Cancer 2023; 190:112938. [PMID: 37390803 DOI: 10.1016/j.ejca.2023.112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Tumour cell biomechanics has lately came to the fore as a disparate feature that fosters cancer development and progression. Tumour mechanosensing entails a mechanical interplay amongst tumour cells, extracellular matrix (ECM) and cells of the tumour microenvironment (TME). Sensory receptors (mechanoceptors) detect changes of extracellular mechanical inputs such as various types of mechanical forces/stress and trigger oncogenic signalling pathways advocating for cancer initiation, growth, survival, angiogenesis, invasion, metastasis, and immune evasion. Moreover, alterations in ECM stiffness and potentiation of mechanostimulated transcriptional regulatory molecules (transcription factors/cofactors) have been shown to strongly correlate with resistance to anticancer drugs. On this basis, new mechanosensitive proteins emerge as potential therapeutic targets and/or biomarkers in cancer. Accordingly, tumour mechanobiology arises as a promising field that can potentially provide novel combinatorial regimens to reverse drug resistance, as well as offer unprecedented targeting approaches that may help to more effectively treat a large proportion of solid tumours and their complications. Here, we highlight recent findings regarding various aspects of tumour mechanobiology in the clinical setting and discuss evidence-based perspectives of developing diagnostic/prognostic tools and therapeutic approaches that exploit tumour-TME physical associations.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants (Basel) 2022; 11:antiox11091685. [PMID: 36139759 PMCID: PMC9495339 DOI: 10.3390/antiox11091685] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive, incurable interstitial lung disease with high mortality after diagnosis and remains a global public health problem. Despite advances and breakthroughs in understanding the pathogenesis of pulmonary fibrosis, there are still no effective methods for the prevention and treatment of pulmonary fibrosis. The existing treatment options are imperfect, expensive, and have considerable limitations in effectiveness and safety. Hence, there is an urgent need to find novel therapeutic targets. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular antioxidative responses, inflammation, and restoration of redox balance. Accumulating reports reveal that Nrf2 activators exhibit potent antifibrosis effects and significantly attenuate pulmonary fibrosis in vivo and in vitro. This review summarizes the current Nrf2-related knowledge about the regulatory mechanism and potential therapies in the process of pulmonary fibrosis. Nrf2 orchestrates the activation of multiple protective genes that target inflammation, oxidative stress, fibroblast–myofibroblast differentiation (FMD), and epithelial–mesenchymal transition (EMT), and the mechanisms involve Nrf2 and its downstream antioxidant, Nrf2/HO−1/NQO1, Nrf2/NOX4, and Nrf2/GSH signaling pathway. We hope to indicate potential for Nrf2 system as a therapeutic target for pulmonary fibrosis.
Collapse
|
3
|
Cao Y, Rudrakshala J, Williams R, Rodriguez S, Sorkhdini P, Yang AX, Mundy M, Yang D, Palmisciano A, Walsh T, Delcompare C, Caine T, Tomasi L, Shea BS, Zhou Y. CRTH2 Mediates Pro-fibrotic Macrophage Differentiation and Promotes Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:201-214. [PMID: 35585756 DOI: 10.1165/rcmb.2021-0504oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a particularly deadly form of pulmonary fibrosis with unknown reason. In patients with IPF, high serum and lung levels of CHI3L1 can be detected and are associated with poor survival. However, the roles of CHI3L1 in these diseases have not been fully elucidated. We hypothesize that CHI3L1 interacts with CRTH2 to stimulate pro-fibrotic macrophage differentiation and the development of pulmonary fibrosis and that circulating blood monocytes from patients with IPF are hyperresponsive to CHI3L1-CRTH2 signaling. We used murine pulmonary fibrosis models to investigate the role of CRTH2 on pro-fibrotic macrophage differentiation and fibrosis development, and primary human PBMC cell culture to detect the difference of monocytes in the responses to CHI3L1 stimulation and CRTH2 inhibition between IPF patients and normal controls. Our results showed that null mutation or small molecule inhibition of CRTH2 prevents the development of pulmonary fibrosis in murine models. Furthermore, CHI3L1 stimulation induces a greater increase in CD206 expression in IPF monocytes than control monocytes. These results demonstrated that monocytes from IPF patients appear to be hyperresponsive to CHI3L1 stimulation. These studies support targeting CHI3L1-CRTH2 pathway as a promising therapeutic approach in IPF and that the sensitivity of blood monocytes to CHI3L1-induced pro-fibrotic differentiation may serve as a biomarker that predicts responsiveness to CHI3L1 or CRTH2 based interventions.
Collapse
Affiliation(s)
- Yueming Cao
- Brown University, 6752, Providence, Rhode Island, United States
| | | | - River Williams
- Brown University, 6752, Providence, Rhode Island, United States
| | - Shade Rodriguez
- Brown University, 6752, Providence, Rhode Island, United States
| | | | - Alina X Yang
- Brown University, 6752, Providence, Rhode Island, United States
| | - Miles Mundy
- Brown University, 6752, Providence, Rhode Island, United States
| | - Dongqin Yang
- Brown University, 6752, Providence, Rhode Island, United States
| | - Amy Palmisciano
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Thomas Walsh
- Rhode Island Hospital, 23325, Providence, Rhode Island, United States
| | - Cesar Delcompare
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Tanis Caine
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Luca Tomasi
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Barry S Shea
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Yang Zhou
- Brown University, Molecular Microbiology and Immunology, Providence, Rhode Island, United States;
| |
Collapse
|
4
|
Hamanaka RB, Mutlu GM. Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism. FEBS J 2021; 288:6331-6352. [PMID: 33393204 DOI: 10.1111/febs.15693] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Fibrosis is a pathologic condition characterized by excessive deposition of extracellular matrix and chronic scaring that can affect every organ system. Organ fibrosis is associated with significant morbidity and mortality, contributing to as many as 45% of all deaths in the developed world. In the lung, many chronic lung diseases may lead to fibrosis, the most devastating being idiopathic pulmonary fibrosis (IPF), which affects approximately 3 million people worldwide and has a median survival of 3.8 years. Currently approved therapies for IPF do not significantly extend lifespan, and thus, there is pressing need for novel therapeutic strategies to treat IPF and other fibrotic diseases. At the heart of pulmonary fibrosis are myofibroblasts, contractile cells with characteristics of both fibroblasts and smooth muscle cells, which are the primary cell type responsible for matrix deposition in fibrotic diseases. Much work has centered around targeting the extracellular growth factors and intracellular signaling regulators of myofibroblast differentiation. Recently, metabolic changes associated with myofibroblast differentiation have come to the fore as targetable mechanisms required for myofibroblast function. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, as well as the mechanisms by which these changes promote myofibroblast function. We will then discuss the potential for this new knowledge to lead to the development of novel therapies for IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| |
Collapse
|
5
|
O'Leary EM, Tian Y, Nigdelioglu R, Witt LJ, Cetin-Atalay R, Meliton AY, Woods PS, Kimmig LM, Sun KA, Gökalp GA, Mutlu GM, Hamanaka RB. TGF-β Promotes Metabolic Reprogramming in Lung Fibroblasts via mTORC1-dependent ATF4 Activation. Am J Respir Cell Mol Biol 2020; 63:601-612. [PMID: 32668192 DOI: 10.1165/rcmb.2020-0143oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal interstitial lung disease characterized by the TGF-β (transforming growth factor-β)-dependent differentiation of lung fibroblasts into myofibroblasts, which leads to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by myofibroblasts requires de novo synthesis of glycine, the most abundant amino acid found in collagen protein. TGF-β upregulates the expression of the enzymes of the de novo serine-glycine synthesis pathway in lung fibroblasts; however, the transcriptional and signaling regulators of this pathway remain incompletely understood. Here, we demonstrate that TGF-β promotes accumulation of ATF4 (activating transcription factor 4), which is required for increased expression of the serine-glycine synthesis pathway enzymes in response to TGF-β. We found that induction of the integrated stress response (ISR) contributes to TGF-β-induced ATF4 activity; however, the primary driver of ATF4 downstream of TGF-β is activation of mTORC1 (mTOR Complex 1). TGF-β activates the PI3K-Akt-mTOR pathway, and inhibition of PI3K prevents activation of downstream signaling and induction of ATF4. Using a panel of mTOR inhibitors, we found that ATF4 activation is dependent on mTORC1, independent of mTORC2. Rapamycin, which incompletely and allosterically inhibits mTORC1, had no effect on TGF-β-mediated induction of ATF4; however, Rapalink-1, which specifically targets the kinase domain of mTORC1, completely inhibited ATF4 induction and metabolic reprogramming downstream of TGF-β. Our results provide insight into the mechanisms of metabolic reprogramming in myofibroblasts and clarify contradictory published findings on the role of mTOR inhibition in myofibroblast differentiation.
Collapse
Affiliation(s)
- Erin M O'Leary
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Recep Nigdelioglu
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois; and
| | - Leah J Witt
- Division of Geriatrics and Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, The University of California San Francisco, San Francisco, California
| | - Rengul Cetin-Atalay
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Angelo Y Meliton
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Parker S Woods
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Lucas M Kimmig
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Kaitlyn A Sun
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Gizem A Gökalp
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Hamanaka RB, O'Leary EM, Witt LJ, Tian Y, Gökalp GA, Meliton AY, Dulin NO, Mutlu GM. Glutamine Metabolism Is Required for Collagen Protein Synthesis in Lung Fibroblasts. Am J Respir Cell Mol Biol 2020; 61:597-606. [PMID: 30973753 DOI: 10.1165/rcmb.2019-0008oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the transforming growth factor (TGF)-β-dependent differentiation of lung fibroblasts into myofibroblasts, leading to excessive deposition of extracellular matrix proteins, which distort lung architecture and function. Metabolic reprogramming in myofibroblasts is emerging as an important mechanism in the pathogenesis of IPF, and recent evidence suggests that glutamine metabolism is required in myofibroblasts, although the exact role of glutamine in myofibroblasts is unclear. In the present study, we demonstrate that glutamine and its conversion to glutamate by glutaminase are required for TGF-β-induced collagen protein production in lung fibroblasts. We found that metabolism of glutamate to α-ketoglutarate by glutamate dehydrogenase or the glutamate-pyruvate or glutamate-oxaloacetate transaminases is not required for collagen protein production. Instead, we discovered that the glutamate-consuming enzymes phosphoserine aminotransferase 1 (PSAT1) and aldehyde dehydrogenase 18A1 (ALDH18A1)/Δ1-pyrroline-5-carboxylate synthetase (P5CS) are required for collagen protein production by lung fibroblasts. PSAT1 is required for de novo glycine production, whereas ALDH18A1/P5CS is required for de novo proline production. Consistent with this, we found that TGF-β treatment increased cellular concentrations of glycine and proline in lung fibroblasts. Our results suggest that glutamine metabolism is required to promote amino acid biosynthesis and not to provide intermediates such as α-ketoglutarate for oxidation in mitochondria. In support of this, we found that inhibition of glutaminolysis has no effect on cellular oxygen consumption and that knockdown of oxoglutarate dehydrogenase has no effect on the ability of fibroblasts to produce collagen protein. Our results suggest that amino acid biosynthesis pathways may represent novel therapeutic targets for treatment of fibrotic diseases, including IPF.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Erin M O'Leary
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Leah J Witt
- Division of Geriatrics and.,Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, California
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Gizem A Gökalp
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Angelo Y Meliton
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Nickolai O Dulin
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| |
Collapse
|
7
|
Maher TM. Combination Therapy and the Start of a New Epoch for Idiopathic Pulmonary Fibrosis? Am J Respir Crit Care Med 2019; 197:283-284. [PMID: 28984465 DOI: 10.1164/rccm.201709-1939ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Toby M Maher
- 1 National Institute for Health Research Respiratory Biomedical Research Unit Royal Brompton Hospital London, United Kingdom and.,2 National Heart and Lung Institute Imperial College London London, United Kingdom
| |
Collapse
|
8
|
Xu J, Li W, Xu S, Gao W, Yu Z. Effect of dermatan sulphate on a C57-mouse model of pulmonary fibrosis. J Int Med Res 2019; 47:2655-2665. [PMID: 31006321 PMCID: PMC6567691 DOI: 10.1177/0300060519842048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To test the antifibrotic effect of dermatan sulphate in a bleomycin-induced mouse model of pulmonary fibrosis. METHODS C57 mice were randomly divided into four experimental groups: saline-treated control group, bleomycin-induced fibrosis group, prednisolone acetate group and dermatan sulphate group. Lungs were assessed using the lung index, and the extent of interstitial fibrosis was graded using histopathological observation of haematoxylin & eosin-stained lung tissue. Lung tissue hydroxyproline levels and blood fibrinogen levels were measured using a hydroxyproline colorimetric kit and the Clauss fibrinogen assay, respectively. Tissue-type plasminogen activator (tPA) was measured using a chromogenic tPA assay kit. RESULTS Lung index values were significantly lower in the dermatan sulphate group versus the fibrosis group. Histopathological analyses revealed that dermatan sulphate treatment ameliorated the increased inflammatory cell infiltration, and attenuated the reduction in interstitial thickening, associated with bleomycin-induced fibrosis. Hydroxyproline and fibrinogen levels were decreased in the dermatan sulphate group versus the fibrosis model group. Dermatan sulphate treatment was associated with increased tPA levels versus controls and the fibrosis group. CONCLUSIONS Damage associated with bleomycin-induced pulmonary fibrosis was alleviated by dermatan sulphate.
Collapse
Affiliation(s)
- Jianfeng Xu
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Wei Li
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Shufen Xu
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Weiyang Gao
- 2 Treasury Department, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Zhenyu Yu
- 3 Department of Anaesthesiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
9
|
Shamskhou EA, Kratochvil MJ, Orcholski ME, Nagy N, Kaber G, Steen E, Balaji S, Yuan K, Keswani S, Danielson B, Gao M, Medina C, Nathan A, Chakraborty A, Bollyky PL, De Jesus Perez VA. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials 2019; 203:52-62. [PMID: 30852423 DOI: 10.1016/j.biomaterials.2019.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive lung disorder with limited therapeutic options. While interleukin-10 (IL-10) is a potent anti-inflammatory and anti-fibrotic cytokine, its utility in treating lung fibrosis has been limited by its short half-life. We describe an innovative hydrogel-based approach to deliver recombinant IL-10 to the lung for the prevention and reversal of pulmonary fibrosis in a mouse model of bleomycin-induced lung injury. Our studies show that a hyaluronan and heparin-based hydrogel system locally delivers IL-10 by capitalizing on the ability of heparin to reversibly bind IL-10 without bleeding or other complications. This formulation is significantly more effective than soluble IL-10 for both preventing and reducing collagen deposition in the lung parenchyma after 7 days of intratracheal administration. The anti-fibrotic effect of IL-10 in this system is dependent on suppression of TGF-β driven collagen production by lung fibroblasts and myofibroblasts. We conclude that hydrogel-based delivery of IL-10 to the lung is a promising therapy for fibrotic lung disorders.
Collapse
Affiliation(s)
- Elya A Shamskhou
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Mark E Orcholski
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nadine Nagy
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Gernot Kaber
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Emily Steen
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Swathi Balaji
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ke Yuan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sundeep Keswani
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ben Danielson
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Max Gao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Carlos Medina
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Abinaya Nathan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ananya Chakraborty
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul L Bollyky
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Vinicio A De Jesus Perez
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Cedilak M, Banjanac M, Belamarić D, Paravić Radičević A, Faraho I, Ilić K, Čužić S, Glojnarić I, Eraković Haber V, Bosnar M. Precision-cut lung slices from bleomycin treated animals as a model for testing potential therapies for idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2019; 55:75-83. [PMID: 30776489 DOI: 10.1016/j.pupt.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 12/28/2018] [Accepted: 02/11/2019] [Indexed: 11/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex lung disease with incompletely understood pathophysiology. Effectiveness of available medicines is limited and the need for new and improved therapies remains. Due to complexity of the disease, it is difficult to develop predictable in vitro models. In this study we have described precision-cut lung slices (PCLS) prepared from bleomycin treated mice as an in vitro model for testing of novel compounds with antifibrotic activity. We have shown that PCLS during in vitro incubation retain characteristics of bleomycin model with increased expression of fibrosis related genes ACTA2 (α-smooth muscle actin), COL1A1 (collagen 1), FN1 (fibronectin 1), MMP12 (matrix metalloproteinase 12) and TIMP1 (tissue inhibitor of metalloproteinases). To further evaluate PCLS as an in vitro model, we have tested ALK5 inhibitor SB525334 which was previously shown to attenuate fibrosis in in vivo bleomycin model and nintedanib which is the FDA approved treatment for IPF. SB525334 and nintedanib inhibited expression of fibrosis related genes in PCLS from bleomycin treated mice. In addition, comparable activity profile of SB525334 was achieved in PCLS and in vivo model. Altogether these results suggest that PCLS may be a suitable in vitro model for compound testing during drug development process.
Collapse
Affiliation(s)
- Matea Cedilak
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia.
| | - Mihailo Banjanac
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | | | | | - Ivan Faraho
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Krunoslav Ilić
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Snježana Čužić
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Ines Glojnarić
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | | | - Martina Bosnar
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| |
Collapse
|
11
|
Absence of β6 Integrin Reduces Influenza Disease Severity in Highly Susceptible Obese Mice. J Virol 2019; 93:JVI.01646-18. [PMID: 30381485 DOI: 10.1128/jvi.01646-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023] Open
Abstract
Obese individuals are considered a high-risk group for developing severe influenza virus infection. While the exact mechanisms for increased disease severity remain under investigation, obese-mouse models suggest that increased acute lung injury (ALI), potentially due to enhanced viral spread and decreased wound repair, is likely involved. We previously demonstrated that upregulation of the lung epithelial cell β6 integrin during influenza virus infection was involved in disease severity. Knocking out β6 (β6 KO) resulted in improved survival. Of interest, obese mice have increased lung β6 integrin levels at homeostasis. Thus, we hypothesized that the protective effect seen in β6 KO mice would extend to the highly susceptible obese-mouse model. In the current study, we show that crossing β6 KO mice with genetically obese (ob/ob) mice (OBKO) resulted in reduced ALI and impaired viral spread, like their lean counterparts. Mechanistically, OBKO alveolar macrophages and epithelial cells had increased type I interferon (IFN) signaling, potentially through upregulated type I IFN receptor expression, which was important for the enhanced protection during infection. Taken together, our results indicate that the absence of an epithelial integrin can beneficially alter the pulmonary microenvironment by increasing protective type I IFN responses even in a highly susceptible obese-mouse model. These studies increase our understanding of influenza virus pathogenesis in high-risk populations and may lead to the development of novel therapies.IMPORTANCE Obesity is a risk factor for developing severe influenza virus infection. However, the reasons for this are unknown. We found that the lungs of obese mice have increased expression of the epithelial integrin β6, a host factor associated with increased disease severity. Knocking out integrin β6 in obese mice favorably altered the pulmonary environment by increasing type I IFN signaling, resulting in decreased viral spread, reduced lung injury, and increased survival. This study furthers our understanding of influenza virus pathogenesis in the high-risk obese population and may potentially lead to the development of novel therapies for influenza virus infection.
Collapse
|
12
|
Hamanaka RB, Nigdelioglu R, Meliton AY, Tian Y, Witt LJ, O’Leary E, Sun KA, Woods PS, Wu D, Ansbro B, Ard S, Rohde JM, Dulin NO, Guzy RD, Mutlu GM. Inhibition of Phosphoglycerate Dehydrogenase Attenuates Bleomycin-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2018; 58:585-593. [PMID: 29019702 PMCID: PMC5946329 DOI: 10.1165/rcmb.2017-0186oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
Organ fibrosis, including idiopathic pulmonary fibrosis, is associated with significant morbidity and mortality. Because currently available therapies have limited effect, there is a need to better understand the mechanisms by which organ fibrosis occurs. We have recently reported that transforming growth factor (TGF)-β, a key cytokine that promotes fibrogenesis, induces the expression of the enzymes of the de novo serine and glycine synthesis pathway in human lung fibroblasts, and that phosphoglycerate dehydrogenase (PHGDH; the first and rate-limiting enzyme of the pathway) is required to promote collagen protein synthesis downstream of TGF-β. In this study, we investigated whether inhibition of de novo serine and glycine synthesis attenuates lung fibrosis in vivo. We found that TGF-β induces mRNA and protein expression of PHGDH in murine fibroblasts. Similarly, intratracheal administration of bleomycin resulted in increased expression of PHGDH in mouse lungs, localized to fibrotic regions. Using a newly developed small molecule inhibitor of PHGDH (NCT-503), we tested whether pharmacologic inhibition of PHGDH could inhibit fibrogenesis both in vitro and in vivo. Treatment of murine and human lung fibroblasts with NCT-503 decreased TGF-β-induced collagen protein synthesis. Mice treated with the PHGDH inhibitor beginning 7 days after intratracheal instillation of bleomycin had attenuation of lung fibrosis. These results indicate that the de novo serine and glycine synthesis pathway is necessary for TGF-β-induced collagen synthesis and bleomycin-induced pulmonary fibrosis. PHGDH and other enzymes in the de novo serine and glycine synthesis pathway may be a therapeutic target for treatment of fibrotic diseases, including idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Recep Nigdelioglu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Angelo Y. Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Leah J. Witt
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Erin O’Leary
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Kaitlyn A. Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Parker S. Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - David Wu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Brandon Ansbro
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Shawn Ard
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Jason M. Rohde
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Nickolai O. Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Robert D. Guzy
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, Illinois; and
| |
Collapse
|
13
|
Bian H, Nie X, Bu X, Tian F, Yao L, Chen J, Su J. The pronounced high expression of discoidin domain receptor 2 in human interstitial lung diseases. ERJ Open Res 2018; 4:00138-2016. [PMID: 29367920 PMCID: PMC5774384 DOI: 10.1183/23120541.00138-2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 10/29/2017] [Indexed: 01/06/2023] Open
Abstract
The most typical structural feature of human interstitial lung diseases (ILDs) is the accumulation of vast amounts of collagens within the lung interstitium. The membrane receptors that are responsible for recognising collagens and then transducing signals into the cells include four members of the integrin family (α1β1, α2β1, α10β1 and α11β1) and two members of the discoidin domain receptor family (DDR1 and DDR2). However, it remains unknown whether these six collagen receptors similarly contribute to the pathogenesis of fibrotic lung diseases. Quantitative real-time PCR (qPCR) was utilised to assess the mRNA expression of the genes studied. Immunoblot experiments were performed to analyse the protein abundance and kinase activity of the gene products. The tissue location was determined by immunohistochemical staining. qPCR data showed that DDR2 mRNA displays the most dramatic difference between idiopathic pulmonary fibrosis (IPF) patients and healthy groups. The outstanding increases in DDR2 proteins were also observed in some other types of ILD besides IPF. DDR2-expressing cells in ILD tissue sections were found to exhibit spindle or fibroblastic shapes. Our investigation suggests that DDR2 might represent a major cell surface protein that mediates collagen-induced cellular effects in human ILD and, hence, is suitable for their diagnosis and therapy. DDR2 is a major collagen-recognising receptor in human interstitial lung diseasehttp://ow.ly/Lhgh30gN603
Collapse
Affiliation(s)
- Huan Bian
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.,State Key Laboratory of Cancer Biology, Dept of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China.,These authors contributed equally
| | - Xiaowei Nie
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital, Nanjing Medical University, Wuxi, PR China.,These authors contributed equally
| | - Xin Bu
- State Key Laboratory of Cancer Biology, Dept of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China.,These authors contributed equally
| | - Feng Tian
- Dept of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Libo Yao
- State Key Laboratory of Cancer Biology, Dept of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Jingyu Chen
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital, Nanjing Medical University, Wuxi, PR China
| | - Jin Su
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.,State Key Laboratory of Cancer Biology, Dept of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Sci Transl Med 2018; 10:10/422/eaao0475. [DOI: 10.1126/scitranslmed.aao0475] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Tissues stiffen during aging and during the pathological progression of cancer, fibrosis, and cardiovascular disease. Extracellular matrix stiffness is emerging as a prominent mechanical cue that precedes disease and drives its progression by altering cellular behaviors. Targeting extracellular matrix mechanics, by preventing or reversing tissue stiffening or interrupting the cellular response, is a therapeutic approach with clinical potential. Major drivers of changes to the mechanical properties of the extracellular matrix include phenotypically converted myofibroblasts, transforming growth factor β (TGFβ), and matrix cross-linking. Potential pharmacological interventions to overcome extracellular matrix stiffening are emerging clinically. Aside from targeting stiffening directly, alternative approaches to mitigate the effects of increased matrix stiffness aim to identify and inhibit the downstream cellular response to matrix stiffness. Therapeutic interventions that target tissue stiffening are discussed in the context of their limitations, preclinical drug development efforts, and clinical trials.
Collapse
|
15
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare pulmonary disease with a poor prognosis and severe impact on quality of life. Early diagnosis is still challenging and important delays are registered before final diagnosis can be reached. Available tools fail to predict the variable course of the disease and to evaluate response to antifibrotic drugs. Despite the recent approval of pirfenidone and nintedanib, significant challenges remain to improve prognosis and quality of life. It is hoped that the new insights gained in pathobiology in the last few years will lead to further advances in the diagnosis and management of IPF. Currently, early diagnosis and prompt initiation of treatments reducing lung function loss offer the best hope for improved outcomes. This article aims at providing an overview of recent advances in managing patients with IPF and has a particular focus on how to reach a diagnosis, manage comorbidities and lung transplantation, care for the non-pharmacological needs of patients, and address palliative care.
Collapse
Affiliation(s)
- Chiara Scelfo
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, Multimedica IRCCS, Milan, Italy
| | - Antonella Caminati
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, Multimedica IRCCS, Milan, Italy
| | - Sergio Harari
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, Multimedica IRCCS, Milan, Italy
| |
Collapse
|
16
|
O'Reilly PJ, Ding Q, Akthar S, Cai G, Genschmer KR, Patel DF, Jackson PL, Viera L, Roda M, Locy ML, Bernstein EA, Lloyd CM, Bernstein KE, Snelgrove RJ, Blalock JE. Angiotensin-converting enzyme defines matrikine-regulated inflammation and fibrosis. JCI Insight 2017; 2:91923. [PMID: 29202450 PMCID: PMC5752376 DOI: 10.1172/jci.insight.91923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
The neutrophil chemoattractant proline-glycine-proline (PGP) is generated from collagen by matrix metalloproteinase-8/9 (MMP-8/9) and prolyl endopeptidase (PE), and it is concomitantly degraded by extracellular leukotriene A4 hydrolase (LTA4H) to limit neutrophilia. Components of cigarette smoke can acetylate PGP, yielding a species (AcPGP) that is resistant to LTA4H-mediated degradation and can, thus, support a sustained neutrophilia. In this study, we sought to elucidate if an antiinflammatory system existed to degrade AcPGP that is analogous to the PGP-LTA4H axis. We demonstrate that AcPGP is degraded through a previously unidentified action of the enzyme angiotensin-converting enzyme (ACE). Pulmonary ACE is elevated during episodes of acute inflammation, as a consequence of enhanced vascular permeability, to ensure the efficient degradation of AcPGP. Conversely, we suggest that this pathway is aberrant in chronic obstructive pulmonary disease (COPD) enabling the accumulation of AcPGP. Consequently, we identify a potentially novel protective role for AcPGP in limiting pulmonary fibrosis and suggest the pathogenic function attributed to ACE in idiopathic pulmonary fibrosis (IPF) to be a consequence of overzealous AcPGP degradation. Thus, AcPGP seemingly has very divergent roles: it is pathogenic in its capacity to drive neutrophilic inflammation and matrix degradation in the context of COPD, but it is protective in its capacity to limit fibrosis in IPF. ACE degrades the collagen-derived matrikine, acetylate proline–glycine–proline, to limit pulmonary inflammation and promote repair.
Collapse
Affiliation(s)
- Philip J O'Reilly
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia Akthar
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Guoqiang Cai
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kristopher R Genschmer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dhiren F Patel
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patricia L Jackson
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham V.A. Medical Center, Birmingham, Alabama, USA
| | - Liliana Viera
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mojtaba Roda
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Morgan L Locy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences and Department of Pathology, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| | - Clare M Lloyd
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kenneth E Bernstein
- Department of Biomedical Sciences and Department of Pathology, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| | - Robert J Snelgrove
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - J Edwin Blalock
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Theron AJ, Anderson R, Rossouw TM, Steel HC. The Role of Transforming Growth Factor Beta-1 in the Progression of HIV/AIDS and Development of Non-AIDS-Defining Fibrotic Disorders. Front Immunol 2017; 8:1461. [PMID: 29163528 PMCID: PMC5673850 DOI: 10.3389/fimmu.2017.01461] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Even after attainment of sustained viral suppression following implementation of highly active antiretroviral therapy, HIV-infected persons continue to experience persistent, low-grade, systemic inflammation. Among other mechanisms, this appears to result from ongoing microbial translocation from a damaged gastrointestinal tract. This HIV-related chronic inflammatory response is paralleled by counteracting, but only partially effective, biological anti-inflammatory processes. Paradoxically, however, this anti-inflammatory response not only exacerbates immunosuppression but also predisposes for development of non-AIDS-related, non-communicable disorders. With respect to the pathogenesis of both sustained immunosuppression and the increased frequency of non-AIDS-related disorders, the anti-inflammatory/profibrotic cytokine, transforming growth factor-β1 (TGF-β1), which remains persistently elevated in both untreated and virally suppressed HIV-infected persons, may provide a common link. In this context, the current review is focused on two different, albeit related, harmful activities of TGF-β1 in HIV infection. First, on the spectrum of anti-inflammatory/immunosuppressive activities of TGF-β1 and the involvement of this cytokine, derived predominantly from T regulatory cells, in driving disease progression in HIV-infected persons via both non-fibrotic and profibrotic mechanisms. Second, the possible involvement of sustained elevations in circulating and tissue TGF-β1 in the pathogenesis of non-AIDS-defining cardiovascular, hepatic, pulmonary and renal disorders, together with a brief comment on potential TGF-β1-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Annette J. Theron
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Ronald Anderson
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Helen C. Steel
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Veith C, Drent M, Bast A, van Schooten FJ, Boots AW. The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin. Toxicol Appl Pharmacol 2017; 336:40-48. [PMID: 28987380 DOI: 10.1016/j.taap.2017.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/26/2017] [Accepted: 10/03/2017] [Indexed: 02/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed pulmonary redox balance associated with inflammation. To restore this balance, antioxidants are often suggested as therapy for IPF but previous clinical trials with these compounds and their precursors have not been successful in the clinic. The exogenous antioxidant quercetin, which has a versatile antioxidant profile and is effective in restoring a disturbed redox balance, might be a better candidate. The aim of this study was to evaluate the protective effect of quercetin on oxidative and inflammatory markers in IPF. Here, we demonstrate that IPF patients have a significantly reduced endogenous antioxidant defense, shown by a reduced total antioxidant capacity and lowered glutathione and uric acid levels compared to healthy controls. This confirms that the redox balance is disturbed in IPF. Ex vivo incubation with quercetin in blood of both IPF patients and healthy controls reduces LPS-induced production of the pro-inflammatory cytokines IL-8 and TNFα. This anti-inflammatory effect was more pronounced in the blood of the patients. Our pro-fibrotic in vitro model, consisting of bleomycin-triggered BEAS-2B cells, shows that quercetin boosts the antioxidant response, by increasing Nrf2 activity, and decreases pro-inflammatory cytokine production in a concentration-dependent manner. Collectively, our findings implicate that IPF patients may benefit from the use of quercetin to restore the disturbed redox balance and reduce inflammation.
Collapse
Affiliation(s)
- C Veith
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - M Drent
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; ILD Center of Excellence, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - A Bast
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - A W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
19
|
Zhou G, Zhang F, Liu Y, Sun B. Pathway‑based detection of idiopathic pulmonary fibrosis at an early stage. Mol Med Rep 2017; 15:2023-2028. [PMID: 28260097 PMCID: PMC5364974 DOI: 10.3892/mmr.2017.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/06/2017] [Indexed: 12/02/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial pneumonia and the most aggressive interstitial lung disease. Usually, IPF is confirmed by the histopathological pattern of typical interstitial pneumonia and requires an integrated multidisciplinary approach from pulmonologists, radiologists and pathologists. However, these diagnoses are performed at an advanced stage of IPF. At present, pathway‑based detection requires investigation, as it can be performed at an early stage of the disease. The aim of the present study was to find an effective method of diagnosing IPF at an early stage. Microarray data forE‑GEOD‑33566 were downloaded from the ArrayExpress database. Human pathways were downloaded from Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. An individual pathway‑based method to diagnose IPF at an early stage was introduced. Pathway statistics were analyzed with an individualized pathway aberrance score. P‑values were obtained with different methods, including the Wilcoxon test, linear models for microarray data (Limma) test and attract methods, generating three pathway groups. Support vector machines (SVM) were used to identify the best group for diagnosing IPF at an early stage. There were 106 differential pathways in Wilcoxon‑based KEGG Pathway (n>5) group, 100 in the Limma‑based KEGG Pathway (n>5) group, and seven in the attract‑based KEGG Pathway (n>5) group. The pathway statistics of these differential pathways in three groups were analyzed with linear SVM. The results demonstrated that the Wilcoxon‑based KEGG Pathway (n>5) group performed best in diagnosing IPF.
Collapse
Affiliation(s)
- Guojun Zhou
- Department of Emergency, Medical University Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| | - Fangxia Zhang
- Department of Cardiology, Medical University Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| | - Yufang Liu
- Department of Gynaecology and Obstetrics, Medical University Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| | - Bin Sun
- Department of Emergency, Medical University Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| |
Collapse
|
20
|
Zhou Y, He Z, Gao Y, Zheng R, Zhang X, Zhao L, Tan M. Induced Pluripotent Stem Cells Inhibit Bleomycin-Induced Pulmonary Fibrosis in Mice through Suppressing TGF-β1/Smad-Mediated Epithelial to Mesenchymal Transition. Front Pharmacol 2016; 7:430. [PMID: 27895584 PMCID: PMC5108931 DOI: 10.3389/fphar.2016.00430] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS) cells have been considered as an ideal resource for stem cell-based therapy. Although, an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF)-β1 signaling pathway, and epithelial to mesenchymal transition (EMT) during bleomycin (BLM)-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg) was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free) were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2) to its tissue inhibitor -2 (TIMP-2) and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3) and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM) profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse alveolar epithelial type II cells (AECII). Collectively, our results suggest that transplantation of iPS cells could suppress inflammatory responses, TGF-β1/Smad2/3 pathway and EMT during the progression of BLM-induced pulmonary fibrosis, providing new useful clues regarding the mechanisms of iPS cells in the treatment for this disease.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Zhong He
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Yuan Gao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Rui Zheng
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University Shenyang, China
| | - Li Zhao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| | - Mingqi Tan
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University Shenyang, China
| |
Collapse
|
21
|
Bianchini F, Peppicelli S, Fabbrizzi P, Biagioni A, Mazzanti B, Menchi G, Calorini L, Pupi A, Trabocchi A. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells. Mol Cell Biochem 2016; 424:99-110. [PMID: 27761847 PMCID: PMC5219041 DOI: 10.1007/s11010-016-2847-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/08/2016] [Indexed: 12/26/2022]
Abstract
Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.
Collapse
Affiliation(s)
- Francesca Bianchini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy.
| | - Silvia Peppicelli
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | | | - Alessio Biagioni
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | | | - Gloria Menchi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.,Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Florence, Italy
| | - Lido Calorini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Alberto Pupi
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy.,Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Florence, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.,Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Florence, Italy
| |
Collapse
|
22
|
Oh GS, Lee SB, Karna A, Kim HJ, Shen A, Pandit A, Lee S, Yang SH, So HS. Increased Cellular NAD + Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice. Tuberc Respir Dis (Seoul) 2016; 79:257-266. [PMID: 27790277 PMCID: PMC5077729 DOI: 10.4046/trd.2016.79.4.257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/16/2016] [Accepted: 05/26/2016] [Indexed: 01/13/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to NAD+ by various quinones and thereby elevates the intracellular NAD+ levels. In this study, we examined the effect of increase in cellular NAD+ levels on bleomycin-induced lung fibrosis in mice. Methods C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with β-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor β1 (TGF-β1) and β-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). Results β-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-β1, α-smooth muscle actin accumulation. In addition, β-lapachone showed a protective role in TGF-β1–induced ECM expression and EMT in A549 cells. Conclusion Our results suggest that β-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-β1–induced EMT in vitro, by elevating the NAD+/NADH ratio through NQO1 activation.
Collapse
Affiliation(s)
- Gi-Su Oh
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Su-Bin Lee
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Anjani Karna
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Hyung-Jin Kim
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - AiHua Shen
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Arpana Pandit
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - SeungHoon Lee
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Korea
| | - Hong-Seob So
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| |
Collapse
|
23
|
Affiliation(s)
- T.M. Maher
- From the NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
- Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
24
|
Xie Y, Jiang H, Zhang Q, Mehrotra S, Abel PW, Toews ML, Wolff DW, Rennard S, Panettieri RA, Casale TB, Tu Y. Upregulation of RGS2: a new mechanism for pirfenidone amelioration of pulmonary fibrosis. Respir Res 2016; 17:103. [PMID: 27549302 PMCID: PMC4994235 DOI: 10.1186/s12931-016-0418-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pirfenidone was recently approved for treatment of idiopathic pulmonary fibrosis. However, the therapeutic dose of pirfenidone is very high, causing side effects that limit its doses and therapeutic effectiveness. Understanding the molecular mechanisms of action of pirfenidone could improve its safety and efficacy. Because activated fibroblasts are critical effector cells associated with the progression of fibrosis, this study investigated the genes that change expression rapidly in response to pirfenidone treatment of pulmonary fibroblasts and explored their contributions to the anti-fibrotic effects of pirfenidone. METHODS We used the GeneChip microarray to screen for genes that were rapidly up-regulated upon exposure of human lung fibroblast cells to pirfenidone, with confirmation for specific genes by real-time PCR and western blots. Biochemical and functional analyses were used to establish their anti-fibrotic effects in cellular and animal models of pulmonary fibrosis. RESULTS We identified Regulator of G-protein Signaling 2 (RGS2) as an early pirfenidone-induced gene. Treatment with pirfenidone significantly increased RGS2 mRNA and protein expression in both a human fetal lung fibroblast cell line and primary pulmonary fibroblasts isolated from patients without or with idiopathic pulmonary fibrosis. Pirfenidone treatment or direct overexpression of recombinant RGS2 in human lung fibroblasts inhibited the profibrotic effects of thrombin, whereas loss of RGS2 exacerbated bleomycin-induced pulmonary fibrosis and mortality in mice. Pirfenidone treatment reduced bleomycin-induced pulmonary fibrosis in wild-type but not RGS2 knockout mice. CONCLUSIONS Endogenous RGS2 exhibits anti-fibrotic functions. Upregulated RGS2 contributes significantly to the anti-fibrotic effects of pirfenidone.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Haihong Jiang
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Qian Zhang
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Suneet Mehrotra
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Peter W Abel
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Myron L Toews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dennis W Wolff
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Stephen Rennard
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Clinical Discovery Unit, AstraZeneca, Cambridge, UK
| | - Reynold A Panettieri
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas B Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, 33620, USA.
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
25
|
Barron L, Gharib SA, Duffield JS. Lung Pericytes and Resident Fibroblasts: Busy Multitaskers. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2519-31. [PMID: 27555112 DOI: 10.1016/j.ajpath.2016.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Pericytes, resident fibroblasts, and mesenchymal stem cells are poorly described cell populations. They have recently been characterized in much greater detail in rodent lungs and have been shown to play important roles in development, homeostasis, response to injury and pathogens, as well as recovery from damage. These closely related mesenchymal cell populations form extensive connections to the lung's internal structure, as well as its internal and external surfaces. They generate and remodel extracellular matrix, coregulate the vasculature, help maintain and restore the epithelium, and act as sentries for the immune system. In this review, we revisit these functions in light of significant advances in characterizing and tracking lung fibroblast populations in rodents. Lineage tracing experiments have mapped the heritage, identified functions that discriminate lung pericytes from resident fibroblasts, identified a subset of mesenchymal stem cells, and shown these populations to be the predominant progenitors of pathological fibroblasts and myofibroblasts in lung diseases. These findings point to the importance of resident lung mesenchymal populations as therapeutic targets in acute lung injury as well as fibrotic and degenerative diseases. Far from being passive and quiescent, pericytes and resident fibroblasts are busily sensing and responding, through diverse mechanisms, to changes in lung health and function.
Collapse
Affiliation(s)
- Luke Barron
- Department of Research and Development, Biogen, Cambridge, Massachusetts
| | - Sina A Gharib
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Jeremy S Duffield
- Department of Research and Development, Biogen, Cambridge, Massachusetts; Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
26
|
Meliopoulos VA, Van de Velde LA, Van de Velde NC, Karlsson EA, Neale G, Vogel P, Guy C, Sharma S, Duan S, Surman SL, Jones BG, Johnson MDL, Bosio C, Jolly L, Jenkins RG, Hurwitz JL, Rosch JW, Sheppard D, Thomas PG, Murray PJ, Schultz-Cherry S. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog 2016; 12:e1005804. [PMID: 27505057 PMCID: PMC4978498 DOI: 10.1371/journal.ppat.1005804] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β). Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.
Collapse
Affiliation(s)
- Victoria A. Meliopoulos
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Lee-Ann Van de Velde
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Nicholas C. Van de Velde
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erik A. Karlsson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Geoff Neale
- The Hartwell Center, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Department of Veterinary Pathology Core, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Cliff Guy
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shalini Sharma
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Susu Duan
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sherri L. Surman
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bart G. Jones
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michael D. L. Johnson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Catharine Bosio
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Lisa Jolly
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - R. Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Dean Sheppard
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, UCSF Medical Center, San Francisco, California, United States of America
| | - Paul G. Thomas
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter J. Murray
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
27
|
Prasad J, Holland AE, Glaspole I, Westall G. Idiopathic pulmonary fibrosis: an Australian perspective. Intern Med J 2016; 46:663-8. [DOI: 10.1111/imj.13078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/13/2015] [Accepted: 12/13/2015] [Indexed: 01/20/2023]
Affiliation(s)
- J. Prasad
- Allergy Immunology and Respiratory Medicine; Alfred Hospital; Melbourne Victoria Australia
- Clinical School of Medicine; Monash University; Melbourne Victoria Australia
| | - A. E. Holland
- Allergy Immunology and Respiratory Medicine; Alfred Hospital; Melbourne Victoria Australia
- Department of Physiotherapy; La Trobe University; Melbourne Victoria Australia
| | - I. Glaspole
- Allergy Immunology and Respiratory Medicine; Alfred Hospital; Melbourne Victoria Australia
| | - G. Westall
- Allergy Immunology and Respiratory Medicine; Alfred Hospital; Melbourne Victoria Australia
- Clinical School of Medicine; Monash University; Melbourne Victoria Australia
| |
Collapse
|
28
|
Abstract
Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF.
Collapse
Affiliation(s)
- Cécile Daccord
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK; Respiratory Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Toby M Maher
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK; NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK; Fibrosis Research Group, Imperial College, London, UK
| |
Collapse
|
29
|
Byrne AJ, Maher TM, Lloyd CM. Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease? Trends Mol Med 2016; 22:303-316. [PMID: 26979628 DOI: 10.1016/j.molmed.2016.02.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
Pulmonary fibrosis (PF) is a growing clinical problem which can result in breathlessness or respiratory failure and has an average life expectancy of 3 years from diagnosis. Therapeutic options for PF are limited and there is therefore a significant unmet clinical need. The recent resurgent interest in macrophage biology has led to a new understanding of lung macrophage origins, biology, and phenotypes. In this review we discuss fibrotic mechanisms and focus on the role of macrophages during fibrotic lung disease. Data from both human and murine studies are reviewed, highlighting novel macrophage-orientated biomarkers for disease diagnosis and potential targets for future anti-fibrotic therapies.
Collapse
Affiliation(s)
- Adam J Byrne
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK.
| | - Toby M Maher
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK; National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Clare M Lloyd
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
30
|
Rangarajan S, Locy ML, Luckhardt TR, Thannickal VJ. Targeted Therapy for Idiopathic Pulmonary Fibrosis: Where To Now? Drugs 2016; 76:291-300. [PMID: 26729185 PMCID: PMC4939080 DOI: 10.1007/s40265-015-0523-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated, recalcitrant lung disease with historically limited therapeutic options. The recent approval of two drugs, pirfenidone and nintedanib, by the US Food and Drug Administration in 2014 has heralded a new era in its management. Both drugs have demonstrated efficacy in phase III clinical trials by retarding the rate of progression of IPF; neither drug appears to be able to completely arrest disease progression. Advances in the understanding of IPF pathobiology have led to an unprecedented expansion in the number of potential therapeutic targets. Drugs targeting several of these are under investigation in various stages of clinical development. Here, we provide a brief overview of the drugs that are currently approved and others in phase II clinical trials. Future therapeutic opportunities that target novel pathways, including some that are associated with the biology of aging, are examined. A multi-targeted approach, potentially with combination therapies, and identification of individual patients (or subsets of patients) who may respond more favourably to specific agents are likely to be more effective.
Collapse
Affiliation(s)
- Sunad Rangarajan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Morgan L Locy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Tracy R Luckhardt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA.
| |
Collapse
|
31
|
Ohkouchi S, Ono M, Kobayashi M, Hirano T, Tojo Y, Hisata S, Ichinose M, Irokawa T, Ogawa H, Kurosawa H. Myriad Functions of Stanniocalcin-1 (STC1) Cover Multiple Therapeutic Targets in the Complicated Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2015; 9:91-6. [PMID: 26740747 PMCID: PMC4696838 DOI: 10.4137/ccrpm.s23285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 12/29/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an intractable disease for which the pathological findings are characterized by temporal and spatial heterogeneity. The pathogenesis is composed of myriad factors, including repetitive injuries to epithelial cells, alterations in immunity, the formation of vascular leakage and coagulation, abnormal wound healing, fibrogenesis, and collagen accumulation. Therefore, the molecular target drugs that are used or attempted for treatment or clinical trials may not cover the myriad therapeutic targets of IPF. In addition, the complicated pathogenesis results in a lack of informative biomarkers to diagnose accurately the status of IPF. These facts point out the necessity of using a combination of drugs, that is, each single drug with molecular targets or a single drug with multiple therapeutic targets. In this review, we introduce a humoral factor, stanniocalcin-1 (STC1), which has myriad functions, including the maintenance of calcium homeostasis, the promotion of early wound healing, uncoupling respiration (aerobic glycolysis), reepithelialization in damaged tissues, the inhibition of vascular leakage, and the regulation of macrophage functions to keep epithelial and endothelial homeostasis, which may adequately cover the myriad therapeutic targets of IPF.
Collapse
Affiliation(s)
- Shinya Ohkouchi
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Manabu Ono
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Makoto Kobayashi
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Taizou Hirano
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yutaka Tojo
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shu Hisata
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA; Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Toshiya Irokawa
- Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiromasa Ogawa
- Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hajime Kurosawa
- Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
32
|
Adhyatmika A, Putri KSS, Beljaars L, Melgert BN. The Elusive Antifibrotic Macrophage. Front Med (Lausanne) 2015; 2:81. [PMID: 26618160 PMCID: PMC4643133 DOI: 10.3389/fmed.2015.00081] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022] Open
Abstract
Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs, account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM) proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e., antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behavior-stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behavior in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review, we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behavior.
Collapse
Affiliation(s)
- Adhyatmika Adhyatmika
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands
| | - Kurnia S S Putri
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands ; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands ; Faculty of Pharmacy, University of Indonesia , Depok , Indonesia
| | - Leonie Beljaars
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands ; GRIAC Research Institute, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
33
|
Kandhare AD, Bodhankar SL, Mohan V, Thakurdesai PA. Effect of glycosides based standardized fenugreek seed extract in bleomycin-induced pulmonary fibrosis in rats: Decisive role of Bax, Nrf2, NF-κB, Muc5ac, TNF-α and IL-1β. Chem Biol Interact 2015; 237:151-65. [PMID: 26093215 DOI: 10.1016/j.cbi.2015.06.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/06/2015] [Accepted: 06/10/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive multifactorial disease with limited therapeutic options. Glycosides based standardized fenugreek seed extract (SFSE-G) possesses potent anti-inflammatory and anti-oxidant property. AIM To evaluate the efficacy of SFSE-G against bleomycin (BLM) induced pulmonary fibrosis by assessing behavioral, biochemical, molecular and ultrastructural changes in the laboratory rats. MATERIALS AND METHODS IPF was induced in male Sprague-Dawley rats by single intratracheal BLM (6IU/kg) injection followed by SFSE-G (5, 10, 20 and 40mg/kg, p.o.) or methylprednisolone (10mg/kg, p.o.) treatment for 28day. Various parameters were analyzed in lung and bronchoalveolar lavage fluid (BALF) after 14 and 28days of the drug treatment. RESULTS SFSE-G (20 and 40mg/kg, p.o.) administration significantly prevented the BLM induced alteration in body weight, lung index, lung function test and hematology. The altered total and differential cell count in BALF and blood was significantly prevented by SFSE-G treatment. The decreased peripheral blood oxygen content after BLM instillation was significantly increased by SFSE-G treatment. SFSE-G significantly enhanced the BALF and lung antioxidant status, through modulating the SOD, GSH, T-AOC, MDA, NO level and Nrf2, HO-1 mRNA expression. There was a significant reduction in lung 5-HT level by SFSE-G treatment. The altered mRNA expression of biomarkers of lung inflammation (TNF-α, IL-1β, IL-6 and IL-8), fibrosis (TGF-β, collagen-1, ET-1, Muc5ac, NF-κB, VEGF, Smad-3) and apoptosis (Bax, Bcl-2 and Caspase-3) were significantly prevented by SFSE-G treatment. BLM induced histological inflammatory and fibrotic insult in the lung were reduced by SFSE-G treatment. It also ameliorated BLM induced lung ultrastructural changes as observed by transmission electron microscopic studies. However, administration of SFSE-G (5mg/kg, p.o.) failed to show any protective effect against BLM-induced PF whereas SFSE-G (10mg/kg, p.o.) showed significant amelioration in BLM-induced PF except lung function test, BALF and lung antioxidant level. CONCLUSION SFSE-G showed anti-fibrotic efficacy executed through induction of Nrf2, which in turn may modulate anti-inflammatory molecules, inhibit fibrogenic molecules and decreased apoptosis to ameliorate BLM induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune 411 038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune 411 038, India.
| | - Vishwaraman Mohan
- Indus Biotech Private Limited, 1, Rahul Residency, Off Salunke Vihar Road, Kondhwa, Pune 411 048, India
| | - Prasad A Thakurdesai
- Indus Biotech Private Limited, 1, Rahul Residency, Off Salunke Vihar Road, Kondhwa, Pune 411 048, India
| |
Collapse
|
34
|
Kim SY, Diggans J, Pankratz D, Huang J, Pagan M, Sindy N, Tom E, Anderson J, Choi Y, Lynch DA, Steele MP, Flaherty KR, Brown KK, Farah H, Bukstein MJ, Pardo A, Selman M, Wolters PJ, Nathan SD, Colby TV, Myers JL, Katzenstein ALA, Raghu G, Kennedy GC. Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. THE LANCET RESPIRATORY MEDICINE 2015; 3:473-82. [DOI: 10.1016/s2213-2600(15)00140-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/18/2022]
|
35
|
Intratracheal Bleomycin Aerosolization: The Best Route of Administration for a Scalable and Homogeneous Pulmonary Fibrosis Rat Model? BIOMED RESEARCH INTERNATIONAL 2015; 2015:198418. [PMID: 26064885 PMCID: PMC4433632 DOI: 10.1155/2015/198418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/09/2015] [Indexed: 11/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease with a poor prognosis and is characterized by the accumulation of fibrotic tissue in lungs resulting from a dysfunction in the healing process. In humans, the pathological process is patchy and temporally heterogeneous and the exact mechanisms remain poorly understood. Different animal models were thus developed. Among these, intratracheal administration of bleomycin (BML) is one of the most frequently used methods to induce lung fibrosis in rodents. In the present study, we first characterized histologically the time-course of lung alteration in rats submitted to BLM instillation. Heterogeneous damages were observed among lungs, consisting in an inflammatory phase at early time-points. It was followed by a transition to a fibrotic state characterized by an increased myofibroblast number and collagen accumulation. We then compared instillation and aerosolization routes of BLM administration. The fibrotic process was studied in each pulmonary lobe using a modified Ashcroft scale. The two quantification methods were confronted and the interobserver variability evaluated. Both methods induced fibrosis development as demonstrated by a similar progression of the highest modified Ashcroft score. However, we highlighted that aerosolization allows a more homogeneous distribution of lesions among lungs, with a persistence of higher grade damages upon time.
Collapse
|
36
|
Maher TM, Piper A, Song Y, Restrepo MI, Eves ND. Year in review 2014: Interstitial lung disease, physiology, sleep and ventilation, acute respiratory distress syndrome, cystic fibrosis, bronchiectasis and rare lung disease. Respirology 2015; 20:834-45. [DOI: 10.1111/resp.12532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Toby M. Maher
- National Institute for Health Research Respiratory Biomedical Research Unit; Royal Brompton Hospital; London UK
- Fibrosis Research Group; Centre for Leukocyte Biology; National Heart Lung Institute; Imperial College; London UK
| | - Amanda Piper
- Department of Respiratory and Sleep Medicine; Royal Prince Alfred Hospital; Sydney New South Wales Australia
- Circadian Group; Woolcock Institute of Medical Research; University of Sydney; Sydney New South Wales Australia
| | - Yuanlin Song
- Department of Pulmonary Medicine; Zhongshan Hospital, and Qingpu Branch; Fudan University; Shanghai China
| | - Marcos I. Restrepo
- South Texas Veterans Health Care System; University of Texas Health Science Center; San Antonio Texas USA
| | - Neil D. Eves
- Centre for Heart, Lung and Vascular Health; School of Health and Exercise Sciences; Faculty of Health and Social Development; University of British Columbia; Kelowna British Columbia Canada
| |
Collapse
|
37
|
Hauff P, Gottwald U, Ocker M. Early to Phase II drugs currently under investigation for the treatment of liver fibrosis. Expert Opin Investig Drugs 2014; 24:309-27. [PMID: 25547844 DOI: 10.1517/13543784.2015.997874] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Chronic liver diseases represent a high unmet medical need and are characterized by persistent inflammation, parenchymal damage and fibrotic remodeling, leading eventually to cirrhosis and hepatic failure. Besides the persisting high prevalence of chronic viral hepatitis B and C, the dramatic increase in nonalcoholic steatohepatitis is now considered to be a major pathophysiologic driver for fibrosis development and subsequently cirrhosis. Increasing evidence suggests that also liver cirrhosis can regress when treated adequately. AREAS COVERED Herein, the authors review the underlying pathophysiologic mechanisms leading to fibrotic remodeling in the liver. They also highlight the options for novel treatment strategies by using molecular targeted agents. EXPERT OPINION New in vitro and preclinical animal models, and the careful selection of patients with high disease dynamics for clinical studies, provide a sound basis for the clinical development of antifibrotic agents in humans. Surrogate parameters of liver function, inflammation, tissue remodeling and damage, as well as noninvasive imaging techniques, can be applied in clinical trials to provide fast readouts and novel and reliable endpoints for trial design, and provide an attractive regulatory environment for this emerging disease area.
Collapse
|
38
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating condition with a poor prognosis and few treatment options. However, recent research into this condition has led to considerable insights into the pathophysiology of the disease, resulting in the identification of potential biomarkers to aid diagnosis and stratification of patients and the development of novel therapies. In this review we will discuss the recent developments in this field and review how this knowledge has been translated into clinical trials and a paradigm shift in our approach to patients with IPF.
Collapse
Affiliation(s)
- Gisli Jenkins
- Centre for Respiratory Research, University of Nottingham, Nottingham, UK
| | - Amanda Goodwin
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
39
|
Thickett DR, Kendall C, Spencer LG, Screaton N, Wallace WA, Pinnock H, Bott J, Pigram L, Watson S, Millar AB. Improving care for patients with idiopathic pulmonary fibrosis (IPF) in the UK: a round table discussion. Thorax 2014; 69:1136-40. [DOI: 10.1136/thoraxjnl-2014-206284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
Manresa MC, Godson C, Taylor CT. Hypoxia-sensitive pathways in inflammation-driven fibrosis. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1369-80. [PMID: 25298511 DOI: 10.1152/ajpregu.00349.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue injury can occur for a variety of reasons, including physical damage, infection, and ischemia. The ability of tissues to effectively recover from injury is a cornerstone of human health. The healing response in tissues is conserved across organs and typically involves distinct but overlapping inflammatory, proliferative, and maturation/resolution phases. If the inflammatory phase is not successfully controlled and appropriately resolved, an excessive healing response characterized by scar formation can lead to tissue fibrosis, a major clinical complication in disorders such as Crohn's disease (CD). As a result of enhanced metabolic and inflammatory processes during chronic inflammation, profound changes in tissue oxygen levels occur leading to localized tissue hypoxia. Therefore, inflammation, fibrosis, and hypoxia are coincidental events during inflammation-driven fibrosis. Our current understanding of the mechanism(s) underpinning fibrosis is limited as are the therapeutic options available. In this review, we discuss what is known about the cellular and molecular mechanisms underpinning inflammation-driven fibrosis and how hypoxia may play a role in shaping this process.
Collapse
Affiliation(s)
- Mario C Manresa
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Catherine Godson
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|