1
|
Manna M, Rengasamy B, Sinha AK. A rapid and robust colorimetric method for measuring relative abundance of auxins in plant tissues. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1052-1062. [PMID: 38419380 DOI: 10.1002/pca.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Auxin estimation in plant tissues is a crucial component of auxin signaling studies. Despite the availability of various high-throughput auxin quantification methods like LC-MS, GC-MS, HPLC, biosensors, and DR5-gus/gfp-based assays, auxin quantification remains troublesome because these techniques are very expensive and technology intensive and they mostly involve elaborate sample preparation or require the development of transgenic plants. OBJECTIVES To find a solution to these problems, we made use of an old auxin detection system to quantify microbe derived auxins and modified it to effectively measure auxin levels in rice plants. MATERIALS AND METHODS Auxins from different tissues of rice plants, including root samples of seedlings exposed to IAA/TIBA or subjected to different abiotic stresses, were extracted in ethanol. The total auxin level was measured by the presently described colorimetric assay and counterchecked by other auxin estimation methods like LC-MS or gus staining of DR5-gus overexpressing lines. RESULTS The presented colorimetric method could measure (1) the auxin levels in different tissues of rice plants, thus identifying the regions of higher auxin abundance, (2) the differential accumulation of auxins in rice roots when auxin or its transport inhibitor was supplied exogenously, and (3) the levels of auxin in roots of rice seedlings subjected to various abiotic stresses. The thus obtained auxin levels correlated well with the auxin levels determined by other methods like LC-MS or gus staining and the expression pattern of auxin biosynthesis pathway genes. CONCLUSIONS The auxin estimation method described here is simple, rapid, cost-effective, and sensitive and allows for the efficient detection of relative auxin abundances in plant tissues.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | | | | |
Collapse
|
2
|
Liao L, Qin Q, Yi D, Lai Q, Cong B, Zhang H, Shao Z, Zhang J, Chen B. Evolution and adaptation of terrestrial plant-associated Plantibacter species into remote marine environments. Mol Ecol 2024; 33:e17385. [PMID: 38738821 DOI: 10.1111/mec.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Microbes are thought to be distributed and circulated around the world, but the connection between marine and terrestrial microbiomes remains largely unknown. We use Plantibacter, a representative genus associated with plants, as our research model to investigate the global distribution and adaptation of plant-related bacteria in plant-free environments, particularly in the remote Southern Ocean and the deep Atlantic Ocean. The marine isolates and their plant-associated relatives shared over 98% whole-genome average nucleotide identity (ANI), indicating recent divergence and ongoing speciation from plant-related niches to marine environments. Comparative genomics revealed that the marine strains acquired new genes via horizontal gene transfer from non-Plantibacter species and refined existing genes through positive selection to improve adaptation to new habitats. Meanwhile, marine strains retained the ability to interact with plants, such as modifying root system architecture and promoting germination. Furthermore, Plantibacter species were found to be widely distributed in marine environments, revealing an unrecognized phenomenon that plant-associated microbiomes have colonized the ocean, which could serve as a reservoir for plant growth-promoting microbes. This study demonstrates the presence of an active reservoir of terrestrial plant growth-promoting bacteria in remote marine systems and advances our understanding of the microbial connections between plant-associated and plant-free environments at the genome level.
Collapse
Affiliation(s)
- Li Liao
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Qilong Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Dian Yi
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, China
| | - Qiliang Lai
- Third Institute of Oceanography, Ministry of Natural Resources, P. R. China, Xiamen, China
| | - Bolin Cong
- First Institute of Oceanography, Ministry of Natural Resources, P. R. China, Qingdao, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, China
| | - Zongze Shao
- Third Institute of Oceanography, Ministry of Natural Resources, P. R. China, Xiamen, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
3
|
Zhu H, Hu L, Wang Y, Mei P, Zhou F, Rozhkova T, Li C. Effects of Streptomyces sp. HU2014 inoculation on wheat growth and rhizosphere microbial diversity under hexavalent chromium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116313. [PMID: 38626602 DOI: 10.1016/j.ecoenv.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Wheat (Triticum aestivum L.) is a major foodstuff for over 40% of the world's population. However, hexavalent chromium [Cr(VI)] in contaminated soil significantly affects wheat production and its ecological environment. Streptomyces sp. HU2014 was first used to investigate the effects of Cr (VI) stress on wheat growth. We analyzed the Cr(VI) concentration, physicochemical properties of wheat and soil, total Cr content, and microbial community structures during their interactions. HU2014 reduced the toxicity of Cr(VI) and promoted wheat growth by increasing total nitrogen, nitrate nitrogen, total phosphorus, and Olsen-phosphorus in Cr(VI)-contaminated soil. These four soil variables had strong positive effects on two bacterial taxa, Proteobacteria and Bacteroidota, in the HU2014 treatments. In addition, the level of the dominant Proteobacteria positively correlated with the total Cr content in the soil. Among the fungal communities, which had weaker correlations with soil variables compared with bacterial communities, Ascomycota was the most abundant. Our findings suggest that HU2014 can promote the phytoremediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Hongxia Zhu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, Henan 453003, China
| | - Linfeng Hu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Yunlong Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Peipei Mei
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Feng Zhou
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, Henan 453003, China
| | - Tetiana Rozhkova
- Department of general and soil microbiology, Institute of Microbiology and Virology named after D.K. Zabolotny National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Chengwei Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Cho A, Joshi A, Hur HG, Lee JH. Nodulation Experiment by Cross-Inoculation of Nitrogen-Fixing Bacteria Isolated from Root Nodules of Several Leguminous Plants. J Microbiol Biotechnol 2024; 34:570-579. [PMID: 38213271 PMCID: PMC11016771 DOI: 10.4014/jmb.2310.10025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Root-nodule nitrogen-fixing bacteria are known for being specific to particular legumes. This study isolated the endophytic root-nodule bacteria from the nodules of legumes and examined them to determine whether they could be used to promote the formation of nodules in other legumes. Forty-six isolates were collected from five leguminous plants and screened for housekeeping (16S rRNA), nitrogen fixation (nifH), and nodulation (nodC) genes. Based on the 16S rRNA gene sequencing and phylogenetic analysis, the bacterial isolates WC15, WC16, WC24, and GM5 were identified as Rhizobium, Sphingomonas, Methylobacterium, and Bradyrhizobium, respectively. The four isolates were found to have the nifH gene, and the study confirmed that one isolate (GM5) had both the nifH and nodC genes. The Salkowski method was used to measure the isolated bacteria for their capacity to produce phytohormone indole acetic acid (IAA). Additional experiments were performed to examine the effect of the isolated bacteria on root morphology and nodulation. Among the four tested isolates, both WC24 and GM5 induced nodulation in Glycine max. The gene expression studies revealed that GM5 had a higher expression of the nifH gene. The existence and expression of the nitrogen-fixing genes implied that the tested strain had the ability to fix the atmospheric nitrogen. These findings demonstrated that a nitrogen-fixing bacterium, Methylobacterium (WC24), isolated from a Trifolium repens, induced the formation of root nodules in non-host leguminous plants (Glycine max). This suggested the potential application of these rhizobia as biofertilizer. Further studies are required to verify the N2-fixing efficiency of the isolates.
Collapse
Affiliation(s)
- Ahyeon Cho
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Alpana Joshi
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ji-Hoon Lee
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
5
|
Zhang L, Wang Y, Kong D, Ma Q, Li Y, Xing Z, Ruan Z. Chryseobacterium herbae Isolated from the Rhizospheric Soil of Pyrola calliantha H. Andres in Segrila Mountain on the Tibetan Plateau. Microorganisms 2023; 11:2017. [PMID: 37630577 PMCID: PMC10459008 DOI: 10.3390/microorganisms11082017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
A non-motile, Gram-staining-negative, orange-pigmented bacterium called herbae pc1-10T was discovered in Tibet in the soil around Pyrola calliantha H. Andres' roots. The isolate thrived in the temperature range of 10-30 °C (optimal, 25 °C), pH range of 5.0-9.0 (optimum, pH = 6.0), and the NaCl concentration range of 0-1.8% (optimal, 0%). The DNA G+C content of the novel strain was 37.94 mol%. It showed the function of dissolving organophosphorus, acquiring iron from the environment by siderophore and producing indole acetic acid. Moreover, the genome of strain herbae pc1-10T harbors two antibiotic resistance genes (IND-4 and AdeF) encoding a β-lactamase, and the membrane fusion protein of the multidrug efflux complex AdeFGH; antibiotic-resistance-related proteins were detected using the Shotgun proteomics technology. The OrthoANIu values between strains Chryseobacterium herbae pc1-10T; Chryseobacterium oleae CT348T; Chryseobacterium kwangjuense KJ1R5T; and Chryseobacterium vrystaatense R-23566T were 90.94%, 82.96%, and 85.19%, respectively. The in silico DDH values between strains herbae pc1-10T; C. oleae CT348T; C. kwangjuense KJ1R5T; and C. vrystaatense R-23566T were 41.7%, 26.6%, and 29.7%, respectively. Chryseobacterium oleae, Chryseobacterium vrystaatense, and Chryseobacterium kwangjuense, which had 16S rRNA gene sequence similarity scores of 97.80%, 97.52%, and 96.75%, respectively, were its closest phylogenetic relatives. Chryseobacterium herbae sp. nov. is proposed as the designation for the strain herbae pc1-10T (=GDMCC 1.3255 = JCM 35711), which represented a type species based on genotypic and morphological characteristics. This study provides deep knowledge of a Chryseobacterium herbae characteristic description and urges the need for further genomic studies on microorganisms living in alpine ecosystems, especially around medicinal plants.
Collapse
Affiliation(s)
- Li Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China;
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
| | - Yan Wang
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China;
| | - Delong Kong
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
| | - Qingyun Ma
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Zhen Xing
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China;
| | - Zhiyong Ruan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
| |
Collapse
|
6
|
Prodhan MY, Rahman MB, Rahman A, Akbor MA, Ghosh S, Nahar MNEN, Simo, Shamsuzzoha M, Cho KM, Haque MA. Characterization of Growth-Promoting Activities of Consortia of Chlorpyrifos Mineralizing Endophytic Bacteria Naturally Harboring in Rice Plants-A Potential Bio-Stimulant to Develop a Safe and Sustainable Agriculture. Microorganisms 2023; 11:1821. [PMID: 37512993 PMCID: PMC10385066 DOI: 10.3390/microorganisms11071821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Eighteen pesticide-degrading endophytic bacteria were isolated from the roots, stems, and leaves of healthy rice plants and identified through 16S rRNA gene sequencing. Furthermore, biochemical properties, including enzyme production, dye degradation, anti-bacterial activities, plant-growth-promoting traits, including N-fixation, P-solubilization, auxin production, and ACC-deaminase activities of these naturally occurring endophytic bacteria along with their four consortia, were characterized. Enterobacter cloacae HSTU-ABk39 and Enterobacter sp. HSTU-ABk36 displayed inhibition zones of 41.5 ± 1.5 mm, and 29 ± 09 mm against multidrug-resistant human pathogenic bacteria Staphylococcus aureus and Staphylococcus epidermidis, respectively. FT-IR analysis revealed that all eighteen isolates were able to degrade chlorpyrifos pesticide. Our study confirms that pesticide-degrading endophytic bacteria from rice plants play a key role in enhancing plant growth. Notably, rice plants grown in pots containing reduced urea (30%) mixed with either endophytic bacterial consortium-1, consortium-2, consortium-3, or consortia-4 demonstrated an increase of 17.3%, 38.6%, 18.2%, and 39.1% yields, respectively, compared to the control plants grown in pots containing 100% fertilizer. GC-MS/MS analysis confirmed that consortia treatment caused the degradation of chlorpyrifos into different non-toxic metabolites, including 2-Hydroxy-3,5,6 trichloropyridine, Diethyl methane phosphonate, Phorate sulfoxide, and Carbonochloridic. Thus, these isolates could be deployed as bio-stimulants to improve crop production by creating a sustainable biological system.
Collapse
Affiliation(s)
- Md Yeasin Prodhan
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Bokhtiar Rahman
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Mst Nur-E-Nazmun Nahar
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Simo
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Shamsuzzoha
- Department of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kye Man Cho
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
7
|
Haque MA, Prodhan MY, Ghosh S, Hossain MS, Rahman A, Sarker UK, Haque MA. Enhanced rice plant (BRRI-28) growth at lower doses of urea caused by diazinon mineralizing endophytic bacterial consortia and explorations of relevant regulatory genes in a Klebsiella sp. strain HSTU-F2D4R. Arch Microbiol 2023; 205:231. [PMID: 37165147 DOI: 10.1007/s00203-023-03564-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Endophytic biostimulant with pesticide bioremediation activities may reduce agrochemicals application in rice cultivation. The present study evaluates diazinon-degrading endophytic bacteria, isolated from rice plants grown in the fields with pesticide amalgamation, leading to increased productivity in high-yielding rice plants. These endophytes showed capabilities of decomposing diazinon, confirmed by FT-IR spectra analysis. Growth promoting activities of these endophytes can be attributed to their abilities to produce an increased level of IAA content and to demonstrate high level ACC-deaminase activities. Furthermore, these endophytes demonstrated enhanced level of extracellular cellulase, xylanase, amylase, protease and lignin degrading activities. Five genera including Enterobacter, Pantoea, Shigella, Acinetobacter, and Serratia, are represented only by the leaves, while four genera such as Enterobacter, Escherichia, Kosakonia, and Pseudomonas are represented only by the shoots. Five genera including, Klebsiella, Enterobacter, Pseudomonas, Burkholderia, and Bacillus are represented only by the roots of rice plants. All these strains demonstrated cell wall hydrolytic enzyme activities, except pectinase. All treatments, either individual strains or consortia of strains, enhanced rice plant growth at germination, seedling, vegetative and reproductive stages. Among four (I-IV) consortia, consortium-III generated the maximum rice yield under 70% lower doses of urea compared to that of control (treated with only fertilizer). The decoded genome of Klebsiella sp. HSTU-F2D4R revealed nif-cluster, chemotaxis, phosphates, biofilm formation, and organophosphorus insecticide-degrading genes. Sufficient insecticide-degrading proteins belonging to strain HSTU-F2D4R had interacted with diazinon, confirmed in molecular docking and formed potential catalytic triads, suggesting the strains have bioremediation potential with biofertilizer applications in rice cultivation.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
| | - Md Yeasin Prodhan
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Md Shohorab Hossain
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Uttam Kumar Sarker
- Dept. of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md Atiqul Haque
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| |
Collapse
|
8
|
Chopra A, Mongad D, Satpute S, Mazumder PB, Rahi P. Quorum sensing activities and genomic insights of plant growth-promoting rhizobacteria isolated from Assam tea. World J Microbiol Biotechnol 2023; 39:160. [PMID: 37067647 DOI: 10.1007/s11274-023-03608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Secretion of quorum sensing (QS) molecules is important for the effective colonization of host plants by plant growth-promoting rhizobacteria. The current study aims at the isolation and characterization of tea rhizo bacteria, which produce the QS molecules, acyl homoserine lactone (AHLs), along with multiple plant growth-promoting (PGP) activities. Thirty-one isolates were isolated from the tea rhizosphere, and screening for PGP activities resulted in the selection of isolates RTE1 and RTE4 with multiple PGP traits, inhibiting the growth of tea fungal pathogens. Both isolates also showed production of AHL molecules when screened using two biosensor strains, Chromobacterium violaceum CV026 and Escherichia coli MT 102(jb132). The isolates identified as Burkholderia cepacia RTE1 and Pseudomonas aeruginosa RTE4 based on genome-based analysis like phylogeny, dDDH, and fastANI calculation. Detailed characterization of AHLs produced by the isolates using reverse-phase TLC, fluorometry, and LC-MS indicated that the isolate RTE1 produced a short chain, C8, and a long chain C12 AHL, while RTE4 produced short-chain AHLs C4 and C6. Confocal microscopy revealed the formation of thick biofilm by RTE1 and RTE4 (18 and 23 μm, respectively). Additionally, we found several genes involved in QS, and PGP, inducing systemic resistance (ISR) activities such as lasI/R, qscR, pqq, pvd, aldH, acdS, phz, Sod, rml, and Pch, and biosynthetic gene clusters like N-acyl homoserine lactone synthase, terpenes, pyochelin, and pyocyanin. Based on the functional traits like PGP, biofilm formation and production of AHL molecules, and genetic potential of the isolates B. cepacia RTE1 and P. aeruginosa RTE4 appear promising candidates to improve the health and growth of tea plantations.
Collapse
Affiliation(s)
- Ankita Chopra
- Department of Biotechnology, Assam University, Silchar, India
| | - Dattatray Mongad
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Surekha Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | | | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur (CRBIP), Paris, France.
| |
Collapse
|
9
|
Kumar V, Patial V, Thakur V, Singh R, Singh D. Genomics assisted characterization of plant growth-promoting and metabolite producing psychrotolerant Himalayan Chryseobacterium cucumeris PCH239. Arch Microbiol 2023; 205:108. [PMID: 36884102 DOI: 10.1007/s00203-023-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Here, we report the first complete genome of a psychrotolerant and yellow-pigmented rhizobacteria Chryseobacterium cucumeris PCH239. It was obtained from the rhizospheric soil of the Himalayan plant Bergenia ciliata. The genome consists of a single contig (5.098 Mb), 36.3% G + C content, and 4899 genes. The cold adaptation, stress response, and DNA repair genes promote survivability in a high-altitude environment. PCH239 grows in temperature (10-37 °C), pH (6.0-8.0), and NaCl (2.0%). The genome derived plant growth-promoting activities of siderophore production (siderophore units 53 ± 0.6), phosphate metabolism (PSI 5.0 ± 0.8), protease, indole acetic acid production (17.3 ± 0.5 µg/ml), and ammonia (2.89 ± 0.4 µmoles) were experimentally validated. Interestingly, PCH239 treatment of Arabidopsis seeds significantly enhances germination, primary, and hairy root growth. In contrast, Vigna radiata and Cicer arietinum seeds had healthy radicle and plumule elongation, suggesting varied plant growth-promotion effects. Our findings suggested the potential of PCH239 as a bio-fertilizer and biocontrol agent in the challenging conditions of cold and hilly regions.
Collapse
Affiliation(s)
- Virender Kumar
- Molecular and Microbial Genetics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur, Himachal Pradesh, 176061, India
| | - Vijeta Patial
- Molecular and Microbial Genetics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vikas Thakur
- Molecular and Microbial Genetics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravinder Singh
- Molecular and Microbial Genetics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur, Himachal Pradesh, 176061, India
| | - Dharam Singh
- Molecular and Microbial Genetics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Abdelwahed S, Cherif H, Bejaoui B, Saadouli I, Hajji T, Ben Halim N, Ouertani A, Ouzari I, Cherif A, Mnif W, Mosbah A, Masmoudi AS. Microassay validation for bacterial IAA estimation as a new fine-tuned PGPR screening assay. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The detection and quantification of Indole -3 Acetic Acid (IAA) produced by Plant growth promoting rhizobacteria (PGPR) rely on a standard well-documented assay, which remains time-consuming, laborious, and costly. These drawbacks led to sway interest to economic and reliable assays. The aim of this work is to validate and standardize a fast, reliable, and cost-effective microassay to quantify IAA produced by bacteria with an easy microplate method. In order to validate the accuracy of the IAA microplate assay, bacterial samples from different genera were assayed using two methods: the conventional IAA estimation assay and the IAA micro- assay. The microassay shows a prominent reduction in used bacterial supernatant volume as well as Salkowski reagent volume of about 92.5%. It is considerably cheaper than the conventional one of around 56%. The newly performed microplate assay is 23 times faster. The result of IAA quantitative analysis for 13 bacterial strains showed that Bacillus muralis and Bacillus toyonensis produced the highest IAA concentration (23.64±0.003μg/ml and 23.35±0.006μg/ml, respectively). The obtained data from both methods were highly correlated with an R-value of 0.979. The microassay offers the ability to read the optical density of all samples simultaneously since used volumes of bacterial supernatants and Salkowski reagent were minimized to place the mixture in 96-well microplates, which reduces greatly required labor. Furthermore, the application of the IAA micro-plate assay reduces drastically the reagent waste and toxicity hazard of Salkowski reagent in the environment, thus, we can classify it as eco-friendly respecting the Green Chemistry concept according to Environmental Protection Agency (EPA). The IAA microassay is a, reliable, rapid and cost-effective and eco-friendly method to screen plant growth promoting potential of more than 23 bacterial strains by microplate. It could be an alternative for the conventional IAA assay as a routine research tool.
Collapse
Affiliation(s)
- Soukaina Abdelwahed
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Hanen Cherif
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Bilel Bejaoui
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Ilhem Saadouli
- Active Microorganisms and Biomolecules Laboratory (LMBA), Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Tarek Hajji
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Nizar Ben Halim
- Biomedical and Oncogenetic Genomics Laboratory (LR 16 IPT 05), Pasteur institute of Tunis, Tunis, Belvedere Tunisia
| | - Awatef Ouertani
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Imen Ouzari
- Active Microorganisms and Biomolecules Laboratory (LMBA), Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Ameur Cherif
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha, Saudi Arabia
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Amor Mosbah
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | | |
Collapse
|
11
|
Panchalingam H, Powell D, Adra C, Foster K, Tomlin R, Quigley BL, Nyari S, Hayes RA, Shapcott A, Kurtböke Dİ. Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. J Fungi (Basel) 2022; 8:jof8101105. [PMID: 36294670 PMCID: PMC9605450 DOI: 10.3390/jof8101105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
A wide range of phytopathogenic fungi exist causing various plant diseases, which can lead to devastating economic, environmental, and social impacts on a global scale. One such fungus is Pyrrhoderma noxium, causing brown root rot disease in over 200 plant species of a variety of life forms mostly in the tropical and subtropical regions of the globe. The aim of this study was to discover the antagonistic abilities of two Trichoderma strains (#5001 and #5029) found to be closely related to Trichoderma reesei against P. noxium. The mycoparasitic mechanism of these Trichoderma strains against P. noxium involved coiling around the hyphae of the pathogen and producing appressorium like structures. Furthermore, a gene expression study identified an induced expression of the biological control activity associated genes in Trichoderma strains during the interaction with the pathogen. In addition, volatile and diffusible antifungal compounds produced by the Trichoderma strains were also effective in inhibiting the growth of the pathogen. The ability to produce Indole-3-acetic acid (IAA), siderophores and the volatile compounds related to plant growth promotion were also identified as added benefits to the performance of these Trichoderma strains as biological control agents. Overall, these results show promise for the possibility of using the Trichoderma strains as potential biological control agents to protect P. noxium infected trees as well as preventing new infections.
Collapse
Affiliation(s)
- Harrchun Panchalingam
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Daniel Powell
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Cherrihan Adra
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Keith Foster
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Russell Tomlin
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Bonnie L. Quigley
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Sharon Nyari
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - R. Andrew Hayes
- Forest Industries Research Centre, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Alison Shapcott
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - D. İpek Kurtböke
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
- Correspondence:
| |
Collapse
|
12
|
Mugani R, El Khalloufi F, Redouane EM, Haida M, Zerrifi SEA, Campos A, Kasada M, Woodhouse J, Grossart HP, Vasconcelos V, Oudra B. Bacterioplankton Associated with Toxic Cyanobacteria Promote Pisum sativum (Pea) Growth and Nutritional Value through Positive Interactions. Microorganisms 2022; 10:1511. [PMID: 35893569 PMCID: PMC9394358 DOI: 10.3390/microorganisms10081511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Research on Plant Growth-Promoting Bacteria (PGPB) has focused much more on rhizospheric bacteria. However, PGPB associated with toxic cyanobacterial bloom (TCB) could enter the rhizosphere through irrigation water, helping plants such as Pisum sativum L. (pea) overcome oxidative stress induced by microcystin (MC) and improve plant growth and nutritional value. This study aimed to isolate bacteria associated with toxic cyanobacteria, test PGPB properties, and inoculate them as a consortium to pea seedlings irrigated with MC to investigate their role in plant protection as well as in improving growth and nutritional value. Two bacterioplankton isolates and one rhizosphere isolate were isolated and purified on a mineral salt medium supplemented with 1000 μg/L MC and identified via their 16S rRNA gene. The mixed strains were inoculated to pea seedlings in pots irrigated with 0, 50, and 100 μg/L MC. We measured the morphological and physiological parameters of pea plants at maturity and evaluated the efficiency of the plant’s enzymatic and non-enzymatic antioxidant responses to assess the role and contribution of PGPB. Both bacterioplankton isolates were identified as Starkeya sp., and the rhizobacterium was identified as Brevundimonas aurantiaca. MC addition significantly (p < 0.05) reduced all the growth parameters of the pea, i.e., total chlorophyll content, leaf quantum yield, stomatal conductance, carotenoids, and polyphenol contents, in an MC concentration-dependent manner, while bacterial presence positively affected all the measured parameters. In the MC treatment, the levels of the pea’s antioxidant traits, including SOD, CAT, POD, PPO, GST, and ascorbic acid, were increased in the sterile pots. In contrast, these levels were reduced with double and triple PGPB addition. Additionally, nutritional values such as sugars, proteins, and minerals (Ca and K) in pea fruits were reduced under MC exposure but increased with PGPB addition. Overall, in the presence of MC, PGPB seem to positively interact with pea plants and thus may constitute a natural alternative for soil fertilization when irrigated with cyanotoxin-contaminated water, increasing the yield and nutritional value of crops.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, P.O. Box 145, Khouribga 25000, Morocco;
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
| | - Minoru Kasada
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Jason Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
- Institute for Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469 Potsdam, Germany
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| |
Collapse
|
13
|
Gao G, Zhang Y, Niu S, Chen Y, Wang S, Anwar N, Chen S, Li G, Ma T. Reclassification of Enterobacter sp. FY-07 as Kosakonia oryzendophytica FY-07 and Its Potential to Promote Plant Growth. Microorganisms 2022; 10:microorganisms10030575. [PMID: 35336150 PMCID: PMC8951479 DOI: 10.3390/microorganisms10030575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Precise classification of bacteria facilitates prediction of their ecological niche. The genus Enterobacter includes pathogens of plants and animals but also beneficial bacteria that may require reclassification. Here, we propose reclassification of Enterobacter FY-07 (FY-07), a strain that has many plant-growth-promoting traits and produces bacterial cellulose (BC), to the Kosakonia genera. To re-examine the taxonomic position of FY-07, a polyphasic approach including 16S rRNA gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, determination of DNA G + C content, average nucleotide identity based on BLAST, in silico DNA–DNA hybridization and analysis of phenotypic features was applied. This polyphasic analysis suggested that Enterobacter sp. FY-07 should be reclassified as Kosakonia oryzendophytica FY-07. In addition, the potential of FY-07 to promote plant growth was also investigated by detecting related traits and the colonization of FY-07 in rice roots.
Collapse
Affiliation(s)
- Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China; (G.G.); (Y.Z.); (S.N.); (Y.C.); (S.W.); (N.A.); (S.C.)
| | - Yan Zhang
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China; (G.G.); (Y.Z.); (S.N.); (Y.C.); (S.W.); (N.A.); (S.C.)
| | - Shaofang Niu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China; (G.G.); (Y.Z.); (S.N.); (Y.C.); (S.W.); (N.A.); (S.C.)
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China; (G.G.); (Y.Z.); (S.N.); (Y.C.); (S.W.); (N.A.); (S.C.)
| | - Shaojing Wang
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China; (G.G.); (Y.Z.); (S.N.); (Y.C.); (S.W.); (N.A.); (S.C.)
| | - Nusratgul Anwar
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China; (G.G.); (Y.Z.); (S.N.); (Y.C.); (S.W.); (N.A.); (S.C.)
| | - Shuai Chen
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China; (G.G.); (Y.Z.); (S.N.); (Y.C.); (S.W.); (N.A.); (S.C.)
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China; (G.G.); (Y.Z.); (S.N.); (Y.C.); (S.W.); (N.A.); (S.C.)
- Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China
- Correspondence: (G.L.); (T.M.); Tel./Fax: +86-22-2350-8870 (T.M.)
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China; (G.G.); (Y.Z.); (S.N.); (Y.C.); (S.W.); (N.A.); (S.C.)
- Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China
- Correspondence: (G.L.); (T.M.); Tel./Fax: +86-22-2350-8870 (T.M.)
| |
Collapse
|
14
|
Arenas F, López-García Á, Berná LM, Morte A, Navarro-Ródenas A. Desert truffle mycorrhizosphere harbors organic acid releasing plant growth-promoting rhizobacteria, essentially during the truffle fruiting season. MYCORRHIZA 2022; 32:193-202. [PMID: 35043240 PMCID: PMC8907101 DOI: 10.1007/s00572-021-01067-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Desert truffle is becoming a new crop in semiarid areas. Climatic parameters and the presence of microorganisms influence the host plant physiology and alter desert truffle production. Desert truffle plants present a typical summer deciduous plant phenology divided into four stages: summer dormancy, autumn bud break, winter photosynthetic activity, and spring fruiting. We hypothesize that the bacterial community associated with desert truffle plants will show a seasonal trend linked to their plant growth-promoting rhizobacteria (PGPR) traits. This information will provide us with a better understanding about its potential role in this symbiosis and possible management implementations. Bacteria were isolated from root-adhering soil at the four described seasons. A total of 417 isolated bacteria were phenotypically and biochemically characterized and gathered by molecular analysis into 68 operational taxonomic units (OTUs). They were further characterized for PGPR traits such as indole acetic acid production, siderophore production, calcium phosphate solubilization, and ACCD (1-amino-cyclopropane-1-carboxilatedeaminase) activity. These PGPR traits were used to infer functional PGPR diversity and cultivable bacterial OTU composition at different phenological moments. The different seasons induced shifts in the OTU composition linked to their PGPR traits. Summer was the phenological stage with the lowest microbial diversity and PGPR functions, whereas spring was the most active one. Among the PGPR traits analyzed, P-solubilizing rhizobacteria were harbored in the mycorrhizosphere during desert truffle fruiting in spring.
Collapse
Affiliation(s)
- Francisco Arenas
- Dpto. Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR "Campus Mare Nostrum", Campus de Espinardo, 30100, Murcia, Spain
| | - Álvaro López-García
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-CSIC, Calle Prof. Albareda, 18008, Granada, Spain
- Department of Animal Biology, Plant Biology and Ecology, Universidad de Jaén, Jaén, Spain
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Av. del Mediterráneo, 18006, Granada, S/N, Spain
| | - Luis Miguel Berná
- Dpto. Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR "Campus Mare Nostrum", Campus de Espinardo, 30100, Murcia, Spain
| | - Asunción Morte
- Dpto. Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR "Campus Mare Nostrum", Campus de Espinardo, 30100, Murcia, Spain
| | - Alfonso Navarro-Ródenas
- Dpto. Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR "Campus Mare Nostrum", Campus de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
15
|
Liu H, Chen GH, Sun JJ, Chen S, Fang Y, Ren JH. Isolation, Characterization, and Tea Growth-Promoting Analysis of JW-CZ2, a Bacterium With 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Activity Isolated From the Rhizosphere Soils of Tea Plants. Front Microbiol 2022; 13:792876. [PMID: 35295310 PMCID: PMC8918981 DOI: 10.3389/fmicb.2022.792876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
One of the major mechanisms underlying plant growth-promoting rhizobacteria (PGPR) is the lowering of ethylene level in plants by deamination of 1-aminocyclopropane-1-carboxylic acid (ACC) in the environment. In the present study, using ACC as the sole nitrogen source, we screened seven ACC deaminase-producing bacterial strains from rhizosphere soils of tea plants. The strain with the highest ACC deaminase activity was identified as Serratia marcescens strain JW-CZ2. Inoculation of this strain significantly increased shoot height and stem diameter of tea seedlings, displaying significant promotive effects. Besides, S. marcescens strain JW-CZ2 displayed high ACC deaminase activities in wide ranges of ACC concentration, pH, and temperature, suggesting the applicable potential of JW-CZ2 as a biofertilizer. Genome sequencing indicated that clusters of orthologous groups of proteins (COG) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of JW-CZ2 mainly included amino acid transport and metabolism, transcription, carbohydrate transport and metabolism, inorganic ion transport and metabolism, and membrane transport. Moreover, genes in relation to phosphate solubilization, indole acetic acid (IAA) production, and siderophore were observed in the genome of JW-CZ2, and further experimental evidence demonstrated JW-CZ2 could promote solubilization of inorganic phosphate, inhibit growth of pathogenic fungi, and produce IAA and siderophore. These aspects might be major reasons underlying the plant growth-promoting function of JW-CZ2. Overall, this study provides a new S. marcescens strain, which has applicable potential as a promising biofertilizer.
Collapse
Affiliation(s)
- Hui Liu
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Wuhu, China
- *Correspondence: Hui Liu,
| | - Guang-Hui Chen
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Wuhu, China
| | - Jing-Jing Sun
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Wuhu, China
| | - Shu Chen
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Wuhu, China
| | - Yong Fang
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jia-Hong Ren
- Department of Life Sciences, Changzhi University, Changzhi, China
- Jia-Hong Ren,
| |
Collapse
|
16
|
Naureen A, Nasim FUH, Choudhary MS, Ashraf M, Grundler FMW, Schleker ASS. A new endophytic fungus CJAN1179 isolated from the Cholistan desert promotes lateral root growth in Arabidopsis and produces IAA through tryptophan-dependent pathway. Arch Microbiol 2022; 204:181. [PMID: 35175443 PMCID: PMC8854254 DOI: 10.1007/s00203-022-02768-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Fungi, important for growth of plants in arid lands, are expected to be involved in novel biochemical activities during fungal–plant interactions. We isolated 150 fungi associated with rhizosphere and root endosphere of two perennial grasses, Cymbopogon jwarancusa and Panicum antidotale, from Cholistan desert. The isolates were screened for their impact on plant growth and development using Arabidopsis thaliana (Col-0) as a model system. A root-endophytic fungus CJAN1179 from C. jwarancusa showed the highest plant growth-promoting effects. The most remarkable was enhanced number of lateral roots (3.1-fold). CJAN1179 produced indole-3-acetic acid (IAA) particularly in the presence of tryptophan. ITS sequence and phylogenetic analysis characterisation suggested the fungus to be a new species within Sordariomycetidae. CJAN1179 appears to promote plant growth by secreting IAA using tryptophan as a precursor. This fungus can be further explored for its suitability to promote growth of commercially important crops, particularly in arid regions.
Collapse
Affiliation(s)
- Adeela Naureen
- Chemistry Department, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan.,INRES, Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Faiz-Ul H Nasim
- Chemistry Department, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan.,Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Baghdad Ul Jadeed Campus, Bahawalpur, 63000, Pakistan
| | - Muhammad S Choudhary
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Muhammad Ashraf
- Chemistry Department, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Florian M W Grundler
- INRES, Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - A Sylvia S Schleker
- INRES, Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany.
| |
Collapse
|
17
|
Toyama T, Mori K, Tanaka Y, Ike M, Morikawa M. Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:28-38. [PMID: 34622686 DOI: 10.1094/mpmi-06-21-0157-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Duckweeds (Lemnaceae) are representative producers in fresh aquatic ecosystems and also yield sustainable biomass for animal feeds, human foods, and biofuels, and contribute toward effective wastewater treatment; thus, enhancing duckweed productivity is a critical challenge. Plant-growth-promoting bacteria (PGPB) can improve the productivity of terrestrial plants; however, duckweed-PGPB interactions remain unclear and no previous study has investigated the molecular mechanisms underlying duckweed-PGPB interaction. Herein, a PGPB, Ensifer sp. strain SP4, was newly isolated from giant duckweed (Spirodela polyrhiza), and the interactions between S. polyrhiza and SP4 were investigated through physiological, biochemical, and metabolomic analyses. In S. polyrhiza and SP4 coculture, SP4 increased the nitrogen (N), chlorophyll, and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents and the photosynthesis rate of S. polyrhiza by 2.5-, 2.5-, 2.7-, and 2.4-fold, respectively. Elevated photosynthesis increased the relative growth rate and biomass productivity of S. polyrhiza by 1.5- and 2.7-fold, respectively. Strain SP4 significantly altered the metabolomic profile of S. polyrhiza, especially its amino acid profile. N stable isotope analysis revealed that organic N compounds were transferred from SP4 to S. polyrhiza. These N compounds, particularly glutamic acid, possibly triggered the increase in photosynthetic and growth activities. Accordingly, we propose a new model for the molecular mechanism underlying S. polyrhiza growth promotion by its associated bacteria Ensifer sp. SP4, which occurs through enhanced N compound metabolism and photosynthesis. Our findings show that Ensifer sp. SP4 is a promising PGPB for increasing biomass yield, wastewater purification activity, and CO2 capture of S. polyrhiza.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yasuhiro Tanaka
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
18
|
Characterization of phosphate solubilizing plant growth promoting rhizobacterium Lysinibacillus pakistanensis strain PCPSMR15 isolated from Oryza sativa. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100080. [PMID: 34927106 PMCID: PMC8649645 DOI: 10.1016/j.crmicr.2021.100080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 02/01/2023] Open
Abstract
The rhizosphere soil is a source for a diversity of microorganisms which play a vital role in the enhancement of plant health through the mechanism of symbiotic interaction thereby influencing the plant growth. The present study aimed at isolating potential phosphate solubilizing rhizobacteria from rice (Oryza sativa) crop for which, four different rhizosphere soil samples were collected from different locations of Tiruvallur district, India. Isolates were cultured on nutrient agar medium followed by serial dilutions and different colonies with morphological variations were isolated from each dilution. A total of 52 bacteria were isolated and maintained as pure cultures. Out of the 52 isolates, 16 strains showed phosphate solubilizing ability and amongst them, 4 were highly potential which were subjected to morphological and biochemical characterization. Phosphate solubilizing bacterial strains when assessed for their possible effect of their inoculation on the growth and development of mung bean seeds significantly enhanced the growth of the plants. Furthermore, the potential bacteria were analysed for Indole Acetic Acid (IAA) production, which was found to be directly proportional to the plant growth promotion. Upon the comparative analysis of the four potential isolates, PCPSMR15 exhibited remarkable plant growth promoting traits. A detailed biochemical and molecular analysis identified the promising strain PCPSMR15 as Lysinibacillus pakistanensis. The present study, thus signifies the strain, PCPSMR15 for exploration as an inoculant for improving soil fertility, enhancing phosphorus availability to plants and improved crop production and sustainability.
Collapse
|
19
|
Duong TT, Nguyen TTL, Dinh THV, Hoang TQ, Vu TN, Doan TO, Dang TMA, Le TPQ, Tran DT, Le VN, Nguyen QT, Le PT, Nguyen TK, Pham TD, Bui HM. Auxin production of the filamentous cyanobacterial Planktothricoides strain isolated from a polluted river in Vietnam. CHEMOSPHERE 2021; 284:131242. [PMID: 34225111 DOI: 10.1016/j.chemosphere.2021.131242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms with widespread diversity and extensive global distribution. They produce a wide variety of bioactive substances (e.g., lipopeptides, fatty acids, toxins, carotenoids, vitamins and plant growth regulators) that are released into culture media. In this study, the capability of a cyanobacterial strain of Planktothricoides raciborskii to produce intra- and extracellular auxins was investigated. The filamentous cyanobacterial P. raciborskii strain was isolated from a river in Vietnam, and it was cultivated in the laboratory under the optimum conditions of the BG11 culture medium and a pH of 7.0. The auxins were identified and quantified by the Salkowski colorimetric method and high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Colorimetric analysis revealed that P. raciborskii produces extracellular indole-3-acetic acid (IAA) in the absence and presence of l-tryptophan. The maximum extracellular IAA concentration of the culture reached 118 ± 2 μg mL-1, which was supplemented with 900 μg mL-1 of l-tryptophan. HPLC-MS analysis revealed that the isolated cyanobacteria accumulate other plant-growth-promoting hormones besides IAA, such as indole-3-carboxylic acid (ICA), indole-3 butyric acid (IBA) and indole propionic acid (IPA). This is the first report on the production of auxins in an isolated strain of cyanobacteria Planktothricoides from a polluted river. The capability of producing auxins makes the P. raciborskii strain an appropriate candidate for the formulation of a biofertilizer.
Collapse
Affiliation(s)
- Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Thi Thu Lien Nguyen
- Institute of Biotechnology, Hue University, Provincial Road 10, Phu Thuong Commune, Phu Vang District, Thua Thien Hue province, Viet Nam
| | - Thi Hai Van Dinh
- Faculty of Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Viet Nam
| | - Thi Quynh Hoang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Nguyet Vu
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Oanh Doan
- Faculty of Environment, Ha Noi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Ha Noi, Viet Nam
| | - Thi Mai Anh Dang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Dang Thuan Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Van Nhan Le
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Quang Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Phuong Thu Le
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Trung Kien Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Dau Pham
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Ha Manh Bui
- Department of Environmental Sciences, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
20
|
The Role of Lysobacter antibioticus HS124 on the Control of Fall Webworm ( Hyphantria cunea Drury) and Growth Promotion of Canadian Poplar ( Populus canadensis Moench) at Saemangeum Reclaimed Land in Korea. Microorganisms 2021; 9:microorganisms9081580. [PMID: 34442659 PMCID: PMC8398145 DOI: 10.3390/microorganisms9081580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Populus canadensis Moench forests established in Saemangeum-reclaimed land have been invaded by Hyphantria cunea Drury, causing defoliation and stunted growth. This study investigated the biocontrol potential of cuticle degrading chitinase and protease secreted by Lysobacter antibioticus HS124 against H. cunea larvae. In addition, L. antibioticus HS124 was examined for indole-3-acetic acid phytohormone production for plant growth promotion. To determine the larvicidal activity in the laboratory experiments, crude enzymes, bacteria culture, CY medium, and water (control) were sprayed on the larvae reared on natural diet in insect rearing dishes. Treatment with crude enzymes and bacteria culture caused 76.7% and 66.7% larvae mortality, respectively. The larvae cuticle, mainly composed of chitin and proteins, was degraded by cuticle-degrading enzymes, chitinase, and protease in both the bacteria culture and crude enzyme treatments, causing swelling and disintegration of the cuticle. Field application of the bacteria culture was achieved by vehicle-mounted sprayer. Bacterial treatment caused morphological damage on the larvae cuticles and subsequent mortality. Foliar application of the bacteria culture reduced tree defoliation by H. cunea and enhanced growth compared to the control. Especially, L. antibioticus HS124 produced auxins, and increased growth of poplar trees.
Collapse
|
21
|
Isolation and Characterization of Euglena gracilis-Associated Bacteria, Enterobacter sp. CA3 and Emticicia sp. CN5, Capable of Promoting the Growth and Paramylon Production of E. gracilis under Mixotrophic Cultivation. Microorganisms 2021; 9:microorganisms9071496. [PMID: 34361931 PMCID: PMC8303684 DOI: 10.3390/microorganisms9071496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Euglena gracilis produces paramylon, which is a feedstock for high-value functional foods and nutritional supplements. The enhancement of paramylon productivity is a critical challenge. Microalgae growth-promoting bacteria (MGPB) can improve microalgal productivity; however, the MGPB for E. gracilis remain unclear. This study isolated bacteria capable of enhancing E. gracilis growth and paramylon production under mixotrophic conditions. Enterobacter sp. CA3 and Emticicia sp. CN5 were isolated from E. gracilis grown with sewage-effluent bacteria under mixotrophic conditions at pH 4.5 or 7.5, respectively. In a 7-day E. gracilis mixotrophic culture with glucose, CA3 increased E. gracilis biomass and paramylon production 1.8-fold and 3.5-fold, respectively (at pH 4.5), or 1.9-fold and 3.5-fold, respectively (at pH 7.5). CN5 increased E. gracilis biomass and paramylon production 2.0-fold and 4.1-fold, respectively (at pH 7.5). However, the strains did not show such effects on E. gracilis under autotrophic conditions without glucose. The results suggest that CA3 and CN5 promoted both E. gracilis growth and paramylon production under mixotrophic conditions with glucose at pH 4.5 and 7.5 (CA3) or pH 7.5 (CN5). This study also provides an isolation method for E. gracilis MGPB that enables the construction of an effective E. gracilis–MGPB-association system for increasing the paramylon yield of E. gracilis.
Collapse
|
22
|
Moon JH, Won SJ, Maung CEH, Choi JH, Choi SI, Ajuna HB, Ahn YS. Bacillus velezensis CE 100 Inhibits Root Rot Diseases ( Phytophthora spp.) and Promotes Growth of Japanese Cypress ( Chamaecyparis obtusa Endlicher) Seedlings. Microorganisms 2021; 9:microorganisms9040821. [PMID: 33924463 PMCID: PMC8069221 DOI: 10.3390/microorganisms9040821] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022] Open
Abstract
Root rot diseases, caused by phytopathogenic oomycetes, Phytophthora spp. cause devastating losses involving forest seedlings, such as Japanese cypress (Chamaecyparis obtusa Endlicher) in Korea. Plant growth-promoting rhizobacteria (PGPR) are a promising strategy to control root rot diseases and promote growth in seedlings. In this study, the potential of Bacillus velezensis CE 100 in controlling Phytophthora root rot diseases and promoting the growth of C. obtusa seedlings was investigated. B. velezensis CE 100 produced β-1,3-glucanase and protease enzymes, which degrade the β-glucan and protein components of phytopathogenic oomycetes cell-wall, causing mycelial growth inhibition of P. boehmeriae, P. cinnamomi, P. drechsleri and P. erythoroseptica by 54.6%, 62.6%, 74.3%, and 73.7%, respectively. The inhibited phytopathogens showed abnormal growth characterized by swelling and deformation of hyphae. B. velezensis CE 100 increased the survival rate of C. obtusa seedlings 2.0-fold and 1.7-fold compared to control, and fertilizer treatment, respectively. Moreover, B. velezensis CE 100 produced indole-3-acetic acid (IAA) up to 183.7 mg/L, resulting in a significant increase in the growth of C. obtusa seedlings compared to control, or chemical fertilizer treatment, respectively. Therefore, this study demonstrates that B. velezensis CE 100 could simultaneously control Phytophthora root rot diseases and enhance growth of C. obtusa seedlings.
Collapse
Affiliation(s)
- Jae-Hyun Moon
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Sang-Jae Won
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Chaw Ei Htwe Maung
- Division of Agricultural and Biological Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea;
| | - Jae-Hyeok Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Su-In Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Henry B. Ajuna
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Young Sang Ahn
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
- Correspondence: ; Tel.: +82-62-530-2081; Fax: +82-62-530-2089
| |
Collapse
|
23
|
Bacillus licheniformis PR2 Controls Fungal Diseases and Increases Production of Jujube Fruit under Field Conditions. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7030049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a growing interest in using biocontrol agents to control fungal diseases and increase the production of jujube fruit (Zizyphus jujua Miller var. inermis Rehder). The purpose of this study was to use Bacillus licheniformis PR2 to inhibit fungal diseases and promote fruit production in jujube orchards. B. licheniformis PR2 secreted 92.4 unit/mL of chitinase, which inhibited fungal phytopathogens through hyphal alterations with swelling and bulbous structures. B. licheniformis PR2 also inhibited mycelial growths of fruit fungal pathogens Botrytis cinerea, Colletotrichum gloeosporioides, and Phytophthora nicotianae by 81.3%, 60.1%, and 67.0%, respectively. B. licheniformis PR2 increased jujube fruit yield by 17.9 kg/tree by reducing rotting damage caused by fungal pathogens, with a yield 3.2 times higher than that achieved by the control without PR2 treatment. In addition, B. licheniformis PR2 produced auxin, which promoted cell division after flower fertilization, thus increasing fruit length and diameter by 1.2-fold compared to those of the control. These results confirmed that eco-friendly B. licheniformis PR2 could effectively control fungal diseases in jujube orchards and improve its fruit size and yield.
Collapse
|
24
|
Darkal AK, Zuraik MM, Ney Y, Nasim MJ, Jacob C. Unleashing the Biological Potential of Fomes fomentarius via Dry and Wet Milling. Antioxidants (Basel) 2021; 10:antiox10020303. [PMID: 33669445 PMCID: PMC7920468 DOI: 10.3390/antiox10020303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Fomes fomentarius, usually referred to as tinder conk, is a common wood-based fungus rich in many interesting phytochemicals and with an unique porous structure. Dry or wet ball milling of this sponge on a planetary mill results in small particles with sizes in the range of 10 µm or below. Suspended in water and without preservatives or other stabilizers, the resulting micro-suspensions are sterile for around six days, probably due to the increased temperatures of around 80 °C especially during the wet milling process. The suspensions also exhibit excellent antioxidant activities as determined in the DPPH, ferric reducing antioxidant potential (FRAP) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. In the DPPH assay, IC50 values of 0.02–0.04% w/v and 0.04% w/v were observed for dry and wet milled samples, respectively. In the FRAP assay, IC50 values of <0.02% w/v and 0.04% w/v were observed for dry and wet milled samples, respectively. In contrast, the ABTS assay provided IC50 values of 0.04% w/v and 0.005% w/v, respectively. Notably, this activity is mostly—albeit not exclusively—associated with the highly porous particles and their large surfaces, although some active ingredients also diffuse into the surrounding aqueous medium. Such suspensions of natural particles carrying otherwise insoluble antioxidants on their surfaces provide an interesting avenue to unleash the antioxidant potential of materials such as sponges and barks. As dry milling also enables longer storage and transport, applications in the fields of medicine, nutrition, agriculture, materials and cosmetics are feasible.
Collapse
|
25
|
Ravi A, Theresa M, Nandayipurath VVT, Rajan S, Khalid NK, Thankappanpillai AC, Krishnankutty RE. Plant Beneficial Features and Application of Paraburkholderia sp. NhPBG1 Isolated from Pitcher of Nepenthes hamblack. Probiotics Antimicrob Proteins 2021; 13:32-39. [PMID: 32537712 DOI: 10.1007/s12602-020-09665-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pitchers are the unique structures of carnivorous plants used for the trapping of insects and other small invertebrates. The digestion of captured prey here is assisted by the bacteria, which have been associated with pitchers. These bacterial communities can therefore expect to have a variety of plant beneficial functions. In this study, the bacterial isolate NhPBG1 from the pitcher of Nepenthes hamblack was screened for activity against Pythium aphanidermatum, Rhizoctonia solani, Fusarium oxysporum, and Colletotrichum accutatum and was found to have the inhibitory activity towards all the tested phytopathogens. Interestingly, the isolate was found to have hyper-inhibitory effect against P. aphanidermatum. Further to this, the isolate was also shown to be positive for plant beneficial traits such as indole-3-acetic acid (IAA) and ammonia production, phosphate, potassium and zinc solubilization, nitrogen fixation, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. BLAST analysis of the 16S rDNA sequence of NhPBG1 has identified it as Paraburkholderia sp. Also, the Zingiber officinale rhizome pre-treated with NhPBG1 was found to get protected from P. aphanidermatum induced infection, whereas the control showed symptoms of infection. This was further confirmed by the microscopic evaluation of the presence of fungal mycelia in the tissues of control. However, the mycelial invasion could not be detected in the NhPBG1 treated rhizome. The metabolite profiling of NhPBG1 by GC-MS has identified variety of general metabolites, while the antifungal compounds pyocyanin and 1-hydroxyphenazine could be identified by the LC-MS/MS analysis.
Collapse
Affiliation(s)
- Aswani Ravi
- School of Biosciences, Mahatma Gandhi University, P D Hills (PO), Kottayam, 686560, India
| | - Mary Theresa
- School of Biosciences, Mahatma Gandhi University, P D Hills (PO), Kottayam, 686560, India
| | | | - Sukanya Rajan
- School of Biosciences, Mahatma Gandhi University, P D Hills (PO), Kottayam, 686560, India
| | | | - Aravindakumar Charuvilaputhenveedu Thankappanpillai
- School of Environmental Sciences, Mahatma Gandhi University, P D Hills (PO), Kottayam, 686560, India
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | |
Collapse
|
26
|
Dubey A, Saiyam D, Kumar A, Hashem A, Abd_Allah EF, Khan ML. Bacterial Root Endophytes: Characterization of Their Competence and Plant Growth Promotion in Soybean ( Glycine max (L.) Merr.) under Drought Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:931. [PMID: 33494513 PMCID: PMC7908378 DOI: 10.3390/ijerph18030931] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
Recently, the application of endophytes in the alleviation of different types of stresses has received considerable attention, but their role in drought stress alleviation and growth promotion in soybean is not well-stated. In this study, twenty bacterial endophytes were isolated from soybean root tissues and screened for plant growth-promoting (PGP) traits, biocontrol potential, and drought stress alleviation. Out of them, 80% showed PGP traits, and 20% showed antagonistic activity against Fusarium oxysporum (ITCC 2389), Macrophomina phaseolina (ITCC 1800), and Alternaria alternata (ITCC 3467), and only three of them showed drought tolerance up to 15% (-0.3 MPa). Results indicated that drought-tolerant PGP endophytic bacteria enhanced soybean seedling growth under drought stress conditions. Morphological, biochemical, and molecular characterization (16S rRNA) revealed that these three bacterial isolates, AKAD A1-1, AKAD A1-2, and AKAD A1-16, closely resemble Bacillus cereus (GenBank accession No. MN079048), Pseudomonas otitidis (MW301101), and Pseudomonas sp. (MN079074), respectively. We observed that the soybean seedlings were grown in well-watered and drought-stressed soil showed the adverse effect of drought stress on morphological (stem length, root length, plant fresh and dry weight) as well as on biochemical parameters (a decline of photosynthetic pigments, membrane damage, etc.). However, soybean seedlings inoculated with these endophytes have improved the biomass significantly (p ≤ 0.05) under normal as well as in drought stress conditions over control treatments by influencing several biochemical changes. Among these three endophytes, AKAD A1-16 performed better than AKAD A1-2 and AKAD A1-1, which was further validated by the ability to produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase in the following order: AKAD A1-16 > AKAD A1-2 > AKAD A1-1. Scanning electron microscopy images also showed a bacterial presence inside the roots of soybean seedlings. These findings supported the application of bacterial root endophytes as a potential tool to mitigate the effect of drought as well as of fungal diseases on the early seedling growth of soybean.
Collapse
Affiliation(s)
- Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India; (A.D.); (M.L.K.)
| | - Diksha Saiyam
- Department of Biotechnology, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India;
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India; (A.D.); (M.L.K.)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Mohammed Latif Khan
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India; (A.D.); (M.L.K.)
| |
Collapse
|
27
|
Espinosa Zaragoza S, Sánchez Cruz R, Sanzón Gómez D, Escobar Sandoval MC, Yañez Ocampo G, Morales Constantino MA, Wong Villarreal A. IDENTIFICATION OF ENDOPHYTIC BACTERIA OF SEEDS FROM Cedrela odorata L. (Meliaceae) WITH BIOTECHNOLOGICAL CHARACTERISTICS. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n2.85325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the present study, 62 endophytic bacterial strains of cedar seeds (Cedrela odorataL.), collected in the municipalities of Huehuetán, Motozintla, and Pijijiapan in the state of Chiapas, Mexico were isolated. The goal was to identify characteristics of biotechnological interest such as biocontrol, promotion of plant growth, and growth in aromatic compounds. The strains were identified by the partial sequence of the 16S ribosomal gene as belonging to the Bacillusgenus. The biocontrol capacity of phytopathogenic fungi, production of indoleacetic acid (IAA), solubilization of phosphate, and growth in xenobiotic compounds (phenanthrene, benzene, anthracene, or phenol) were detected in 26 strains of the 62 isolates. 21 % of the strains inhibited the mycelial growth of Alternaria solaniand Fusariumsp., and 13 % of the Phytophthora capsicioomycete. IAA production was detected in 24 isolates, phosphate solubilizing activity was identified in 18 isolates, while the ability to grow in the presence of phenanthrene and benzene was found in 26 isolates; 24 isolates grew in the presence of anthracene and only two isolates grew in phenol as the only carbon sources. This is the first report of the isolation and identification of endophytic bacteria from cedar seeds, where biotechnological characteristics were detected for biological control, promotion of plant growth, and growth in the presence of xenobiotic compounds.
Collapse
|
28
|
Bishnu Maya K, Gauchan DP, Khanal SN, Chimouriya S, Lamichhane J. Amelioration of growth attributes of Bambusa nutans subsp. cupulata Stapleton by indole-3-acetic acid extracted from newly isolated Bacillus mesonae MN511751 from rhizosphere of Bambusa tulda Roxburgh. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Desoky ESM, Saad AM, El-Saadony MT, Merwad ARM, Rady MM. Plant growth-promoting rhizobacteria: Potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L.) plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101878] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Isolation and Characterisation of Endophytic Bacteria from Holostemma ada-kodien Schult. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plants with medical properties are often enriched with endophytes that have the potential to produce important bioactive compounds. Endophytes after entering the plant tissue may either colonize a particular tissue or may spread throughout the host plant without causing damage. The possession of pharmaceutical and biological properties has made the Holostemma ada-kodien Schult as one of the widely used plants of medicinal importance in India. Following the direct cut method three endophytic bacterial strains (UC H1, UC H4 and UC H7) were isolated, identified and characterized from the healthy looking rhizome of H. ada-kodien. Among these isolates, UC H1 and UC H4 were found to have many properties like antibacterial compounds, hydrolytic enzymes and plant growth promoting traits. The isolate UC H4 have ability for Indole-3-Acetic Acid (IAA) production of 513.54 U/ml and very good protease and pectinase activities of 20.65 U/ml and 16.09 U/ml respectively. So far no reports are available on the endophytic microflora of H. ada-kodien.
Collapse
|
31
|
Méndez-Santiago EW, Gómez-Rodríguez O, Sánchez-Cruz R, Folch-Mallol JL, Hernández-Velázquez VM, Villar-Luna E, Aguilar-Marcelino L, Wong-Villarreal A. Serratia sp., an endophyte of Mimosa pudica nodules with nematicidal, antifungal activity and growth-promoting characteristics. Arch Microbiol 2020; 203:549-559. [PMID: 32980917 DOI: 10.1007/s00203-020-02051-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
In the present study, the nematicidal activity of an isolated strain of Mimosa pudica nodules was evaluated against the Nacobbus aberrans (J2) phytonymatodes with a mortality of 88.8%, while against the gastrointestinal nematode Haemonchus contortus (L3) and free-living Panagrellus redivivus was 100%. The ability to inhibit the growth of phytopathogenic fungi Fusarium sp., and Alternaria solani, as well as the oomycete Phytophthora capsici, this antifungal activity may be related to the ability to produce cellulases, siderophores and chitinases by this bacterial strain. Another important finding was the detection of plant growth promoter characteristics, such as auxin production and phosphate solubilization. The strain identified by sequences of the 16S and rpoB genes as Serratia sp. is genetically related to Serratia marcescens and Serratia nematodiphila. The promoter activity of plant growth, antifungal and nematicide of the Serratia sp. strain makes it an alternative for the biocontrol of fungi and nematodes that affect both the livestock and agricultural sectors, likewise, candidate as a growth-promoting bacterium.
Collapse
Affiliation(s)
- Erick Williams Méndez-Santiago
- Centro de investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, , Morelos, México.,Laboratorio de Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal E Inocuidad, INIFAP, Carretera Federal Cuernavaca-Cuautla No. 8534 Col. Progreso, C. P. 62550, Jiutepec, Morelos, México
| | - Olga Gómez-Rodríguez
- Colegio de Postgraduados, Carretera México-Texcoco, Km. 36.5, Moncecillo, Texcoco, México
| | - Ricardo Sánchez-Cruz
- Centro de investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, , Morelos, México
| | - Jorge Luis Folch-Mallol
- Centro de investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, , Morelos, México
| | - Victor M Hernández-Velázquez
- Centro de investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, , Morelos, México
| | - Edgar Villar-Luna
- CONACYT-Instituto Politécnico Nacional, CIIDIR-IPN. Unidad Michoacán, Justo Sierra 28, 59510, Jiquilpan, Michoacán, México
| | - Liliana Aguilar-Marcelino
- Laboratorio de Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal E Inocuidad, INIFAP, Carretera Federal Cuernavaca-Cuautla No. 8534 Col. Progreso, C. P. 62550, Jiutepec, Morelos, México.
| | | |
Collapse
|
32
|
Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Xu JX, Li ZY, Lv X, Yan H, Zhou GY, Cao LX, Yang Q, He YH. Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization. PLoS One 2020; 15:e0232096. [PMID: 32339210 PMCID: PMC7185607 DOI: 10.1371/journal.pone.0232096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Endophytic bacteria, which are common in plant tissues, may help to control plant pathogens and enhance plant growth. Camellia oleifera, an oil-producing plant, is widely grown in warm, subtropical, hilly regions in China. However, C. oleifera is strongly negatively affected by C. oleifera anthracnose, which is caused by Colletetrichum fructicola. To find a suitable biocontrol agent for C. oleifera anthracnose, 41 endophytes were isolated from the stems, leaves, and roots of C. oleifera. Bacterial cultures were identified based on analyses of 16S rDNA sequences; most strains belonged to the genus Bacillus. The antagonistic effects of these strains on C. fructicola were tested in vitro. In total, 16 strains inhibited C. fructicola growth, with B. subtilis strain 1-L-29 being the most efficient. Strain 1-L-29 demonstrated antagonistic activity against C. siamense, C. asianum, Fusarium proliferatum, Agaricodochium camellia, and Pseudomonas syringae. In addition, this strain produced indole acetic acid, solubilized phosphate, grew on N-free media, and produced siderophores. To facilitate further microecological studies of this strain, a rifampicin-resistant, green fluorescent protein (GFP)-labeled strain, 1-L-29gfpr, was created using protoplast transformation. This plasmid had good segregational stability. Strain 1-L-29gfpr was re-introduced into C. oleifera and successfully colonized root, stem, and leaf tissues. This strain remained at a stable concentration in the root more than 20 d after inoculation. Fluorescence microscopic analysis showed that strain 1-L-29gfpr thoroughly colonized the root surfaces of C. fructicola as well as the root vascular tissues of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jin-Xin Xu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Zi-Yang Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
| | - Xing Lv
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Hua Yan
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
| | - Guo-Ying Zhou
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
| | - Ling-Xue Cao
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Qin Yang
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yuan-Hao He
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- * E-mail:
| |
Collapse
|
34
|
Wang H, Zhang S, Yang F, Xin R, Wang S, Cui D, Sun Y. The gut microbiota confers protection in the CNS against neurodegeneration induced by manganism. Biomed Pharmacother 2020; 127:110150. [PMID: 32330797 DOI: 10.1016/j.biopha.2020.110150] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/15/2022] Open
Abstract
Among all types of pollution, heavy metals are considered the greatest threat to human health, and heavy metals are associated with an increased risk of cardiovascular disease, coronary heart disease and neurodegenerative disorders. Manganese (Mn) exposure is well reported to exert neurotoxicity and various neurodegenerative disorders, but the mechanisms are not clear. The gut microbiota plays a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities. The changes in chemical signaling, metabolism and gut microbiota associated with Mn exposure have provided deeper insight into the neurotoxic mechanism of Mn. We observed that Mn exposure increases host manganic bioaccumulation, and β-amyloid (Aβ), receptor-interacting protein kinase 3 (RIP3) and caspase-3 production in the brain, and causes hippocampal degeneration and necrosis. Mn exposure led to decreased gut bacterial richness, especially for Prevotellaceae, Fusobacteriaceae and Lactobacillaceae. In addition, Mn exposure altered the metabolism of tryptamine, taurodeoxycholic acid, β-hydroxypyruvic acid and urocanic acid. Meanwhile, we found correlations between the abundance of certain bacterial species and the level of tryptamine, taurodeoxycholic acid, β-hydroxypyruvic acid and urocanic acid. Fecal microbiome transplantation from normal rats could alleviate the neurotoxicity of Mn exposure by shaping the gut microbiota. Our findings highlight the role of gut dysbiosis-promoted neurotoxicity in Mn exposure and suggest a novel therapeutic strategy of remodeling the gut microbiota.
Collapse
Affiliation(s)
- Hui Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Shidong Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Feng Yang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Ruihua Xin
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Shengyi Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Dongan Cui
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Yan Sun
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
35
|
Isolation, Identification and Characterisation of Endophytic Bacteria in Biophytum sensitivum (L.) DC. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Jayakumar A, Krishna A, Mohan M, Nair IC, Radhakrishnan EK. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1. Probiotics Antimicrob Proteins 2020; 11:526-534. [PMID: 29654474 DOI: 10.1007/s12602-018-9417-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endophytic bacteria have already been studied for their beneficial support to plants to manage both biotic and abiotic stress through an array of well-established mechanisms. They have either direct or indirect impact on mobilizing diverse nutrients and elements from soil to plants. However, detailed insight into the fine-tuning of plant elemental composition by associated microorganism is very limited. In this study, endophytic Bacillus Fcl1 characterized from the rhizome of Curcuma longa was found to have broad range of plant growth-promoting and biocontrol mechanisms. The organism was found to have indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production properties along with nitrogen fixation. The Bacillus Fcl1 could also inhibit diverse phytopathogens as confirmed by dual culture and well diffusion. By LC-MS/MS analysis, chemical basis of its antifungal activity has been proved to be due to the production of iturin A and a blend of surfactin compounds. Moreover, the organism was found to induce both plant growth and disease resistance in vivo in model plant system. Because of these experimentally demonstrated multiple plant probiotic features, Bacillus Fcl1 was selected as a candidate organism to study its role in modulation of plant elemental composition. ICP-MS analysis of Bacillus Fcl1-treated plants provided insight into relation of bacterial interaction with elemental composition of plants.
Collapse
Affiliation(s)
- Aswathy Jayakumar
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - Arathy Krishna
- Sree Narayana Arts and Science College, Kumarakom, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - Indu C Nair
- Department of Biotechnology, SAS SNDP YOGAM, College, Konni, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
37
|
Bhatt K, Maheshwari DK. Bacillus megaterium Strain CDK25, a Novel Plant Growth Promoting Bacterium Enhances Proximate Chemical and Nutritional Composition of Capsicum annuum L. FRONTIERS IN PLANT SCIENCE 2020; 11:1147. [PMID: 32849705 PMCID: PMC7406793 DOI: 10.3389/fpls.2020.01147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/14/2020] [Indexed: 05/21/2023]
Abstract
The present study aimed to scrutinize the effect of different cow dung bacterial treatments on the nutritional value of Capsicum annuum L. Among all treatments, seeds inoculated with Bacillus megaterium (CDK25) showed significant enhancement in various proximate constituents viz., crude fiber (3.31%), crude protein (3.84%), and ash (2.53%) as compared to control. Likewise, significant increase in different nutrient contents viz., Ca (16.26 mg/100 g), Mg (17.37 mg/100 g), P (11.91 mg/100 g), K (0.47 mg/100 g), Fe (1.37 mg/100 g), and Zn (0.21 mg/100 g) was recorded over the control. Principal component analysis data depicts a positive correlation between different treatments with variables, validating enhancement in nutritional constituents by B. megaterium (CDK25) treatment. The study suggests the application of "B. megaterium" for achieving the persistent potential for augmenting and boosting up plant biological, functional, and nutritional assets, thereby enhancing the overall edible quality of C. annuum L. along with weathering of soil minerals.
Collapse
|
38
|
Control of Fungal Diseases and Increase in Yields of a Cultivated Jujube Fruit (Zizyphus jujuba Miller var. inermis Rehder) Orchard by Employing Lysobacter antibioticus HS124. FORESTS 2019. [DOI: 10.3390/f10121146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study is to investigate the inhibitory effects of Lysobacter antibioticus HS124 on fungal phytopathogens causing gray mold rot, stem rot, and anthracnose. Another objective of this study is to promote the yield of fruit in jujube farms. L. antibioticus HS124 produces chitinase, a lytic enzyme with the potential to reduce mycelial growth of fungal phytopathogens involving hyphal alterations with swelling and bulbous structures, by 20.6 to 27.3%. Inoculation with L. antibioticus HS124 decreased the appearance of fungal diseases in jujube farms and increased the fruit yield by decreasing fruit wilting and dropping. In addition, L. antibioticus HS124 produced the phytohormone auxin to promote vegetative growth, thereby increasing the fruit size. The yield of jujube fruits after L. antibioticus HS124 inoculation was increased by 6284.67 g/branch, which was 2.9-fold higher than that of the control. Auxin also stimulated fine root development and nutrient uptake in jujube trees. The concentrations of minerals, such as K, Ca, Mg, and P in jujube fruits after L. antibioticus HS124 inoculation were significantly increased (1.4- to 2.0-fold greater than the concentrations in the control). These results revealed that L. antibioticus HS124 could not only control fungal diseases but also promote fruit yield in jujube farms.
Collapse
|
39
|
Draft genome sequence of Bacillus paralicheniformis TRQ65, a biological control agent and plant growth-promoting bacterium isolated from wheat ( Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech 2019; 9:436. [PMID: 31696041 DOI: 10.1007/s13205-019-1972-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/23/2019] [Indexed: 01/25/2023] Open
Abstract
The strain denominated TRQ65 was isolated from wheat (Triticum turgidum subsp. durum) commercial fields in the Yaqui Valley, Mexico. Here, we report its draft genome sequence, which presented ~ 4.5 million bp and 45.5% G + C content. Based on the cutoff values on species delimitation established for average nucleotide identity (> 95 to 96%), genome-to-genome distance calculator (> 70%), and the reference sequence alignment-based phylogeny builder method, TRQ65 was strongly affiliated to Bacillus paralicheniformis. The rapid annotation using subsystem technology server revealed that TRQ65 contains genes related to osmotic, and oxidative stress response, as well as auxin biosynthesis (plant growth promotion traits). In addition, antiSMASH and BAGEL revealed the presence of genes involved in lipopeptides and antibiotic biosynthesis. The function of those annotated genes was validated at a metabolic level, observing that strain TRQ65 was able to tolerate saline (91.0%), and water (155.0%) stress conditions, besides producing 28.8 ± 0.9 µg/mL indoles. In addition, strain TRQ65 showed growth inhibition (1.6 ± 0.4 cm inhibition zone) against the causal agent of wheat spot blotch, Bipolaris sorokiniana. Finally, plant-microbe interactions assays confirm the ability of strain TRQ65 to regulate wheat growth, showing a significant increment in shoot height (26%), root length (40%), shoot dry weight (48%), stem diameter (55%), and biovolume index (246%). These findings provide insights for future agricultural studies of this strain.
Collapse
|
40
|
Bhatt K, Maheshwari DK. Decoding multifarious role of cow dung bacteria in mobilization of zinc fractions along with growth promotion of C. annuum L. Sci Rep 2019; 9:14232. [PMID: 31578407 PMCID: PMC6775090 DOI: 10.1038/s41598-019-50788-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/12/2019] [Indexed: 12/03/2022] Open
Abstract
Zinc is one of the micronutrients, required by all types of crops. About 10–100ppm of zinc is present in soil which is generally immobile. The cow dung sustains all life and being practice since aeons. Exploitation of cow dung bacteria can mobilize nutrients besides contributing in sustainable agriculture. Therefore, to examine mobilization of Zn, cow dung is used as a source of bacteria. The objectives of the present study were to isolate an array of bacteria from cow dung and to characterize them for their Zn (ZnO and ZnCO3) mobilization ability in addition to establish the optimum conditions for dissolution of zinc. A total of seventy bacterial isolates have been screened for Zn mobilization. Out of which most potent (CDK15 and CDK25) were selected to study the effect of various parameters viz. pH, temperature and concentration of Zn. These parameters were assessed qualitatively in diverse growth medium and quantitatively using Atomic absorption spectroscopy. Optimum pH and temperature for mobilization was recorded at pH 5 (ZnO) and 37 °C (ZnCO3) by CDK25, whereas, optimum zinc concentration for mobilization was recorded at 0.05% (ZnO) by CDK15. Maximum amount of Zn solubilized was recorded by CDK25 in ZnO (20ppm). Considering the abilities of most potent bacterial isolates with reference to P-mobilization and growth promoting traits, pot culture assay of C. annuum L. was carried out. The findings of which conclude that, bacterium CDK25 (Bacillus megaterium) could be exploited for factors viz. nutrient management of Zn, growth promoting agent, and Zn augmentation in soil.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, 249404, Uttarakhand, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, 249404, Uttarakhand, India
| |
Collapse
|
41
|
Plant growth promotion and fungal antagonism of endophytic bacteria for the sustainable production of black pepper (Piper nigrum L.). RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03972-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Isolation and Characterization of the High Silicate and Phosphate Solubilizing Novel Strain Enterobacter ludwigii GAK2 that Promotes Growth in Rice Plants. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030144] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Silicon (Si) and phosphorus (P) are beneficial nutrient elements for plant growth. These elements are widely used in chemical fertilizers despite their abundance in the earth’s crust. Excessive use of chemical fertilizers is a threat to sustainable agriculture. Here, we screened different Si and P solubilizing bacterial strains from the diverse rice fields of Daegu, Korea. The strain with high Si and P solubilizing ability was selected and identified as Enterobacter ludwigii GAK2 through 16S rRNA gene sequence analysis. The isolate GAK2 produced organic acids (citric acid, acetic acid, and lactic acid), indole-3-acetic acid, and gibberellic acid (GA1, GA3) in Luria-Bertani media. In addition, GAK2 inoculation promoted seed germination in a gibberellin deficient rice mutant Waito-C and rice cultivar ‘Hwayoungbyeo’. Overall, the isolate GAK2 increased root length, shoot length, fresh biomass, and chlorophyll content of rice plants. These findings reveal that E. ludwigii GAK2 is a potential silicon and phosphate bio-fertilizer.
Collapse
|
43
|
Sánchez-Cruz R, Tpia Vázquez I, Batista-García RA, Méndez-Santiago EW, Sánchez-Carbente MDR, Leija A, Lira-Ruan V, Hernández G, Wong-Villarreal A, Folch-Mallol JL. Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential. Microbiol Res 2018; 218:76-86. [PMID: 30454661 DOI: 10.1016/j.micres.2018.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 02/04/2023]
Abstract
Legumes establish symbiotic relationships with different microorganisms, which could function as plant growth promotion microorganisms (PGPM). The finding of new PGPM strains is important to increase plant production avoiding or diminishing the use of industrial fertilizers. Thus, in this work we evaluated the plant growth promotion traits of ten strains isolated from Mimosa pudica root nodules. According to the 16S rDNA sequence, the microorganisms were identified as Enterobacter sp. and Serratia sp. To the best of our knowledge this is the first report describing and endophytic interaction between Mimosa pudica and Enterobacter sp. These strains have some plant growth promoting traits such as phosphate solubilization, auxin production and cellulase and chitinase activity. Strains identified as Serratia sp. inhibited the growth of the phytopathogenic fungi Fusarium sp., and Alternaria solani and the oomycete Phytophthora capsici. According to their biochemical characteristics, three strains were selected to test their plant growth promoting activity in a medium with an insoluble phosphate source. These bacteria show low specificity for their hosts as endophytes, since they were able to colonize two very different legumes: Phaseolus vulgaris and M. pudica. Seedlings of P. vulgaris were inoculated and grown for fifteen days. Enterobacter sp. NOD1 and NOD10, promoted growth as reflected by an increase in shoot height as well as an increase in the size and emergence of the first two trifolia. We could localize NOD5 as an endophyte in roots in P. vulgaris by transforming the strain with a Green Fluorescent Protein carrying plasmid. Experiments of co-inoculation with different Rhizobium etli strains allowed us to discard that NOD5 can fix nitrogen in the nodules formed by a R. etli Fix- strain. The isolates described in this work show biotechnological potential for plant growth promoting activity and production of indoleacetic acid and siderophores.
Collapse
Affiliation(s)
- Ricardo Sánchez-Cruz
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Irán Tpia Vázquez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | - Alfonso Leija
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Lira-Ruan
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Gerogina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
44
|
Etminani F, Harighi B. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees. THE PLANT PATHOLOGY JOURNAL 2018; 34:208-217. [PMID: 29887777 PMCID: PMC5985647 DOI: 10.5423/ppj.oa.07.2017.0158] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 02/18/2018] [Accepted: 02/26/2018] [Indexed: 05/22/2023]
Abstract
In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.
Collapse
Affiliation(s)
- Faegheh Etminani
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj,
Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj,
Iran
| |
Collapse
|
45
|
Jimtha JC, Mathew J, Radhakrishnan EK. Bioengineering of Dioscorea nipponica with rhizospheric Proteus spp. for enhanced tuber size and diosgenin content. 3 Biotech 2017; 7:261. [PMID: 28744428 DOI: 10.1007/s13205-017-0886-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/11/2017] [Indexed: 11/27/2022] Open
Abstract
Rhizobacterial production of plant hormones, ACC deaminase, fixation of nitrogen, solubilization of phosphate and antimicrobial metabolites play very important role in the health and growth of plants. Hence exploration of plant probiotic prospectives of promising rhizobacterial isolates from biodiversity rich areas can have enormous applications to engineer both the biomass and active ingredients of plants. In the present study, rhizospheric Proteus spp. R6 and R60 isolated from Pseudarthria viscida and Glycosmis arborea were analyzed for tuber and diosgenin enhancement effects in Dioscorea nipponica under field conditions for 1 year. Among the two Proteus spp. selected, both were positive for ACC deaminase, siderophore, nitrogen fixation, IAA and ammonia production. However, the isolate R6 was found to have additional phosphate solubilizing activity. Quantitative analysis of IAA by HPTLC showed its maximum production by Proteus sp. R60 (714.47 ± 8.7 µg/mL) followed by Proteus sp. R6 (588.06 ± 7.0 µg/mL). The tubers formed from the Proteus sp. R6 treated samples were identified to have significant enhancement in size, root number and diosgenin content when compared to control. Interestingly, HPLC analysis has confirmed twofold higher diosgenin content in Proteus sp. R6 treated samples than control during 1 year period of its field growth. The obtained results are of great importance as it involved the utilization of rhizospheric bacteria to improve tuber size which suggests its potential use in developing cost-effective, eco-friendly and multifunctional biofertilizer.
Collapse
Affiliation(s)
- John C Jimtha
- School of Biosciences, Mahatma Gandhi University, Priyadharshini Hills PO, Kottayam District, Kottayam, 686560 Kerala India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Priyadharshini Hills PO, Kottayam District, Kottayam, 686560 Kerala India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Priyadharshini Hills PO, Kottayam District, Kottayam, 686560 Kerala India
| |
Collapse
|
46
|
Saraf MK, Piccolo BD, Bowlin AK, Mercer KE, LeRoith T, Chintapalli SV, Shankar K, Badger TM, Yeruva L. Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. MICROBIOME 2017; 5:77. [PMID: 28705171 PMCID: PMC5513086 DOI: 10.1186/s40168-017-0297-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/04/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND The gut microbiota of breast-fed and formula-fed infants differ significantly, as do the risks for allergies, gut dysfunction, and upper respiratory tract infections. The connections between breast milk, various formulas, and the profiles of gut bacteria to these childhood illnesses, as well as the mechanisms underlying the effects, are not well understood. METHODS We investigated distal colon microbiota by 16S RNA amplicon sequencing, morphology by histomorphometry, immune response by cytokine expression, and tryptophan metabolism in a pig model in which piglets were sow-fed, or fed soy or dairy milk-based formula from postnatal day (PND) 2 to 21. RESULTS Formula feeding significantly (p < 0.05) altered the colon microbiota relative to the sow feeding. A significant reduction in microbial diversity was noted with formula groups in comparison to sow-fed. Streptococcus, Blautia, Citrobacter, Butrycimonas, Parabacteroides, Lactococcus genera were increased with formula feeding relative to sow feeding. In addition, relative to sow feeding, Anaerotruncus, Akkermansia, Enterococcus, Acinetobacter, Christensenella, and Holdemania were increased in milk-fed piglets, and Biliophila, Ruminococcus, Clostridium were increased in soy-fed piglets. No significant gut morphological changes were noted. However, higher cytokine mRNA expression (BMP4, CCL11, CCL21) was observed in the distal colon of formula groups. Formula feeding reduced enterochromaffin cell number and serotonin, but increased tryptamine levels relative to sow feeding. CONCLUSION Our data confirm that formula diet alters the colon microbiota and appears to shift tryptophan metabolism from serotonin to tryptamine, which may lead to greater histamine levels and risk of allergies in infants.
Collapse
Affiliation(s)
- Manish Kumar Saraf
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Brian D. Piccolo
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Anne K. Bowlin
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Kelly E. Mercer
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Sree V. Chintapalli
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Kartik Shankar
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Thomas M. Badger
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Laxmi Yeruva
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
- Arkansas Children’s Research Institute, Little Rock, USA
| |
Collapse
|
47
|
Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ, Yun BW. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 2017; 12:e0173203. [PMID: 28282395 PMCID: PMC5345817 DOI: 10.1371/journal.pone.0173203] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/16/2017] [Indexed: 12/22/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography-mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT) and superoxide dismutase (SOD) activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity.
Collapse
Affiliation(s)
- Yeon-Gyeong Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Bong-Gyu Mun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Woo Seo
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ah-Yeong Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyeong Yeol Oh
- Gyeongnam Oriental Medicinal Herb Institute, Sancheong, Republic of Korea
| | - Dong Yeol Lee
- Gyeongnam Oriental Medicinal Herb Institute, Sancheong, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
48
|
Pattnaik S, Rajkumari J, Paramanandham P, Busi S. Indole Acetic Acid Production and Growth-Promoting Activity of Methylobacterium extorquens MP1 and Methylobacterium zatmanii MS4 in Tomato. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/19315260.2017.1283381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Jobina Rajkumari
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
49
|
Jasim B, Mathew J, Radhakrishnan E. Identification of a novel endophytic Bacillus
sp. from Capsicum annuum
with highly efficient and broad spectrum plant probiotic effect. J Appl Microbiol 2016; 121:1079-94. [DOI: 10.1111/jam.13214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/24/2016] [Accepted: 03/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- B. Jasim
- School of Biosciences; Mahatma Gandhi University; Kottayam Kerala India
| | - J. Mathew
- School of Biosciences; Mahatma Gandhi University; Kottayam Kerala India
| | | |
Collapse
|
50
|
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. MICROBIAL ECOLOGY 2016; 72:324-346. [PMID: 27138047 DOI: 10.1007/s00248-016-0771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Luis M Hernández-Soto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Ricardo Monterrubio-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Alfredo Patiño-Siciliano
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico.
| |
Collapse
|