1
|
Zhang X, Xie Y, Dai Z, Liang Y, Zhu C, Su C, Song L, Wang K, Li J, Wei X. Gypenoside biotransformation into ginsenoside F2 by endophytic Aspergillus niger from Gynostemma pentaphyllum. Nat Prod Res 2024; 38:3086-3092. [PMID: 37157839 DOI: 10.1080/14786419.2023.2209823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/10/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Ginsenoside F2 is a protopanaxadiol saponin compound with various biological activities, including antioxidant, anti-inflammatory, and anticancer properties. Ginsenoside F2 can be found in ginseng, but in low quantities. Therefore, ginsenoside F2 production predominantly relies on the biotransformation of various ginsenosides, such as ginsenosides Rb1 and Rd. In this study, we reported the production of ginsenoside F2 by gypenoside biotransformation with Aspergillus niger JGL8, isolated from Gynostemma pentaphyllum. Ginsenoside F2 could be produced by two different biotransformation pathways, namely Gyp-V-Rd-F2 and Gyp-XVII-F2. The product exhibited antioxidant activity against free radicals (DPPH) with IC50 value of 29.54 µg/mL. Optimal biotransformation conditions were a pH of 5.0, temperature of 40 °C, and 2 mg/mL of substrate. Enzyme kinetic parameters revealed that the hydrolysis rate of Gyp-V, Rd, and Gyp-XVII was 0.625, 0.588, and 0.417 mM/h, respectively. In conclusion, we demonstrated that gypenoside is a substitutable substrate for ginsenoside F2 biotransformation.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yifan Xie
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhipeng Dai
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu Liang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chunyu Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chun Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Leshan Song
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kepei Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiying Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
2
|
Ghosh S, Das SK, Sinha K, Ghosh B, Sen K, Ghosh N, Sil PC. The Emerging Role of Natural Products in Cancer Treatment. Arch Toxicol 2024; 98:2353-2391. [PMID: 38795134 DOI: 10.1007/s00204-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata, 700064, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata, 700013, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
3
|
Chu LL, Hanh NTY, Quyen ML, Nguyen QH, Lien TTP, Do KV. Compound K Production: Achievements and Perspectives. Life (Basel) 2023; 13:1565. [PMID: 37511939 PMCID: PMC10381408 DOI: 10.3390/life13071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Compound K (CK) is one of the major metabolites found in mammalian blood and organs following oral administration of Panax plants. CK, also known as minor ginsenoside, can be absorbed in the systemic circulation. It has garnered significant attention in healthcare and medical products due to its pharmacological activities, such as antioxidation, anticancer, antiproliferation, antidiabetics, neuroprotection, and anti-atherogenic activities. However, CK is not found in natural ginseng plants but in traditional chemical synthesis, which uses toxic solvents and leads to environmental pollution during the harvest process. Moreover, enzymatic reactions are impractical for industrial CK production due to low yield and high costs. Although CK could be generated from major ginsenosides, most ginsenosides, including protopanaxatriol-oleanane and ocotillol-type, are not converted into CK by catalyzing β-glucosidase. Therefore, microbial cell systems have been used as a promising solution, providing a safe and efficient approach to CK production. This review provides a summary of various approaches for the production of CK, including chemical and enzymatic reactions, biotransformation by the human intestinal bacteria and endophytes as well as engineered microbes. Moreover, the approaches for CK production have been discussed to improve the productivity of target compounds.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Nguyen Trinh Yen Hanh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - My Linh Quyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Quang Huy Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Tran Thi Phuong Lien
- Faculty of Biology and Agricultural Engineering, Hanoi Pagadogical University 2, Vinh Yen City 283460, Vietnam
| | - Khanh Van Do
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
4
|
Shin KC, Oh DK. Biotransformation of Platycosides, Saponins from Balloon Flower Root, into Bioactive Deglycosylated Platycosides. Antioxidants (Basel) 2023; 12:antiox12020327. [PMID: 36829886 PMCID: PMC9952785 DOI: 10.3390/antiox12020327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Platycosides, saponins from balloon flower root (Platycodi radix), have diverse health benefits, such as antioxidant, anti-inflammatory, anti-tussive, anti-cancer, anti-obesity, anti-diabetes, and whitening activities. Deglycosylated platycosides, which show greater biological effects than glycosylated platycosides, are produced by the hydrolysis of glycoside moieties in glycosylated platycosides. In this review, platycosides are classified according to the chemical structures of the aglycone sapogenins and also divided into natural platycosides, including major, minor, and rare platycosides, depending on the content in Platycodi radix extract and biotransformed platycosides. The biological activities of platycosides are summarized and methods for deglycosylation of saponins, including physical, chemical, and biological methods, are introduced. The biotransformation of glycosylated platycosides into deglycosylated platycosides was described based on the hydrolytic pathways of glycosides, substrate specificity of glycosidases, and specific productivities of deglycosylated platycosides. Methods for producing diverse and/or new deglycosylated platycosides are also proposed.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Kim SA, Jeong EB, Oh DK. Complete Bioconversion of Protopanaxadiol-Type Ginsenosides to Compound K by Extracellular Enzymes from the Isolated Strain Aspergillus tubingensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:315-324. [PMID: 33372793 DOI: 10.1021/acs.jafc.0c07424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A compound K-producing fungus was isolated from meju (fermented soybean brick) and identified as the generally recognized as safe (GRAS) strain Aspergillus tubingensis. The extracellular enzymes obtained after the cultivation of 6 days in the medium with 20 g/L citrus pectin as an inducer showed the highest compound K-producing activity among the inducers tested. Under the optimized conditions of 0.05 mM MgSO4, 55 °C, pH 4.0, 13.4 mM protopanaxadiol (PPD)-type ginsenosides, and 11 mg/mL enzymes, the extracellular enzymes from A. tubingensis completely converted PPD-type ginsenosides in the ginseng extract to 13.4 mM (8.35 mg/mL) compound K after 20 h, with the highest concentration and productivity among the results reported so far. As far as we know, this is the first GRAS enzyme to completely convert all PPD-type ginsenosides to compound K.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun-Bi Jeong
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Jeong EB, Kim SA, Shin KC, Oh DK. Biotransformation of Protopanaxadiol-Type Ginsenosides in Korean Ginseng Extract into Food-Available Compound K by an Extracellular Enzyme from Aspergillus niger. J Microbiol Biotechnol 2020; 30:1560-1567. [PMID: 32807754 PMCID: PMC9728230 DOI: 10.4014/jmb.2007.07003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Compound K (C-K) is one of the most pharmaceutically effective ginsenosides, but it is absent in natural ginseng. However, C-K can be obtained through the hydrolysis of protopanaxadiol-type ginsenosides (PPDGs) in natural ginseng. The aim of this study was to obtain the high concentration of food-available C-K using PPDGs in Korean ginseng extract by an extracellular enzyme from Aspergillus niger KACC 46495. A. niger was cultivated in the culture medium containing the inducer carboxymethyl cellulose (CMC) for 6 days. The extracellular enzyme extracted from A. niger was prepared from the culture broth by filtration, ammonium sulfate, and dialysis. The extracellular enzyme was used for C-K production using PPDGs. The glycoside-hydrolyzing pathways for converting PPDGs into C-K by the extracellular enzyme were Rb1 → Rd → F2 → C-K, Rb2 → Rd or compound O → F2 or compound Y → C-K, and Rc → Rd or compound Mc1 → F2 or compound Mc → C-K. The extracellular enzyme from A. niger at 8.0 mg/ml, which was obtained by the induction of CMC during the cultivation, converted 6.0 mg/ml (5.6 mM) PPDGs in Korean ginseng extract into 2.8 mg/ml (4.5 mM) food-available C-K in 9 h, with a productivity of 313 mg/l/h and a molar conversion of 80%. To the best of our knowledge, the productivity and concentration of C-K of the extracellular enzyme are the highest among those by crude enzymes from wild-type microorganisms.
Collapse
Affiliation(s)
- Eun-Bi Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se-A Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-454-3118 Fax: +82-2-444-5518 E-mail:
| |
Collapse
|
7
|
Piao XM, Huo Y, Kang JP, Mathiyalagan R, Zhang H, Yang DU, Kim M, Yang DC, Kang SC, Wang YP. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies. Molecules 2020; 25:E4390. [PMID: 32987784 PMCID: PMC7582514 DOI: 10.3390/molecules25194390] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Ginseng is a traditional medicinal herb commonly consumed world-wide owing to its unique family of saponins called ginsenosides. The absorption and bioavailability of ginsenosides mainly depend on an individual's gastrointestinal bioconversion abilities. There is a need to improve ginseng processing to predictably increase the pharmacologically active of ginsenosides. Various types of ginseng, such as fresh, white, steamed, acid-processed, and fermented ginsengs, are available. The various ginseng processing methods produce a range ginsenoside compositions with diverse pharmacological properties. This review is intended to summarize the properties of the ginsenosides found in different Panax species as well as the different processing methods. The sugar moiety attached to the C-3, C-6, or C-20 deglycosylated to produce minor ginsenosides, such as Rb1, Rb2, Rc, Rd→Rg3, F2, Rh2; Re, Rf→Rg1, Rg2, F1, Rh1. The malonyl-Rb1, Rb2, Rc, and Rd were demalonylated into ginsenoside Rb1, Rb2, Rc, and Rd by dehydration. Dehydration also produces minor ginsenosides such as Rg3→Rk1, Rg5, Rz1; Rh2→Rk2, Rh3; Rh1→Rh4, Rk3; Rg2→Rg6, F4; Rs3→Rs4, Rs5; Rf→Rg9, Rg10. Acetylation of several ginsenosides may generate acetylated ginsenosides Rg5, Rk1, Rh4, Rk3, Rs4, Rs5, Rs6, and Rs7. Acid processing methods produces Rh1→Rk3, Rh4; Rh2→Rk1, Rg5; Rg3→Rk2, Rh3; Re, Rf, Rg2→F1, Rh1, Rf2, Rf3, Rg6, F4, Rg9. Alkaline produces Rh16, Rh3, Rh1, F4, Rk1, ginsenoslaloside-I, 20(S)-ginsenoside-Rh1-60-acetate, 20(R)-ginsenoside Rh19, zingibroside-R1 through hydrolysis, hydration addition reactions, and dehydration. Moreover, biological processing of ginseng generates the minor ginsenosides of Rg3, F2, Rh2, CK, Rh1, Mc, compound O, compound Y through hydrolysis reactions, and synthetic ginsenosides Rd12 and Ia are produced through glycosylation. This review with respect to the properties of particular ginsenosides could serve to increase the utilization of ginseng in agricultural products, food, dietary supplements, health supplements, and medicines, and may also spur future development of novel highly functional ginseng products through a combination of various processing methods.
Collapse
Affiliation(s)
- Xiang Min Piao
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun 130118, China; (X.M.P.); (H.Z.); (D.C.Y.)
| | - Yue Huo
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Jong Pyo Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Hao Zhang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun 130118, China; (X.M.P.); (H.Z.); (D.C.Y.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Dong Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Mia Kim
- Department of Cardiovascular and Neurologic Diseases, College of Korea Medicine, Kyung Hee University, Seoul 100011, Korea;
| | - Deok Chun Yang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun 130118, China; (X.M.P.); (H.Z.); (D.C.Y.)
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Ying Ping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun 130118, China; (X.M.P.); (H.Z.); (D.C.Y.)
| |
Collapse
|
8
|
Shin KC, Kim DW, Woo HS, Oh DK, Kim YS. Conversion of Glycosylated Platycoside E to Deapiose-Xylosylated Platycodin D by Cytolase PCL5. Int J Mol Sci 2020; 21:ijms21041207. [PMID: 32054089 PMCID: PMC7072768 DOI: 10.3390/ijms21041207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022] Open
Abstract
Platycosides, the saponins abundant in Platycodi radix (the root of Platycodon grandiflorum), have diverse pharmacological activities and have been used as food supplements. Since deglycosylated saponins exhibit higher biological activity than glycosylated saponins, efforts are on to enzymatically convert glycosylated platycosides to deglycosylated platycosides; however, the lack of diversity and specificities of these enzymes has limited the kinds of platycosides that can be deglycosylated. In the present study, we examined the enzymatic conversion of platycosides and showed that Cytolase PCL5 completely converted platycoside E and polygalacin D3 into deapiose-xylosylated platycodin D and deapiose-xylosylated polygalacin D, respectively, which were identified by LC-MS analysis. The platycoside substrates were hydrolyzed through the following novel hydrolytic pathways: platycoside E → platycodin D3 → platycodin D → deapiosylated platycodin D → deapiose-xylosylated platycodin D; and polygalacin D3 → polygalacin D → deapiosylated polygalacin D → deapiose-xylosylated polygalacin D. Our results show that cytolast PCL5 may have a potential role in the development of biologically active platycosides that may be used for their diverse pharmacological activities.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea; (K.-C.S.); (D.-K.O.)
| | - Dae Wook Kim
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Korea; (D.W.K.); (H.S.W.)
| | - Hyun Sim Woo
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Korea; (D.W.K.); (H.S.W.)
| | - Deok-Kun Oh
- Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea; (K.-C.S.); (D.-K.O.)
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Yeong-Su Kim
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Korea; (D.W.K.); (H.S.W.)
- Correspondence: ; Tel.: +82-54-679-2740; Fax: +82-54-679-0636
| |
Collapse
|
9
|
Kim HW, Han SH, Lee SW, Choi HS, Suh HJ, Hong KB. Enzymatic hydrolysis increases ginsenoside content in Korean red ginseng (Panax ginseng CA Meyer) and its biotransformation under hydrostatic pressure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6806-6813. [PMID: 31368526 DOI: 10.1002/jsfa.9965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/21/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Enzymatic hydrolysis and high hydrostatic pressure (HHP) are common processing techniques in the extraction of active compounds from food materials. The aim of this study was to investigate the effects of enzymatic hydrolysis combined with HHP treatments on ginsenoside metabolites in red ginseng. RESULTS The yield and changes in the levels of polyphenol and ginsenoside were measured in red ginseng treated with commercial enzymes such as Ultraflo L, Viscozyme, Cytolase PCL5, Rapidase and Econase E at atmospheric pressure (0.1 MPa), 50 MPa, and 100 MPa. β-Glucosidase activity of Cytolase was the highest at 4258.2 mg-1 , whereas Viscozyme showed the lowest activity at 10.6 mg-1 . Pressure of 100 MPa did not affect the stability or the activity of the β-glucosidase. Treatment of red ginseng with Cytolase and Econase at 100 MPa significantly increased the dry weight and polyphenol content of red ginseng, compared with treatments at 0.1 MPa and 50 MPa (P < 0.05). The amounts of ginsenoside and ginsenoside metabolites derived from red ginseng processed using Cytolase were higher than those derived from red ginseng treated with the other enzymes. Treatment with Cytolase also significantly increased the skin and intestinal permeability of red ginseng-derived polyphenols. CONCLUSION Cytolase could be useful as an enzymatic treatment to enhance the yield of bioactive compounds from ginseng under HHP. In addition, ginsenoside metabolites obtained by Cytolase hydrolysis combined with HHP are functional substances with increased intestinal and skin permeability. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hyo Won Kim
- Division of Biotechnology, Food Technology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Sung Hee Han
- Research Affairs, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seog-Won Lee
- Department of Hotel Tourism and Culinary Arts, Culinary Arts and Food Service Management Major, Yuhan University, Bucheon, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Hyung Joo Suh
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Ki-Bae Hong
- BK21 Plus, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Kim SA, Shin KC, Oh DK. Complete Biotransformation of Protopanaxadiol-Type Ginsenosides into 20- O- β-Glucopyranosyl-20( S)-protopanaxadiol by Permeabilized Recombinant Escherichia coli Cells Coexpressing β-Glucosidase and Chaperone Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8393-8401. [PMID: 31291721 DOI: 10.1021/acs.jafc.9b02592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ginsenoside 20-O-β-glucopyranosyl-20(S)-protopanaxadiol or compound K is an essential ingredient in functional food, cosmetics, and traditional medicines. However, no study has reported the complete conversion of all protopanaxadiol (PPD)-type ginsenosides from ginseng extract into compound K using whole-cell conversion. To increase the production of compound K from ginseng extract using whole recombinant cells, the β-glucosidase enzyme from Caldicellulosiruptor bescii was coexpressed with a chaperone expression system (pGro7), and the cells expressing the coexpression system were permeabilized with ethylenediaminetetraacetic acid. The permeabilized cells carrying the chaperone coexpression system showed a 2.6-fold increase in productivity and yield as compared with nontreated cells, and completely converted all PPD-type ginsenosides from ginseng root extract into compound K with the highest productivity among the results reported so far. Our results will contribute to the industrial biological production of compound K.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
- Research Institute of Bioactive-Metabolome Network , Konkuk University , Seoul 05029 , Republic of Korea
| |
Collapse
|
11
|
Kim TH, Yang EJ, Shin KC, Hwang KH, Park JS, Oh DK. Enhanced Production of β-D-glycosidase and α-L-arabinofuranosidase in Recombinant Escherichia coli in Fed-batch Culture for the Biotransformation of Ginseng Leaf Extract to Ginsenoside Compound K. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0027-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Deng S, Wong CKC, Lai HC, Wong AST. Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition. Oncotarget 2018; 8:25897-25914. [PMID: 27825116 PMCID: PMC5432225 DOI: 10.18632/oncotarget.13071] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
Chemoresistance is a major clinical problem compromising the successful treatment of cancer. One exciting approach is the eradication of cancer stem/tumor-initiating cells (jointly CSCs), which account for tumor initiation, progression, and drug resistance. Here we show for the first time, with mechanism-based evidence, that ginsenoside-Rb1, a natural saponin isolated from the rhizome of Panax quinquefolius and notoginseng, exhibits potent cytotoxicity on CSCs. Rb1 and its metabolite compound K could effectively suppress CSC self-renewal without regrowth. Rb1 and compound K treatment also sensitized the CSCs to clinically relevant doses of cisplatin and paclitaxel. These effects were associated with the Wnt/β-catenin signaling pathway by downregulating β-catenin/T-cell factor-dependent transcription and expression of its target genes ATP-binding cassette G2 and P-glycoprotein. We also identified reversal of epithelial-to-mesenchymal transition as a new player in the Rb1 and compound K-mediated inhibition of CSCs. Rb1 and compound K treatment also inhibited the self-renewal of CSCs derived from ovarian carcinoma patients as well as in xenograft tumor model. Moreover, we did not observe toxicity in response to doses of Rb1 and compound K that produced an anti-CSC effect. Therefore, Rb1 should be explored further as a promising nutraceutical prototype of treating refractory tumors.
Collapse
Affiliation(s)
- Shan Deng
- School of Biological Sciences, University of Hong Kong, Hong Kong
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
13
|
Study on Transformation of Ginsenosides in Different Methods. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8601027. [PMID: 29387726 PMCID: PMC5745656 DOI: 10.1155/2017/8601027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022]
Abstract
Ginseng is a traditional Chinese medicine and has the extensive pharmacological activity. Ginsenosides are the major constituent in ginseng and have the unique biological activity and medicinal value. Ginsenosides have the good effects on antitumor, anti-inflammatory, antioxidative and inhibition of the cell apoptosis. Studies have showed that the major ginsenosides could be converted into rare ginsenosides, which played a significant role in exerting pharmacological activity. However, the contents of some rare ginsenosides are very little. So it is very important to find the effective way to translate the main ginsenosides to rare ginsenosides. In order to provide the theoretical foundation for the transformation of ginsenoside in vitro, in this paper, many methods of the transformation of ginsenoside were summarized, mainly including physical methods, chemical methods, and biotransformation methods.
Collapse
|
14
|
Shin KC, Choi HY, Seo MJ, Oh DK. Compound K Production from Red Ginseng Extract by β-Glycosidase from Sulfolobus solfataricus Supplemented with α-L-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus. PLoS One 2015; 10:e0145876. [PMID: 26710074 PMCID: PMC4692446 DOI: 10.1371/journal.pone.0145876] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
Ginsenoside compound K (C-K) is attracting a lot of interest because of its biological and pharmaceutical activities, including hepatoprotective, antitumor, anti-wrinkling, and anti-skin aging activities. C-K has been used as the principal ingredient in skin care products. For the effective application of ginseng extracts to the manufacture of cosmetics, the PPD-type ginsenosides in ginseng extracts should be converted to C-K by enzymatic conversion. For increased yield of C-K from the protopanaxadiol (PPD)-type ginsenosides in red-ginseng extract (RGE), the α-L-arabinofuranoside-hydrolyzing α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus (CS-abf) was used along with the β-D-glucopyranoside/α-L-arabinopyranoside-hydrolyzing β-glycosidase from Sulfolobus solfataricus (SS-bgly) because SS-bgly showed very low hydrolytic activity on the α-L-arabinofuranoside linkage in ginsenosides. The optimal reaction conditions for C-K production were as follows: pH 6.0, 80°C, 2 U/mL SS-bgly, 3 U/mL CS-abf, and 7.5 g/L PPD-type ginsenosides in RGE. Under these optimized conditions, SS-bgly supplemented with CS-abf produced 4.2 g/L C-K from 7.5 g/L PPD-type ginsenosides in 12 h without other ginsenosides, with a molar yield of 100% and a productivity of 348 mg/L/h. To the best of our knowledge, this is the highest concentration and productivity of C-K from ginseng extract ever published in literature.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye-Yeon Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Shao X, Li N, Zhan J, Sun H, An L, Du P. Protective Effect of Compound K on Diabetic Rats. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Purpose Compound K (CK), the metabolic product of protopanaxadiol saponin in vivo, has many pharmacological activities. In this study, we discuss the preparation of CK, and its protective effect on kidneys of diabetic rats. CK was prepared from ginsenoside Rb1 after transformation by β-glucosidase, separation and purification by silica gel column chromatography. In the present study, we established a rat model of diabetes mellitus using high-fat diet and streptozotocin (STZ). After seven weeks of treatment, the levels of fasting blood glucose (FBG), total cholesterol (TC), total glycerin (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), blood urea nitrogen (BUN), uric acid (UA), serum creatinine (Scr), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-PX) were evaluated in normal and diabetic rats. Also, renal pathomorphism changes were observed by HE stain, and TGF-β1 protein expression in the renal tissue was measured by Western blot. The yield of CK was 14.55 mg/mL, which was higher than that of other methods. After seven weeks, CK could decrease FBG, TC, TG, LDL-C, BUN, UA, Scr and MDA of diabetic rats, while CK also enhanced HDL-C and GSH, SOD and GSH-PX. Additionally, CK improved the pathological changes and decreased TGF-β1 protein expression in the renal tissue. CK improved the pathological changes in the renal tissue, enhanced the antioxidant capacity, reduced the damage of TGF-β1 to renal tissue, and protected the diabetic rats.
Collapse
Affiliation(s)
- Xiaotong Shao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Na Li
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Jinzhuo Zhan
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Hui Sun
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | | | | |
Collapse
|
16
|
Kim JR, Choi J, Kim J, Kim H, Kang H, Kim EH, Chang JH, Kim YE, Choi YJ, Lee KW, Lee HJ. 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol-fortified ginseng extract attenuates the development of atopic dermatitis-like symptoms in NC/Nga mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:365-371. [PMID: 24269244 DOI: 10.1016/j.jep.2013.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng and ginsenosides are frequently used in the treatment of chronic inflammatory diseases. Recently, 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol (GPD), the main metabolite of ginsenosides, was reported to have both anti-allergic and anti-pruritic effects. The immunomodulatory effects of GPD-fortified ginseng extract (GFGE) on atopic dermatitis (AD)-like symptoms in mice were investigated. This study was designed to investigate the preventive effect of GFGE on AD-like symptoms. MATERIALS AND METHODS The effects of orally administered GFGE on Dermatophagoides farinae body extract (DFE)-induced AD-like symptoms in NC/Nga mice were assessed by analyzing dermatitis score, ear thickness, scratching time, skin histological changes, and serum level of macrophage-derived chemokine (MDC). In addition, splenocytes were isolated from the mice and stimulated with anti-CD3 and anti-CD28 monoclonal antibodies to produce cytokines. RESULTS Oral administration of GFGE significantly attenuated DFE-induced increases in dermatitis score, ear thickness, scratching time, and severity of skin lesions in NC/Nga mice. GFGE treatment also reduced level of MDC in serum, infiltration of eosinophils and mast cells in skin, and production of cytokines in splenocytes. CONCLUSIONS These results suggest that GFGE might ameliorate DFE-induced AD-like symptoms and be an alternative therapeutic agent for the prevention of AD.
Collapse
Affiliation(s)
- Jong Rhan Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Jinhwan Choi
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jiyoung Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Heejeung Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Heerim Kang
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Eun Hye Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jeong-Hwa Chang
- CJ Foods R&D, CJ CheilJedang Corporation, Seoul 152-051, Republic of Korea
| | - Yeong-Eun Kim
- CJ Foods R&D, CJ CheilJedang Corporation, Seoul 152-051, Republic of Korea
| | - Young Jin Choi
- Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea; Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 232-916, Republic of Korea.
| | - Hyong Joo Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea.
| |
Collapse
|