1
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
2
|
Ramalho SR, Bezerra CDS, Lourenço de Oliveira DG, Souza Lima L, Maria Neto S, Ramalho de Oliveira CF, Valério Verbisck N, Rodrigues Macedo ML. Novel Peptidase Kunitz Inhibitor from Platypodium elegans Seeds Is Active against Spodoptera frugiperda Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1349-1358. [PMID: 29239611 DOI: 10.1021/acs.jafc.7b04159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel Kunitz-type inhibitor from Platypodium elegans seeds (PeTI) was purified and characterized. The mass spectrometry analyses of PeTI indicated an intact mass of 19 701 Da and a partial sequence homologous to Kunitz inhibitors. PeTI was purified by ion exchange and affinity chromatographies. A complex with a 1:1 ratio was obtained only for bovine trypsin, showing a Ki = 0.16 nM. Stability studies showed that PeTI was stable over a wide range of temperature (37-80 °C) and pH (2-10). The inhibitory activity of PeTI was affected by dithiothreitol (DTT). Bioassays of PeTI on Spodoptera frugiperda showed negative effects on larval development and weight gain, besides extending the insect life cycle. The activities of digestive enzymes, trypsin and chymotrypsin, were reduced by feeding larvae with 0.2% PeTI in an artificial diet. In summary, we describe a novel Kunitz inhibitor with promising biotechnological potential for pest control.
Collapse
|
3
|
Dias LP, Oliveira JT, Rocha-Bezerra LC, Sousa DO, Costa HP, Araujo NM, Carvalho AF, Tabosa PM, Monteiro-Moreira AC, Lobo MD, Moreno FB, Rocha BA, Lopes JL, Beltramini LM, Vasconcelos IM. A trypsin inhibitor purified from Cassia leiandra seeds has insecticidal activity against Aedes aegypti. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Exploiting the biological roles of the trypsin inhibitor from Inga vera seeds: A multifunctional Kunitz inhibitor. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Jamal F, Singh D, Pandey PK. Negative effects of a nonhost proteinase inhibitor of ~19.8 kDa from Madhuca indica seeds on developmental physiology of Helicoverpa armigera (Hübner). BIOMED RESEARCH INTERNATIONAL 2014; 2014:202398. [PMID: 25298962 PMCID: PMC4179944 DOI: 10.1155/2014/202398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 07/06/2014] [Accepted: 07/10/2014] [Indexed: 11/24/2022]
Abstract
An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI) on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme kinetic studies demonstrated that MiTI is a competitive inhibitor with a K i value of 4.1 × 10(-10) M for Helicoverpa trypsin like midgut proteinases. In vivo experiments with different concentrations of MiTI in artificial diet (0.5, 1.0, and 1.5% w/w) showed an effective downfall in the larval body weight and an increase in larval mortality. The concentration of MiTI in the artificial diet to cause 50% mortality (LD50) of larvae was 1.5% w/w and that to cause reduction in mass of larvae by 50% (ED50) was 1.0% w/w. Nutritional indices observations suggest the toxic and adverse effects of MiTI on the growth and development of H. armigera larvae. The results suggest a strong bioinsecticidal potential of affinity purified MiTI which can be exploited in insect pest management of crop plants.
Collapse
Affiliation(s)
- Farrukh Jamal
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, India
| | - Dushyant Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, India
| | - Prabhash K. Pandey
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, India
| |
Collapse
|
6
|
Selvakumar P, Sharma N, Tomar PPS, Kumar P, Sharma AK. Structural insights into the aggregation behavior of Murraya koenigii miraculin-like protein below pH 7.5. Proteins 2013; 82:830-40. [PMID: 24265134 DOI: 10.1002/prot.24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/03/2013] [Accepted: 10/21/2013] [Indexed: 11/07/2022]
Abstract
Murraya koenigii miraculin-like protein (MKMLP) gradually precipitates below pH 7.5. Here, we explore the basis for this aggregation by identifying the aggregation-prone regions via comparative analysis of crystal structures acquired at several pH values. The prediction of aggregation-prone regions showed the presence of four short peptides either in beta sheets or loops on surface of the protein. These peptides were distributed in two patches far apart on the surface. Comparison of crystal structures of MKMLP, determined at 2.2 Å resolution in pH 7.0 and 4.6 in the present study and determined at 2.9 Å in pH 8.0 in an earlier reported study, reveal subtle conformational differences resulting in gradual exposure of aggregation-prone regions. As the pH is lowered, there are alterations in ionic interactions within the protein interactions of the chain with water molecules and exposure of hydrophobic residues. The analysis of symmetry-related molecular interfaces involving one patch revealed shortening of nonpolar intermolecular contacts as the pH decreased. In particular, a decrease in the intermolecular distance between Trp103 of the aggregation-prone peptide WFITTG (103-108) unique to MLPs was observed. These results demonstrated that aggregation occurs due to the cumulative effect of the changes in interactions in two aggregation-prone defined regions.
Collapse
Affiliation(s)
- Purushotham Selvakumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | | | | | | | | |
Collapse
|
7
|
Cruz ACB, Massena FS, Migliolo L, Macedo LLP, Monteiro NKV, Oliveira AS, Macedo FP, Uchoa AF, Grossi de Sá MF, Vasconcelos IM, Murad AM, Franco OL, Santos EA. Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:61-68. [PMID: 23770595 DOI: 10.1016/j.plaphy.2013.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
The present study aims to provide new in vitro and in vivo biochemical information about a novel Kunitz trypsin inhibitor purified from Piptadenia moniliformis seeds. The purification process was performed using TCA precipitation, Trypsin-Sepharose and reversed-phase C18 HPLC chromatography. The inhibitor, named PmTKI, showed an apparent molecular mass of around 19 kDa, visualized by SDS-PAGE, which was confirmed by mass spectrometry MALDI-ToF demonstrating a monoisotopic mass of 19.296 Da. The inhibitor was in vitro active against trypsin, chymotrypsin and papain. Moreover, kinetic enzymatic studies were performed aiming to understand the inhibition mode of PmTKI, which competitively inhibits the target enzyme, presenting Ki values of 1.5 × 10(-8) and 3.0 × 10(-1) M against trypsin and chymotrypsin, respectively. Also, the inhibitory activity was assayed at different pH ranges, temperatures and reduction environments (DTT). The inhibitor was stable in all conditions maintaining an 80% residual activity. N-terminal sequence was obtained by Edman degradation and the primary sequence presented identity with members of Kunitz-type inhibitors from the same subfamily. Finally after biochemical characterization the inhibitory effect was evaluated in vitro on insect digestive enzymes from different orders, PmTKI demonstrated remarkable activity against enzymes from Anthonomus grandis (90%), Plodia interpuncptella (60%), and Ceratitis capitata (70%). Furthermore, in vivo bioinsecticidal assays of C. capitata larvae were also performed and the concentration of PmTKI (w/w) in an artificial diet required to LD50 and ED50 larvae were 0.37 and 0.3% respectively. In summary, data reported here shown the biotechnological potential of PmTKI for insect pest control.
Collapse
Affiliation(s)
- Ana C B Cruz
- Laboratório de Química e Função de Proteínas Bioativas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rufino FPS, Pedroso VMA, Araujo JN, França AFJ, Rabêlo LMA, Migliolo L, Kiyota S, Santos EA, Franco OL, Oliveira AS. Inhibitory effects of a Kunitz-type inhibitor from Pithecellobium dumosum (Benth) seeds against insect-pests' digestive proteinases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:70-6. [PMID: 23238511 DOI: 10.1016/j.plaphy.2012.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/19/2012] [Indexed: 05/13/2023]
Abstract
Pithecellobium dumosum is a tree belonging to the Mimosoideae subfamily that presents various previously characterized Kunitz-type inhibitors. The present study provides a novel Kunitz-trypsin inhibitor isoform purified from P. dumosum seeds. Purification procedure was performed by TCA precipitation followed by a trypsin-Sepharose chromatography and a further reversed-phase HPLC. Purified inhibitor (PdKI-4) showed enhanced inhibitory activity against bovine trypsin and chymotrypsin. Furthermore, PdKI-4 showed remarkable inhibitory activity against serine proteases from the coleopterans Callosobruchus maculatus and Zabrotes subfasciatus, and the lepidopterans Alabama argillacea and Telchin licus. However, PdKI-4 was unable to inhibit porcine pancreatic elastase, pineapple bromelain and Carica papaya papain. SDS-PAGE showed that PdKI-4 consisted of a single polypeptide chain with molecular mass of 21 kDa. Kinetic studies demonstrated that PdKI-4 is probably a competitive inhibitor with a Ki value of 5.7 × 10(-10) M for bovine trypsin. PdKI-4 also showed higher stability over a wide range of temperature (37-100 °C) and pH (2-12). N-termini sequence was obtained by Edman degradation showing higher identity with other Mimosoideae subfamily Kunitz-type inhibitor members. In summary, data here reported indicate the biotechnological potential of PdKI-4 for development of products against insect-pests.
Collapse
|
9
|
Selvakumar P, Gahloth D, Tomar PPS, Sharma N, Sharma AK. Molecular evolution of miraculin-like proteins in soybean Kunitz super-family. J Mol Evol 2011; 73:369-79. [PMID: 22274614 DOI: 10.1007/s00239-012-9484-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment.
Collapse
Affiliation(s)
- Purushotham Selvakumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | | | | | | | | |
Collapse
|
10
|
Oliva MLV, Silva MC, Sallai RC, Brito MV, Sampaio MU. A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie 2010; 92:1667-73. [DOI: 10.1016/j.biochi.2010.03.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/26/2010] [Indexed: 11/16/2022]
|
11
|
Migliolo L, de Oliveira AS, Santos EA, Franco OL, de Sales MP. Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases. J Mol Graph Model 2010; 29:148-56. [DOI: 10.1016/j.jmgm.2010.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
|
12
|
Ee KY, Zhao J, Rehman AU, Agboola SO. Purification and characterization of a Kunitz-type trypsin inhibitor from Acacia victoriae Bentham seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7022-7029. [PMID: 19588923 DOI: 10.1021/jf900923t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An Acacia victoriae trypsin inhibitor (AvTI) was purified from the seeds of prickly wattle (A. victoriae Bentham) by salt precipitation, ion exchange, and gel filtration chromatography and then characterized by electrophoresis and N-terminal amino acid sequencing. AvTI had a specific activity of 138.99 trypsin inhibitor units per milligram (TIU mg(-1)), which was 21-fold higher than that of the salt precipitate. A molecular mass of 13 kDa was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions, which also indicated that AvTI may consist of two polypeptide chains linked by at least one disulfide bond. Although only a single peak was resolved by ion exchange and reverse phase high-performance liquid chromatography (RP-HPLC), native-PAGE and isoelectric focusing revealed the presence of three isoforms possessing acidic pI values of 5.13, 4.76, and 4.27, respectively. N-Terminal amino acid sequencing analysis of native and reduced AvTI showed two sequences with a high degree of homology with a typical Kunitz-type trypsin inhibitor. All isoforms had considerable trypsin inhibitory activity but showed relatively very low inhibition against alpha-chymotrypsin.
Collapse
Affiliation(s)
- Kah Y Ee
- E. H. Graham Centre for Innovative Agriculture and School of Agricultural and Wine Sciences, Charles Sturt University, Private Bag 588, Wagga Wagga, NSW 2678, Australia
| | | | | | | |
Collapse
|
13
|
Bhattacharyya A, Mazumdar S, Leighton SM, Babu CR. A Kunitz proteinase inhibitor from Archidendron ellipticum seeds: purification, characterization, and kinetic properties. PHYTOCHEMISTRY 2006; 67:232-41. [PMID: 16376957 DOI: 10.1016/j.phytochem.2005.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 11/07/2005] [Accepted: 11/09/2005] [Indexed: 05/05/2023]
Abstract
Leguminous plants in the tropical rainforests are a rich source of proteinase inhibitors and this work illustrates isolation of a serine proteinase inhibitor from the seeds of Archidendron ellipticum (AeTI), inhabiting Great Nicobar Island, India. AeTI was purified to homogeneity by acetone and ammonium sulfate fractionation, and ion exchange, size exclusion and reverse phase chromatography (HPLC). SDS-PAGE of AeTI revealed that it is constituted by two polypeptide chains (alpha-chain, M(r) 15,000 and beta-chain, M(r) 5000), the molecular weight being approximately 20 kDa. N-terminal sequence showed high homology with other serine proteinase inhibitors belonging to the Mimosoideae subfamily. Both Native-PAGE as well as isoelectric focussing showed four isoinhibitors (pI values of 4.1, 4.55, 5.27 and 5.65). Inhibitory activity of AeTI remained unchanged over a wide range of temperatures (0-60 degrees C) and pH (1-10). The protein inhibited trypsin in the stoichiometric ratio of 1:1, but lacked similar stoichiometry against chymotrypsin. Also, AeTI-trypsin complex was stable to SDS unlike the SDS unstable AeTI-chymotrypsin complex. AeTI, which possessed inhibition constants (K(i)) of 2.46 x 10(-10) and 0.5 x 10(-10)M against trypsin and chymotrypsin activity, respectively, retained over 70% of inhibitory activity after being stored at -20 degrees C for more than a year. Initial studies on the insecticidal properties of AeTI indicate it to be a very potent insect anti-feedant.
Collapse
Affiliation(s)
- Arindam Bhattacharyya
- Centre for Environmental Management of Degraded Ecosystems, University of Delhi, Delhi 110007, India.
| | | | | | | |
Collapse
|
14
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
15
|
Araújo APU, Hansen D, Vieira DF, Oliveira C, Santana LA, Beltramini LM, Sampaio CAM, Sampaio MU, Oliva MLV. Kunitz-type Bauhinia bauhinioides inhibitors devoid of disulfide bridges: isolation of the cDNAs, heterologous expression and structural studies. Biol Chem 2005; 386:561-8. [PMID: 16006243 DOI: 10.1515/bc.2005.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bauhinia bauhinoides cruzipain inhibitor (BbCI) and Bauhinia bauhinioides kallikrein inhibitor (BbKI) are cysteine and serine proteinase inhibitors structurally homologous to plant Kunitz-type inhibitors, but are devoid of disulfide bridges. Based on cDNA sequences, we found that BbKI and BbCI are initially synthesized as a prepropeptide comprising an N-terminal signal peptide (19 residues), the mature protein (164 residues) and a C-terminal targeting peptide (10 residues). Partial cDNAs encoding the mature enzymes plus N-terminal His-tags and thrombin cleavage sites were expressed in E. coli and the soluble proteins were purified by one-step nickel affinity chromatography. After thrombin cleavage, both proteins exhibited potent inhibitory activities toward their cognate proteinases like the wild-type proteins. BbCI inhibits human neutrophil elastase ( K i(app) 5.3 nM), porcine pancreatic elastase ( K i(app) 40 nM), cathepsin G ( K i(app) 160 nM) and the cysteine proteinases cruzipain ( K i(app) 1.2 nM), cruzain ( K i(app) 0.3 nM) and cathepsin L ( K i(app) 2.2 nM), while BbKI strongly inhibits plasma kallikrein ( K i(app) 2.4 nM) and plasmin ( K i(app) 33 nM). Circular dichroism spectra of BbCI and BbKI were in agreement with the beta-trefoil fold described for Kunitz inhibitors. The inhibitory potency of both BbCI- and BbKI-type inhibitors suggests that other, non-covalent interactions may compensate for the lack of disulfide bridges.
Collapse
Affiliation(s)
- Ana Paula Ulian Araújo
- Instituto de Física de São Carlos, Universidade Federal de São Paulo, Avenida Trabalhador Sãocarlense 400, 13560-970 São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|