1
|
Gupta KB, Taylor TL, Panda SS, Thangaraju M, Lokeshwar BL. Curcumin-Dichloroacetate Hybrid Molecule as an Antitumor Oral Drug against Multidrug-Resistant Advanced Bladder Cancers. Cancers (Basel) 2024; 16:3108. [PMID: 39272966 PMCID: PMC11394085 DOI: 10.3390/cancers16173108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor cells produce excessive reactive oxygen species (ROS) but cannot detoxify ROS if they are due to an external agent. An agent that produces toxic levels of ROS, specifically in tumor cells, could be an effective anticancer drug. CMC-2 is a molecular hybrid of the bioactive polyphenol curcumin conjugated to dichloroacetate (DCA) via a glycine bridge. The CMC-2 was tested for its cytotoxic antitumor activities and killed both naïve and multidrug-resistant (MDR) bladder cancer (BCa) cells with equal potency (<1.0 µM); CMC-2 was about 10-15 folds more potent than curcumin or DCA. Growth of human BCa xenograft in mice was reduced by >50% by oral gavage of 50 mg/kg of CMC-2 without recognizable systemic toxicity. Doses that used curcumin or DCA showed minimum antitumor effects. In vitro, the toxicity of CMC-2 in both naïve and MDR cells depended on increased intracellular ROS in tumor cells but not in normal cells at comparable doses. Increased ROS caused the permeabilization of mitochondria and induced apoptosis. Further, adding N-Acetyl cysteine (NAC), a hydroxyl radical scavenger, abolished excessive ROS production and CMC-2's cytotoxicity. The lack of systemic toxicity, equal potency against chemotherapy -naïve and resistant tumors, and oral bioavailability establish the potential of CMC-2 as a potent drug against bladder cancers.
Collapse
Affiliation(s)
| | - Truett L Taylor
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Siva S Panda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bal L Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Cirovic A, Satarug S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. Int J Mol Sci 2024; 25:1851. [PMID: 38339129 PMCID: PMC10855822 DOI: 10.3390/ijms25031851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
3
|
Hua X, Zou R, Bai X, Yang Y, Lu J, Huang C. Differential functions of RhoGDIβ in malignant transformation and progression of urothelial cell following N-butyl-N-(4-hydmoxybutyl) nitrosamine exposure. BMC Biol 2023; 21:181. [PMID: 37635218 PMCID: PMC10463823 DOI: 10.1186/s12915-023-01683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Functional role of Rho GDP-dissociation inhibitor beta (RhoGDIβ) in tumor biology appears to be contradictory across various studies. Thus, the exploration of the molecular mechanisms underlying the differential functions of this protein in urinary bladder carcinogenesis is highly significant in the field. Here, RhoGDIβ expression patterns, biological functions, and mechanisms leading to transformation and progression of human urothelial cells (UROtsa cells) were evaluated following varying lengths of exposure to the bladder carcinogen N-butyl-N-(4-hydmoxybutyl) nitrosamine (BBN). RESULTS It was seen that compared to expression in vehicle-treated control cells, RhoGDIβ protein expression was downregulated after 2-month of BBN exposure, but upregulated after 6-month of exposure. Assessments of cell function showed that RhoGDIβ inhibited UROtsa cell growth in cells with BBN for 2-month exposure, whereas it promoted the invasion of cells treated with BBN for 6 months. Mechanistic studies revealed that 2-month of BBN exposure markedly attenuated DNMT3a abundance, and this led to reduced miR-219a promoter methylation, increased miR-219a binding to the RhoGDIβ mRNA 3'UTR, and reduced RhoGDIβ protein translation. While after 6-mo of BBN treatment, the cells showed increased PP2A/JNK/C-Jun axis phosphorylation and this in turn mediated overall RhoGDIβ mRNA transcription and protein expression as well as invasion. CONCLUSIONS These findings indicate that RhoGDIβ is likely to inhibit the transformation of human urothelial cells during the early phase of BBN exposure, whereas it promotes invasion of the transformed/progressed urothelial cells in the late stage of BBN exposure. The studies also suggest that RhoGDIβ may be a useful biomarker for evaluating the progression of human bladder cancers.
Collapse
Affiliation(s)
- Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
4
|
Bacchetti T, Campagna R, Sartini D, Cecati M, Morresi C, Bellachioma L, Martinelli E, Rocchetti G, Lucini L, Ferretti G, Emanuelli M. C. spinosa L. subsp. rupestris Phytochemical Profile and Effect on Oxidative Stress in Normal and Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196488. [PMID: 36235028 PMCID: PMC9573631 DOI: 10.3390/molecules27196488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Spices, widely used to improve the sensory characteristics of food, contain several bioactive compounds as well, including polyphenols, carotenoids, and glucosynolates. Acting through multiple pathways, these bioactive molecules affect a wide variety of cellular processes involved in molecular mechanisms important in the onset and progress of human diseases. Capparis spinosa L. is an aromatic plant characteristic of the Mediterranean diet. Previous studies have reported that different parts (aerial parts, roots, and seeds) of C. spinosa exert various pharmacological activities. Flower buds of C. spinosa contain several bioactive compounds, including polyphenols and glucosinolates. Two different subspecies of C. spinosa L., namely, C. spinosa L. subsp. spinosa, and C. spinosa L. subsp. rupestris, have been reported. Few studies have been carried out in C. spinosa L. subsp. rupestris. The aim of our study was to investigate the phytochemical profile of floral buds of the less investigated species C. spinosa subsp. rupestris. Moreover, we investigated the effect of the extract from buds of C. spinosa subsp. rupestris (CSE) on cell proliferation, intracellular ROS levels, and expression of the antioxidant and anti-apoptotic enzyme paraoxonase-2 (PON2) in normal and cancer cells. T24 cells and Caco-2 cells were selected as models of advanced-stage human bladder cancer and human colorectal adenocarcinoma, respectively. The immortalized human urothelial cell line (UROtsa) and human dermal fibroblast (HuDe) were chosen as normal cell models. Through an untargeted metabolomic approach based on ultra-high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS), our results demonstrate that C. spinosa subsp. rupestris flower buds contain polyphenols and glucosinolates able to exert a higher cytotoxic effect and higher intracellular reactive oxygen species (ROS) production in cancer cells compared to normal cells. Moreover, upregulation of the expression of the enzyme PON2 was observed in cancer cells. In conclusion, our data demonstrate that normal and cancer cells are differentially sensitive to CSE, which has different effects on PON2 gene expression as well. The overexpression of PON2 in T24 cells treated with CSE could represent a mechanism by which tumor cells protect themselves from the apoptotic process induced by glucosinolates and polyphenols.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Correspondence: (T.B.); (G.F.)
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Luisa Bellachioma
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Erika Martinelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Correspondence: (T.B.); (G.F.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
5
|
Wang HT, Lee HW, Weng MW, Liu Y, Huang WC, Lepor H, Wu XR, Tang MS. The role of TAp63γ and P53 point mutations in regulating DNA repair, mutational susceptibility and invasion of bladder cancer cells. eLife 2021; 10:71184. [PMID: 34747697 PMCID: PMC8575459 DOI: 10.7554/elife.71184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
It has long been recognized that non-muscle-invasive bladder cancer (NMIBC) has a low propensity (20%) of becoming muscle-invasive (MIBC), and that MIBC carry many more p53 point mutations (p53m) than NMIBC (50% vs 10%). MIBC also has a higher mutation burden than NMIBC. These results suggest that DNA repair capacities, mutational susceptibility and p53m are crucial for MIBC development. We found MIBC cells are hypermutable, deficient in DNA repair and have markedly downregulated DNA repair genes, XPC, hOGG1/2 and Ref1, and the tumor suppressor, TAp63γ. In contrast, NMIBC cells are hyperactive in DNA repair and exhibit upregulated DNA repair genes and TAp63γ. A parallel exists in human tumors, as MIBC tissues have markedly lower DNA repair activity, and lower expression of DNA repair genes and TAp63γ compared to NMIBC tissues. Forced TAp63γ expression in MIBC significantly mitigates DNA repair deficiencies and reduces mutational susceptibility. Knockdown of TAp63γ in NMIBC greatly reduces DNA repair capacity and enhances mutational susceptibility. Manipulated TAp63γ expression or knockdown of p53m reduce the invasion of MIBC by 40–60%. However, the combination of p53m knockdown with forced TAp63γ expression reduce the invasion ability to nil suggesting that p53m contributes to invasion phenotype independent from TAp63γ. These results indicate that in BC, TAp63γ regulates DNA repair capacities, mutational susceptibility and invasion, and that p53m contribute to the invasion phenotype. We conclude that concurrent TAp63γ suppression and acquisition of p53m are a major cause for MIBC development.
Collapse
Affiliation(s)
- Hsiang-Tsui Wang
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, United States
| | - Hyun-Wook Lee
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, United States
| | - Mao-Wen Weng
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, United States
| | - Yan Liu
- Department of Urology, New York University Grossman School of Medicine, New York, United States
| | - William C Huang
- Department of Urology, New York University Grossman School of Medicine, New York, United States
| | - Herbert Lepor
- Department of Urology, New York University Grossman School of Medicine, New York, United States
| | - Xue-Ru Wu
- Department of Urology, New York University Grossman School of Medicine, New York, United States
| | - Moon-Shong Tang
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, United States
| |
Collapse
|
6
|
Experimental investigation of a combinational iron chelating protoporphyrin IX prodrug for fluorescence detection and photodynamic therapy. Lasers Med Sci 2021; 37:1155-1166. [PMID: 34218351 PMCID: PMC8918167 DOI: 10.1007/s10103-021-03367-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 10/31/2022]
Abstract
Photodynamic therapy (PDT) is an oxygen-dependent, light-activated, and locally destructive drug treatment of cancer. Protoporphyrin IX (PpIX)-induced PDT exploits cancer cells' own innate heme biosynthesis to hyper-accumulate the naturally fluorescent and photoactive precursor to heme, PpIX. This occurs as a result of administering heme precursors (e.g., aminolevulinic acid; ALA) because the final step of the pathway (the insertion of ferrous iron into PpIX by ferrochelatase to form heme) is relatively slow. Separate administration of an iron chelating agent has previously been demonstrated to significantly improve dermatological PpIX-PDT by further limiting heme production. A newly synthesized combinational iron chelating PpIX prodrug (AP2-18) has been assessed experimentally in cultured primary human cells of bladder and dermatological origin, as an alternative photosensitizing agent to ALA or its methyl or hexyl esters (MAL and HAL respectively) for photodetection/PDT. Findings indicated that the technique of iron chelation (either through the separate administration of the established hydroxypyridinone iron chelator CP94 or the just as effective combined AP2-18) did not enhance either PpIX fluorescence or PDT-induced (neutral red assessed) cell death in human primary normal and malignant bladder cells. However, 500 µM AP2-18 significantly increased PpIX accumulation and produced a trend of increased cell death within epithelial squamous carcinoma cells. PpIX accumulation destabilized the actin cytoskeleton in bladder cancer cells prior to PDT and resulted in caspase-3 cleavage/early apoptosis afterwards. AP2-18 iron chelation should continue to be investigated for the enhancement of dermatological PpIX-PDT applications but not bladder photodetection/PDT.
Collapse
|
7
|
Tantisuwanno C, Dang F, Bender K, Spencer JD, Jennings ME, Barton HA, Joy A. Synergism between Rifampicin and Cationic Polyurethanes Overcomes Intrinsic Resistance of Escherichia coli. Biomacromolecules 2021; 22:2910-2920. [PMID: 34085824 DOI: 10.1021/acs.biomac.1c00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotic-resistant Gram-negative bacteria are emergent pathogens, causing millions of infections worldwide. While there are several classes of antibiotics that are effective against Gram-positive bacteria, the outer membrane (OM) of Gram-negative bacteria excludes high-molecular-weight hydrophobic antibiotics, making these species intrinsically resistant to several classes of antibiotics, including polyketides, aminocoumarins, and macrolides. The overuse of antibiotics such as β-lactams has also promoted the spread of resistance genes throughout Gram-negative bacteria, including the production of extended spectrum β-lactamases (ESBLs). The combination of innate and acquired resistance makes it extremely challenging to identify antibiotics that are effective against Gram-negative bacteria. In this study, we have demonstrated the synergistic effect of outer membrane-permeable cationic polyurethanes with rifampicin, a polyketide that would otherwise be excluded by the OM, on different strains of E. coli, including a clinically isolated uropathogenic multidrug-resistant (MDR) E. coli. Rifampicin combined with a low-dose treatment of a cationic polyurethane reduced the MIC in E. coli of rifampicin by up to 64-fold. The compositions of cationic polyurethanes were designed to have low hemolysis and low cell cytotoxicity while maintaining high antibacterial activity. Our results demonstrate the potential to rescue the large number of available OM-excluded antibiotics to target normally resistant Gram-negative bacteria via synergistic action with these cationic polyurethanes, acting as a novel antibiotic adjuvant class.
Collapse
Affiliation(s)
| | - Francis Dang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Kristin Bender
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43215, United States
| | - John D Spencer
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43215, United States
| | - Matthew E Jennings
- Biology Department, Centenary College of Louisiana, Shreveport, Louisiana 71104, United States
| | - Hazel A Barton
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
8
|
Fatema K, Shoily SS, Ahsan T, Haidar Z, Sumit AF, Sajib AA. Effects of arsenic and heavy metals on metabolic pathways in cells of human origin: Similarities and differences. Toxicol Rep 2021; 8:1109-1120. [PMID: 34141598 PMCID: PMC8188178 DOI: 10.1016/j.toxrep.2021.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
There are distinctive overlaps in different heavy metal affected metabolic pathways. Affected pathways vary according to the tissue origin and maturity of the cell. Arsenic appears to have relatively more pleiotropic effects on metabolic pathways. Some of the arsenic affected pathways are associated with diabetes.
Various anthropogenic and natural events over the years have gradually increased human exposure to various heavy metals. Several of these heavy metals including cadmium, mercury, nickel, chromium, and the metalloid arsenic among others, have created major public health concerns for their high level of toxicities. Identification of the general as well as the differentially affected cellular metabolic pathways will help understanding the molecular mechanism of different heavy metal-induced toxicities. In this study, we analyzed 25 paired (control vs. treated) transcriptomic datasets derived following treatment of various human cells with different heavy metals and metalloid (arsenic, cadmium, chromium, iron, mercury, nickel and vanadium) to identify the affected metabolic pathways. The effects of these metals on metabolic pathways depend not only on the metals per se, but also on the nature of the treated cells. Tissue of origin, therefore, must be considered while assessing the effects of any particular heavy metal or metalloid. Among the metals and metalloid, arsenic appears to have relatively more pleiotropic influences on cellular metabolic pathways including those known to have association with diabetes. Although only two stem cell derived datasets are included in the current study, effects of heavy metals on these cells appear to be different from other mature cells of similar tissue origin. This study provides useful information about different heavy metal affected pathways, which may be useful in further exploration using wet-lab based techniques.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Tamim Ahsan
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Ahmed Faisal Sumit
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
9
|
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, Rohn JL. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front Cell Infect Microbiol 2021; 11:691210. [PMID: 34123879 PMCID: PMC8188986 DOI: 10.3389/fcimb.2021.691210] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology - especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder's biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments.
Collapse
Affiliation(s)
- Benjamin O. Murray
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Carlos Flores
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Corin Williams
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Deborah A. Flusberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Elizabeth E. Marr
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Karolina M. Kwiatkowska
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Joseph L. Charest
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Jennifer L. Rohn
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| |
Collapse
|
10
|
Abstract
Cadmium (Cd) is an environmental toxicant with serious public health consequences due to its persistence within arable soils, and the ease with which it enters food chains and then, accumulates in human tissues to induce a broad range of adverse health effects. The present review focuses on the role of zinc (Zn), a nutritionally essential metal, to protect against the cytotoxicity and carcinogenicity of Cd in urinary bladder epithelial cells. The stress responses and defense mechanisms involving the low-molecular-weight metal binding protein, metallothionein (MT), are highlighted. The efflux and influx transporters of the ZnT and Zrt-/Irt-like protein (ZIP) gene families are discussed with respect to their putative role in retaining cellular Zn homeostasis. Among fourteen ZIP family members, ZIP8 and ZIP14 mediate Cd uptake by cells, while ZnT1 is among ten ZnT family members solely responsible for efflux of Zn (Cd), representing cellular defense against toxicity from excessively high Zn (Cd) intake. In theory, upregulation of the efflux transporter ZnT1 concomitant with the downregulation of influx transporters such as ZIP8 and ZIP14 can prevent Cd accumulation by cells, thereby increasing tolerance to Cd toxicity. To link the perturbation of Zn homeostasis, reflected by the aberrant expression of ZnT1, ZIP1, ZIP6, and ZIP10, with malignancy, tolerance to Cd toxicity acquired during Cd-induced transformation of a cell model of human urothelium, UROtsa, is discussed as a particular example.
Collapse
|
11
|
Satarug S, Garrett SH, Somji S, Sens MA, Sens DA. Zinc, Zinc Transporters, and Cadmium Cytotoxicity in a Cell Culture Model of Human Urothelium. TOXICS 2021; 9:toxics9050094. [PMID: 33923173 PMCID: PMC8145463 DOI: 10.3390/toxics9050094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 01/27/2023]
Abstract
We explored the potential role of zinc (Zn) and zinc transporters in protection against cytotoxicity of cadmium (Cd) in a cell culture model of human urothelium, named UROtsa. We used real-time qRT-PCR to quantify transcript levels of 19 Zn transporters of the Zrt-/Irt-like protein (ZIP) and ZnT gene families that were expressed in UROtsa cells and were altered by Cd exposure. Cd as low as 0.1 µM induced expression of ZnT1, known to mediate efflux of Zn and Cd. Loss of cell viability by 57% was seen 24 h after exposure to 2.5 µM Cd. Exposure to 2.5 µM Cd together with 10–50 µM Zn prevented loss of cell viability by 66%. Pretreatment of the UROtsa cells with an inhibitor of glutathione biosynthesis (buthionine sulfoximine) diminished ZnT1 induction by Cd with a resultant increase in sensitivity to Cd cytotoxicity. Conversely, pretreatment of UROtsa cells with an inhibitor of DNA methylation, 5-aza-2’-deoxycytidine (aza-dC) did not change the extent of ZnT1 induction by Cd. The induced expression of ZnT1 that remained impervious in cells treated with aza-dC coincided with resistance to Cd cytotoxicity. Therefore, expression of ZnT1 efflux transporter and Cd toxicity in UROtsa cells could be modulated, in part, by DNA methylation and glutathione biosynthesis. Induced expression of ZnT1 may be a viable mechanistic approach to mitigating cytotoxicity of Cd.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Centre for Health Service Research, University of Queensland Translational Research Institute, Woolloongabba, Brisbane 4102, Australia
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
- Correspondence:
| | - Scott H. Garrett
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| | - Seema Somji
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| | - Mary Ann Sens
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| | - Donald A. Sens
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| |
Collapse
|
12
|
Aberrant Expression of ZIP and ZnT Zinc Transporters in UROtsa Cells Transformed to Malignant Cells by Cadmium. STRESSES 2021. [DOI: 10.3390/stresses1020007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintenance of zinc homeostasis is pivotal to the regulation of cell growth, differentiation, apoptosis, and defense mechanisms. In mammalian cells, control of cellular zinc homeostasis is through zinc uptake, zinc secretion, and zinc compartmentalization, mediated by metal transporters of the Zrt-/Irt-like protein (ZIP) family and the Cation Diffusion Facilitators (CDF) or ZnT family. We quantified transcript levels of ZIP and ZnT zinc transporters expressed by non-tumorigenic UROtsa cells and compared with those expressed by UROtsa clones that were experimentally transformed to cancer cells by prolonged exposure to cadmium (Cd). Although expression of the ZIP8 gene in parent UROtsa cells was lower than ZIP14 (0.1 vs. 83 transcripts per 1000 β-actin transcripts), an increased expression of ZIP8 concurrent with a reduction in expression of one or two zinc influx transporters, namely ZIP1, ZIP2, and ZIP3, were seen in six out of seven transformed UROtsa clones. Aberrant expression of the Golgi zinc transporters ZIP7, ZnT5, ZnT6, and ZnT7 were also observed. One transformed clone showed distinctively increased expression of ZIP6, ZIP10, ZIP14, and ZnT1, with a diminished ZIP8 expression. These data suggest intracellular zinc dysregulation and aberrant zinc homeostasis both in the cytosol and in the Golgi in the transformed UROtsa clones. These results provide evidence for zinc dysregulation in transformed UROtsa cells that may contribute in part to their malignancy and/or muscle invasiveness.
Collapse
|
13
|
Jin H, Ma J, Xu J, Li H, Chang Y, Zang N, Tian Z, Wang X, Zhao N, Liu L, Chen C, Xie Q, Lu Y, Fang Z, Huang X, Huang C, Huang H. Oncogenic role of MIR516A in human bladder cancer was mediated by its attenuating PHLPP2 expression and BECN1-dependent autophagy. Autophagy 2021; 17:840-854. [PMID: 32116109 PMCID: PMC8078721 DOI: 10.1080/15548627.2020.1733262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Although MIR516A has been reported to be downregulated and act as a tumor suppressor in multiple cancers, its expression and potential contribution to human bladder cancer (BC) remain unexplored. Unexpectedly, we showed here that MIR516A was markedly upregulated in human BC tissues and cell lines, while inhibition of MIR516A expression attenuated BC cell monolayer growth in vitro and xenograft tumor growth in vivo, accompanied with increased expression of PHLPP2. Further studies showed that MIR516A was able to directly bind to the 3'-untranslated region of PHLPP2 mRNA, which was essential for its attenuating PHLPP2 expression. The knockdown of PHLPP2 expression in MIR516A-inhibited cells could reverse BC cell growth, suggesting that PHLPP2 is a MIR516A downstream mediator responsible for MIR516A oncogenic effect. PHLPP2 was able to mediate BECN1/Beclin1 stabilization indirectly, therefore promoting BECN1-dependent macroautophagy/autophagy, and inhibiting BC tumor cell growth. In addition, our results indicated that the increased autophagy by attenuating MIR516A resulted in a dramatic inhibition of xenograft tumor formation in vivo. Collectively, our results reveal that MIR516A has a novel oncogenic function in BC growth by directing binding to PHLPP2 3'-UTR and inhibiting PHLPP2 expression, in turn at least partly promoting CUL4A-mediated BECN1 protein degradation, thereby attenuating autophagy and promoting BC growth, which is a distinct function of MIR516A identified in other cancers.Abbreviation: ATG3: autophagy related 3; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BAF: bafilomycin A1; BC: bladder cancer; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CUL3: cullin 3; CUL4A: cullin 4A; CUL4B: cullin 4B; IF: immunofluorescence: IHC-p: immunohistochemistry-paraffin; MIR516A: microRNA 516a (microRNA 516a1 and microRNA 516a2); MS: mass spectrometry; PHLPP2: PH domain and leucine rich repeat protein phosphatase.
Collapse
Affiliation(s)
- Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiugao Ma
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Jiheng Xu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Chang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Zang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Liu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Caiyi Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Lu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouxi Fang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
von Palubitzki L, Wang Y, Hoffmann S, Vidal-Y-Sy S, Zobiak B, Failla AV, Schmage P, John A, Osorio-Madrazo A, Bauer AT, Schneider SW, Goycoolea FM, Gorzelanny C. Differences of the tumour cell glycocalyx affect binding of capsaicin-loaded chitosan nanocapsules. Sci Rep 2020; 10:22443. [PMID: 33384430 PMCID: PMC7775450 DOI: 10.1038/s41598-020-79882-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The glycocalyx regulates the interaction of mammalian cells with extracellular molecules, such as cytokines. However, it is unknown to which extend the glycocalyx of distinct cancer cells control the binding and uptake of nanoparticles. In the present study, exome sequencing data of cancer patients and analysis of distinct melanoma and bladder cancer cell lines suggested differences in cancer cell-exposed glycocalyx components such as heparan sulphate. Our data indicate that glycocalyx differences affected the binding of cationic chitosan nanocapsules (Chi-NCs). The pronounced glycocalyx of bladder cancer cells enhanced the internalisation of nanoencapsulated capsaicin. Consequently, capsaicin induced apoptosis in the cancer cells, but not in the less glycosylated benign urothelial cells. Moreover, we measured counterion condensation on highly negatively charged heparan sulphate chains. Counterion condensation triggered a cooperative binding of Chi-NCs, characterised by a weak binding rate at low Chi-NC doses and a strongly increased binding rate at high Chi-NC concentrations. Our results indicate that the glycocalyx of tumour cells controls the binding and biological activity of nanoparticles. This has to be considered for the design of tumour cell directed nanocarriers to improve the delivery of cytotoxic drugs. Differential nanoparticle binding may also be useful to discriminate tumour cells from healthy cells.
Collapse
Affiliation(s)
- Lydia von Palubitzki
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Yuanyuan Wang
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan Hoffmann
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, 48143, Münster, Germany
| | - Sabine Vidal-Y-Sy
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Bernd Zobiak
- Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Antonio V Failla
- Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Petra Schmage
- Clinic of Periodontology, Preventive and Operative Dentistry, Center of Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Axel John
- Department of Urology, University Medical Center of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering (IMTEK), Freiburg Materials Research Center (FMF), and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, 79104, Freiburg, Germany
| | - Alexander T Bauer
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan W Schneider
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Christian Gorzelanny
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
15
|
Yan H, Ren S, Lin Q, Yu Y, Chen C, Hua X, Jin H, Lu Y, Zhang H, Xie Q, Huang C, Huang H. Inhibition of UBE2N-dependent CDK6 protein degradation by miR-934 promotes human bladder cancer cell growth. FASEB J 2019; 33:12112-12123. [PMID: 31373842 DOI: 10.1096/fj.201900499rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because bladder cancer (BC) is one of the most common malignant cancers of the urinary system, identification of BC cell growth-associated effectors is of great significance. Cyclin-dependent kinase (CDK)6 is a member of the CDK family of cell cycle-related proteins and plays an important role in cancer cell growth. This is borne out by the fact that a CDK6 inhibitor had been approved to treat several types of cancers. Nevertheless, underlying molecular mechanisms concerning how to regulate CDK6 expression in BC remains unclear. In the present study, it was observed that miR-934 was much higher in human BCs and human BC cell lines as well. The results also revealed that miR-934 inhibition dramatically decreased human BC cell monolayer growth in vitro and xenograft tumor growth in vivo; the outcomes were accompanied by CDK6 protein down-regulation and G0-G1 cell cycle arrest. Moreover, overexpression of CDK6 reversed the inhibition of BC cell growth induced by miR-934. Further studies showed that miR-934 binds to a 3'-UTR of ubiquitin-conjugating enzyme 2N (ube2n) mRNA, down-regulated UBE2N protein expression; this, in turn, attenuated CDK6 protein degradation and led to CDK6 protein accumulation as well as the promotion of BC tumor growth. Collectively, this study not only establishes a novel regulatory axis of miR-934/UBE2N of CDK6 but also provides data suggesting that miR-934 and UBE2N may be potentially promising targets for therapeutic strategies against BC.-Yan, H., Ren, S., Lin, Q., Yu, Y., Chen, C., Hua, X., Jin, H., Lu, Y., Zhang, H., Xie, Q., Huang, C., Huang, H. Inhibition of UBE2N-dependent CDK6 protein degradation by miR-934 promotes human bladder cancer cell growth.
Collapse
Affiliation(s)
- Huiying Yan
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuwei Ren
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Yu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Caiyi Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Lu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huxiang Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Eichler T, Bender K, Murtha MJ, Schwartz L, Metheny J, Solden L, Jaggers RM, Bailey MT, Gupta S, Mosquera C, Ching C, La Perle K, Li B, Becknell B, Spencer JD. Ribonuclease 7 Shields the Kidney and Bladder from Invasive Uropathogenic Escherichia coli Infection. J Am Soc Nephrol 2019; 30:1385-1397. [PMID: 31239387 PMCID: PMC6683711 DOI: 10.1681/asn.2018090929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/17/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Evidence suggests that antimicrobial peptides, components of the innate immune response, protect the kidneys and bladder from bacterial challenge. We previously identified ribonuclease 7 (RNase 7) as a human antimicrobial peptide that has bactericidal activity against uropathogenic Escherichia coli (UPEC). Functional studies assessing RNase 7's contributions to urinary tract defense are limited. METHODS To investigate RNase 7's role in preventing urinary tract infection (UTI), we quantified urinary RNase 7 concentrations in 29 girls and adolescents with a UTI history and 29 healthy female human controls. To assess RNase 7's antimicrobial activity in vitro in human urothelial cells, we used siRNA to silence urothelial RNase 7 production and retroviral constructs to stably overexpress RNase 7; we then evaluated UPEC's ability to bind and invade these cells. For RNase 7 in vivo studies, we developed humanized RNase 7 transgenic mice, subjected them to experimental UTI, and enumerated UPEC burden in the urine, bladder, and kidneys. RESULTS Compared with controls, study participants with a UTI history had 1.5-fold lower urinary RNase 7 concentrations. When RNase 7 was silenced in vitro, the percentage of UPEC binding or invading human urothelial cells increased; when cells overexpressed RNase 7, UPEC attachment and invasion decreased. In the transgenic mice, we detected RNase 7 expression in the kidney's intercalated cells and bladder urothelium. RNase 7 humanized mice exhibited marked protection from UPEC. CONCLUSIONS These findings provide evidence that RNase 7 has a role in kidney and bladder host defense against UPEC and establish a foundation for investigating RNase 7 as a UTI prognostic marker or nonantibiotic-based therapy.
Collapse
Affiliation(s)
- Tad Eichler
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | - Kristin Bender
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | - Matthew J Murtha
- Centers for Clinical and Translational Research and
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
| | - Laura Schwartz
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | | | - Lindsey Solden
- Microbial Pathogenesis, The Research Institute at Nationwide Children's, Columbus, Ohio
| | - Robert M Jaggers
- Microbial Pathogenesis, The Research Institute at Nationwide Children's, Columbus, Ohio
| | - Michael T Bailey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Microbial Pathogenesis, The Research Institute at Nationwide Children's, Columbus, Ohio
| | - Sudipti Gupta
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | | | - Christina Ching
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Divisions of Urology and
- Departments of Pediatric Surgery and
| | - Krista La Perle
- Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| | - Birong Li
- Centers for Clinical and Translational Research and
| | - Brian Becknell
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Nephrology, and
- Pediatrics, Nationwide Children's, Columbus, Ohio
| | - John David Spencer
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Nephrology, and
- Pediatrics, Nationwide Children's, Columbus, Ohio
| |
Collapse
|
17
|
Hoggarth ZE, Osowski DB, Slusser-Nore A, Shrestha S, Pathak P, Solseng T, Garrett SH, Patel DH, Savage E, Sens DA, Somji S. Enrichment of genes associated with squamous differentiation in cancer initiating cells isolated from urothelial cells transformed by the environmental toxicant arsenite. Toxicol Appl Pharmacol 2019; 374:41-52. [PMID: 31047981 DOI: 10.1016/j.taap.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 01/09/2023]
Abstract
Arsenic is an environmental toxicant with long-term exposure associated with the development of urothelial carcinomas. Our lab has developed an in-vitro model of urothelial carcinoma by exposing the immortal, but non-tumorigenic bladder cell line, the UROtsa, to arsenite (As3+). These transformed cells form tumors in immune-compromised mice, which resemble urothelial carcinomas with components of the tumor exhibiting squamous differentiation. The goal of the present study was to determine the differences in global gene expression patterns between the As3+-transformed UROtsa cells and the urospheres (spheroids containing putative cancer initiating cells) isolated from these cell lines and to determine if the genes involved in the development of squamous differentiation were enriched in the urospheres. The results obtained in this study show an enrichment of genes such as KRT1, KRT5, KRT6A, KRT6B, KRT6C, KRT14 and KRT16 associated with squamous differentiation, a characteristic feature seen in aggressive basal subtypes of urothelial cell carcinoma (UCC) in the urospheres isolated from As3+-transformed UROtsa cells. In addition, there is increased expression of several of the small proline-rich proteins (SPRR) in the urospheres and overexpression of these genes occur in UCC's displaying squamous differentiation. In conclusion, the cancer initiating cells present in the urospheres are enriched with genes associated with squamous differentiation.
Collapse
Affiliation(s)
- Zachary E Hoggarth
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Danyelle B Osowski
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Andrea Slusser-Nore
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Swojani Shrestha
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Prakash Pathak
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Theoren Solseng
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Scott H Garrett
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Divyen H Patel
- Genome Explorations, 1910 Nonconnah Avenue, Suite 120, Memphis, TN 38132, United States.
| | - Evan Savage
- Genome Explorations, 1910 Nonconnah Avenue, Suite 120, Memphis, TN 38132, United States.
| | - Donald A Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Seema Somji
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| |
Collapse
|
18
|
Hoggarth ZE, Osowski DB, Freeberg BA, Garrett SH, Sens DA, Sens MA, Zhou XD, Zhang KK, Somji S. The urothelial cell line UROtsa transformed by arsenite and cadmium display basal characteristics associated with muscle invasive urothelial cancers. PLoS One 2018; 13:e0207877. [PMID: 30550540 PMCID: PMC6294394 DOI: 10.1371/journal.pone.0207877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023] Open
Abstract
Muscle invasive urothelial carcinomas are divided into various molecular subtypes with basal and luminal subtypes being the prominent ones. The basal muscle-invasive urothelial carcinomas are generally more aggressive at presentation and significantly enriched with squamous features. Our laboratory has developed an in-vitro model of urothelial cancer by transforming the immortalized cell line UROtsa with arsenite (As3+) and cadmium (Cd2+). In this study, we characterized the tumors formed by these transformed cell lines as more basal-like based on their gene expression patterns with increased expression of KRT1, KRT5, KRT6, KRT14, KRT16, KRT17 and CD44. In addition, histological examination of these tumor transplants showed squamous features enriched in basal muscle invasive urothelial carcinomas. The expression of these genes increased in the transformed cell lines as well as in the urospheres, which are putative cancer initiating cells/stem cells derived from the cell lines. There was also increased expression of these genes in the urospheres derived from the parent UROtsa cell line. Thus, our data shows that the As3+ and Cd2+-transformed cell lines and their derived tumor transplants have gene expression profiles similar to the basal subtype of muscle invasive bladder carcinomas with tumors having enriched squamous features. The increased expression of basal markers in the urospheres suggests that stem cells may be involved in the development of squamous differentiation seen in some of the muscle invasive bladder carcinomas.
Collapse
MESH Headings
- Animals
- Arsenites/toxicity
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadmium/toxicity
- Cell Differentiation
- Cell Line, Transformed
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Heterografts
- Humans
- Immunohistochemistry
- Mice
- Mice, Nude
- Models, Biological
- Neoplasm Invasiveness/genetics
- Neoplasm Invasiveness/pathology
- Neoplasm Transplantation
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transcriptome
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Urothelium/drug effects
- Urothelium/metabolism
- Urothelium/pathology
Collapse
Affiliation(s)
- Zachary E. Hoggarth
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Danyelle B. Osowski
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Brooke A. Freeberg
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Mary Ann Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Ke K. Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
19
|
Woolbright BL, Choudhary D, Mikhalyuk A, Trammel C, Shanmugam S, Abbott E, Pilbeam CC, Taylor JA. The Role of Pyruvate Dehydrogenase Kinase-4 (PDK4) in Bladder Cancer and Chemoresistance. Mol Cancer Ther 2018; 17:2004-2012. [PMID: 29907593 DOI: 10.1158/1535-7163.mct-18-0063] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Advanced bladder cancer remains a major source of mortality, with poor treatment options. Cisplatin-based chemotherapy is the standard treatment, however many patients are or become resistant. One potential cause of chemoresistance is the Warburg effect, a metabolic switch to aerobic glycolysis that occurs in many cancers. Upregulation of the pyruvate dehydrogenase kinase family (PDK1-PDK4) is associated with aerobic glycolysis and chemoresistance through inhibition of the pyruvate dehydrogenase complex (PDH). We have previously observed upregulation of PDK4 in high-grade compared with low-grade bladder cancers. We initiated this study to determine if inhibition of PDK4 could reduce tumor growth rates or sensitize bladder cancer cells to cisplatin. Upregulation of PDK4 in malignant bladder cancer cell lines as compared with benign transformed urothelial cells was confirmed using qPCR. Inhibition of PDK4 with dichloroacetate (DCA) resulted in increased PDH activity, reduced cell growth, and G0-G1 phase arrest in bladder cancer cells. Similarly, siRNA knockdown of PDK4 inhibited bladder cancer cell proliferation. Cotreatment of bladder cancer cells with cisplatin and DCA did not increase caspase-3 activity but did enhance overall cell death in vitro Although daily treatment with 200 mg/kg DCA alone did not reduce tumor volumes in a xenograft model, combination treatment with cisplatin resulted in dramatically reduced tumor volumes as compared with either DCA or cisplatin alone. This was attributed to substantial intratumoral necrosis. These findings indicate inhibition of PDK4 may potentiate cisplatin-induced cell death and warrant further studies investigating the mechanism through which this occurs. Mol Cancer Ther; 17(9); 2004-12. ©2018 AACR.
Collapse
Affiliation(s)
| | | | - Andrew Mikhalyuk
- University of Connecticut School of Medicine, Farmington, Connecticut
| | - Cassandra Trammel
- University of Connecticut School of Medicine, Farmington, Connecticut
| | | | - Erika Abbott
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Carol C Pilbeam
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
20
|
Wasén C, Ekstrand M, Levin M, Giglio D. Epidermal growth factor receptor function in the human urothelium. Int Urol Nephrol 2018; 50:647-656. [PMID: 29508172 PMCID: PMC5878195 DOI: 10.1007/s11255-018-1831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/22/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Epidermal growth factor receptor (EGFr)-targeted therapy may be used in subgroups of patients with urinary bladder cancer. Here we assessed the role of EGFr in urothelial proliferation and migration in a two- and three-dimensional cell culture system. METHODS UROtsa cells derived from normal urothelium and malignant T24 cells were cultured in a Type I collagen gel. Proliferation and migration of urothelial cells, in the absence and presence of the EGFr inhibitor cetuximab, were assessed with a proliferation test (ATCC) and with the Axioplan 2 imaging microscope with a motorized stage (Carl Zeiss), respectively. The expressions of cytokeratin (CK) 17, CK20, EGFr, pEGFr, laminin, occludin and zonula occludens 1 (ZO-1) were assessed with immunohistochemistry and/or western blot. RESULTS UROtsa spheroids were formed after 7 days in culture, while T24 cells did not form spheroids. UROtsa expressed CK20 but not laminin or CK17 and consequently resembled umbrella cells. In UROtsa and T24, cetuximab inhibited urothelial proliferation, induced cleavage of EGFr and/or pEGFR but did not affect urothelial migration. The tight junction protein occludin was cleaved, and the formation of cellular spheroids was inhibited in UROtsa by the presence of cetuximab. CONCLUSIONS EGFr modulates urothelial proliferation and the formation of the three-dimensional structure of the urothelium possibly by interfering with occludin. The present data also show a cell culture technique enabling phenotypically normal urothelial cells to form epithelial structures in contrast to malignant urothelial cells.
Collapse
Affiliation(s)
- C Wasén
- Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Box 431, 405 30, Göteborg, Sweden
| | - M Ekstrand
- The Wallenberg Laboratory, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - M Levin
- The Wallenberg Laboratory, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Oncology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - D Giglio
- Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Box 431, 405 30, Göteborg, Sweden. .,Department of Oncology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
21
|
XIAP RING domain mediates miR-4295 expression and subsequently inhibiting p63α protein translation and promoting transformation of bladder epithelial cells. Oncotarget 2018; 7:56540-56557. [PMID: 27447744 PMCID: PMC5302933 DOI: 10.18632/oncotarget.10645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
The X-linked inhibitor of apoptosis protein (XIAP) contains three N-terminal BIR domains that mediate anti-apoptosis and one C-terminal RING finger domain whose function(s) are not fully defined. Here we show that the RING domain of XIAP strongly inhibits the expression of p63α, a known tumor suppressor. XIAP knockdown in urothelial cells or RING deletion in knockin mice markedly upregulates p63α expression. This RING-mediated p63α downregulation is critical for the malignant transformation of normal urothelial cells following EGF treatment. We further show that the RING domain promotes Sp1-mediated transcription of miR-4295 which targets the 3′UTR of p63α mRNA and consequently inhibits p63α translation. Our results reveal a previously unknown function of the RING of XIAP in promoting miR-4295 transcription, thereby reducing p63α translation and enhancing urothelial transformation. Our data offer novel insights into the multifunctional effects of the XIAP RING domain on urothelial tumorigenesis and the potential for targeting this frequently overexpressed protein as a therapeutic alternative.
Collapse
|
22
|
Abstract
p53 tumor suppressor responds to various cellular stresses and regulates cell fate. Here, we show that peptidase D (PEPD) binds and suppresses over half of nuclear and cytoplasmic p53 under normal conditions, independent of its enzymatic activity. Eliminating PEPD causes cell death and tumor regression due to p53 activation. PEPD binds to the proline-rich domain in p53, which inhibits phosphorylation of nuclear p53 and MDM2-mediated mitochondrial translocation of nuclear and cytoplasmic p53. However, the PEPD-p53 complex is critical for p53 response to stress, as stress signals doxorubicin and H2O2 each must free p53 from PEPD in order to achieve robust p53 activation, which is mediated by reactive oxygen species. Thus, PEPD stores p53 for the stress response, but this also renders cells dependent on PEPD for survival, as it suppresses p53. This finding provides further understanding of p53 regulation and may have significant implications for the treatment of cancer and other diseases. p53 is a pivotal tumour suppressor that is activated by various cellular stress inducers. Here, the authors show that peptidase D (PEPD) promotes the growth of cancer cells by suppressing p53 and that the complex PEPD-p53 is critical for robust p53 activation in response to stress signals.
Collapse
|
23
|
Arndt P, Leistner ND, Neuss S, Kaltbeitzel D, Brook GA, Grosse J. Artificial urine and FBS supplemented media in cytocompatibility assays for PLGA-PEG-based intravesical devices using the urothelium cell line UROtsa. J Biomed Mater Res B Appl Biomater 2017; 106:2140-2147. [DOI: 10.1002/jbm.b.34021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 12/16/2022]
Affiliation(s)
- P. Arndt
- Department of Urology; RWTH Aachen University, Pauwelsstraße 30; 52074 Aachen Germany
| | - N. D. Leistner
- Department of Neuro-Urology; University Clinic Friedrich-Wilhelms-University Bonn and Neurologic Rehabilitation Centre Godeshöhe; Bonn Germany
| | - S. Neuss
- Helmholts Institute for Biomedical Engineering; Biointerface Group, RWTH Aachen University; Aachen Germany
- Institute of Pathology, RWTH Aachen University; Aachen Germany
| | - D. Kaltbeitzel
- Institute of Plastics Processing, RWTH Aachen University; Aachen Germany
| | - G. A. Brook
- Institute of Neuropathology, RWTH Aachen University; Aachen Germany
| | - J. Grosse
- Department of Urology; RWTH Aachen University, Pauwelsstraße 30; 52074 Aachen Germany
| |
Collapse
|
24
|
Oliva-González C, Uresti-Rivera EE, Galicia-Cruz OG, Jasso-Robles FI, Gandolfi AJ, Escudero-Lourdes C. The tumor suppressor phosphatase and tensin homolog protein (PTEN) is negatively regulated by NF-κb p50 homodimers and involves histone 3 methylation/deacetylation in UROtsa cells chronically exposed to monomethylarsonous acid. Toxicol Lett 2017; 280:92-98. [PMID: 28823542 DOI: 10.1016/j.toxlet.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 01/06/2023]
Abstract
UROtsa cells have been accepted as a model to study carcinogenicity mechanisms of arsenic-associated human bladder cancer. In vitro continuous exposure to monomethylarsonous acid (MMAIII), leads UROtsa cells to commit to malignant transformation. In this process, NF-κβ-associated inflammatory response seems to play an important role since this transcription factor activates some minutes after cells are exposed in vitro to MMAIII and keeps activated during the cellular malignant transformation. It is known that a slight decrease in the protein phosphatase and tensin homologue (PTEN) gene expression is enough for some cells to become malignantly transformed. Interestingly, this tumor suppressor has been proven to be negatively regulated by NF-κβ through binding to its gene promoter. Based on these observations we propose that NF-κβ may be involved in arsenic associated carcinogenesis through the negative regulation of PTEN gene expression. Changes in PTEN expression and the binding of p50 NF-κβ subunit to PTEN promoter were evaluated in UROtsa cells exposed for 4, 12, 20, or 24 wk to 50nM MMAIII. Results showed that MMAIII induced a significant decrease in PTEN expression around 20 wk exposure to MMAIII,which correlated with increased binding of p50 subunit to the PTEN promoter. Consistent with these results, ChIP assays also showed a significant decrease in H3 acetylation (H3ac) but an increase in the repression marks H3k9me3 and H327me3 in PTEN promoter when compared with not treated cells. These results suggest that the activation of NF-κβ by MMAIII may participate in UROtsa cells malignant transformation through the negative regulation of PTEN expression involving p50 homodimers-mediated chromatin remodeling around the PTEN promoter.
Collapse
Affiliation(s)
- C Oliva-González
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - E E Uresti-Rivera
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - O G Galicia-Cruz
- Laboratorio de Fisiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | - F I Jasso-Robles
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - A J Gandolfi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson AZ, USA
| | - C Escudero-Lourdes
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
25
|
Zhu J, Li Y, Tian Z, Hua X, Gu J, Li J, Liu C, Jin H, Wang Y, Jiang G, Huang H, Huang C. ATG7 Overexpression Is Crucial for Tumorigenic Growth of Bladder Cancer In Vitro and In Vivo by Targeting the ETS2/miRNA196b/FOXO1/p27 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 7:299-313. [PMID: 28624205 PMCID: PMC5415961 DOI: 10.1016/j.omtn.2017.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 11/28/2022]
Abstract
Human bladder cancer (BC) is the fourth most common cancer in the United States. Investigation of the strategies aiming to elucidate the tumor growth and metastatic pathways in BC is critical for the management of this disease. Here we found that ATG7 expression was remarkably elevated in human bladder urothelial carcinoma and N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced mouse invasive BC. Knockdown of ATG7 resulted in a significant inhibitory effect on tumorigenic growth of human BC cells both in vitro and in vivo by promoting p27 expression and inducing cell cycle arrest at G2/M phase. We further demonstrated that knockdown of ATG7 upregulated FOXO1 (forkhead box protein O 1) expression, which specifically promoted p27 transcription. Moreover, mechanistic studies revealed that inhibition of ATG7 stabilized ETS2 mRNA and, in turn, reduced miR-196b transcription and expression of miR-196b, which was able to bind to the 3' UTR of FOXO1 mRNA, consequently stabilizing FOXO1 mRNA and finally promoting p27 transcription and attenuating BC tumorigenic growth. The identification of the ATG7/FOXO1/p27 mechanism for promoting BC cell growth provides significant insights into understanding the nature of BC tumorigenesis. Together with our most recent discovery of the crucial role of ATG7 in promoting BC invasion, it raises the potential for developing an ATG7-based specific therapeutic strategy for treatment of human BC patients.
Collapse
Affiliation(s)
- Junlan Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Yang Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Claire Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yulei Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
26
|
The expression of keratin 6 is regulated by the activation of the ERK1/2 pathway in arsenite transformed human urothelial cells. Toxicol Appl Pharmacol 2017; 331:41-53. [PMID: 28501331 DOI: 10.1016/j.taap.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 11/22/2022]
Abstract
Urothelial cancers have an environmental etiological component, and previous studies from our laboratory have shown that arsenite (As+3) can cause the malignant transformation of the immortalized urothelial cells (UROtsa), leading to the expression of keratin 6 (KRT6). The expression of KRT6 in the parent UROtsa cells can be induced by the addition of epidermal growth factor (EGF). Tumors formed by these transformed cells have focal areas of squamous differentiation that express KRT6. The goal of this study was to investigate the mechanism involved in the upregulation of KRT6 in urothelial cancers and to validate that the As+3-transformed UROtsa cells are a model of urothelial cancer. The results obtained showed that the parent and the As+3-transformed UROtsa cells express EGFR which is phosphorylated with the addition of epidermal growth factor (EGF) resulting in an increased expression of KRT6. Inhibition of the extracellular-signal regulated kinases (ERK1/2) pathway by the addition of the mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 kinase inhibitor U0126 resulted in a decrease in the phosphorylation of ERK1/2 and a reduced expression of KRT6. Immuno-histochemical analysis of the tumors generated by the As+3-transformed isolates expressed EGFR and tumors formed by two of the transformed isolates expressed the phosphorylated form of EGFR. These results show that the expression of KRT6 is regulated at least in part by the ERK1/2 pathway and that the As+3-transformed human urothelial cells have the potential to serve as a valid model to study urothelial carcinomas.
Collapse
|
27
|
Roudnicky F, Dieterich LC, Poyet C, Buser L, Wild P, Tang D, Camenzind P, Ho CH, Otto VI, Detmar M. High expression of insulin receptor on tumour-associated blood vessels in invasive bladder cancer predicts poor overall and progression-free survival. J Pathol 2017; 242:193-205. [PMID: 28295307 DOI: 10.1002/path.4892] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/15/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
Bladder cancer is a frequently recurring disease with a very poor prognosis once progressed to invasive stages, and tumour-associated blood vessels play a crucial role in this process. In order to identify novel biomarkers associated with progression, we isolated blood vascular endothelial cells (BECs) from human invasive bladder cancers and matched normal bladder tissue, and found that tumour-associated BECs greatly up-regulated the expression of insulin receptor (INSR). High expression of INSR on BECs of invasive bladder cancers was significantly associated with shorter progression-free and overall survival. Furthermore, increased expression of the INSR ligand IGF-2 in invasive bladder cancers was associated with reduced overall survival. INSR may therefore represent a novel biomarker to predict cancer progression. Mechanistically, we observed pronounced hypoxia in human bladder cancer tissue, and found a positive correlation between the expression of the hypoxia marker gene GLUT1 and vascular INSR expression, indicating that hypoxia drives INSR expression in tumour-associated blood vessels. In line with this, exposure of cultured BECs and human bladder cancer cell lines to hypoxia led to increased expression of INSR and IGF-2, respectively, and IGF-2 increased BEC migration through the activation of INSR in vitro. Taken together, we identified vascular INSR expression as a potential biomarker for progression in bladder cancer. Furthermore, our data suggest that IGF-2/INSR mediated paracrine crosstalk between bladder cancer cells and endothelial cells is functionally involved in tumour angiogenesis and may thus represent a new therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Filip Roudnicky
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Cedric Poyet
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Lorenz Buser
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Wild
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Dave Tang
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Peter Camenzind
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Chien Hsien Ho
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Vivianne I Otto
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Winder M, Vesela R, Aronsson P, Patel B, Carlsson T. Autonomic Receptor-mediated Regulation of Production and Release of Nitric Oxide in Normal and Malignant Human Urothelial Cells. Basic Clin Pharmacol Toxicol 2017; 121:257-265. [PMID: 28437032 DOI: 10.1111/bcpt.12799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/12/2017] [Indexed: 01/30/2023]
Abstract
In the urinary bladder, the main source of NO seems to be the urothelium and the underlying suburothelium. In this study, we aimed to characterize how receptors in the human urothelium regulate the production and release of NO. For this, we cultured two human urothelial cell lines - the normal immortalized cell line UROtsa and the malignant cell line T24. These were treated with an array of agonists and antagonists with affinity for adrenergic, muscarinic and purinergic receptors. The production of NO and expression of nitric oxide synthase (NOS) was studied by immunocytochemistry and Western blotting. The amount of released NO was measured indirectly by detecting nitrite using amperometry and a Griess reaction kit. The results showed that NO, endothelial NOS and inducible NOS were predominantly produced and expressed in the close vicinity of the nucleus in untreated human urothelial cells. Upon treatment with a beta-adrenoceptor agonist, but not any of the other agonists or antagonists, the pattern of NO production changed, showing a more even production throughout the cytosol. The pattern of expression of endothelial NOS changed in a similar way upon dobutamine treatment. The release of nitrite, as a measurement of NO, increased after treatment with dobutamine from 0.31 ± 0.029 to 1.97 ± 0.18 nmol and 0.80 ± 0.12 to 3.27 ± 0.24 nmol in UROtsa and T24, respectively. In conclusion, our results show that the expression of NOS and production of NO as well as the release of NO from human urothelial cells is regulated by beta-adrenoceptor activation.
Collapse
Affiliation(s)
- Michael Winder
- Department of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Renata Vesela
- Department of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patrik Aronsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bhavik Patel
- Department of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Thomas Carlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Zhu J, Wang J, Chen X, Tsompana M, Gaile D, Buck M, Ren X. A time-series analysis of altered histone H3 acetylation and gene expression during the course of MMAIII-induced malignant transformation of urinary bladder cells. Carcinogenesis 2017; 38:378-390. [PMID: 28182198 DOI: 10.1093/carcin/bgx011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
Our previous studies have shown that chronic exposure to low doses of monomethylarsonous acid (MMAIII) causes global histone acetylation dysregulation in urothelial cells (UROtsa cells) during the course of malignant transformation. To reveal the relationship between altered histone acetylation patterns and aberrant gene expression, more specifically, the carcinogenic relevance of these alterations, we performed a time-course analysis of the binding patterns of histone 3 lysine 18 acetylation (H3K18ac) across the genome and generated global gene-expression profiles from this UROtsa cell malignant transformation model. We showed that H3K18ac, one of the most significantly upregulated histone acetylation sites following MMAIII exposure, was enriched at gene promoter-specific regions across the genome and that MMAIII-induced upregulation of H3K18ac led to an altered binding pattern in a large number of genes that was most significant during the critical window for MMAIII-induced UROtsa cells' malignant transformation. Some genes identified as having a differential binding pattern with H3K18ac, acted as upstream regulators of critical gene networks with known functions in tumor development and progression. The altered H3K18ac binding patterns not only led to changes in expression of these directly affected upstream regulators but also resulted in gene-expression changes in their regulated networks. Collectively, our data suggest that MMAIII-induced alteration of histone acetylation patterns in UROtsa cells led to a time- and malignant stage-dependent aberrant gene-expression pattern, and that some gene regulatory networks were altered in accordance with their roles in carcinogenesis, probably contributing to MMAIII-induced urothelial cell malignant transformation and carcinogenesis.
Collapse
Affiliation(s)
- Jinqiu Zhu
- Department of Epidemiology and Environmental Health
| | | | - Xushen Chen
- Department of Epidemiology and Environmental Health
| | | | | | | | - Xuefeng Ren
- Department of Epidemiology and Environmental Health.,Department of Pharmacology and Toxicology, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
30
|
Simultaneous Targeting of Bladder Tumor Growth, Survival, and Epithelial-to-Mesenchymal Transition with a Novel Therapeutic Combination of Acetazolamide (AZ) and Sulforaphane (SFN). Target Oncol 2017; 11:209-27. [PMID: 26453055 DOI: 10.1007/s11523-015-0386-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Current chemotherapies for advanced stage metastatic bladder cancer often result in severe side effects, and most patients become drug resistant over time. Thus, there is a need for more effective therapies with minimal side effects. OBJECTIVE The acid/base balance in tumor cells is essential for tumor cell functioning. We reasoned that simultaneous targeting of pH homeostasis and survival pathways would improve therapeutic efficacy. We evaluated the effectiveness of targeting pH homeostasis with the carbonic anhydrase inhibitor acetazolamide (AZ) in combination with the survival pathway targeting isothiocyanate sulforaphane (SFN) on the HTB-9 and RT112(H) human bladder tumor cell lines. MATERIALS AND METHODS We assessed viability, proliferation, and survival in vitro and effect on xenografts in vivo. RESULTS Combination AZ + SFN treatment induced dose-dependent suppression of growth, produced a potent anti-proliferative and anti-clonogenic effect, and induced apoptosis through caspase-3 and PARP activation. The anti-proliferative effect was corroborated by significant reductions in Ki-67, pHH3, cyclin D1, and sustained induction of the cell cycle inhibitors, p21 and p27. Both active p-Akt (Ser473) and p-S6 were significantly downregulated in the AZ + SFN combination treated cells with a concomitant inhibition of Akt kinase activity. The inhibitory effects of the AZ + SFN combination treatment showed similar efficacy as the dual PI3K/mTOR pathway inhibitor NVP-BEZ235, albeit at an expected higher dose. In terms of the effect on the metastatic potential of these bladder cancers, we found downregulated expression of carbonic anhydrase 9 (CA9) concomitant with reductions in both E-cadherin, N-cadherin, and vimentin proteins mitigating the epithelial-to-mesenchymal transition (EMT), suggesting negation of this program. CONCLUSION We suggest that reductions in these components could be linked with downregulation of the survival mediated Akt pathway and suggested an active role of the Akt pathway in bladder cancer. Altogether, our in vitro and pre-clinical model data support the potential use of an AZ + SFN combination for the treatment of bladder cancer.
Collapse
|
31
|
Farr SE, Chess-Williams R, McDermott CM. Gemcitabine: Selective cytotoxicity, induction of inflammation and effects on urothelial function. Toxicol Appl Pharmacol 2016; 316:1-9. [PMID: 28007550 DOI: 10.1016/j.taap.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022]
Abstract
Intravesical gemcitabine has recently been introduced for the treatment of superficial bladder cancer and has a favourable efficacy and toxicity profile in comparison to mitomycin c (MMC), the most commonly used chemotherapeutic agent. The aim of this study was to assess the cytotoxic potency of gemcitabine in comparison to MMC in urothelial cell lines derived from non-malignant (UROtsa) and malignant (RT4 and T24) tissues to assess selectivity. Cells were treated with gemcitabine or mitomycin C at concentrations up to the clinical doses for 1 or 2h respectively (clinical duration). Treatment combined with hyperthermia was also examined. Cell viability, ROS formation, urothelial function (ATP, acetylcholine and PGE2 release) and secretion of inflammatory cytokines were assessed. Gemcitabine displayed a high cytotoxic selectivity for the two malignant cell lines (RT4, T24) compared to the non-malignant urothelial cells (UROtsa, proliferative and non-proliferative). In contrast, the cytotoxic effects of MMC were non-selective with equivalent potency in each of the cell lines. The cytotoxic effect of gemcitabine in the malignant cell lines was associated with an elevation in free radical formation and was significantly decreased in the presence of an equilibrative nucleoside transporter inhibitor. Transient changes in urothelial ATP and PGE2 release were observed, with significant increase in release of interleukin-6, interleukin-8 and interleukin-1β from urothelial cells treated with gemcitabine. The selectivity of gemcitabine for malignant urothelial cells may account for the less frequent adverse urological effects with comparison to other commonly used chemotherapeutic agents.
Collapse
Affiliation(s)
- Stefanie E Farr
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland 4229, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland 4229, Australia
| | - Catherine M McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland 4229, Australia.
| |
Collapse
|
32
|
Hoffmann MJ, Koutsogiannouli E, Skowron MA, Pinkerneil M, Niegisch G, Brandt A, Stepanow S, Rieder H, Schulz WA. The New Immortalized Uroepithelial Cell Line HBLAK Contains Defined Genetic Aberrations Typical of Early Stage Urothelial Tumors. Bladder Cancer 2016; 2:449-463. [PMID: 28035326 PMCID: PMC5181672 DOI: 10.3233/blc-160065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Cell culture models of normal urothelial cells are important for studying differentiation, disease mechanisms and anticancer drug development. Beyond primary cultures with their limitations in lifespan, interindividual heterogeneity and supply, few conditionally immortalized cell lines with limited applicability due to partial transformation or impaired differentiation capacity are available. We describe characteristics of the new spontaneously immortalized cell line HBLAK derived from a primary culture of uroepithelial cells. Objective: To characterize utility and limitations of HBLAK cells as an urothelial cell culture model. Methods: Differentiation markers were investigated by immunofluorescence and RT-PCR, genetic changes by standard karyotyping, array-CGH, PCR, RT-PCR and exome sequencing; expression of p53 and p21 by Western blotting. Results: HBLAK cells proliferated for >50 passages without senescing. They expressed cytokeratins of basal urothelial cells. Terminal differentiation markers appeared only after induction of differentiation by specific protocols. The karyotype was stable, with few chromosomal changes, especially gains of chromosomes 5 and 20 and a chromosome 9p21 deletion resulting in p16INK4A loss. A C228T TERT promoter mutation was present, but no other mutation typical of urothelial carcinoma. TP53 was wild-type and the cell cycle was arrested in response to genomic stress. Conclusions: HBLAK cells retain some differentiation potential and respond to cytotoxic agents similar to normal urothelial cells, but contain genetic changes contributing to immortalization in urothelial tumors. HBLAK may be valuable for evaluating the tumor specificity of novel cancer drugs, but may also be applied as an urothelial in vitro carcinogenesis model.
Collapse
Affiliation(s)
- Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | | | - Margaretha A Skowron
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Maria Pinkerneil
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Artur Brandt
- Institute for Human Genetics, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Stefanie Stepanow
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Harald Rieder
- Institute for Human Genetics, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
33
|
Zhang R, Wang L, Garrett SH, Sens DA, Dunlevy JR, Zhou XD, Somji S. Elevated connexin 43 expression in arsenite-and cadmium-transformed human bladder cancer cells, tumor transplants and selected high grade human bladder cancers. ACTA ACUST UNITED AC 2016; 68:479-491. [PMID: 27531258 DOI: 10.1016/j.etp.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/16/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022]
Abstract
Connexin 43 has been shown to play a role in cell migration and invasion; however, its role in bladder cancer is not well defined. Previous studies from our laboratory have shown that the environmental pollutants arsenite and cadmium can cause malignant transformation of the immortalized urothelial cell line UROtsa. These transformed cells can form tumors in immune-compromised mice. The goal of the present study was to determine if connexin 43 is expressed in the normal human bladder, the arsenite and cadmiun-transformed UROtsa cells as well as human urothelial cancer. The results obtained showed that connexin 43 is not expressed in the epithelial cells of the human bladder but is expressed in immortalized cultures of human urothelial cells and the expression is variable in the arsenite and cadmium- transformed urothelial cell lines derived from these immortalized cells. Tumor heterotransplants generated from the transformed cells expressed connexin 43 and the expression was localized to areas of squamous differentiation. Immuno-histochemical analysis of human bladder cancers also showed that the expression of connexin 43 was localized to areas of the tumor that showed early features of squamous differentiation. Treatment of UROtsa cells with various concentrations of arsenite or cadmium did not significantly alter the expression level of connexin 43. In conclusion, our results show that the expression of connexin 43 is localized to the areas of the tumor that show squamous differentiation, which may be an indicator of poor prognosis. This suggests that connexin 43 has the potential to be developed as a biomarker for bladder cancer that may have the ability to invade and metastasize.
Collapse
Affiliation(s)
- Ruowen Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota 501N. Columbia Road, Grand Forks, ND 58203, United States.
| | - Liping Wang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota 501N. Columbia Road, Grand Forks, ND 58203, United States.
| | - Scott H Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota 501N. Columbia Road, Grand Forks, ND 58203, United States.
| | - Donald A Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota 501N. Columbia Road, Grand Forks, ND 58203, United States.
| | - Jane R Dunlevy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, 501N. Columbia Road, Grand Forks, ND 58203, United States.
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota 501N. Columbia Road, Grand Forks, ND 58203, United States.
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota 501N. Columbia Road, Grand Forks, ND 58203, United States.
| |
Collapse
|
34
|
Sandquist EJ, Somji S, Dunlevy JR, Garrett SH, Zhou XD, Slusser-Nore A, Sens DA. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines. PLoS One 2016; 11:e0156310. [PMID: 27224422 PMCID: PMC4880289 DOI: 10.1371/journal.pone.0156310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. METHODS Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. RESULTS This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. CONCLUSIONS The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition and E-cadherin are viewed as necessary for a cell to establish a new metastatic site. The lack of N-cadherin expression in tumor transplants is consistent with E-cadherin expressing cells "seeding" a site for tumor growth. The study shows that a minority population of cultured cells can be the initiators of tumor growth.
Collapse
Affiliation(s)
- Elizabeth J. Sandquist
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jane R. Dunlevy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Andrea Slusser-Nore
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
35
|
Protease-Activated Receptor 4 Induces Bladder Pain through High Mobility Group Box-1. PLoS One 2016; 11:e0152055. [PMID: 27010488 PMCID: PMC4806866 DOI: 10.1371/journal.pone.0152055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/08/2016] [Indexed: 11/28/2022] Open
Abstract
Pain is the significant presenting symptom in Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS). Activation of urothelial protease activated receptor 4 (PAR4) causes pain through release of urothelial macrophage migration inhibitory factor (MIF). High Mobility Group Box-1 (HMGB1), a chromatin-binding protein, mediates bladder pain (but not inflammation) in an experimental model (cyclophosphamide) of cystitis. To determine if PAR4-induced bladder hypersensitivity depends on HMGB1 downstream, we tested whether: 1) bladder PAR4 stimulation affected urothelial HMGB1 release; 2) blocking MIF inhibited urothelial HMGB1 release; and 3) blocking HMGB1 prevented PAR4-induced bladder hypersensitivity. HMGB1 release was examined in immortalized human urothelial cultures (UROtsa) exposed to PAR4-activating peptide (PAR4-AP; 100 μM; 2 hours) or scrambled control peptide. Female C57BL/6 mice, pretreated with a HMGB1 inhibitor (glycyrrhizin: 50 mg/kg; ip) or vehicle, received intravesical PAR4-AP or a control peptide (100 μM; 1 hour) to determine 1) HMGB1 levels at 1 hour in the intravesical fluid (released HMGB1) and urothelium, and 2) abdominal hypersensitivity to von Frey filament stimulation 24 hours later. We also tested mice pretreated with a MIF blocker (ISO-1: 20 mg/kg; ip) to determine whether MIF mediated PAR4-induced urothelial HMGB1 release. PAR4-AP triggered HMGB1 release from human (in vitro) and mice (in vivo) urothelial cells. Intravesical PAR4 activation elicited abdominal hypersensitivity in mice that was prevented by blocking HMGB1. MIF inhibition prevented PAR4-mediated HMGB1 release from mouse urothelium. Urothelial MIF and HGMB1 represent novel targets for therapeutic intervention in bladder pain conditions.
Collapse
|
36
|
White-Gilbertson S, Davis M, Voelkel-Johnson C, Kasman LM. Sex differences in the MB49 syngeneic, murine model of bladder cancer. Bladder (San Franc) 2016; 3. [PMID: 26998503 PMCID: PMC4795170 DOI: 10.14440/bladder.2016.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The MB49 syngeneic, murine model of bladder cancer has been widely used for more than 35 years. In humans, bladder cancer is one third as prevalent in women as in men, with a trend toward lower prevalence in parous compared to nulliparous women. Our objective was to determine if the MB49 bladder cancer model reproduces the sex differences observed in humans, and to determine its sensitivity to testosterone and the pregnancy hormone, human chorionic gonadotropin (hCG). METHODS Male and female C57BL/6 mice were implanted with MB49 murine bladder cancer cells, and observed for tumor growth. MB49 dose responses to hCG and dihydrotestosterone were determined in vitro. RESULTS MB49 tumor growth was significantly greater in male mice than female mice. Pregnancy did not affect MB49 tumor growth in female mice. MB49 cells did not proliferate in response to hCG in vitro and the functional receptor for gonadotropins was absent. Dihydrotestosterone strongly stimulated growth of MB49 cells in vitro. CONCLUSIONS The MB49 murine model of bladder cancer reproduced some aspects of the sex differences observed in humans. Our results suggest that testosterone may stimulate MB49 cell proliferation, which may explain the more rapid MB49 tumor growth observed in male mice.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC 504, Charleston, SC 29425, USA
| | - Megan Davis
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC 504, Charleston, SC 29425, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC 504, Charleston, SC 29425, USA
| | - Laura M Kasman
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC 504, Charleston, SC 29425, USA
| |
Collapse
|
37
|
Slusser-Nore A, Larson-Casey JL, Zhang R, Zhou XD, Somji S, Garrett SH, Sens DA, Dunlevy JR. SPARC Expression Is Selectively Suppressed in Tumor Initiating Urospheres Isolated from As+3- and Cd+2-Transformed Human Urothelial Cells (UROtsa) Stably Transfected with SPARC. PLoS One 2016; 11:e0147362. [PMID: 26783756 PMCID: PMC4718619 DOI: 10.1371/journal.pone.0147362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3)) and cadmium (Cd(+2))-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2)-and As(+3)-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. METHODS Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3)-and Cd(+2)-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. RESULTS It was shown that the As(+3)-and Cd(+2)-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. CONCLUSIONS Tumor initiating cells isolated from SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.
Collapse
Affiliation(s)
- Andrea Slusser-Nore
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jennifer L. Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Medicine, the University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ruowen Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jane R. Dunlevy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
38
|
Uchida N, Sivaraman S, Amoroso NJ, Wagner WR, Nishiguchi A, Matsusaki M, Akashi M, Nagatomi J. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications. J Biomed Mater Res A 2015; 104:94-103. [PMID: 26194176 DOI: 10.1002/jbm.a.35544] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/12/2015] [Accepted: 07/16/2015] [Indexed: 01/05/2023]
Abstract
Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Chemistry and Biotechnology, School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Srikanth Sivaraman
- Department of Bioengineering, 301 Rhodes Engineering Research Center, Clemson University, Clemson, South Carolina, 29634-0905
| | - Nicholas J Amoroso
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219
| | - Akihiro Nishiguchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamada-Oka Suita, Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamada-Oka Suita, Osaka, 565-0871, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamada-Oka Suita, Osaka, 565-0871, Japan
| | - Jiro Nagatomi
- Department of Bioengineering, 301 Rhodes Engineering Research Center, Clemson University, Clemson, South Carolina, 29634-0905
| |
Collapse
|
39
|
Haaß W, Kleiner H, Weiß C, Haferlach C, Schlegelberger B, Müller MC, Hehlmann R, Hofmann WK, Fabarius A, Seifarth W. Clonal Evolution and Blast Crisis Correlate with Enhanced Proteolytic Activity of Separase in BCR-ABL b3a2 Fusion Type CML under Imatinib Therapy. PLoS One 2015; 10:e0129648. [PMID: 26087013 PMCID: PMC4472749 DOI: 10.1371/journal.pone.0129648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022] Open
Abstract
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Blast Crisis/enzymology
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cell Line, Tumor
- Chromosome Aberrations
- Chromosome Breakage
- Clonal Evolution
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Middle Aged
- Proteolysis
- Separase/metabolism
- Young Adult
Collapse
Affiliation(s)
- Wiltrud Haaß
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Helga Kleiner
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Christel Weiß
- Abteilung Medizinische Statistik und Biomathematik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | | | | | - Martin C. Müller
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Rüdiger Hehlmann
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Alice Fabarius
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Wolfgang Seifarth
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
- * E-mail:
| | | |
Collapse
|
40
|
Kouzoukas DE, Meyer-Siegler KL, Ma F, Westlund KN, Hunt DE, Vera PL. Macrophage Migration Inhibitory Factor Mediates PAR-Induced Bladder Pain. PLoS One 2015; 10:e0127628. [PMID: 26020638 PMCID: PMC4447427 DOI: 10.1371/journal.pone.0127628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, is constitutively expressed in urothelial cells that also express protease-activated receptors (PAR). Urothelial PAR1 receptors were shown to mediate bladder inflammation. We showed that PAR1 and PAR4 activator, thrombin, also mediates urothelial MIF release. We hypothesized that stimulation of urothelial PAR1 or PAR4 receptors elicits release of urothelial MIF that acts on MIF receptors in the urothelium to mediate bladder inflammation and pain. Thus, we examined the effect of activation of specific bladder PAR receptors on MIF release, bladder pain, micturition and histological changes. Methods MIF release was measured in vitro after exposing immortalized human urothelial cells (UROtsa) to PAR1 or PAR4 activating peptides (AP). Female C57BL/6 mice received intravesical PAR1- or PAR4-AP for one hour to determine: 1) bladder MIF release in vivo within one hour; 2) abdominal hypersensitivity (allodynia) to von Frey filament stimulation 24 hours after treatment; 3) micturition parameters 24 hours after treatment; 4) histological changes in the bladder as a result of treatment; 5) changes in expression of bladder MIF and MIF receptors using real-time RT-PCR; 6) changes in urothelial MIF and MIF receptor, CXCR4, protein levels using quantitative immunofluorescence; 7) effect of MIF or CXCR4 antagonism. Results PAR1- or PAR4-AP triggered MIF release from both human urothelial cells in vitro and mouse urothelium in vivo. Twenty-four hours after intravesical PAR1- or PAR4-AP, we observed abdominal hypersensitivity in mice without changes in micturition or bladder histology. PAR4-AP was more effective and also increased expression of bladder MIF and urothelium MIF receptor, CXCR4. Bladder CXCR4 localized to the urothelium. Antagonizing MIF with ISO-1 eliminated PAR4- and reduced PAR1-induced hypersensitivity, while antagonizing CXCR4 with AMD3100 only partially prevented PAR4-induced hypersensitivity. Conclusions Bladder PAR activation elicits urothelial MIF release and urothelial MIF receptor signaling at least partly through CXCR4 to result in abdominal hypersensitivity without overt bladder inflammation. PAR-induced bladder pain may represent an interesting pre-clinical model of Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS) where pain occurs without apparent bladder injury or pathology. MIF is potentially a novel therapeutic target for bladder pain in IC/PBS patients.
Collapse
Affiliation(s)
- Dimitrios E. Kouzoukas
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| | - Katherine L. Meyer-Siegler
- Department of Natural Sciences, St. Petersburg College, St. Petersburg, Florida, United States of America
| | - Fei Ma
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Karin N. Westlund
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - David E. Hunt
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | - Pedro L. Vera
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
41
|
Rahman S, Housein Z, Dabrowska A, Mayán MD, Boobis AR, Hajji N. E2F1-mediated FOS induction in arsenic trioxide-induced cellular transformation: effects of global H3K9 hypoacetylation and promoter-specific hyperacetylation in vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:484-92. [PMID: 25574600 PMCID: PMC4421767 DOI: 10.1289/ehp.1408302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 01/06/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Aberrant histone acetylation has been observed in carcinogenesis and cellular transformation associated with arsenic exposure; however, the molecular mechanisms and cellular outcomes of such changes are poorly understood. OBJECTIVE We investigated the impact of tolerated and toxic arsenic trioxide (As2O3) exposure in human embryonic kidney (HEK293T) and urothelial (UROtsa) cells to characterize the alterations in histone acetylation and gene expression as well as the implications for cellular transformation. METHODS Tolerated and toxic exposures of As2O3 were identified by measurement of cell death, mitochondrial function, cellular proliferation, and anchorage-independent growth. Histone extraction, the MNase sensitivity assay, and immunoblotting were used to assess global histone acetylation levels, and gene promoter-specific interactions were measured by chromatin immunoprecipitation followed by reverse-transcriptase polymerase chain reaction. RESULTS Tolerated and toxic dosages, respectively, were defined as 0.5 μM and 2.5 μM As2O3 in HEK293T cells and 1 μM and 5 μM As2O3 in UROtsa cells. Global hypoacetylation of H3K9 at 72 hr was observed in UROtsa cells following tolerated and toxic exposure. In both cell lines, tolerated exposure alone led to H3K9 hyperacetylation and E2F1 binding at the FOS promoter, which remained elevated after 72 hr, contrary to global H3K9 hypoacetylation. Thus, promoter-specific H3K9 acetylation is a better predictor of cellular transformation than are global histone acetylation patterns. Tolerated exposure resulted in an increased expression of the proto-oncogenes FOS and JUN in both cell lines at 72 hr. CONCLUSION Global H3K9 hypoacetylation and promoter-specific hyperacetylation facilitate E2F1-mediated FOS induction in As2O3-induced cellular transformation.
Collapse
Affiliation(s)
- Sunniyat Rahman
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Bladder uptake of liposomes after intravesical administration occurs by endocytosis. PLoS One 2015; 10:e0122766. [PMID: 25811468 PMCID: PMC4374861 DOI: 10.1371/journal.pone.0122766] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/17/2015] [Indexed: 02/06/2023] Open
Abstract
Liposomes have been used therapeutically and as a local drug delivery system in the bladder. However, the exact mechanism for the uptake of liposomes by bladder cells is unclear. In the present study, we investigated the role of endocytosis in the uptake of liposomes by cultured human UROtsa cells of urothelium and rat bladder. UROtsa cells were incubated in serum-free media with liposomes containing colloidal gold particles for 2 h either at 37°C or at 4°C. Transmission Electron Microscopy (TEM) images of cells incubated at 37°C found endocytic vesicles containing gold inside the cells. In contrast, only extracellular binding was noticed in cells incubated with liposomes at 4°C. Absence of liposome internalization at 4°C indicates the need of energy dependent endocytosis as the primary mechanism of entry of liposomes into the urothelium. Flow cytometry analysis revealed that the uptake of liposomes at 37°C occurs via clathrin mediated endocytosis. Based on these observations, we propose that clathrin mediated endocytosis is the main route of entry for liposomes into the urothelial layer of the bladder and the findings here support the usefulness of liposomes in intravesical drug delivery.
Collapse
|
43
|
Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell PJ, Wullich B, Stöckle M, Lehmann J, Petsch S, Hartmann A, Stoehr R. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol 2015; 141:1779-90. [DOI: 10.1007/s00432-015-1942-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
|
44
|
Increased expression of L-selectin (CD62L) in high-grade urothelial carcinoma: A potential marker for metastatic disease. Urol Oncol 2015; 33:387.e17-27. [PMID: 25618296 DOI: 10.1016/j.urolonc.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/06/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
INTRODUCTION L-Selectin (CD62L) is a vascular adhesion molecule constitutively expressed on leukocytes with a primary function of directing leukocyte migration and homing of lymphocytes to lymph nodes. In a gene expression microarray study comparing laser-captured microdissected high-grade muscle-invasive bladder cancer (MIBC) without prior treatment and low-grade bladder cancer (LGBC) human samples, we found CD62L to be the highest differentially expressed gene. We sought to examine the differential expression of CD62L in MIBCs and its clinical relevance. METHODS Unfixed fresh and formalin-fixed paraffin-embedded human bladder cancer specimens and serum samples were obtained from the University of Connecticut Health Center tumor bank. Tumor cells were isolated from frozen tumor tissue sections by laser-captured microdissected followed by RNA isolation. Quantitative polymerase chain reaction was used to validate the level of CD62L transcripts. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to evaluate the CD62L protein localization and expression level. Flow cytometry was used to identify the relative number of cells expressing CD62L in fresh tumor tissue. In silico studies were performed using the Oncomine database. RESULTS Immunostaining showed a uniformly higher expression of CD62L in MIBC specimens vs. LGBCs specimens. Further, CD62L localization was seen in foci of metastatic tumor cells in lymph node specimens from patients with high-grade MIBC and known nodal involvement. Up-regulated expression of CD62L was also observed by flow cytometric analysis of freshly isolated tumor cells from biopsies of high-grade cancers vs. LGBC specimens. Circulating CD62L levels were also found to be higher in serum samples from patients with high-grade metastatic vs. high-grade nonmetastatic MIBC. In addition, in silico analysis of Oncomine Microarray Database showed a significant correlation between CD62L expression and tumor aggressiveness and clinical outcomes. CONCLUSION These data confirm the expression of CD62L on urothelial carcinoma cells and suggest that CD62L may serve as biomarker to predict the presence of or risk for developing metastatic disease in patients with bladder cancer.
Collapse
|
45
|
Sobolesky PM, Halushka PV, Garrett-Mayer E, Smith MT, Moussa O. Regulation of the tumor suppressor FOXO3 by the thromboxane-A2 receptors in urothelial cancer. PLoS One 2014; 9:e107530. [PMID: 25202904 PMCID: PMC4159332 DOI: 10.1371/journal.pone.0107530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/19/2014] [Indexed: 01/27/2023] Open
Abstract
The transcription factor FOXO3 is a well-established tumor suppressor whose activity, stability, and localization are regulated by phosphorylation and acetylation. Previous data by our laboratory demonstrated amplified thromboxane-A2 signaling was associated with poor prognoses in bladder cancer patients and overexpression of the thromboxane-A2 isoform-β receptor (TPβ), but not TPα, induced malignant transformation of immortalized bladder cells in vivo. Here, we describe a mechanism of TP mediated modulation of FOXO3 activity and localization by phosphorylation and deacetylation in a bladder cancer cell model. In vitro gain and loss of function studies performed in non-transformed cell lines, UROsta and SV-HUC, revealed knockdown of FOXO3 expression by shRNA increased cell migration and invasion, while exogenously overexpressing TPβ raised basal phosphorylated (p)FOXO3-S294 levels. Conversely, overexpression of ERK-resistant, mutant FOXO3 reduced increases in UMUC3 cell migration and invasion, including that mediated by TP agonist (U46619). Additionally, stimulation of UMUC3 cells with U46619 increased pFOXO3-S294 expression, which could be attenuated by treatment with a TP antagonist (PTXA2) or ERK inhibitor (U0126). Initially U46619 caused nuclear accumulation of pFOXO3-S294; however, prolonged stimulation increased FOXO3 cytoplasmic localization. U46619 stimulation decreased overall FOXO3 transcriptional activity, but was associated with increased expression of its pro-survival target, manganese superoxide dismutase. The data also shows that TP stimulation increased the expression of the histone deacetylase, SIRT1, and corresponded with decreased acetylated-FOXO3. Collectively, the data suggest a role for TP signaling in the regulation of FOXO3 activity, mediated in part through phosphorylation and deacetylation.
Collapse
Affiliation(s)
- Philip M Sobolesky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Perry V Halushka
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America; Departments of Pharmacology and Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Elizabeth Garrett-Mayer
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America; Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Michael T Smith
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Omar Moussa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
46
|
Lee HW, Wang HT, Weng MW, Hu Y, Chen WS, Chou D, Liu Y, Donin N, Huang WC, Lepor H, Wu XR, Wang H, Beland FA, Tang MS. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells. Oncotarget 2014; 5:3526-40. [PMID: 24939871 PMCID: PMC4116500 DOI: 10.18632/oncotarget.1954] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/06/2014] [Indexed: 01/12/2023] Open
Abstract
Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Hsiang-Tsui Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Mao-wen Weng
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Yu Hu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Wei-sheng Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - David Chou
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Yan Liu
- Department of Urology, New York University School of Medicine, New York, New York
| | - Nicholas Donin
- Department of Urology, New York University School of Medicine, New York, New York
| | - William C. Huang
- Department of Urology, New York University School of Medicine, New York, New York
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, New York
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, New York
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR
| | - Moon-shong Tang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| |
Collapse
|
47
|
Zhang G, Miyake M, Lawton A, Goodison S, Rosser CJ. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer 2014; 14:310. [PMID: 24885595 PMCID: PMC4022983 DOI: 10.1186/1471-2407-14-310] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. METHODS Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. RESULTS Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. CONCLUSION Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Charles J Rosser
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando Health, Orlando, FL 32827, USA.
| |
Collapse
|
48
|
Baker SC, Shabir S, Southgate J. Biomimetic urothelial tissue models for the in vitro evaluation of barrier physiology and bladder drug efficacy. Mol Pharm 2014; 11:1964-70. [PMID: 24697150 DOI: 10.1021/mp500065m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The bladder is an important tissue in which to evaluate xenobiotic drug interactions and toxicities due to the concentration of parent drug and hepatic/enteric-derived metabolites in the urine as a result of renal excretion. Breaching of the barrier provided by the bladder epithelial lining (the urothelium) can expose the underlying tissues to urine and cause harmful effects (e.g., cystitis or cancer). Human urothelium is most commonly represented in vitro as immortalized or established cancer-derived cell lines, but the compromised ability of such cells to undergo differentiation and barrier formation means that nonimmortalized, normal human urothelial (NHU) cells provide a more relevant cell culture system. The impressive capacity for urothelial self-renewal in vivo can be harnessed in vitro to generate experimentally-useful quantities of NHU cells, which can subsequently be differentiated to form a functional or "biomimetic" urothelium. When seeded onto permeable membranes, these barrier-forming human urothelial tissue models enable the modeling of serum and luminal (intravesical) exposure to drugs and metabolites, thus supporting efficacy/toxicity assessments. Biomimetic human urothelial constructs provide a potential step along the preclinical trail and may support the extrapolation from rodent in vivo data to determine human relevance. Early evidence is beginning to demonstrate that human urothelium in vitro can provide information that supersedes conventional rodent studies, but further validation is needed to support widespread adoption.
Collapse
Affiliation(s)
- Simon C Baker
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York , Heslington, York YO10 5DD, U.K
| | | | | |
Collapse
|
49
|
Bakali E, Elliott RA, Taylor AH, Lambert DG, Willets JM, Tincello DG. Human urothelial cell lines as potential models for studying cannabinoid and excitatory receptor interactions in the urinary bladder. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:581-9. [PMID: 24652077 DOI: 10.1007/s00210-014-0973-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/05/2014] [Indexed: 11/25/2022]
Abstract
To characterize human urothelial cell lines' cannabinoid receptor expression and evaluate their possible use for studying signalling interactions with purinergic and muscarinic receptor activation. PCR was used to detect cannabinoid (CB), muscarinic and purinergic receptor transcripts in HCV29 and UROtsa cells, whilst immunofluorescence evaluated protein expression and localization of cannabinoid receptors. The effect of CB1 agonist (ACEA) on carbachol- and ATP-induced changes in intracellular calcium ([Ca(2+)]i) levels was measured using fluorimetry. The ability of ACEA to reduce intracellular cAMP was investigated in HCV29 cells. CB1 and GPR55 receptor transcripts were detected in HCV29 and UROtsa cells, respectively. Immunofluorescence showed positive staining for CB1 in the HCV29 cells. Both cell lines expressed transcript levels for muscarinic receptors, but carbachol did not raise [Ca(2+)]i levels indicating a lack or low expression of G(q)-coupled muscarinic receptors. Transcripts for purinergic receptors were detected; ATP significantly increased [Ca(2+)]i in HCV29 and UROtsa cells by 395 ± 61 and 705 ± 100 nM (mean ± SEM, n = 6), respectively. ACEA did not alter ATP-induced [Ca(2+)]i or cAMP levels in HCV29 cells. Whilst HCV29 cells expressed CB1 and UROtsa cells expressed GPR55 receptors, these were not functionally coupled to the existing purinergic-driven increase in Ca2+ as such they do not represent a good model to study signalling interactions.
Collapse
Affiliation(s)
- Evangelia Bakali
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK,
| | | | | | | | | | | |
Collapse
|
50
|
Rogler A, Hoja S, Giedl J, Ekici AB, Wach S, Taubert H, Goebell PJ, Wullich B, Stöckle M, Lehmann J, Petsch S, Hartmann A, Stoehr R. Loss of MTUS1/ATIP expression is associated with adverse outcome in advanced bladder carcinomas: data from a retrospective study. BMC Cancer 2014; 14:214. [PMID: 24650297 PMCID: PMC3994487 DOI: 10.1186/1471-2407-14-214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/12/2014] [Indexed: 11/17/2022] Open
Abstract
Background Seventy percent of all bladder tumours tend to recur and need intensive surveillance, and a subset of tumours progress to muscle-invasive and metastatic disease. However, it is still difficult to find the adequate treatment for every individual patient as it is a very heterogeneous disease and reliable biomarkers are still missing. In our study we searched for new target genes in the critical chromosomal region 8p and investigated the potential tumour suppressor gene candidate MTUS1/ATIP in bladder cancer. Methods MTUS1 was identified to be the most promising deleted target gene at 8p in aCGH analysis with 19 papillary bladder tumours. A correlation with bladder cancer was further validated using immunohistochemistry of 85 papillary and 236 advanced bladder tumours and in functional experiments. Kaplan-Meier analysis and multivariate Cox-regression addressed overall survival (OS) and disease-specific survival (DSS) as a function of MTUS1/ATIP expression. Bivariate correlations investigated associations between MTUS1/ATIP expression, patient characteristics and histopathology. MTUS1 expression was analysed in cell lines and overexpressed in RT112, where impact on viability, proliferation and migration was measured. Results MTUS1 protein expression was lost in almost 50% of all papillary and advanced bladder cancers. Survival, however, was only influenced in advanced carcinomas, where loss of MTUS1 was associated with adverse OS and DSS. In this cohort, there was also a significant correlation of MTUS1 expression and histological subtype: positive expression was detected in all micropapillary tumours and aberrant nuclear staining was detected in a subset of plasmocytoid urothelial carcinomas. MTUS1 was expressed in all investigated bladder cell lines and overexpression in RT112 led to significantly decreased viability. Conclusions MTUS1 is a tumour suppressor gene in cultured bladder cancer cells and in advanced bladder tumours. It might represent one new target gene at chromosome 8p and can be used as an independent prognostic factor for advanced bladder cancer patients. The limitation of the study is the retrospective data analysis. Thus, findings should be validated with a prospective advanced bladder tumour cohort.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Krankenhausstr, 8-10 91054 Erlangen, Germany.
| |
Collapse
|