1
|
Upadhyay PK, Singh S, Vishwakarma VK. Natural Polyphenols in Cancer Management: Promising Role, Mechanisms, and Chemistry. Curr Pharm Biotechnol 2024; 25:694-712. [PMID: 37608669 DOI: 10.2174/1389201024666230822090318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Although cancers emerge rapidly and cancer cells divide aggressively, which affects our vital organ systems. Recently, cancer treatments are targeted immune systems mediating intrinsic cellular mechanisms. Natural efficacious polyphenols have been exhibited to help prevent most cancers and reverse the progression of cancers. METHODS Many resources have been used to know the promising role of polyphenols in preventing and treating cancers. The electronic databases include Science Direct, Google, Google Scholar, PubMed, and Scopus. The search was limited to the English language only. RESULTS Polyphenols have been reported as anti-metastatic agents that explore the promising role of these compounds in cancer prevention. Such agents act through many signaling pathways, including PI3K/Akt and TNF-induced signaling pathways. The chemical modifications of polyphenols and the structure-activity relationships (SARs) between polyphenols and anticancer activities have also been discussed. CONCLUSION Many research papers were reported to explain the anti-cancer potential of Polyphenols, The SARs between polyphenols and anti-cancer activities, which correlate structures of polyphenols with significant chemotherapeutic action. The mechanism of anti-cancer potential is to be added for searching for new anti-cancer natural products.
Collapse
Affiliation(s)
- Prabhat Kumar Upadhyay
- Department of Pharmaceutical Science, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Kim JW, Lee S, Kim HS, Choi YJ, Yoo J, Park KU, Kang SY, Park YH, Jung KH, Ahn JH, Oh HS, Choi IS, Kim HJ, Lee KH, Lee S, Seo JH, Park IH, Lee KE, Kim HY, Park KH. Prognostic effects of cytokine levels on patients treated with taxane and zoledronic acid for metastatic breast cancer in bone (BEAT-ZO) (KCSG BR 10-13). Cytokine 2021; 142:155487. [PMID: 33770643 DOI: 10.1016/j.cyto.2021.155487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Advanced breast cancer frequently metastasizes to the skeleton causing major mobility issues and hazards to quality of life. To manage osteolytic bone metastasis, bone-modifying agents and chemotherapy are recommended as the standard of care. Here, we investigated serologic biomarkers that might be associated with prognosis in breast cancer patients treated with zoledronic acid (ZA) and taxane-based chemotherapy. We collected serum samples from breast cancer patients with bone metastasis who received taxane plus ZA as palliative treatment. Fourteen biomarkers of angiogenesis, immunogenicity, and apoptosis were assessed, and the correlation between serum cytokine levels and patient's prognosis was statistically analyzed. Sixty-six patients were enrolled, and samples from 40 patients were analyzed after laboratory quality control. Patients with low baseline PDGF-AA, high IFN-γ, low MCP-2, low TGF-β1, and low TNF-α were significantly associated with longer progression-free survival (PFS). Decreasing VEGF and TNF-α and increasing FGF-2 and PDGF-AA in the early treatment phase indicated longer PFS. In univariate and multivariate analyses, low TGF-β1 and TNF-α and high IFN-γ at baseline were associated with a significantly low hazard ratio for disease progression. Further, we designed a risk score with TGF-β1, TNF-α, and IFN-γ levels, which could prognosticate patients for PFS. In conclusion, serum cytokine level, such as TGF-β1, TNF-α, and IFN-γ, could be a potential prognostic biomarker for breast cancer patients with bone metastasis treated with ZA and taxane-based chemotherapy.
Collapse
Affiliation(s)
- Ju Won Kim
- Korea University Anam Hospital, Seoul, Republic of Korea
| | - Soohyeon Lee
- Korea University Anam Hospital, Seoul, Republic of Korea
| | - Hye Sook Kim
- Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yoon Ji Choi
- Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jinho Yoo
- YooJin BioSoft Co., Ltd, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Keon Uk Park
- Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Seok Yun Kang
- Ajou University School of Medicine, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Yeon Hee Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Hae Jung
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Hee Ahn
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho-Suk Oh
- Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung-si, Gangwon-do, Republic of Korea
| | - In Sil Choi
- Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Jun Kim
- Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Kyung-Hun Lee
- Seoul National University Hospital, Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Suee Lee
- Dong-A University Medical Center, Busan, Republic of Korea
| | - Jae Hong Seo
- Korea University Guro Hospital, Seoul, Republic of Korea
| | - In Hae Park
- National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung Eun Lee
- Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Ho Young Kim
- Hallym University Medical Center, Hallym University Sacred Heart Hospital, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Kyong Hwa Park
- Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Sun D, Li WY, Chen SH, Zhi ZF, Lin HS, Fan JT, Fan YJ. shRNA-Mediated Suppression of γ-Synuclein Leading to Downregulation of p38/ERK/JNK Phosphorylation and Cell Cycle Arrest in Endometrial Cancer Cells. Mol Biol 2021. [DOI: 10.1134/s0026893320060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Microfluidic platform for single cell analysis under dynamic spatial and temporal stimulation. Biosens Bioelectron 2018; 104:58-64. [DOI: 10.1016/j.bios.2017.12.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/14/2017] [Accepted: 12/22/2017] [Indexed: 11/18/2022]
|
5
|
Yang Y, Yang I, Cao M, Su ZY, Wu R, Guo Y, Fang M, Kong AN. Fucoxanthin Elicits Epigenetic Modifications, Nrf2 Activation and Blocking Transformation in Mouse Skin JB6 P+ Cells. AAPS JOURNAL 2018; 20:32. [PMID: 29603113 DOI: 10.1208/s12248-018-0197-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/26/2018] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid-2-related factor-2 (Nrf2 or NFE2L2) is a master regulator of the anti-oxidative stress response, which is involved in the defense against many oxidative stress/inflammation-mediated diseases, including anticancer effects elicited by an increasing number of natural products. Our previous studies showed that the epigenetic modification of the Nrf2 gene plays a key role in restoring the expression of Nrf2. In this study, we aimed to investigate the epigenetic regulation of Nrf2 by astaxanthin (AST) and fucoxanthin (FX), carotenoids which are abundant in microalgae and seaweeds, in mouse skin epidermal JB6 P+ cells. FX induced the anti-oxidant response element (ARE)-luciferase and upregulated the mRNA and protein levels of Nrf2 and Nrf2 downstream genes in HepG2-C8 cells overexpressing the ARE-luciferase reporter. Both FX and AST decreased colony formation in 12-Otetradecanoylphorbol-13-acetate (TPA)-induced transformation of JB6 P+ cells. FX decreased the methylation of the Nrf2 promoter region in the JB6 P+ cells by the bisulfite conversion and pyrosequencing. Both FX and AST significantly reduced DNA methyltransferase (DNMT) activity but did not affect histone deacetylase (HDAC) activity in JB6 P+ cells. In summary, our results show that FX activates the Nrf2 signaling pathway, induces the epigenetic demethylation of CpG sites in Nrf2 and blocks the TPA-induced transformation of JB6 P+ cells, indicating the potential health-promoting effects of FX in skin cancer prevention.
Collapse
Affiliation(s)
- Yuqing Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Irene Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Mingnan Cao
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.,State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, People's Republic of China
| | - Zheng-Yuan Su
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.,Department of Bioscience Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City, 32023, Taiwan, Republic of China
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Yue Guo
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA. .,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
6
|
Truong VL, Kong AN, Jeong WS. Red Ginseng Oil Inhibits TPA-Induced Transformation of Skin Epidermal JB6 Cells. J Med Food 2017; 21:380-389. [PMID: 29271701 DOI: 10.1089/jmf.2017.4082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Red ginseng oil (RGO) has been shown to possess anti-inflammatory and hepatoprotective activity. In this study, we evaluated the inhibitory effect of RGO on 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated neoplastic transformation of JB6 P+ cells. RGO pretreatment abolished the transformation of JB6 P+ cells challenged by TPA. RGO suppressed the transactivation of activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors as well as protein levels of cyclooxygenase-2, cyclin D1, cyclin E, and Bcl-2 in the TPA-treated cells. Additionally, TPA-induced phosphorylations of extracellular signal-regulated kinases, 90 kDa ribosomal S6 kinase 2, c-Jun N-terminal kinases, and glycogen synthase kinase 3β were downregulated in the presence of RGO. Furthermore, RGO induced the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant enzyme heme oxygenase-1 (HO-1) expression, and effectively blocked the overproduction of TPA-induced reactive oxygen species. These results suggest that RGO exerts a potent chemopreventive activity in skin cell model.
Collapse
Affiliation(s)
- Van-Long Truong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University , Gimhae, Korea
| | - Ah Ng Kong
- 2 Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey, USA
| | - Woo-Sik Jeong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University , Gimhae, Korea
| |
Collapse
|
7
|
Involvement of the antioxidative property of morusin in blocking phorbol ester-induced malignant transformation of JB6 P + mouse epidermal cells. Chem Biol Interact 2017; 264:34-42. [PMID: 28108223 DOI: 10.1016/j.cbi.2017.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
Abstract
Chemoprevention has been acknowledged as an important and practical strategy for managing cancer. We have previously synthesized morusin, a prenylated flavonoid that exhibits anti-cancer progression activity. In the present study, we evaluated the anti-cancer promotion potential of morusin by using the mouse epidermal JB6 P+ cell model. Extensive evidence shows that tumor promotion by phorbol esters is due to the stimulation of reactive oxygen species (ROS). Therefore, the effect of morusin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ROS production was assessed. Noncytotoxic concentrations of morusin were found to dose-dependently reduce TPA-induced ROS production. Moreover, morusin inhibited TPA-induced activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) activation, which can mediate cell proliferation and malignant transformation. Furthermore, morusin inhibited the TPA upregulation of cyclooxygenase 2 (COX-2), which may be regulated by AP-1 and NF-κB. In addition, noncytotoxic concentrations of morusin reduced the TPA-promoted cell growth of JB6 P+ cells and inhibited TPA-induced malignant properties, such as cytoskeletal rearrangement and cell migration of JB6 P+ cells. Similar to the effects of glutathione (GSH) pretreatment, morusin inhibited TPA-induced expression of N-cadeherin and vimentin, which are malignant cell surface proteins. Finally, morusin treatment dose-dependently suppressed the TPA-induced anchorage-independent cell transformation of JB6 P+ cells. In conclusion, our results evidence that morusin possesses anti-cancer promotion potential because of its antioxidant property, which mediates multiple transformation-associated gene expression.
Collapse
|
8
|
Lei M, Lai X, Bai X, Qiu W, Yang T, Liao X, Chuong CM, Yang L, Lian X, Zhong JL. Prolonged overexpression of Wnt10b induces epidermal keratinocyte transformation through activating EGF pathway. Histochem Cell Biol 2015; 144:209-21. [PMID: 25995040 DOI: 10.1007/s00418-015-1330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/25/2023]
Abstract
Wnt10b is a signaling protein regulating skin development and homeostasis, and the expression of Wnt10b is restricted to epidermal keratinocytes in embryonic and postnatal skin. Recent studies indicate an elevated expression of Wnt10b in skin tumors. However, how Wnt10b regulates skin tumorigenesis remains largely unknown. Here we report that continuous expression of Wnt10b mediates transformation of epidermal keratinocytes through activating genes involved in EGF/MAPK signaling pathways. We first established a prolonged Wnt10b overexpression system in JB6P- cells to represent the elevated Wnt10b expression level in skin keratinocytes. Through expression assays and observations under phase-contrast microscopy, prolonged expression of Wnt10b activated Wnt/β-catenin pathway and induced morphological changes of cells showing longer protrusions and multilayer growth, indicating early-stage cell transformation. Wnt10b also increased cellular proliferation and migration according to BrdU incorporation and cell mobility assays. Furthermore, multi-doses of AdWnt10b treatment to JB6P- cells induced colony formation, stronger invasive ability in transwell system, and anchorage-independent growth in agar gel. In molecular level, AdWnt10b treatment induced increased transcriptional expressions of Egf, downstream Mapk pathway factors, and MMPs. Administration of Wnt antagonist DKK1 blocked the tumor promotion process induced by Wnt10b. Taken together, these findings clearly demonstrate that Wnt10b promotes epidermal keratinocyte transformation through induced Egf pathway.
Collapse
Affiliation(s)
- Mingxing Lei
- Department of Cell Biology, the Third Military Medical University, Chongqing, 400038, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Becker K, Thomas AD, Kaina B. Does increase in DNA repair allow "tolerance-to-insult" in chemical carcinogenesis? Skin tumor experiments with MGMT-overexpressing mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:145-150. [PMID: 24519900 DOI: 10.1002/em.21834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 06/03/2023]
Abstract
Several genotoxicity endpoints have been evaluated to define nonlinear dose-responses for SN 1 and SN 2 alkylating genotoxicants. Dose-response studies acknowledging the process of multistage tumorigenesis are important; however, data pertaining nonlinearity are not yet available. In this communication, the role of DNA repair in the dose-response relationship for benign papillomas was examined using the two-stage skin carcinogenesis protocol. The data obtained with O(6) -methylguanine-DNA methyltransferase (MGMT) overexpressing mice in which papillomas were induced by a single topical treatment with N-methyl-N-nitrosourea (MNU) followed by promotion with 12-O-tetradecanoylphorbol-13-acetate are reported. As MGMT efficiently protects cells from mutations by repairing O(6) -methylguanine, a miscoding lesion induced by MNU, the question whether MGMT is able to nullify carcinogenic lesions to an extent where they would be considered nonhazardous has been addressed. It is shown here that MGMT overexpression significantly protects against, but does not completely nullify, the effect of MNU in tumor initiation. The possible mechanisms involved have also been discussed.
Collapse
Affiliation(s)
- Klaus Becker
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | |
Collapse
|
10
|
Camalier CE, Yi M, Yu LR, Hood BL, Conrads KA, Lee YJ, Lin Y, Garneys LM, Bouloux GF, Young MR, Veenstra TD, Stephens RM, Colburn NH, Conrads TP, Beck GR. An integrated understanding of the physiological response to elevated extracellular phosphate. J Cell Physiol 2013; 228:1536-50. [PMID: 23280476 DOI: 10.1002/jcp.24312] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022]
Abstract
Recent studies have suggested that changes in serum phosphate levels influence pathological states associated with aging such as cancer, bone metabolism, and cardiovascular function, even in individuals with normal renal function. The causes are only beginning to be elucidated but are likely a combination of endocrine, paracrine, autocrine, and cell autonomous effects. We have used an integrated quantitative biology approach, combining transcriptomics and proteomics to define a multi-phase, extracellular phosphate-induced, signaling network in pre-osteoblasts as well as primary human and mouse mesenchymal stromal cells. We identified a rapid mitogenic response stimulated by elevated phosphate that results in the induction of immediate early genes including c-fos. The mechanism of activation requires FGF receptor signaling followed by stimulation of N-Ras and activation of AP-1 and serum response elements. A distinct long-term response also requires FGF receptor signaling and results in N-Ras activation and expression of genes and secretion of proteins involved in matrix regulation, calcification, and angiogenesis. The late response is synergistically enhanced by addition of FGF23 peptide. The intermediate phase results in increased oxidative phosphorylation and ATP production and is necessary for the late response providing a functional link between the phases. Collectively, the results define elevated phosphate, as a mitogen and define specific mechanisms by which phosphate stimulates proliferation and matrix regulation. Our approach provides a comprehensive understanding of the cellular response to elevated extracellular phosphate, functionally connecting temporally coordinated signaling, transcriptional, and metabolic events with changes in long-term cell behavior.
Collapse
Affiliation(s)
- Corinne E Camalier
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alam S, Pal A, Kumar R, Dwivedi PD, Das M, Ansari KM. EGFR-mediated Akt and MAPKs signal pathways play a crucial role in patulin-induced cell proliferation in primary murine keratinocytes via modulation of Cyclin D1 and COX-2 expression. Mol Carcinog 2013; 53:988-98. [PMID: 23813870 DOI: 10.1002/mc.22060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/21/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022]
Abstract
Patulin (PAT), a present day major contaminant of commercial apple and apple products is reported to be carcinogenic, embryotoxic, and immunotoxic. While oral and inhalation are considered to be the most prevalent routes of exposure to this toxin, exposure through skin is now being extensively investigated. Our previous study showed that short-term dermal exposure to PAT resulted in toxicological injury to the skin, while long-term exposure induced skin tumorigenesis. In this study, we explore the mechanism involve in proliferation of mouse keratinocytes by PAT. Our study revealed that PAT rapidly induces phosphorylation of EGFR, activation of the Ras/MAPKs, and Akt pathways. This in-turn leads to the activation of NF-κB/AP-1 transcription factors which then binds to the promoter region of the cell growth regulatory genes Cyclin D1 and COX-2 inducing their expression leading ultimately to PMKs proliferation. Inhibition of EGFR or the Ras/MAPKs, PI3/Akt pathways with different pharmacological inhibitors or knockdown of NF-κB, c-jun, c-fos, Cyclin D1, and COX-2 with siRNA inhibited PAT-induced PMKs proliferation.
Collapse
Affiliation(s)
- Shamshad Alam
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
12
|
Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy. Toxicol Appl Pharmacol 2013; 268:141-8. [DOI: 10.1016/j.taap.2013.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
|
13
|
Li W, Zhao Y. Withaferin A suppresses tumor promoter 12-O-tetradecanoylphorbol 13-acetate-induced decreases in isocitrate dehydrogenase 1 activity and mitochondrial function in skin epidermal JB6 cells. Cancer Sci 2012; 104:143-8. [PMID: 23107437 DOI: 10.1111/cas.12051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/16/2012] [Accepted: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
Withaferin A (WA) is a bioactive compound derived from Withania somnifera. The antitumor activity of WA has been well studied in human cancer models; however, its chemopreventive potential is unclear. In the present study, we used the skin epidermal JB6 P+ cells, a well-established model for tumor promotion, and demonstrated that WA suppressed the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell transformation and cell proliferation. Interestingly, TPA inactivated isocitrate dehydrogenase 1 (IDH1), which was reversed by WA. Similar results were also observed in mouse skin tissue. Therefore, we focused on metabolism as the potential mechanism of action. We found that mitochondrial functions were downregulated by TPA treatment, as indicated by reduced mitochondrial membrane potential, complex I activity and mitochondrial respiration. However, all of these downregulations were inhibited by WA. In addition, we examined the levels of α-ketoglutarate, a product of IDH1, and WA blocked its reduction upon TPA treatment. Finally, we detected the lactate level as a glycolysis marker, and WA suppressed its elevation caused by tumor promoter treatment. Altogether, these results suggest that WA might exert its chemopreventive activity via inhibiting not only oncogenic activation, but also IDH1 inactivation and mitochondrial dysfunction in early tumorigenesis.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA, USA
| | | |
Collapse
|
14
|
Waters KM, Stenoien DL, Sowa MB, von Neubeck C, Chrisler WB, Tan R, Sontag RL, Weber TJ. Annexin A2 modulates radiation-sensitive transcriptional programming and cell fate. Radiat Res 2012; 179:53-61. [PMID: 23148505 DOI: 10.1667/rr3056.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We previously established annexin A2 as a radioresponsive protein associated with anchorage independent growth in murine epidermal cells. In this study, we demonstrate annexin A2 nuclear translocation in human skin organotypic culture and murine epidermal cells after exposure to X radiation (10-200 cGy), supporting a conserved nuclear function for annexin A2. Whole genome expression profiling in the presence and absence of annexin A2 [shRNA] identified fundamentally altered transcriptional programming that changes the radioresponsive transcriptome. Bioinformatics predicted that silencing AnxA2 may enhance cell death responses to stress in association with reduced activation of pro-survival signals such as nuclear factor kappa B. This prediction was validated by demonstrating a significant increase in sensitivity toward tumor necrosis factor alpha-induced cell death in annexin A2 silenced cells, relative to vector controls, associated with reduced nuclear translocation of RelA (p65) following tumor necrosis factor alpha treatment. These observations implicate an annexin A2 niche in cell fate regulation such that AnxA2 protects cells from radiation-induced apoptosis to maintain cellular homeostasis at low-dose radiation.
Collapse
Affiliation(s)
- Katrina M Waters
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Song NR, Yang H, Park J, Kwon JY, Kang NJ, Heo YS, Lee KW, Lee HJ. Cyanidin suppresses neoplastic cell transformation by directly targeting phosphatidylinositol 3-kinase. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Saikali M, Ghantous A, Halawi R, Talhouk SN, Saliba NA, Darwiche N. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells. Altern Ther Health Med 2012; 12:89. [PMID: 22776414 PMCID: PMC3439278 DOI: 10.1186/1472-6882-12-89] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/19/2012] [Indexed: 12/30/2022]
Abstract
Background Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary medicine practices.
Collapse
|
17
|
Sontag RL, Weber TJ. Ectopic ERK expression induces phenotypic conversion of C10 cells and alters DNA methyltransferase expression. BMC Res Notes 2012; 5:217. [PMID: 22559742 PMCID: PMC3416577 DOI: 10.1186/1756-0500-5-217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/19/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Many lung carcinogens activate mitogen activated protein kinase (MAPK) pathways and DNA methyltransferases (DNMTs) are under investigation as therapeutic targets for lung cancer. Our goal is to determine whether C10 type II alveolar epithelial cells are a sensitive model to investigate ERK-dependent transformation and DNMT expression patterns in experimental lung cancer. FINDINGS Ectopic expression of an extracellular signal regulated kinase (ERK)-green fluorescent protein (ERK1-GFP) induces acquisition of growth in soft agar that is selectively associated with latent effects on the expression of DNA methyl transferases (DNMT1 and 3b), xeroderma pigmentosum complementation group A (XPA), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), increased phosphatase activity and enhanced sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to controls. CONCLUSIONS Ectopic expression of ERK alone is sufficient to promote phenotypic conversion of C10 cells associated with altered DNMT expression patterns and sensitivity to DNMT inhibitor. This model may have applications for predicting sensitivity to DNMT inhibitors.
Collapse
Affiliation(s)
- Ryan L Sontag
- Systems Toxicology, Pacific Northwest National Laboratory, 790 6th Street, J4-02, Richland, WA, 99354, USA
| | - Thomas J Weber
- Systems Toxicology, Pacific Northwest National Laboratory, 790 6th Street, J4-02, Richland, WA, 99354, USA
| |
Collapse
|
18
|
Li J, Mottamal M, Li H, Liu K, Zhu F, Cho YY, Sosa CP, Zhou K, Bowden GT, Bode AM, Dong Z. Quercetin-3-methyl ether suppresses proliferation of mouse epidermal JB6 P+ cells by targeting ERKs. Carcinogenesis 2011; 33:459-65. [PMID: 22139441 DOI: 10.1093/carcin/bgr281] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chemoprevention has been acknowledged as an important and practical strategy for the management of skin cancer. Quercetin-3-methyl ether, a naturally occurring compound present in various plants, has potent anticancer-promoting activity. We identified this compound by in silico virtual screening of the Traditional Chinese Medicine Database using extracellular signal-regulated kinase 2 (ERK2) as the target protein. Here, we showed that quercetin-3-methyl ether inhibited proliferation of mouse skin epidermal JB6 P+ cells in a dose- and time-dependent manner by inducing cell cycle G(2)-M phase accumulation. It also suppressed 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic cell transformation in a dose-dependent manner. Its inhibitory effect was greater than quercetin. The activation of activator protein-1 was dose-dependently suppressed by quercetin-3-methyl ether treatment. Western blot and kinase assay data revealed that quercetin-3-methyl ether inhibited ERKs kinase activity and attenuated phosphorylation of ERKs. Pull-down assays revealed that quercetin-3-methyl ether directly binds with ERKs. Furthermore, a loss-of-function ERK2 mutation inhibited the effectiveness of the quercetin-3-methyl ether. Overall, these results indicated that quercetin-3-methyl ether exerts potent chemopreventive activity by targeting ERKs.
Collapse
Affiliation(s)
- Jixia Li
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brauer DS, Gentleman E, Farrar DF, Stevens MM, Hill RG. Benefits and drawbacks of zinc in glass ionomer bone cements. Biomed Mater 2011; 6:045007. [DOI: 10.1088/1748-6041/6/4/045007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Kim BJ. Transient receptor potential melastatin type 7 channels are involved in zinc-induced apoptosis in gastric cancer. Anim Cells Syst (Seoul) 2011. [DOI: 10.1080/19768354.2011.577558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Khanal P, Choi HK, Namgoong GM, Ahn SG, Yoon JH, Sohn H, Choi HS. 5'-Nitro-indirubinoxime inhibits epidermal growth factor- and phorbol ester-induced AP-1 activity and cell transformation through inhibition of phosphorylation of Pin1. Mol Carcinog 2011; 50:961-71. [PMID: 21400615 DOI: 10.1002/mc.20761] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/06/2011] [Accepted: 02/09/2011] [Indexed: 12/16/2022]
Abstract
5'-Nitro-indirubinoxime (5'-NIO), a derivative of indirubin, exhibits anti-cancer activity in a variety of human cancer cells. However, the underlying molecular mechanisms and molecular target(s) of the chemopreventive activities of 5'-NIO remain unknown. Here, we report that 5'-NIO inhibited the epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic cell transformation of JB6 Cl41 mouse skin epidermal cells without any cytotoxic effects. Western blot analysis revealed that 5'-NIO inhibited activities of Raf-1 (S338), MEK1/2, ERK1/2, JNK, and c-Jun induced by EGF or TPA, respectively, whereas it did not affect autophosphorylation of epidermal growth factor receptor (EGFR) induced by EGF or TPA. In addition, 5'-NIO exerted strong inhibitory effects on the EGF- or TPA-induced c-fos or c-jun transcriptional activity, and thereby inhibited the associated activator protein-1 (AP-1) transactivation activity induced by EGF or TPA. Importantly, 5'-NIO inhibited Pin1 phosphorylation at serine 16 induced by EGF or TPA, respectively, resulted in the inhibition of interaction between Pin1 and Raf-1. Immunoprecipitation/immunoblot analysis revealed that 5'-NIO bound with Pin1. Together, these findings suggest that 5'-NIO might act as an anticarcinogene in EGF- or TPA-induced carcinogenesis through the inhibition of interaction between Pin1 and Raf-1. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prem Khanal
- BK21 Project Team, College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim JE, Lee DE, Lee KW, Son JE, Seo SK, Li J, Jung SK, Heo YS, Mottamal M, Bode AM, Dong Z, Lee HJ. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K. Cancer Prev Res (Phila) 2011; 4:582-91. [PMID: 21330379 DOI: 10.1158/1940-6207.capr-11-0032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3'-Methoxy-3,4',5,7-tetrahydroxyflavone (isorhamnetin) is a plant flavonoid that occurs in fruits and medicinal herbs. Isorhamnetin exerts anticancer effects, but the underlying molecular mechanism for the chemopreventive potential of isorhamnetin remains unknown. Here, we report anti-skin cancer effects of isorhamnetin, which inhibited epidermal growth factor (EGF)-induced neoplastic cell transformation. It also suppressed anchorage-dependent and -independent growth of A431 human epithelial carcinoma cells. Isorhamnetin attenuated EGF-induced COX-2 expression in JB6 and A431 cells. In an in vivo mouse xenograft using A431 cells, isorhamnetin reduced tumor growth and COX-2 expression. The EGF-induced phosphorylation of extracellular signal-regulated kinases, p90 and p70 ribosomal S6 kinases, and Akt was suppressed by isorhamnetin. In vitro and ex vivo kinase assay data showed that isorhamnetin inhibited the kinase activity of MAP (mitogen-activated protein)/ERK (extracellular signal regulated kinase) kinase (MEK) 1 and PI3-K (phosphoinositide 3-kinase) and the inhibition was due to direct binding with isorhamnetin. Notably, isorhamnetin bound directly to MEK1 in an ATP-noncompetitive manner and to PI3-K in an ATP-competitive manner. This report is the first mechanistic study identifying a clear molecular target for the anticancer activity of isorhamnetin. Overall, these results indicate that isorhamnetin has potent anticancer activity and it primarily targets MEK and PI3-K, which might contribute to the chemopreventive potential of certain foods.
Collapse
Affiliation(s)
- Jong-Eun Kim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kang NJ, Lee KW, Kim BH, Bode AM, Lee HJ, Heo YS, Boardman L, Limburg P, Lee HJ, Dong Z. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK. Carcinogenesis 2011; 32:921-8. [PMID: 21317303 DOI: 10.1093/carcin/bgr022] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemiological studies suggest that coffee consumption reduces the risk of cancers, including colon cancer, but the molecular mechanisms and target(s) underlying the chemopreventive effects of coffee and its active ingredient(s) remain unknown. Based on serving size or daily units, coffee contains larger amounts of phenolic phytochemicals than tea or red wine. Coffee or chlorogenic acid inhibited CT-26 colon cancer cell-induced lung metastasis by blocking phosphorylation of ERKs. Coffee or caffeic acid (CaA) strongly suppressed mitogen-activated MEK1 and TOPK activities and bound directly to either MEK1 or TOPK in an ATP-noncompetitive manner. Coffee or CaA, but not caffeine, inhibited ERKs phosphorylation, AP-1 and NF-κB transactivation and subsequently inhibited TPA-, EGF- and H-Ras-induced neoplastic transformation of JB6 P+ cells. Coffee consumption was also associated with a significant attenuation of ERKs phosphorylation in colon cancer patients. These results suggest that coffee and CaA target MEK1 and TOPK to suppress colon cancer metastasis and neoplastic cell transformation.
Collapse
Affiliation(s)
- Nam Joo Kang
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kralova J, Sheely JI, Liss AS, Bose HR. ERK and JNK activation is essential for oncogenic transformation by v-Rel. Oncogene 2010; 29:6267-79. [PMID: 20802521 PMCID: PMC2992084 DOI: 10.1038/onc.2010.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
v-Rel is the acutely oncogenic member of the NF-κB family of transcription factors. Infection with retroviruses expressing v-Rel rapidly induces fatal lymphomas in birds and transforms primary lymphocytes and fibroblasts in vitro. We have previously shown that AP-1 transcriptional activity contributes to v-Rel-mediated transformation. While v-Rel increases the expression of these factors, their activity may also be induced through phosphorylation by the mitogen-activated protein (MAP) kinases. The expression of v-Rel results in the strong and sustained activation of the ERK and JNK MAPK pathways. This induction is critical for the v-Rel transformed phenotype, as suppression of MAPK activity with chemical inhibitors or siRNA severely impairs colony formation of v-Rel transformed lymphoid cell lines. However, signaling must be maintained within an optimal range in these cells, since strong additional activation of either pathway beyond the levels induced by v-Rel through the expression of constitutively active MAPK proteins attenuates the transformed phenotype. MAPK signaling also plays an important role in the initial transformation of primary spleen cells by v-Rel, although distinct requirements for MAPK activity at different stages of v-Rel-mediated transformation were identified. We also show that the ability of v-Rel to induce MAPK signaling more strongly than c-Rel contributes to its greater oncogenicity.
Collapse
Affiliation(s)
- J Kralova
- Section of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | | | | | |
Collapse
|
25
|
Hudson LG, Gale JM, Padilla RS, Pickett G, Alexander BE, Wang J, Kusewitt DF. Microarray analysis of cutaneous squamous cell carcinomas reveals enhanced expression of epidermal differentiation complex genes. Mol Carcinog 2010; 49:619-29. [PMID: 20564339 DOI: 10.1002/mc.20636] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene expression profiles were determined for 12 cutaneous squamous cell carcinomas (SCC) removed from sun-exposed sites on nonimmunosuppressed patients. Gene expression in each SCC was compared to that in sun-exposed skin from the same patient using the Affymetrix HGU133 2.0 PlusGeneChip. We identified 440 genes with increased expression in SCC and 738 with decreased expression; overall we identified a large number of small changes in gene expression rather than a few marked changes that distinguished SCC from sun-exposed skin. Analyzing this robust data set according to biofunctional pathways using DAVID, transcriptional control elements using oPOSSUM, and chromosomal location using GSEA suggested genetic and epigenetic mechanisms of gene expression regulation in SCC. Some altered patterns of gene expression in SCC were consistent with regulation of spatially separated genes by a number of developmentally important transcription factors (forkhead, HMG, and homeo factors) that negatively regulated gene expression and to a few factors that positively regulated expression (Creb-1, NFkappaB, RelA, and Sp-1). We also found that coordinately enhanced expression of epidermal differentiation complex genes on chromosome 1q21 was a hallmark of SCC. A novel finding in our study was enhanced expression of keratin 13 in SCC, a result validated by immunohistochemical staining of an SCC tumor tissue array.
Collapse
Affiliation(s)
- Laurie G Hudson
- University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Mukherjee JJ, Kumar S. Phenolic fraction of tobacco smoke condensate potentiates benzo[a]pyerene diol epoxide-induced cell transformation: role of protein kinase C. Mutat Res 2010; 696:89-94. [PMID: 20006731 PMCID: PMC2831635 DOI: 10.1016/j.mrgentox.2009.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 05/28/2023]
Abstract
In this study we separated weakly acidic phenolic components from other neutral, acidic and basic components of tobacco smoke condensate (TSC) and observed that phenolic fraction of TSC significantly increased the number of colonies of promotion-sensitive JB6 Cl41 cells that showed anchorage-independent growth on soft agar in response to BPDE (an ultimate carcinogen produced by metabolic activation of the PAH benzo[a]pyrene). Anchorage-independent cell growth is indicative of cell transformation resulting in acquisition of tumorigenic potential. In order to understand the underlying mechanism by which TSC phenolic fraction potentiates BPDE-induced tumorigenicity, we examined its effect on the activation of two transcription factors AP-1 and NF-kappaB which are known to be influenced by established tumor promoter TPA. BPDE treatment caused induction of both AP-1 and NF-kappaB activity as determined by luciferase reporter assay and only NF-kappaB induction in response to BPDE was significantly attenuated by TSC phenolic fraction whereas AP-1 induction remains unaltered. Attenuation of NF-kappaB activation by TSC phenolic fraction was associated with significant decrease of intracellular PKC substrate phosphorylation in BPDE treated cells. Non-specific PKC inhibitors staurosporine and bisindolylmaleimide II as well as inhibitors specific to conventional PKCs (Go6976) and PKC-delta (rottlerin) attenuated NF-kappaB activation in BPDE treated cells to a varying degree indicating a possible link between PKC down-regulation and the attenuation of NF-kappaB activity by TSC phenolic fraction. Treatment of cells with PKC inhibitors also potentiated anchorage-independent growth of BPDE treated cells on soft agar. Our data suggest a possible role of PKC down-regulation in potentiation of BPDE-induced tumorogenicity by TSC phenolic fraction.
Collapse
Affiliation(s)
- Jagat J Mukherjee
- Great Lakes Center, State University of New York College, Buffalo, NY 14222, USA.
| | | |
Collapse
|
27
|
Waters KM, Tan R, Opresko LK, Quesenberry RD, Bandyopadhyay S, Chrisler WB, Weber TJ. Cellular dichotomy between anchorage-independent growth responses to bFGF and TPA reflects molecular switch in commitment to carcinogenesis. Mol Carcinog 2009; 48:1059-69. [PMID: 19526458 DOI: 10.1002/mc.20558] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely nonoverlapping global gene expression profiles. However, a subset of differentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) and D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired nontumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1, and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG.
Collapse
Affiliation(s)
- Katrina M Waters
- Computational Biology and Bioinformatics Groups, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Weber TJ, Opresko LK, Waisman DM, Newton GJ, Quesenberry RD, Bollinger N, Moore RJ, Smith RD. Regulation of the Low-Dose Radiation Paracrine-Specific Anchorage-Independent Growth Response by Annexin A2. Radiat Res 2009; 172:96-105. [DOI: 10.1667/rr1220.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Lawal AO, Ellis EM. Intracellular Ca2+ Alteration Via Phospholipase C-Inositol Triphosphate And Mitochondrial-Caspase Dependent Pathways Mediate Cadmium-Induced Cell Death. Toxicology 2009. [DOI: 10.1016/j.tox.2009.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Beutler JA, Kang MI, Robert F, Clement JA, Pelletier J, Colburn NH, McKee TC, Goncharova E, McMahon JB, Henrich CJ. Quassinoid inhibition of AP-1 function does not correlate with cytotoxicity or protein synthesis inhibition. JOURNAL OF NATURAL PRODUCTS 2009; 72:503-6. [PMID: 19199792 PMCID: PMC2837105 DOI: 10.1021/np800732n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Several quassinoids were identified in a high-throughput screening assay as inhibitors of the transcription factor AP-1. Further biological characterization revealed that while their effect was not specific to AP-1, protein synthesis inhibition and cell growth assays were inconsistent with a mechanism of simple protein synthesis inhibition. Numerous plant extracts from the plant family Simaroubaceae were also identified in the same screen; bioassay-guided fractionation of one extract (Ailanthus triphylla) yielded two known quassinoids, ailanthinone (3) and glaucarubinone (4), which were also identified in the pure compound screening procedure.
Collapse
Affiliation(s)
- John A Beutler
- Molecular Targets Development Program and Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kang NJ, Lee KW, Kwon JY, Hwang MK, Rogozin EA, Heo YS, Bode AM, Lee HJ, Dong Z. Delphinidin attenuates neoplastic transformation in JB6 Cl41 mouse epidermal cells by blocking Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling. Cancer Prev Res (Phila) 2009; 1:522-31. [PMID: 19139002 DOI: 10.1158/1940-6207.capr-08-0071] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies suggest that anthocyanidins play a pivotal role in the chemopreventive effects of fruits and vegetables. However, the underlying molecular mechanisms and cellular targets remain unknown. Neoplastic transformation of cells and inflammation are considered to be major events contributing to carcinogenesis. Here, we report that delphinidin, a major dietary anthocyanidin, inhibits tumor promoter-induced transformation and cyclooxygenase-2 (COX-2) expression in JB6 promotion-sensitive mouse skin epidermal (JB6 P+) cells by directly targeting Raf and mitogen-activated protein kinase kinase (MEK). Delphinidin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation and COX-2 expression at both the protein and transcriptional levels. The activation of activator protein-1 and nuclear factor-kappaB induced by TPA was dose dependently inhibited by delphinidin treatment. Delphinidin strongly suppressed Raf1 and MEK1 kinase activities and subsequently attenuated TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase (ERK), p90RSK, and MSK. Although delphinidin suppressed ERK and c-Jun NH(2)-terminal kinase activities, it was more effective at inhibiting Raf1 or MEK1 activities. Pull-down and competition assays revealed that delphinidin binds with Raf1 or MEK1 noncompetitively with ATP. Delphinidin also dose dependently suppressed JB6 P+ cell transformation induced by epidermal growth factor and H-Ras, both of which are involved in the activation of Raf/MEK/ERK signaling. Together, these findings suggested that the targeted inhibition of Raf1 and MEK activities and COX-2 expression by delphinidin contribute to the chemopreventive potential of fruits and vegetables.
Collapse
Affiliation(s)
- Nam Joo Kang
- Hormel Institute, University of Minnesota, 801 16th Avenue Northeast, Austin, MN 55912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kang MI, Henrich CJ, Bokesch HR, Gustafson KR, McMahon JB, Baker AR, Young MR, Colburn NH. A selective small-molecule nuclear factor-kappaB inhibitor from a high-throughput cell-based assay for "activator protein-1 hits". Mol Cancer Ther 2009; 8:571-81. [PMID: 19258426 DOI: 10.1158/1535-7163.mct-08-0811] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NSC 676914 has been identified as a selective nuclear factor-kappaB (NF-kappaB) inhibitor that does not inhibit cell proliferation. This compound was originally identified in a high-throughput cell-based assay for activator protein-1 (AP-1) inhibitors using synthetic compound libraries and the National Cancer Institute natural product repository. NSC 676914 shows activity against NF-kappaB in luciferase reporter assays at concentrations much less than the IC50 for AP-1. A serum response element reporter used as a specificity control and indicator of cell proliferation was relatively insensitive to the compound. Pretreatment with NSC 676914 is here shown to repress 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced IkappaB-alpha phosphorylation and translocation of p65/50 to the nucleus but not the processing of p52 from p100, suggesting the inhibition of NF-kappaB regulator IKKbeta rather than IKKalpha. Inhibition of NF-kappaB activation occurred as a consequence of blocking phosphorylation of IKK. Induction of IkappaB-alpha phosphorylation by TPA was diminished by pretreatment of NSC 676914 even at 1.1 mumol/L. In contrast, kinases c-Jun-NH2-kinase and extracellular signal-regulated kinases 1 and 2, important for AP-1 activation, showed no significant repression by this compound. Furthermore, a Matrigel invasion assay with breast cancer cell lines and a transformation assay in mouse JB6 cells revealed that TPA-induced invasion and transformation responses were completely repressed by this compound. These results suggest that NSC 676914 could be a novel inhibitor having potential therapeutic activity to target NF-kappaB for cancer treatment or prevention.
Collapse
Affiliation(s)
- Moon-Il Kang
- Laboratory of Cancer Prevention, Gene Regulation Section, Molecular Targets Development Program, National Cancer Institute-Frederick, Room 187, Building 567, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Activation of phosphatidylinositol 3-kinase is required for tumor necrosis factor-alpha-induced upregulation of matrix metalloproteinase-9: its direct inhibition by quercetin. Int J Biochem Cell Biol 2009; 41:1592-600. [PMID: 19401153 DOI: 10.1016/j.biocel.2009.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/17/2009] [Accepted: 01/20/2009] [Indexed: 12/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in various skin disorders, including photoaging, dermatitis, and tumorigenesis. Tumor necrosis factor (TNF)-alpha is a key proinflammatory cytokine that acts to provoke inflammation, proliferation, and tumorigenesis. The present study investigated the possible inhibitory effects of red wine polyphenols on TNF-alpha-induced upregulation of MMP-9 and on the migratory phenotype of JB6 P+ mouse epidermal (JB6 P+) cells. Red wine extract (RWE) and quercetin, which is a major flavonoid present in red wine, inhibited significantly the TNF-alpha-induced upregulation of MMP-9 and cell migration, whereas resveratrol did not have significant inhibitory effects. The inhibitory effects of RWE and quercetin were mediated by suppression of the phosphorylation of Akt and the transactivation of activator protein-1 and nuclear factor-kappaB, as determined by Western blotting and luciferase assays, respectively. Aside from Akt, quercetin had no effect on the phosphorylation of other mitogen-activated protein kinases. Direct kinase assay data revealed that RWE and quercetin inhibited phosphatidylinositol 3-kinase (PI3K) activity. The results of direct and cell-based pull-down assays demonstrated that RWE and quercetin bound to PI3K, resulting in the inhibition of PI3K activity. Using chemical inhibitors, it was confirmed that the PI3K-dependent Akt pathway was involved in TNF-alpha-induced MMP-9 upregulation and migration in JB6 P+ cells. Collectively, these results indicate that TNF-alpha-induced MMP-9 upregulation and the migratory phenotype are associated with the PI3K/Akt pathway, and that these effects are inhibited strongly by RWE and quercetin.
Collapse
|
34
|
Abstract
Tumor necrosis factor (TNF) is a multifunctional cytokine that plays important roles in diverse cellular events such as cell survival, proliferation, differentiation, and death. As a pro-inflammatory cytokine, TNF is secreted by inflammatory cells, which may be involved in inflammation-associated carcinogenesis. TNF exerts its biological functions through activating distinct signaling pathways such as nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK). NF-kappaB is a major cell survival signal that is anti-apoptotic, whereas sustained JNK activation contributes to cell death. The crosstalk between the NF-kappaB and JNK is involved in determining cellular outcomes in response to TNF. In regard to cancer, TNF is a double-dealer. On one hand, TNF could be an endogenous tumor promoter, because TNF stimulates the growth, proliferation, invasion and metastasis, and tumor angiogenesis of cancer cells. On the other hand, TNF could be a cancer killer. The property of TNF in inducing cancer cell death renders it a potential cancer therapeutic, although much work is needed to reduce its toxicity for systematic TNF administration. Recent studies have focused on sensitizing cancer cells to TNF-induced apoptosis through inhibiting survival signals such as NF-kappaB, by combined therapy. In this article we provide an overview of the roles of TNF-induced signaling pathways in cancer biology with specific emphasis on carcinogenesis and cancer therapy.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory of Molecular and Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | | |
Collapse
|
35
|
Lee KW, Kang NJ, Rogozin EA, Oh SM, Heo YS, Pugliese A, Bode AM, Lee HJ, Dong Z. The resveratrol analogue 3,5,3',4',5'-pentahydroxy-trans-stilbene inhibits cell transformation via MEK. Int J Cancer 2008; 123:2487-96. [PMID: 18767048 DOI: 10.1002/ijc.23830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Resveratrol, present in grapes and red wine, is reported to be a natural chemopreventive agent against cancer. However, the concentrations required to exert these effects may be difficult to achieve by drinking only 1 or 2 glasses of red wine a day. Therefore, developing more potent, nontoxic analogues of resveratrol may provide a feasible means of achieving an effective physiologic concentration. Here we report that the resveratrol analogue, 3,5,3',4',5'-pentahydroxy-trans-stilbene (RSVL2), inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation in JB6 P+ mouse epidermal cells. Further, we identified MEK/ERK signaling as the direct molecular target for the anticancer effects of RSVL2 and demonstrated that RSVL2 inhibited MEK1, but not Raf1 or ERK2 kinase activity. RSVL2 also dose-dependently suppressed MEK1 kinase activity induced by TPA and the inhibition of H-Ras-induced cell transformation was much stronger for RSVL2 than for PD098059 or resveratrol. Both in vitro and ex vivo pull-down assays indicated that RSVL2, but not resveratrol, directly bound with GST-MEK1, but did not compete with ATP for binding. Docking data indicated that the low inhibitory activity of resveratrol might be due to the lack of the hydroxyl group at the meta position of the B ring, thereby preventing resveratrol from forming a hydrogen bond with the backbone amide group of Ser212, which is the key interaction for stabilizing the inactive conformation of the activation loop.
Collapse
Affiliation(s)
- Ki Won Lee
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ansari KM, Rundhaug JE, Fischer SM. Multiple signaling pathways are responsible for prostaglandin E2-induced murine keratinocyte proliferation. Mol Cancer Res 2008; 6:1003-16. [PMID: 18567804 DOI: 10.1158/1541-7786.mcr-07-2144] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although prostaglandin E2 (PGE2) has been shown by pharmacologic and genetic studies to be important in skin cancer, the molecular mechanism(s) by which it contributes to tumor growth is not well understood. In this study, we investigated the mechanisms by which PGE2 stimulates murine keratinocyte proliferation using in vitro and in vivo models. In primary mouse keratinocyte cultures, PGE2 activated the epidermal growth factor receptor (EGFR) and its downstream signaling pathways as well as increased cyclic AMP (cAMP) production and activated the cAMP response element binding protein (CREB). EGFR activation was not significantly inhibited by pretreatment with a c-src inhibitor (PP2), nor by a protein kinase A inhibitor (H-89). However, PGE2-stimulated extracellularly regulated kinase 1/2 (ERK1/2) activation was completely blocked by EGFR, ERK1/2, and phosphatidylinositol 3-kinase (PI3K) pathway inhibitors. In addition, these inhibitors attenuated the PGE2-induced proliferation, nuclear factor-kappa B, activator protein-1 (AP-1), and CREB binding to the promoter regions of the cyclin D1 and vascular endothelial growth factor (VEGF) genes and expression of cyclin D1 and VEGF in primary mouse keratinocytes. Similarly, in vivo, we found that WT mice treated with PGE2 and untreated cyclooxygenase-2-overexpressing transgenic mice had higher levels of cell proliferation and expression of cyclin D1 and VEGF, as well as higher levels of activated EGFR, nuclear factor-kappa B, AP-1, and CREB, than vehicle-treated WT mice. Our findings provide evidence for a link between cyclooxygenase-2 overexpression and EGFR-, ERK-, PI3K-, cAMP-mediated cell proliferation, and the tumor-promoting activity of PGE2 in mouse skin.
Collapse
Affiliation(s)
- Kausar M Ansari
- Science Park-Research Division, The University of Texas M D Anderson Cancer Center, PO Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
37
|
Kang NJ, Lee KW, Lee DE, Rogozin EA, Bode AM, Lee HJ, Dong Z. Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase. J Biol Chem 2008; 283:20664-73. [PMID: 18519570 DOI: 10.1074/jbc.m800263200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 mug/ml and 40 mum, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-kappaB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 mum) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-kappaB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation.
Collapse
Affiliation(s)
- Nam Joo Kang
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Lee KW, Kang NJ, Heo YS, Rogozin EA, Pugliese A, Hwang MK, Bowden GT, Bode AM, Lee HJ, Dong Z. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res 2008; 68:946-55. [PMID: 18245498 DOI: 10.1158/0008-5472.can-07-3140] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Considerable attention has focused on the health-promoting effects of red wine and its nonflavonoid polyphenol compound resveratrol. However, the underlying molecular mechanisms and molecular target(s) of red wine or other potentially active ingredients in red wine remain unknown. Here, we report that red wine extract (RWE) or the red wine flavonoid quercetin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced transformation of JB6 promotion-sensitive mouse skin epidermal (JB6 P+) cells. The activation of activator protein-1 and nuclear factor-kappaB induced by TPA was dose dependently inhibited by RWE or quercetin treatment. Western blot and kinase assay data revealed that RWE or quercetin inhibited mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) 1 and Raf1 kinase activities and subsequently attenuated TPA-induced phosphorylation of ERK/p90 ribosomal S6 kinase. Although either RWE or quercetin suppressed Raf1 kinase activity, they were more effective in inhibiting MEK1 activity. Importantly, quercetin exerted stronger inhibitory effects than PD098059, a well-known pharmacologic inhibitor of MEK. Resveratrol did not affect either MEK1 or Raf1 kinase activity. Pull-down assays revealed that RWE or quercetin (but not resveratrol) bound with either MEK1 or Raf1. RWE or quercetin also dose dependently suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are involved in the activation of MEK/ERK signaling. Docking data suggested that quercetin, but not resveratrol, formed a hydrogen bond with the backbone amide group of Ser(212), which is the key interaction for stabilizing the inactive conformation of the activation loop of MEK1.
Collapse
Affiliation(s)
- Ki Won Lee
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Creton SK, Zhu H, Gooderham NJ. The cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine activates the extracellular signal regulated kinase mitogen-activated protein kinase pathway. Cancer Res 2008; 67:11455-62. [PMID: 18056474 DOI: 10.1158/0008-5472.can-07-2821] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During the cooking of meat, mutagenic and carcinogenic heterocyclic amines are formed, the most abundant of which, 2-amino-1-methyl-6-phenylimidazo[4-5-b]pyridine (PhIP), induces tumors of the prostate, colon, and mammary gland in rats. Humans consuming cooked meat are exposed to PhIP on a daily basis, yet few studies have assessed the effects of PhIP at dietary relevant concentrations. In addition to its genotoxic properties, recent studies have shown that PhIP can activate estrogen receptor-mediated signaling pathways at doses that are similar to those that may be present in the body following consumption of a cooked meat meal. In the present study, we examined whether such doses of PhIP can affect estrogen receptor-independent signal transduction via the mitogen-activated protein kinase (MAPK) extracellular signal-related kinase (ERK) pathway to influence proliferation and migration in the human mammary epithelial cell line MCF10A and the prostate cancer cell line PC-3. At doses shown to have a proliferative effect on MCF10A cells (10(-11)-10(-7) mol/L), PhIP induced a rapid, transient increase in phosphorylation of both MAPK/ERK kinase 1/2 and ERKs. Inhibition of this pathway significantly reduced the PhIP-induced proliferation of MCF10A cells and the migration of PC-3 cells. The data presented here show that levels of PhIP that approximate to human dietary exposure stimulate cellular signaling pathways and result in increased growth and migration, processes linked to the promotion and progression of neoplastic disease. These findings provide strong evidence that PhIP acts as a tumor initiator and promoter and that dietary exposure to this compound could contribute to carcinogenesis in humans.
Collapse
Affiliation(s)
- Stuart K Creton
- Biomolecular Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
40
|
Mukherjee JJ, Gupta SK, Kumar S. Inhibition of benzopyrene diol epoxide-induced apoptosis by cadmium(II) is AP-1-independent: role of extracelluler signal related kinase. Chem Biol Interact 2007; 172:72-80. [PMID: 18093576 DOI: 10.1016/j.cbi.2007.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 01/02/2023]
Abstract
Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other PAHs. The mechanism underlying this synergism is not clearly understood. We observed that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in promotion sensitive mouse epidermal JB6 Cl41 cells at non-cytotoxic concentrations. BPDE also activates AP-1 several folds in AP-1 reporter JB6 cells. Cadmium at non-cytotoxic concentrations inhibits both AP-1 activation and apoptosis in response to BPDE. Since AP-1 is known to be involved in stress-induced apoptosis we investigated whether inhibition of AP-1 by cadmium has any role in the inhibition of BPDE-induced apoptosis. MAP kinases (particularly ERKs, p38 and JNKs) are known to have important role in DNA damage-induced AP-1 activation. We observed that ERK and JNK, but not p38 MAP kinase, are involved in BPDE-induced AP-1 activation. Effect of cadmium on MAP kinases and the effect of inhibition of above three MAP kinases on BPDE-induced AP-1 activation and apoptosis indicate that AP-1 is probably not involved in BPDE-induced apoptosis. Cadmium up-regulates BPDE-activated ERKs and ERK inhibition by U0126 relieves cadmium-mediated inhibition of BPDE-induced apoptosis. We suggest that cadmium inhibits BPDE-induced apoptosis not involving AP-1 but probably through a different mechanism by up-regulating ERK which is known to promote cell survival.
Collapse
Affiliation(s)
- Jagat J Mukherjee
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, State University of New York College at Buffalo, Buffalo, NY 14222, USA.
| | | | | |
Collapse
|
41
|
Kundu JK, Surh YJ. Epigallocatechin gallate inhibits phorbol ester-induced activation of NF-kappa B and CREB in mouse skin: role of p38 MAPK. Ann N Y Acad Sci 2007; 1095:504-12. [PMID: 17404063 DOI: 10.1196/annals.1397.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The modulation of intracellular signaling network involved in an inappropriate expression of cyclooxygenase-2 (COX-2) is a pragmatic approach for chemoprevention with a wide variety of dietary phytochemicals. Epigallocatechin gallate (EGCG), a major green tea polyphenol, is one of the most extensively investigated chemopreventive agents. Our previous study revealed that EGCG inhibited expression of COX-2 and activation of mitogen-activated protein kinases (MAPKs) in mouse skin stimulated with a prototype tumor promotor 12-O-tetradecanoylphorbol-13-acetate (TPA). This study was aimed at identifying transcription factors as molecular targets of EGCG in downregulating COX-2 expression. We found that EGCG inhibited TPA-induced DNA binding of NF-kappaB and CREB in mouse skin in vivo. EGCG also suppressed TPA-induced phosphorylation and subsequent degradation of IkappaBalpha, and prevented nuclear translocation of p65. We also examined whether extracellular signal-regulated protein kinase (ERK) and p38 MAPK, which are known to regulate activation of NF-kappaB, can also modulate CREB DNA binding. Pretreatment with U0126 and SB203580, pharmacological inhibitors of ERK and p38 MAPK, respectively, showed that SB203580, but not U0126, attenuated TPA-induced CREB DNA binding in mouse skin. Taken together, EGCG inhibited TPA-induced DNA binding of NF-kappaB and CREB by blocking activation of p38 MAPK, which may provide a molecular basis of COX-2 inhibition by EGCG in mouse skin in vivo.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- College of Pharmacy, Seoul National University, Shillim-dong, Kwanak-ku, Seoul 151-742, Korea
| | | |
Collapse
|
42
|
Basuki W, Hiromura M, Sakurai H. Insulinomimetic Zn complex (Zn(opt)2) enhances insulin signaling pathway in 3T3-L1 adipocytes. J Inorg Biochem 2007; 101:692-9. [PMID: 17316811 DOI: 10.1016/j.jinorgbio.2006.12.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/23/2006] [Accepted: 12/27/2006] [Indexed: 01/28/2023]
Abstract
Zinc (Zn) is an essential trace element with multiple regulatory functions, involving insulin synthesis, secretion, signaling and glucose transport. Since 2000, we have proposed that Zn complexes with different coordination environments exhibit high insulinomimetic and antidiabetic activities in type 2 diabetic animals. However, the molecular mechanism for the activities is still unsolved. The purpose of this study was to reveal the molecular mechanism of several types of Zn complexes in 3T3-L1 adipocytes, with respect to insulin signaling pathway. Obtained results shows that bis(1-oxy-2-pyridine-thiolato)Zn(II), Zn(opt)2, with S(2)O(2) coordination environment induced most strongly Akt/protein kinase B (Akt/PKB) phosphorylation, in which the optimal phosphorylation was achieved at a concentration of 25 microM, and this Zn(opt)2-induced Akt/PKB phosphorylation was inhibited by wortmannin at 100 nM. Further, the phosphorylation was maximal at 5-10 min stimulation, in agreement with the Zn uptake which was also maximal at 5-10 min stimulation. The Akt/PKB phosphorylation was in concentration- and time-dependent manners. Zn(opt)2 was also capable to translocate GLUT4 protein to the plasma membrane. We conclude that Zn(opt)2 was revealed to exhibit both insulinomimetic and antidiabetic activities by activating insulin signaling cascade through Akt/PKB phosphorylation, which in turn caused the GLUT4 translocation from the cytosol to the plasma membrane.
Collapse
Affiliation(s)
- Wanny Basuki
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Misasagi, Kyoto 607-8414, Japan
| | | | | |
Collapse
|
43
|
Kwon JY, Lee KW, Hur HJ, Lee HJ. Peonidin Inhibits Phorbol-Ester-Induced COX-2 Expression and Transformation in JB6 P+ Cells by Blocking Phosphorylation of ERK-1 and -2. Ann N Y Acad Sci 2007; 1095:513-20. [PMID: 17404064 DOI: 10.1196/annals.1397.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abnormal upregulation of cyclooxygenase-2 (COX-2) has been frequently observed in various types of transformed and cancerous cells. Numerous anti-inflammatory agents have been shown to exert chemopreventive effects by targeting COX-2, a rate-limiting enzyme involved in the inflammatory process. Anthocyanins are naturally occurring polyphenolic compounds that endow various fruits, vegetables, and plants with intense colors. Peonidin is another representative anthocyanidin, but its chemopreventive potential has not been fully described. This article investigated the effect of peonidin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced COX-2 expression and transformation in JB6 P(+) mouse epidermal cells (JB6 P(+) cells). Treatment of JB6 P(+) cells with peonidin inhibited TPA-induced COX-2 expression, and also decreased TPA-induced neoplastic transformation and blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs) in the cells. The inhibition of the signaling mechanism regulating the activation of ERKs strongly suggests that peonidin exhibits chemopreventive as well as anti-inflammatory activities.
Collapse
Affiliation(s)
- Jung Yeon Kwon
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Korea
| | | | | | | |
Collapse
|
44
|
Gooderham NJ, Creton S, Lauber SN, Zhu H. Mechanisms of action of the carcinogenic heterocyclic amine PhIP. Toxicol Lett 2006; 168:269-77. [PMID: 17156947 DOI: 10.1016/j.toxlet.2006.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
Formed during the cooking of meat, the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4-5-b]pyridine (PhIP) is mutagenic and carcinogenic. Although the metabolism and mutational effects of PhIP are well defined, the early cellular and genomic events by which it can induce neoplastic transformation are not yet fully characterised. These early cellular responses to genotoxic doses of PhIP were examined in a human mammary epithelial cell, MCF10A. Using Western blotting, PhIP was shown to induce expression of the DNA damage response proteins p53 and p21(WAF1/CIP1), and to inhibit cell growth while activating G1 cell cycle checkpoint, a consequence of PhIP-induced DNA damage. Using low doses of PhIP (previously shown to activate oestrogenic signalling), PhIP increased proliferation in the oestrogen receptor (ER)-negative MCF10A cell line and to activate the mitogen-activated protein kinase (MAPK) pathway. Inhibition of this pathway significantly reduced the PhIP-induced cell growth of MCF10A cells. The work presented here suggests that, further to its genotoxic properties, at levels close to human exposure PhIP stimulates cellular signalling pathways that are linked to the promotion and progression of neoplastic disease. It is possible that a combination of these DNA damaging and growth promoting properties provide a mechanism for the tumourigenicity of PhIP, and may be key determinants for the tissue specificity of PhIP-induced carcinogenesis.
Collapse
Affiliation(s)
- N J Gooderham
- Biomolecular Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
45
|
Lu FJ, Tseng TH, Lee WJ, Yen CC, Yin YF, Liao CW, Liu KM. Promoting neoplastic transformation of humic acid in mouse epidermal JB6 Cl41 cells. Chem Biol Interact 2006; 162:249-58. [PMID: 16939684 DOI: 10.1016/j.cbi.2006.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 11/20/2022]
Abstract
Humic acid (HA), a group of high-molecular weight polymer, resulting from the decomposition of organic matter has been implicated as a possible etiological factor for Blackfoot disease and cancer. In this study, we evaluate the promotion effect of HA on the transformation in mouse epidermal JB6 clone 41 (JB6 Cl41) cells that have been used to identify the tumor promoting activity of various compounds. Our preliminary assay demonstrated that JB6 Cl41 cells with the treatment of HA at the concentration of 100 microg/ml for 72 and 96 h significantly increased reactive oxygen species (ROS) as compared to the untreated control. In addition, the 48 h cultured cells with HA pretreatment for 48 h also increased ROS as compared to the untreated control. HA-pretreated cells develop highly scattered and spindle-shaped cells with few observable cell-cell contacts, and contain more filopodia. In vitro wound-healing assay showed that JB6 Cl41 cells with HA pretreatment increased the migrating growth. Furthermore, transformed foci of JB6 Cl41 cells following the HA pretreatment were observed after 6 weeks culture. In anchorage-independent growth assay, we found that HA promoted the colony formation and that colonies were inhibited by antioxidant N-acetyl cysteine (NAC). Our results suggest that HA may promote the transformation of epidermal cells and that this process is mediated by the generation of ROS.
Collapse
Affiliation(s)
- Fung-Jou Lu
- School of Applied Chemistry, Chung Shan Medical University, No. 110, Section 1, Chien-Kuo N. Road, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Singh RP, Dhanalakshmi S, Mohan S, Agarwal C, Agarwal R. Silibinin inhibits UVB- and epidermal growth factor–induced mitogenic and cell survival signaling involving activator protein-1 and nuclear factor-κB in mouse epidermal JB6 cells. Mol Cancer Ther 2006; 5:1145-53. [PMID: 16731746 DOI: 10.1158/1535-7163.mct-05-0478] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UVB radiation is the major etiologic factor in the development of nonmelanoma skin cancer. In addition to tumor-initiating effect, UVB also causes tumor promotion via mitogenic and survival signaling. Studies have shown strong preventive effects of silibinin against both UVB-induced and chemically induced tumor promotion in mouse skin models; however, mechanisms are not understood completely. Here, we used tumor promoter-sensitive JB6 mouse epithelial cell model and studied the effect of silibinin on two different mitogens [UVB and epidermal growth factor (EGF)] that induce mitogenic and cell survival signaling pathways. UVB (50-800 mJ/cm(2)) dose-dependently induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun-NH(2)-kinase 1/2 (JNK1/2), and p38 kinase (p38K) as well as Akt, with an optimum response at 400 mJ/cm(2) UVB dose. UVB caused a biphasic phosphorylation of ERK1/2 in a time kinetics study. Silibinin treatment before or immediately after UVB exposure, or both, resulted in a strong decrease in UVB-caused phosphorylation of ERK1/2 and Akt in both dose- and time-dependent manner, without any substantial response on JNK1/2 and p38K. Silibinin also suppressed UVB-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation, which are activated by ERK1/2 and Akt. Silibinin treatment under similar conditions also strongly inhibited EGF-induced ERK1/2, JNK1/2, and p38K as well as Akt phosphorylation, and also suppressed EGF-induced AP-1 and NF-kappaB activation. Because AP-1 and NF-kappaB are important nuclear transcription factors for tumor promotion, these results suggest that silibinin possibly prevents skin tumor promotion by inhibiting UVB- and EGF-induced mitogenic and cell survival signaling involving both AP-1 and NF-kappaB.
Collapse
Affiliation(s)
- Rana P Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box C238, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
47
|
Sung YM, He G, Hwang DH, Fischer SM. Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development. Oncogene 2006; 25:5507-16. [PMID: 16607275 DOI: 10.1038/sj.onc.1209538] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We previously showed that the EP2 knockout mice were resistant to chemically induced skin carcinogenesis. The purpose of this study was to investigate the role of the overexpression of the EP2 receptor in mouse skin carcinogenesis. To determine the effect of overexpression of EP2, we used EP2 transgenic (TG) mice and wild-type (WT) mice in a DMBA (7,12-dimethylbenz[alpha]anthracene)/TPA (12-O-tetradecanoylphorbol-13-acetate) two-stage carcinogenesis protocol. EP2 TG mice developed significantly more tumors compared with WT mice. Overexpression of the EP2 receptor increased TPA-induced keratinocyte proliferation both in vivo and in vitro. In addition, the epidermis of EP2 TG mice 48 h after topical TPA treatment was significantly thicker compared to that of WT mice. EP2 TG mice showed significantly increased cyclic adenosine monophosphate levels in the epidermis after prostaglandin E2 (PGE2) treatment. The inflammatory response to TPA was increased in EP2 TG mice, as demonstrated by an increased number of macrophages in the dermis. Tumors and 7 x TPA-treated and DMBA-TPA-treated (6 weeks) skins from EP2 TG mice produced more blood vessels than those of WT mice as determined by CD-31 immunostaining. Vascular endothelial growth factor (VEGF) protein expression was significantly increased in squamous cell carcinoma (SCC) samples from EP2 TG mice compared that of WT mice. There was, however, no difference in the number of apoptotic cells in tumors from WT and EP2 TG mice. Together, our results suggest that the overexpression of the EP2 receptor plays a significant role in the protumorigenic action of PGE2 in mouse skin.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bromodeoxyuridine/metabolism
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cattle
- Cell Culture Techniques
- Cell Proliferation/drug effects
- Female
- Humans
- Hyperplasia
- Inflammation/chemically induced
- Keratinocytes/metabolism
- Keratins/genetics
- Mice
- Mice, Transgenic
- Neovascularization, Pathologic/genetics
- Polymerase Chain Reaction
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Skin Neoplasms/blood supply
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Tetradecanoylphorbol Acetate/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Y M Sung
- Science Park-Research Division, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
48
|
Mukherjee JJ, Sikka HC. Attenuation of BPDE-induced p53 accumulation by TPA is associated with a decrease in stability and phosphorylation of p53 and downregulation of NFkappaB activation: role of p38 MAP kinase. Carcinogenesis 2005; 27:631-8. [PMID: 16244358 PMCID: PMC1383507 DOI: 10.1093/carcin/bgi247] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA damage caused by benzo[a]pyrene (B[a]P) or other polynuclear hydrocarbons (PAHs) induce p53 protein as a protective measure to eliminate the possibility of mutagenic fixation of the DNA damage. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits p53 response induced by B[a]P and other DNA-damaging agents and may cause tumor promotion. The molecular mechanism of attenuation of B[a]P-induced p53 response by TPA is not known. We investigated the effect of TPA on p53 response in (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE)-treated mouse epidermal JB6(P(+)) Cl 41 cells. BPDE treatment induced p53 accumulation which was attenuated significantly by TPA. Cells treated with BPDE and TPA showed increased ratio of Mdm2 to p53 proteins in p53 immunoprecipitate and decreased p53 life span compared to BPDE-treated cells indicating p53 destabilization by TPA. TPA also inhibited BPDE-induced p53 phosphorylation at serine15. Activation of both ERKs and p38 MAPK by BPDE and attenuation of BPDE-induced p53 accumulation by U0126 or SB202190, specific inhibitor of MEK1/2 or p38 MAPK, indicate the role of ERKs and p38 MAPK in p53 accumulation. Interestingly, TPA potentiated BPDE-induced activation of ERKs whereas p38 MAPK activation was significantly inhibited by TPA, suggesting that inhibition of p38 MAPK is involved in p53 attenuation by TPA. Furthermore, SB202190 treatment caused decreased p53 stability and inhibition of phosphorylation of p53 at serine15 in BPDE-treated cells. We also observed that TPA or SB202190 attenuated BPDE-induced nuclear factor kappa B (NFkappaB) activation in JB6 Cl 41 cells harboring NFkappaB reporter plasmid. To our knowledge this is the first report that TPA inhibits chemical carcinogen-induced NFkappaB activation. Interference of TPA with BPDE-induced NFkappaB activation implicates abrogation of p53 function which has been discussed. Overall, our data suggest that abrogation of BPDE-induced p53 response and of NFkappaB activation by TPA is mediated by impairment of the signaling pathway involving p38 MAPK.
Collapse
Affiliation(s)
- Jagat J Mukherjee
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, State University of New York College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222, USA.
| | | |
Collapse
|
49
|
Zhao Q, He Z, Chen N, Cho YY, Zhu F, Lu C, Ma WY, Bode AM, Dong Z. 2-Arachidonoylglycerol stimulates activator protein-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in JB6 P+ cells. J Biol Chem 2005; 280:26735-42. [PMID: 15886210 PMCID: PMC2227265 DOI: 10.1074/jbc.m412828200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and it plays a critical role in cannabinoid receptor-mediated cell signaling. Although 2-AG was shown to induce ERK activation via the cannabinoid receptor 1 (CB1), only a nonspecific CB receptor agonist and antagonist was used in those studies. Whether cannabinoid receptor 2 (CB2) is involved in 2-AG-induced ERK activation is still unclear. Moreover, whether 2-AG is involved in mediation of AP-1 activity and cell transformation is also not known. In the present study, we show that 2-AG stimulates AP-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in mouse epidermal JB6 P+ Cl41 cells. Using JB6 P+ C141 cells, stably transfected with an AP-1 luciferase reporter, we found that 10 microm 2-AG induced up to a 3-fold stimulation of AP-1 transcriptional activity. The AP-1 stimulation appeared to be mediated by ERK but not JNK or p38 kinase. PD98059, a specific inhibitor of MEK1, almost completely blocked 2-AG-induced ERK phosphorylation and AP-1 activation. Using CB1/2-/- murine embryonic fibroblasts, we present the first direct evidence that both cannabinoid receptors 1 and 2 (CB1/2) are involved in 2-AG-induced ERK activation. 2-AG could not stimulate ERK phosphorylation or Fyn kinase activity in dominant negative Fyn. In addition, the Fyn inhibitor PP2 blocked 2-AG-induced Fyn kinase activity and ERK phosphorylation and activity. Small interfering RNA Fyn also suppressed 2-AG-induced ERK phosphorylation. Interestingly, 2-AG enhanced epidermal growth factor-induced AP-1 DNA binding and cell transformation. Taken together, our data provide direct evidence suggesting that 2-AG may have a novel role in cell transformation and carcinogenesis in a signaling pathway involving CB1/2 and activation of Fyn, ERKs, and AP-1.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Cell Line
- Cell Transformation, Neoplastic/chemically induced
- Drug Synergism
- Endocannabinoids
- Epidermal Growth Factor/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glycerides/pharmacology
- Mice
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction
- Transcription Factor AP-1/drug effects
- Transfection
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zigang Dong
- Address correspondence to: Zigang Dong, Hormel Institute, University of Minnesota, 80116 Avenue NE, Austin, Minnesota 55912, Tel. 507-437-9600; Fax. 507-437-9606; E-Mail:
| |
Collapse
|
50
|
Dhanalakshmi S, Agarwal C, Singh RP, Agarwal R. Silibinin Up-regulates DNA-Protein Kinase-dependent p53 Activation to Enhance UVB-induced Apoptosis in Mouse Epithelial JB6 Cells. J Biol Chem 2005; 280:20375-83. [PMID: 15792956 DOI: 10.1074/jbc.m414640200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we employed a well established JB6 mouse epithelial cell model to define the molecular mechanism of efficacy of a naturally occurring flavonoid silibinin against ultraviolet B (UVB)-induced skin tumorigenesis. UVB exposure of cells caused a moderate phosphorylation of ERK1/2 and Akt and a stronger phosphorylation of p53 at Ser(15), which was enhanced markedly by silibinin pretreatment. Kinase activity of ERK1/2 for Elk-1 and Akt for glycogen synthase kinase-3beta was also potently enhanced by silibinin pretreatment. Furthermore, silibinin increased the UVB-induced level of cleaved caspase 3 as well as apoptotic cells. Based on these observations, next we investigated the role of upstream kinases, ATM/ATR and DNA-PK, which act as sensors for UVB-induced DNA damage and transduce signals leading to DNA repair or apoptosis. Whereas UVB strongly activated ATM as observed by Ser(1981) phosphorylation, it was not affected by silibinin pretreatment. However, pretreatment of cells with the DNA-protein kinase (PK) inhibitor LY294002 strongly reversed silibinin-enhanced Akt-Ser(473) and p53-Ser(15) as well as ERK1/2 phosphorylation together with a dose-dependent decrease in cleaved caspase 3 and apoptosis (p < 0.05). In addition, silibinin pretreatment strongly enhanced H2A.X-Ser(139) phosphorylation and DNA-PK-associated kinase activity as well as the physical interaction of p53 with DNA-PK; pretreatment of cells with LY294002 but not caffeine abolished the silibinin-caused increase in both DNA-PK activation and p53-Ser(15) phosphorylations. Together, these findings suggest that silibinin preferentially activates the DNA-PK-p53 pathway for apoptosis in response to UVB-induced DNA damage, and that this could be a predominant mechanism of silibinin efficacy against UVB-induced skin cancer.
Collapse
Affiliation(s)
- Sivanandhan Dhanalakshmi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|