1
|
Tong ZB, Huang R, Braisted J, Chu PH, Simeonov A, Gerhold DL. 3D-Suspension culture platform for high throughput screening of neurotoxic chemicals using LUHMES dopaminergic neurons. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100143. [PMID: 38280460 PMCID: PMC11056300 DOI: 10.1016/j.slasd.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Three-dimensional (3D) cell culture in vitro promises to improve representation of neuron physiology in vivo. This inspired development of a 3D culture platform for LUHMES (Lund Human Mesencephalic) dopaminergic neurons for high-throughput screening (HTS) of chemicals for neurotoxicity. Three culture platforms, adhesion (2D-monolayer), 3D-suspension, and 3D-shaken, were compared to monitor mRNA expression of seven neuronal marker genes, DCX, DRD2, ENO2, NEUROD4, SYN1, TH, and TUBB3. These seven marker genes reached similar maxima in all three formats, with the two 3D platforms showing similar kinetics, whereas several markers peaked earlier in 2D adhesion compared to both 3D culture platforms. The differentiated LUHMES (dLUHMES) neurons treated with ziram, methylmercury or thiram dynamically increased expression of metallothionein biomarker genes MT1G, MT1E and MT2A at 6 h. These gene expression increases were generally more dynamic in 2D adhesion cultures than in 3D cultures, but were generally comparable between 3D-suspension and 3D-u plate (low binding) platforms. Finally, we adapted 3D-suspension culture of dLUHMES and neural stem cells to 1536 well plates with a HTS cytotoxicity assay. This HTS assay revealed that cytotoxicity IC50 values were not significantly different between adhesion and 3D-suspension platforms for 31 of 34 (91%) neurotoxicants tested, whereas IC50 values were significantly different for at least two toxicants. In summary, the 3D-suspension culture platform for LUHMES dopaminergic neurons supported full differentiation and reproducible assay results, enabling quantitative HTS (qHTS) for cytotoxicity in 1536 well format with a Robust Z' score of 0.68.
Collapse
Affiliation(s)
- Zhi-Bin Tong
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States
| | - John Braisted
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States
| | - Pei-Hsuan Chu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States
| | - David L Gerhold
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States.
| |
Collapse
|
2
|
Lynch C, Sakamuru S, Ooka M, Huang R, Klumpp-Thomas C, Shinn P, Gerhold D, Rossoshek A, Michael S, Casey W, Santillo MF, Fitzpatrick S, Thomas RS, Simeonov A, Xia M. High-Throughput Screening to Advance In Vitro Toxicology: Accomplishments, Challenges, and Future Directions. Annu Rev Pharmacol Toxicol 2024; 64:191-209. [PMID: 37506331 PMCID: PMC10822017 DOI: 10.1146/annurev-pharmtox-112122-104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Masato Ooka
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - David Gerhold
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Anna Rossoshek
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Suzanne Fitzpatrick
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
3
|
Beeckman F, Drozdzecki A, De Knijf A, Corrochano-Monsalve M, Bodé S, Blom P, Goeminne G, González-Murua C, Lücker S, Boeckx P, Stevens CV, Audenaert D, Beeckman T, Motte H. Drug discovery-based approach identifies new nitrification inhibitors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118996. [PMID: 37725864 DOI: 10.1016/j.jenvman.2023.118996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Nitrogen (N) fertilization is crucial to sustain global food security, but fertilizer N production is energy-demanding and subsequent environmental N losses contribute to biodiversity loss and climate change. N losses can be mitigated be interfering with microbial nitrification, and therefore the use of nitrification inhibitors in enhanced efficiency fertilizers (EEFs) is an important N management strategy to increase N use efficiency and reduce N pollution. However, currently applied nitrification inhibitors have limitations and do not target all nitrifying microorganisms. Here, to identify broad-spectrum nitrification inhibitors, we adopted a drug discovery-based approach and screened 45,400 small molecules on different groups of nitrifying microorganisms. Although a high number of potential nitrification inhibitors were identified, none of them targeted all nitrifier groups. Moreover, a high number of new nitrification inhibitors were shown to be highly effective in culture but did not reduce ammonia consumption in soil. One archaea-targeting inhibitor was not only effective in soil, but even reduced - when co-applied with a bacteria-targeting inhibitor - ammonium consumption and greenhouse gas emissions beyond what is achieved with currently applied nitrification inhibitors. This advocates for combining different types of nitrification inhibitors in EEFs to optimize N management practices and make agriculture more sustainable.
Collapse
Affiliation(s)
- Fabian Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Andrzej Drozdzecki
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), 9052, Ghent, Belgium; VIB Screening Core, Technologiepark 71, 9052, Ghent, Belgium
| | - Alexa De Knijf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Mario Corrochano-Monsalve
- Department of Plant Biology and Ecology, University of the Basque Country-UPV/EHU, Apdo. 644, Bilbao, E-48080, Spain
| | - Samuel Bodé
- Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Blom
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands
| | - Geert Goeminne
- VIB Metabolomics Core, Technologiepark 71, 9052, Ghent, Belgium
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country-UPV/EHU, Apdo. 644, Bilbao, E-48080, Spain
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands
| | - Pascal Boeckx
- Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christian V Stevens
- Synthesis, Bioresources and Bioorganic Chemistry Research Group (SynBioC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dominique Audenaert
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), 9052, Ghent, Belgium; VIB Screening Core, Technologiepark 71, 9052, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium.
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
4
|
Molefe-Nyembe NI, Adeyemi OS, Kondoh D, Kato K, Inoue N, Suganuma K. In Vivo Efficacy of Curcumin and Curcumin Nanoparticle in Trypanosoma congolense, Broden 1904 (Kinetoplastea: Trypanosomatidae)-Infected Mice. Pathogens 2023; 12:1227. [PMID: 37887743 PMCID: PMC10609685 DOI: 10.3390/pathogens12101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Curcumin (CUR) is known for its wide folkloric effects on various infections; however, its solubility status has remained a hindrance to its bioavailability in the host. This study evaluated the comparative effects of CUR and CUR-nanoparticle in vitro on T. congolense, T. b. brucei, and T. evansi. Additionally, CUR and CUR-nanoparticle anti-Trypanosoma efficacy were assessed in vivo against T. congolense. All the CUR-nanoparticles were two folds more effective on the T. congolense as compared to CUR in vitro, with recorded efficacy of 3.67 ± 0.31; 7.61 ± 1.22; and 6.40 ± 3.07 μM, while the CUR-nanoparticles efficacy was 1.56 ± 0.50; 28.16 ± 9.43 and 13.12 ± 0.13 μM on T. congolense, T. b. brucei, and T. evansi, respectively. Both CUR and CUR-nanoparticles displayed moderate efficacy orally. The efficacy of CUR and CUR-nanoparticles in vivo was influenced by solubility, presence of food, and treatment period. CUR-treated mice were not cured of the infection; however, the survival rate of the orally treated mice was significantly prolonged as compared with intraperitoneal-treated mice. CUR-nanoparticles resulted in significant suppression of parasitemia even though relapsed was observed. In conclusion, CUR and CUR-nanoparticles possess moderate efficacy orally on the trypanosomes as compared to the intraperitoneal treatment.
Collapse
Affiliation(s)
- Nthatisi Innocentia Molefe-Nyembe
- Department of Zoology and Entomology, University of the Free State, Private Bag X13, Phuthaditjhaba 9866, South Africa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan; (N.I.); (K.S.)
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry and Toxicology Laboratory, Landmark University, PMB 1001, Ipetu Road, Omu-Aran 251101, Nigeria;
| | - Daisuke Kondoh
- Section of Anatomy and Pathology, Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan;
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environmental Systems, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8577, Japan;
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan; (N.I.); (K.S.)
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan; (N.I.); (K.S.)
| |
Collapse
|
5
|
Queme B, Braisted JC, Dranchak P, Inglese J. qHTSWaterfall: 3-dimensional visualization software for quantitative high-throughput screening (qHTS) data. J Cheminform 2023; 15:39. [PMID: 37004072 PMCID: PMC10064508 DOI: 10.1186/s13321-023-00717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
High throughput screening (HTS) is widely used in drug discovery and chemical biology to identify and characterize agents having pharmacologic properties often by evaluation of large chemical libraries. Standard HTS data can be simply plotted as an x-y graph usually represented as % activity of a compound tested at a single concentration vs compound ID, whereas quantitative HTS (qHTS) data incorporates a third axis represented by concentration. By virtue of the additional data points arising from the compound titration and the incorporation of logistic fit parameters that define the concentration-response curve, such as EC50 and Hill slope, qHTS data has been challenging to display on a single graph. Here we provide a flexible solution to the rapid plotting of complete qHTS data sets to produce a 3-axis plot we call qHTS Waterfall Plots. The software described here can be generally applied to any 3-axis dataset and is available as both an R package and an R shiny application.
Collapse
Affiliation(s)
- Bryan Queme
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - John C Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA.
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Correlation between in vitro toxicity of pesticides and in vivo risk guidelines in support of complex operating site risk management: A meta-analysis. Food Chem Toxicol 2022; 170:113502. [DOI: 10.1016/j.fct.2022.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|
7
|
Lv G, Shi Q, Zhang T, Li J, Kalashova J, Long Y, Sun Y, Li C, Choudhry N, Li H, Yang C, Zhou X, Reddy MC, Anantoju KK, Jupelli R, Zhang S, Zhang J, Allen T, Liu H, Nimishetti N, Yang D. 2-Phenoxy-3, 4′-bipyridine derivatives inhibit AURKB-dependent mitotic processes by disrupting its localization. Eur J Med Chem 2022; 245:114904. [DOI: 10.1016/j.ejmech.2022.114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
8
|
Gao F, Zhang W, Baccarelli AA, Shen Y. Predicting chemical ecotoxicity by learning latent space chemical representations. ENVIRONMENT INTERNATIONAL 2022; 163:107224. [PMID: 35395577 PMCID: PMC9044254 DOI: 10.1016/j.envint.2022.107224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 05/31/2023]
Abstract
In silico prediction of chemical ecotoxicity (HC50) represents an important complement to improve in vivo and in vitro toxicological assessment of manufactured chemicals. Recent application of machine learning models to predict chemical HC50 yields variable prediction performance that depends on effectively learning chemical representations from high-dimension data. To improve HC50 prediction performance, we developed an autoencoder model by learning latent space chemical embeddings. This novel approach achieved state-of-the-art prediction performance of HC50 with R2 of 0.668 ± 0.003 and mean absolute error (MAE) of 0.572 ± 0.001, and outperformed other dimension reduction methods including principal component analysis (PCA) (R2 = 0.601 ± 0.031 and MAE = 0.629 ± 0.005), kernel PCA (R2 = 0.631 ± 0.008 and MAE = 0.625 ± 0.006), and uniform manifold approximation and projection dimensionality reduction (R2 = 0.400 ± 0.008 and MAE = 0.801 ± 0.002). A simple linear layer with chemical embeddings learned from the autoencoder model performed better than random forest (R2 = 0.663 ± 0.007 and MAE = 0.591 ± 0.008), fully connected neural network (R2 = 0.614 ± 0.016 and MAE = 0.610 ± 0.008), least absolute shrinkage and selection operator (R2 = 0.617 ± 0.037 and MAE = 0.619 ± 0.007), and ridge regression (R2 = 0.638 ± 0.007 and MAE = 0.613 ± 0.005) using unlearned raw input features. Our results highlighted the usefulness of learning latent chemical representations, and our autoencoder model provides an alternative approach for robust HC50 prediction.
Collapse
Affiliation(s)
- Feng Gao
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, United States
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Yike Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
9
|
Molina-Peña R, Haji Mansor M, Najberg M, Thomassin JM, Gueza B, Alvarez-Lorenzo C, Garcion E, Jérôme C, Boury F. Nanoparticle-containing electrospun nanofibrous scaffolds for sustained release of SDF-1α. Int J Pharm 2021; 610:121205. [PMID: 34670119 DOI: 10.1016/j.ijpharm.2021.121205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Chemokines such as stromal cell-derived factor-1α (SDF-1α) regulate the migration of cancer cells that can spread from their primary tumor site by migrating up an SDF-1α concentration gradient, facilitating their local invasion and metastasis. Therefore, the implantation of SDF-1α-releasing scaffolds can be a useful strategy to trap cancer cells expressing the CXCR4 receptor. In this work, SDF-1α was encapsulated into poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles and subsequently electrospun with chitosan to produce nanofibrous scaffolds of average fiber diameter of 261 ± 45 nm, intended for trapping glioblastoma (GBM) cells. The encapsulated SDF-1α maintained its biological activity after the electrospinning process as assessed by its capacity to induce the migration of cancer cells. The scaffolds could also provide sustained release of SDF-1α for at least 5 weeks. Using NIH3T3 mouse fibroblasts, human Thp-1 macrophages, and rat primary astrocytes we showed that the scaffolds possessed high cytocompatibility in vitro. Furthermore, a 7-day follow-up of Fischer rats bearing implanted scaffolds demonstrated the absence of adverse effects in vivo. In addition, the nanofibrous structure of the scaffolds provided excellent anchoring sites to support the adhesion of human GBM cells by extension of their pseudopodia. The scaffolds also demonstrated slow degradation kinetics, which may be useful in maximizing the time window for trapping GBM cells. As surgical resection does not permit a complete removal of GBM tumors, our results support the future implantation of these scaffolds into the walls of the resection cavity to evaluate their capacity to attract and trap the residual GBM cells in the brain.
Collapse
Affiliation(s)
- Rodolfo Molina-Peña
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Muhammad Haji Mansor
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Mathie Najberg
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jean-Michel Thomassin
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Baya Gueza
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emmanuel Garcion
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Frank Boury
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
10
|
Akarapipad P, Kaarj K, Liang Y, Yoon JY. Environmental Toxicology Assays Using Organ-on-Chip. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:155-183. [PMID: 33974806 DOI: 10.1146/annurev-anchem-091620-091335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adverse effects of environmental toxicants to human health have traditionally been assayed using in vitro assays. Organ-on-chip (OOC) is a new platform that can bridge the gaps between in vitro assays (or 3D cell culture) and animal tests. Microenvironments, physical and biochemical stimuli, and adequate sensing and biosensing systems can be integrated into OOC devices to better recapitulate the in vivo tissue and organ behavior and metabolism. While OOCs have extensively been studied for drug toxicity screening, their implementation in environmental toxicology assays is minimal and has limitations. In this review, recent attempts of environmental toxicology assays using OOCs, including multiple-organs-on-chip, are summarized and compared with OOC-based drug toxicity screening. Requirements for further improvements are identified and potential solutions are suggested.
Collapse
Affiliation(s)
- Patarajarin Akarapipad
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA;
| | - Kattika Kaarj
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Yan Liang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA;
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
11
|
Rehfeldt SCH, Laufer S, Goettert MI. A Highly Selective In Vitro JNK3 Inhibitor, FMU200, Restores Mitochondrial Membrane Potential and Reduces Oxidative Stress and Apoptosis in SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22073701. [PMID: 33918172 PMCID: PMC8037381 DOI: 10.3390/ijms22073701] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Current treatments for neurodegenerative diseases (ND) are symptomatic and do not affect disease progression. Slowing this progression remains a crucial unmet need for patients and their families. c-Jun N-terminal kinase 3 (JNK3) are related to several ND hallmarks including apoptosis, oxidative stress, excitotoxicity, mitochondrial dysfunction, and neuroinflammation. JNK inhibitors can play an important role in addressing neuroprotection. This research aims to evaluate the neuroprotective, anti-inflammatory, and antioxidant effects of a synthetic compound (FMU200) with known JNK3 inhibitory activity in SH-SY5Y and RAW264.7 cell lines. SH-SY5Y cells were pretreated with FMU200 and cell damage was induced by 6-hydroxydopamine (6-OHDA) or hydrogen peroxide (H2O2). Cell viability and neuroprotective effect were assessed with an MTT assay. Flow cytometric analysis was performed to evaluate cell apoptosis. The H2O2-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) were evaluated by DCFDA and JC-1 assays, respectively. The anti-inflammatory effect was determined in LPS-induced RAW264.7 cells by ELISA assay. In undifferentiated SH-SY5Y cells, FMU200 decreased neurotoxicity induced by 6-OHDA in approximately 20%. In RA-differentiated cells, FMU200 diminished cell death in approximately 40% and 90% after 24 and 48 h treatment, respectively. FMU200 reduced both early and late apoptotic cells, decreased ROS levels, restored mitochondrial membrane potential, and downregulated JNK phosphorylation after H2O2 exposure. In LPS-stimulated RAW264.7 cells, FMU200 reduced TNF-α levels after a 3 h treatment. FMU200 protects neuroblastoma SH-SY5Y cells against 6-OHDA- and H2O2-induced apoptosis, which may result from suppressing the JNK pathways. Our findings show that FMU200 can be a useful candidate for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), D-72076 Tübingen, Germany
- Correspondence: (S.L.); (M.I.G.); Tel.: +55-(51)3714-7000 (ext. 5445) (M.I.G.)
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil;
- Correspondence: (S.L.); (M.I.G.); Tel.: +55-(51)3714-7000 (ext. 5445) (M.I.G.)
| |
Collapse
|
12
|
Richard AM, Huang R, Waidyanatha S, Shinn P, Collins BJ, Thillainadarajah I, Grulke CM, Williams AJ, Lougee RR, Judson RS, Houck KA, Shobair M, Yang C, Rathman JF, Yasgar A, Fitzpatrick SC, Simeonov A, Thomas RS, Crofton KM, Paules RS, Bucher JR, Austin CP, Kavlock RJ, Tice RR. The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chem Res Toxicol 2021. [PMID: 33140634 DOI: 10.1021/acs.chemrestox.0c0026410.1021/acs.chemrestox.0c00264.s003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Since 2009, the Tox21 project has screened ∼8500 chemicals in more than 70 high-throughput assays, generating upward of 100 million data points, with all data publicly available through partner websites at the United States Environmental Protection Agency (EPA), National Center for Advancing Translational Sciences (NCATS), and National Toxicology Program (NTP). Underpinning this public effort is the largest compound library ever constructed specifically for improving understanding of the chemical basis of toxicity across research and regulatory domains. Each Tox21 federal partner brought specialized resources and capabilities to the partnership, including three approximately equal-sized compound libraries. All Tox21 data generated to date have resulted from a confluence of ideas, technologies, and expertise used to design, screen, and analyze the Tox21 10K library. The different programmatic objectives of the partners led to three distinct, overlapping compound libraries that, when combined, not only covered a diversity of chemical structures, use-categories, and properties but also incorporated many types of compound replicates. The history of development of the Tox21 "10K" chemical library and data workflows implemented to ensure quality chemical annotations and allow for various reproducibility assessments are described. Cheminformatics profiling demonstrates how the three partner libraries complement one another to expand the reach of each individual library, as reflected in coverage of regulatory lists, predicted toxicity end points, and physicochemical properties. ToxPrint chemotypes (CTs) and enrichment approaches further demonstrate how the combined partner libraries amplify structure-activity patterns that would otherwise not be detected. Finally, CT enrichments are used to probe global patterns of activity in combined ToxCast and Tox21 activity data sets relative to test-set size and chemical versus biological end point diversity, illustrating the power of CT approaches to discern patterns in chemical-activity data sets. These results support a central premise of the Tox21 program: A collaborative merging of programmatically distinct compound libraries would yield greater rewards than could be achieved separately.
Collapse
Affiliation(s)
- Ann M Richard
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Bradley J Collins
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Inthirany Thillainadarajah
- Senior Environmental Employment Program, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Christopher M Grulke
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Ryan R Lougee
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
- Oak Ridge Institute for Science and Education, United States Department of Energy, Oak Ridge, Tennessee 37830, United States
| | - Richard S Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Keith A Houck
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mahmoud Shobair
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Chihae Yang
- Altamira, LLC, Columbus, Ohio 43235, United States
- Molecular Networks, GmbH, Erlangen 90411, Germany
| | - James F Rathman
- Altamira, LLC, Columbus, Ohio 43235, United States
- Molecular Networks, GmbH, Erlangen 90411, Germany
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Suzanne C Fitzpatrick
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland 20740, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Kevin M Crofton
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
- R3Fellows, LLC, Durham, North Carolina 27701, United States
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - John R Bucher
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Christopher P Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Robert J Kavlock
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
- Kavlock Consulting, LLC, Washington, DC 20001, United States
| | - Raymond R Tice
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
- RTice Consulting, Hillsborough, North Carolina 27278, United States
| |
Collapse
|
13
|
Richard AM, Huang R, Waidyanatha S, Shinn P, Collins BJ, Thillainadarajah I, Grulke CM, Williams AJ, Lougee RR, Judson RS, Houck KA, Shobair M, Yang C, Rathman JF, Yasgar A, Fitzpatrick SC, Simeonov A, Thomas RS, Crofton KM, Paules RS, Bucher JR, Austin CP, Kavlock RJ, Tice RR. The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chem Res Toxicol 2021; 34:189-216. [PMID: 33140634 PMCID: PMC7887805 DOI: 10.1021/acs.chemrestox.0c00264] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Since 2009, the Tox21 project has screened ∼8500 chemicals in more than 70 high-throughput assays, generating upward of 100 million data points, with all data publicly available through partner websites at the United States Environmental Protection Agency (EPA), National Center for Advancing Translational Sciences (NCATS), and National Toxicology Program (NTP). Underpinning this public effort is the largest compound library ever constructed specifically for improving understanding of the chemical basis of toxicity across research and regulatory domains. Each Tox21 federal partner brought specialized resources and capabilities to the partnership, including three approximately equal-sized compound libraries. All Tox21 data generated to date have resulted from a confluence of ideas, technologies, and expertise used to design, screen, and analyze the Tox21 10K library. The different programmatic objectives of the partners led to three distinct, overlapping compound libraries that, when combined, not only covered a diversity of chemical structures, use-categories, and properties but also incorporated many types of compound replicates. The history of development of the Tox21 "10K" chemical library and data workflows implemented to ensure quality chemical annotations and allow for various reproducibility assessments are described. Cheminformatics profiling demonstrates how the three partner libraries complement one another to expand the reach of each individual library, as reflected in coverage of regulatory lists, predicted toxicity end points, and physicochemical properties. ToxPrint chemotypes (CTs) and enrichment approaches further demonstrate how the combined partner libraries amplify structure-activity patterns that would otherwise not be detected. Finally, CT enrichments are used to probe global patterns of activity in combined ToxCast and Tox21 activity data sets relative to test-set size and chemical versus biological end point diversity, illustrating the power of CT approaches to discern patterns in chemical-activity data sets. These results support a central premise of the Tox21 program: A collaborative merging of programmatically distinct compound libraries would yield greater rewards than could be achieved separately.
Collapse
Affiliation(s)
- Ann M. Richard
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
| | - Ruili Huang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Suramya Waidyanatha
- Division
of the National Toxicology Program, National
Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Paul Shinn
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Bradley J. Collins
- Division
of the National Toxicology Program, National
Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Inthirany Thillainadarajah
- Senior
Environmental Employment Program, United
States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Christopher M. Grulke
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
| | - Antony J. Williams
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
| | - Ryan R. Lougee
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
- Oak
Ridge Institute for Science and Education, United States Department
of Energy, Oak Ridge, Tennessee 37830, United States
| | - Richard S. Judson
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
| | - Keith A. Houck
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
| | - Mahmoud Shobair
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
| | - Chihae Yang
- Altamira,
LLC, Columbus, Ohio 43235, United States
- Molecular Networks, GmbH, Erlangen 90411, Germany
| | - James F. Rathman
- Altamira,
LLC, Columbus, Ohio 43235, United States
- Molecular Networks, GmbH, Erlangen 90411, Germany
| | - Adam Yasgar
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Suzanne C. Fitzpatrick
- Center
for Food Safety and Applied Nutrition, United
States Food and Drug Administration, College Park, Maryland 20740, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Russell S. Thomas
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
| | - Kevin M. Crofton
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
- R3Fellows,
LLC, Durham, North Carolina 27701, United States
| | - Richard S. Paules
- Division
of the National Toxicology Program, National
Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
- Division
of the National Toxicology Program, National
Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - John R. Bucher
- Division
of the National Toxicology Program, National
Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Christopher P. Austin
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Robert J. Kavlock
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, United States Environmental
Protection Agency, Research
Triangle Park, North Carolina 27711, United States
- Kavlock
Consulting, LLC, Washington, DC 20001, United States
| | - Raymond R. Tice
- Division
of the National Toxicology Program, National
Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
- RTice Consulting, Hillsborough, North Carolina 27278, United States
| |
Collapse
|
14
|
Analysis of quantitative high throughput screening data using a robust method for nonlinear mixed effects models. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS 2020. [DOI: 10.29220/csam.2020.27.6.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Rubio L, Barguilla I, Domenech J, Marcos R, Hernández A. Biological effects, including oxidative stress and genotoxic damage, of polystyrene nanoparticles in different human hematopoietic cell lines. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122900. [PMID: 32464564 DOI: 10.1016/j.jhazmat.2020.122900] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
In recent years the terms "micro-/nanoplastics" (MNPLs) have caught special attention due to the increasing levels by which humans are exposed. Among MNPLs, polystyrene nanoparticles (PSNPs) are one of the most represented MNPLs in the environment. These tiny particles may enter into the human body, translocate through human barriers, interacting with blood and lymphatic immune cells, and reaching secondary organs. By using three different human leukocytic cell lines: Raji-B (B-lymphocytes), TK6 (lymphoblasts) and THP-1 (monocytes), we pursued to determine the effects of these PSNPs on the immune cell population. With this aim, the three cell lines were exposed to spherical PSNPs of about 50 nm of diameter and cytotoxicity, cellular uptake, reactive oxygen species (ROS) production, and genotoxicity were assessed at different time-points. Results show differences in all the measured endpoints, among the selected cell lines. Thus, whilst the monocytic THP-1 cells showed the highest particle internalization, no adverse effects were observed in such cells. On the other side, although Raji-B and TK6 showed lesser PSNPs uptake, mild toxicity, ROS production and genotoxicity were detected. These results highlight the importance of the cell line selection when the biological effects of PSNPs are evaluated.
Collapse
Affiliation(s)
- Laura Rubio
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Santiago de los Caballeros, Dominican Republic
| | - Irene Barguilla
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Josefa Domenech
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - Alba Hernández
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
16
|
Ooka M, Lynch C, Xia M. Application of In Vitro Metabolism Activation in High-Throughput Screening. Int J Mol Sci 2020; 21:ijms21218182. [PMID: 33142951 PMCID: PMC7663506 DOI: 10.3390/ijms21218182] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
In vitro methods which incorporate metabolic capability into the assays allow us to assess the activity of metabolites from their parent compounds. These methods can be applied into high-throughput screening (HTS) platforms, thereby increasing the speed to identify compounds that become active via the metabolism process. HTS was originally used in the pharmaceutical industry and now is also used in academic settings to evaluate biological activity and/or toxicity of chemicals. Although most chemicals are metabolized in our body, many HTS assays lack the capability to determine compound activity via metabolism. To overcome this problem, several in vitro metabolic methods have been applied to an HTS format. In this review, we describe in vitro metabolism methods and their application in HTS assays, as well as discuss the future perspectives of HTS with metabolic activity. Each in vitro metabolism method has advantages and disadvantages. For instance, the S9 mix has a full set of liver metabolic enzymes, but it displays high cytotoxicity in cell-based assays. In vitro metabolism requires liver fractions or the use of other metabolically capable systems, including primary hepatocytes or recombinant enzymes. Several newly developed in vitro metabolic methods, including HepaRG cells, three-dimensional (3D) cell models, and organ-on-a-chip technology, will also be discussed. These newly developed in vitro metabolism approaches offer significant progress in dissecting biological processes, developing drugs, and making toxicology studies quicker and more efficient.
Collapse
|
17
|
Klinčić D, Herceg Romanić S, Katalinić M, Zandona A, Čadež T, Matek Sarić M, Šarić T, Aćimov D. Persistent organic pollutants in tissues of farmed tuna from the Adriatic Sea. MARINE POLLUTION BULLETIN 2020; 158:111413. [PMID: 32753197 DOI: 10.1016/j.marpolbul.2020.111413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the levels and distribution of polychlorinated biphenyls (PCBs) and organochlorine pesticides in three tissue types of farmed Bluefin tuna (Thunnus thynnus): muscle, liver and branchiae. Seven adult species were caught in 2015 at a tuna farm in the Croatian Adriatic. The organochlorine compound levels decreased in the following order: liver > muscle > branchiae while contaminant distribution in all three tissues followed the same order: ΣPCB ≫ ΣDDT > ΣHCH ~ HCB. The found POP levels indicated moderate pollution of farmed tuna and were below all limits set by current laws. Furthermore, no cytotoxic effect of the POP mixture extracted from tuna liver samples on human neuroblastoma cells was observed.
Collapse
Affiliation(s)
- Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10 001 Zagreb, Croatia
| | - Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10 001 Zagreb, Croatia.
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10 001 Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10 001 Zagreb, Croatia
| | - Tena Čadež
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10 001 Zagreb, Croatia
| | - Marijana Matek Sarić
- University of Zadar, Department of Health Studies, Splitska 1, 23 000 Zadar, Croatia
| | - Tomislav Šarić
- University of Zadar, Department of Ecology, Agronomy and Aquaculture, Trg Kneza Višeslava 9, 23 000 Zadar, Croatia
| | - Dejan Aćimov
- Ministry of Agriculture, Directorate of Fisheries, Alexandera von Humboldta 4b, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Physical/Chemical Properties and Resorption Behavior of a Newly Developed Ca/P/S-Based Bone Substitute Material. MATERIALS 2020; 13:ma13163458. [PMID: 32764505 PMCID: PMC7475886 DOI: 10.3390/ma13163458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
Abstract
Properly regulating the resorption rate of a resorbable bone implant has long been a great challenge. This study investigates a series of physical/chemical properties, biocompatibility and the behavior of implant resorption and new bone formation of a newly developed Ca/P/S-based bone substitute material (Ezechbone® Granule CBS-400). Experimental results show that CBS-400 is comprised majorly of HA and CSD, with a Ca/P/S atomic ratio of 54.6/39.2/6.2. After immersion in Hank’s solution for 7 days, the overall morphology, shape and integrity of CBS-400 granules remain similar to that of non-immersed samples without showing apparent collapse or disintegration. With immersion time, the pH value continues to increase to 6.55 after 7 days, and 7.08 after 14 days. Cytotoxicity, intracutaneous reactivity and skin sensitization tests demonstrate the good biocompatibility features of CBS-400. Rabbit implantation/histological observations indicate that the implanted granules are intimately bonded to the surrounding new bone at all times. The implant is not merely a degradable bone substitute, but its resorption and the formation of new cancellous bone proceed at the substantially same pace. After implantation for 12 weeks, about 85% of the implant has been resorbed. The newly-formed cancellous bone ratio quickly increases to >40% at 4 weeks, followed by a bone remodeling process toward normal cancellous bone, wherein the new cancellous bone ratio gradually tapers down to about 30% after 12 weeks.
Collapse
|
19
|
Uchiyama N, Yukawa T, Dragan YP, Wagoner MP, Naven RT. New phenotypic cytotoxicity assay for ROS-inducing compounds using rat renal epithelial cells. Toxicol Lett 2020; 331:227-234. [PMID: 32522578 DOI: 10.1016/j.toxlet.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 11/19/2022]
Abstract
An important mechanism of chemical toxicity is the induction of oxidative stress through the production of excess reactive oxygen species (ROS). In this study, we show that the level of drug-induced ROS production between NRK52E and HepG2 cells is significantly different for several marketed drugs and a number of Takeda's internal proprietary compounds. Nifedipine, a calcium channel blocker and the initial focus of the study, was demonstrated to promote in vitro ROS production and a decrease in cell viability in NRK52E cells but not HepG2 cells. ROS production after nifedipine treatment was inhibited by a NOX inhibitor (GKT136901) but not the mitochondrial NADH dehydrogenase inhibitor, rotenone, suggesting that nifedipine decreases NRK52E cell viability primarily through a NOX-mediated pathway. To understand the breadth of NOX-mediated ROS production, 12 commercially available compounds that are structurally and/or pharmacologically related to nifedipine as well as 172 internal Takeda candidate drugs, were also evaluated against these two cell types. Over 15 % of compounds not cytotoxic to HepG2 cells (below 50 μM) were cytotoxic to NRK52E cells. Our results suggest that a combination of cell viability data from both NRK52E and HepG2 cells was superior for the prediction of in vivo toxicity findings when compared to use of only one cell line. Further, the NRK52E cell viability assay is a good predictor of NOX-mediated ROS production and can be used as a follow up assay following a negative HepG2 response to aid in the selection of suitable compounds for in vivo toxicity studies.
Collapse
Affiliation(s)
- Noriko Uchiyama
- Global Drug Safety Research Evaluation, Takeda Pharmaceutical Company Ltd., Pharmaceutical Research Division, 40 Landsdowne Street, Cambridge, MA, 02139, United States.
| | - Tomoya Yukawa
- Global Drug Safety Research Evaluation, Takeda Pharmaceutical Company Ltd., Pharmaceutical Research Division, 40 Landsdowne Street, Cambridge, MA, 02139, United States
| | - Yvonne P Dragan
- Global Drug Safety Research Evaluation, Takeda Pharmaceutical Company Ltd., Pharmaceutical Research Division, 40 Landsdowne Street, Cambridge, MA, 02139, United States
| | - Matthew P Wagoner
- Global Drug Safety Research Evaluation, Takeda Pharmaceutical Company Ltd., Pharmaceutical Research Division, 40 Landsdowne Street, Cambridge, MA, 02139, United States
| | - Russell T Naven
- Global Drug Safety Research Evaluation, Takeda Pharmaceutical Company Ltd., Pharmaceutical Research Division, 9625 Towne Centre Dr, San Diego, CA, 92121, United States
| |
Collapse
|
20
|
The Antifungal Drug Isavuconazole Is both Amebicidal and Cysticidal against Acanthamoeba castellanii. Antimicrob Agents Chemother 2020; 64:AAC.02223-19. [PMID: 32094126 DOI: 10.1128/aac.02223-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022] Open
Abstract
Current treatments for Acanthamoeba keratitis rely on a combination of chlorhexidine gluconate, propamidine isethionate, and polyhexamethylene biguanide. These disinfectants are nonspecific and inherently toxic, which limits their effectiveness. Furthermore, in 10% of cases, recurrent infection ensues due to the difficulty in killing both trophozoites and double-walled cysts. Therefore, development of efficient, safe, and target-specific drugs which are capable of preventing recurrent Acanthamoeba infection is a critical unmet need for averting blindness. Since both trophozoites and cysts contain specific sets of membrane sterols, we hypothesized that antifungal drugs targeting sterol 14-demethylase (CYP51), known as conazoles, would have deleterious effects on A. castellanii trophozoites and cysts. To test this hypothesis, we first performed a systematic screen of the FDA-approved conazoles against A. castellanii trophozoites using a bioluminescence-based viability assay adapted and optimized for Acanthamoeba The most potent drugs were then evaluated against cysts. Isavuconazole and posaconazole demonstrated low nanomolar potency against trophozoites of three clinical strains of A. castellanii Furthermore, isavuconazole killed trophozoites within 24 h and suppressed excystment of preformed Acanthamoeba cysts into trophozoites. The rapid action of isavuconazole was also evident from the morphological changes at nanomolar drug concentrations causing rounding of trophozoites within 24 h of exposure. Given that isavuconazole has an excellent safety profile, is well tolerated in humans, and blocks A. castellanii excystation, this opens an opportunity for the cost-effective repurposing of isavuconazole for the treatment of primary and recurring Acanthamoeba keratitis.
Collapse
|
21
|
Najberg M, Haji Mansor M, Taillé T, Bouré C, Molina-Peña R, Boury F, Cenis JL, Garcion E, Alvarez-Lorenzo C. Aerogel sponges of silk fibroin, hyaluronic acid and heparin for soft tissue engineering: Composition-properties relationship. Carbohydr Polym 2020; 237:116107. [PMID: 32241442 DOI: 10.1016/j.carbpol.2020.116107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
This work aims to design biocompatible aerogel sponges that can host and control the release of stromal cell-derived factor-1α (SDF-1α or CXCL12), a key protein for applications ranging from regenerative medicine to cancer therapy (notably for neural tissues). Miscibility of silk fibroin (SF) and hyaluronic acid (HA) was investigated by means of fluorescence and scanning electron microscopy to identify processing conditions. Series of freeze-dried sponges were prepared by associating and cross-linking within the same 3D structure, HA, SF, poly-l-lysine (PLL) and heparin (hep). Aerogel sponges presented high swelling degree and porosity (∼90 %), adequate mean pore diameter (ca. 60 μm) and connectivity for welcoming cells, and a soft texture close to that of the brain (6-13 kPa Young's Modulus). Addition of SF yielded sponges with slower biodegradation. SF-HA and SF-HA-hep sponges retained 75 % and 93 % of the SDF-1α respectively after 7 days and were found to be cytocompatible in vitro.
Collapse
Affiliation(s)
- Mathie Najberg
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | | | - Théodore Taillé
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Céline Bouré
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | | | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - José Luis Cenis
- Biotechnology Department, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150, La Alberca, Murcia, Spain
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Watanabe M, Sasaki T, Takeshita JI, Kushida M, Shimizu Y, Oki H, Kitsunai Y, Nakayama H, Saruhashi H, Ogura R, Shizu R, Hosaka T, Yoshinari K. Application of cytochrome P450 reactivity on the characterization of chemical compounds and its association with repeated-dose toxicity. Toxicol Appl Pharmacol 2020; 388:114854. [PMID: 31836524 DOI: 10.1016/j.taap.2019.114854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 11/18/2022]
Abstract
Repeated-dose toxicity (RDT) studies are one of the critical studies to assess chemical safety. There have been some studies attempting to predict RDT endpoints based on chemical substructures, but it remains very difficult to establish such a method, and a more detailed characterization of chemical compounds seems necessary. Cytochrome P450s (P450s) comprise multiple forms with different substrate specificities and play important roles in both the detoxification and metabolic activation of xenobiotics. In this study, we investigated possible use of P450 reactivity of chemical compounds to classify the compounds. A total of 148 compounds with available rat RDT test data were used as test compounds and subjected to inhibition assays against 18 human and rat P450s. Among the tested compounds, 82 compounds inhibited at least one P450 form. Hierarchical clustering analyses using the P450 inhibitory profiles divided the 82 compounds into nine groups, some of which showed characteristic chemical and biological properties. Principal component analyses of the P450 inhibition data in combination with the calculated chemical descriptors demonstrated that P450 inhibition data were plotted differently than most chemical descriptors in the loading plots. Finally, association analyses between P450 inhibition and RDT endpoints showed that some endpoints related to the liver, kidney and hematology were significantly associated with the inhibition of some P450s. Our present results suggest that the P450 reactivity profiles can be used as novel descriptors for characterizing chemical compounds for the investigation of the toxicity mechanism and/or the establishment of a toxicity prediction model.
Collapse
Affiliation(s)
- Michiko Watanabe
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jun-Ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Madoka Kushida
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuki Shimizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hitomi Oki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoko Kitsunai
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Haruka Nakayama
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hitomi Saruhashi
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Rui Ogura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
23
|
Lee OW, Austin S, Gamma M, Cheff DM, Lee TD, Wilson KM, Johnson J, Travers J, Braisted JC, Guha R, Klumpp-Thomas C, Shen M, Hall MD. Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:9-20. [PMID: 31498718 PMCID: PMC10791069 DOI: 10.1177/2472555219873068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.
Collapse
Affiliation(s)
- Olivia W. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Shelley Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Madison Gamma
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Dorian M. Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Tobie D. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Joseph Johnson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jameson Travers
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John C. Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
24
|
Abstract
Increasing ethical and biological concerns require a paradigm shift toward animal-free testing strategies for drug testing and hazard assessments. To this end, the application of bioprinting technology in the field of biomedicine is driving a rapid progress in tissue engineering. In particular, standardized and reproducible in vitro models produced by three-dimensional (3D) bioprinting technique represent a possible alternative to animal models, enabling in vitro studies relevant to in vivo conditions. The innovative approach of 3D bioprinting allows a spatially controlled deposition of cells and biomaterial in a layer-by-layer fashion providing a platform for engineering reproducible models. However, despite the promising and revolutionizing character of 3D bioprinting technology, standardized protocols providing detailed instructions are lacking. Here, we provide a protocol for the automatized printing of simple alveolar, bronchial, and intestine epithelial cell layers as the basis for more complex respiratory and gastrointestinal tissue models. Such systems will be useful for high-throughput toxicity screening and drug efficacy evaluation.
Collapse
|
25
|
Stem cell models as an in vitro model for predictive toxicology. Biochem J 2019; 476:1149-1158. [PMID: 30988136 PMCID: PMC6463389 DOI: 10.1042/bcj20170780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Adverse drug reactions (ADRs) are the unintended side effects of drugs. They are categorised as either predictable or unpredictable drug-induced injury and may be exhibited after a single or prolonged exposure to one or multiple compounds. Historically, toxicology studies rely heavily on animal models to understand and characterise the toxicity of novel compounds. However, animal models are imperfect proxies for human toxicity and there have been several high-profile cases of failure of animal models to predict human toxicity e.g. fialuridine, TGN1412 which highlight the need for improved predictive models of human toxicity. As a result, stem cell-derived models are under investigation as potential models for toxicity during early stages of drug development. Stem cells retain the genotype of the individual from which they were derived, offering the opportunity to model the reproducibility of rare phenotypes in vitro Differentiated 2D stem cell cultures have been investigated as models of hepato- and cardiotoxicity. However, insufficient maturity, particularly in the case of hepatocyte-like cells, means that their widespread use is not currently a feasible method to tackle the complex issues of off-target and often unpredictable toxicity of novel compounds. This review discusses the current state of the art for modelling clinically relevant toxicities, e.g. cardio- and hepatotoxicity, alongside the emerging need for modelling gastrointestinal toxicity and seeks to address whether stem cell technologies are a potential solution to increase the accuracy of ADR predictivity in humans.
Collapse
|
26
|
Wei Y, Zhu Y, Fang Q. Nanoliter Quantitative High-Throughput Screening with Large-Scale Tunable Gradients Based on a Microfluidic Droplet Robot under Unilateral Dispersion Mode. Anal Chem 2019; 91:4995-5003. [DOI: 10.1021/acs.analchem.8b04564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yan Wei
- Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Pavlinov I, Gerlach EM, Aldrich LN. Next generation diversity-oriented synthesis: a paradigm shift from chemical diversity to biological diversity. Org Biomol Chem 2019; 17:1608-1623. [PMID: 30328455 DOI: 10.1039/c8ob02327a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diversity-oriented synthesis adds biological performance as a new diversity element.
Collapse
Affiliation(s)
- Ivan Pavlinov
- University of Illinois at Chicago
- Department of Chemistry
- 845 West Taylor Street
- USA
| | - Erica M. Gerlach
- University of Illinois at Chicago
- Department of Chemistry
- 845 West Taylor Street
- USA
| | - Leslie N. Aldrich
- University of Illinois at Chicago
- Department of Chemistry
- 845 West Taylor Street
- USA
| |
Collapse
|
28
|
Close DA, Wang AX, Kochanek SJ, Shun T, Eiseman JL, Johnston PA. Implementation of the NCI-60 Human Tumor Cell Line Panel to Screen 2260 Cancer Drug Combinations to Generate >3 Million Data Points Used to Populate a Large Matrix of Anti-Neoplastic Agent Combinations (ALMANAC) Database. SLAS DISCOVERY 2018; 24:242-263. [PMID: 30500310 DOI: 10.1177/2472555218812429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal and clinical studies demonstrate that cancer drug combinations (DCs) are more effective than single agents. However, it is difficult to predict which DCs will be more efficacious than individual drugs. Systematic DC high-throughput screening (HTS) of 100 approved drugs in the National Cancer Institute's panel of 60 cancer cell lines (NCI-60) produced data to help select DCs for further consideration. We miniaturized growth inhibition assays into 384-well format, increased the fetal bovine serum amount to 10%, lengthened compound exposure to 72 h, and used a homogeneous detection reagent. We determined the growth inhibition 50% values of individual drugs across 60 cell lines, selected drug concentrations for 4 × 4 DC matrices (DCMs), created DCM master and replica daughter plate sets, implemented the HTS, quality control reviewed the data, and analyzed the results. A total of 2620 DCMs were screened in 60 cancer cell lines to generate 3.04 million data points for the NCI ALMANAC (A Large Matrix of Anti-Neoplastic Agent Combinations) database. We confirmed in vitro a synergistic drug interaction flagged in the DC HTS between the vinca-alkaloid microtubule assembly inhibitor vinorelbine (Navelbine) tartrate and the epidermal growth factor-receptor tyrosine kinase inhibitor gefitinib (Iressa) in the SK-MEL-5 melanoma cell line. Seventy-five percent of the DCs examined in the screen are not currently in the clinical trials database. Selected synergistic drug interactions flagged in the DC HTS described herein were subsequently confirmed by the NCI in vitro, evaluated mechanistically, and were shown to have greater than single-agent efficacy in mouse xenograft human cancer models. Enrollment is open for two clinical trials for DCs that were identified in the DC HTS. The NCI ALMANAC database therefore constitutes a valuable resource for selecting promising DCs for confirmation, mechanistic studies, and clinical translation.
Collapse
Affiliation(s)
- David A Close
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Allen Xinwei Wang
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Stanton J Kochanek
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Tongying Shun
- 2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Julie L Eiseman
- 3 Cancer Therapeutics Program, The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA.,4 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,5 University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.,5 University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Gutmann M, Bechold J, Seibel J, Meinel L, Lühmann T. Metabolic Glycoengineering of Cell-Derived Matrices and Cell Surfaces: A Combination of Key Principles and Step-by-Step Procedures. ACS Biomater Sci Eng 2018; 5:215-233. [DOI: 10.1021/acsbiomaterials.8b00865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Julian Bechold
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| |
Collapse
|
30
|
Gale TV, Horton TM, Hoffmann AR, Branco LM, Garry RF. Host Proteins Identified in Extracellular Viral Particles as Targets for Broad-Spectrum Antiviral Inhibitors. J Proteome Res 2018; 18:7-17. [PMID: 30351952 DOI: 10.1021/acs.jproteome.8b00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Liquid chromatography mass spectrometry (LCMS) proteomic analyses have revealed that host proteins are often captured in extracellular virions. These proteins may play a role in viral replication or infectivity and can represent targets for broad-spectrum antiviral agent development. We utilized LCMS to determine the host protein composition of Lassa virus-like particles (LASV VLPs). Multiple host proteins incorporated in LASV VLPs are also incorporated in unrelated viruses, notably ribosomal proteins. We assembled a data set of host proteins incorporated into extracellular viral particles. The frequent incorporation of specific host proteins into viruses of diverse families suggests that interactions of these proteins with viral factors may be important for effective viral replication. Drugs that target virion-associated host proteins could affect the protein in the extracellular virion or the host cell. Compounds that target proteins incorporated into virions with high frequency, but with no known antiviral activity, were assayed in a scalable viral screening platform, and hits were tested in competent viral systems. One of these molecules, GAPDH modulating small molecule CGP 3466B maleate (Omigapil), exhibited a dose-dependent inhibition of HIV, dengue virus, and Zika virus.
Collapse
Affiliation(s)
- Trevor V Gale
- Department of Microbiology and Immunology , Tulane University , New Orleans , Louisiana 70112 , United States
| | - Timothy M Horton
- Department of Microbiology and Immunology , Tulane University , New Orleans , Louisiana 70112 , United States
| | - Andrew R Hoffmann
- Department of Microbiology and Immunology , Tulane University , New Orleans , Louisiana 70112 , United States
| | - Luis M Branco
- Zalgen Laboratories, LLC , Germantown , Maryland 20876 , United States
| | - Robert F Garry
- Department of Microbiology and Immunology , Tulane University , New Orleans , Louisiana 70112 , United States.,Zalgen Laboratories, LLC , Germantown , Maryland 20876 , United States
| |
Collapse
|
31
|
In vivo monitoring of tumor distribution of hyaluronan polymeric micelles labeled or loaded with near-infrared fluorescence dye. Carbohydr Polym 2018; 198:339-347. [DOI: 10.1016/j.carbpol.2018.06.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
|
32
|
In Vitro and In Vivo Characterization of NOSO-502, a Novel Inhibitor of Bacterial Translation. Antimicrob Agents Chemother 2018; 62:AAC.01016-18. [PMID: 29987155 PMCID: PMC6125496 DOI: 10.1128/aac.01016-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022] Open
Abstract
Antibacterial activity screening of a collection of Xenorhabdus strains led to the discovery of the odilorhabdins, a new antibiotic class with broad-spectrum activity against Gram-positive and Gram-negative pathogens. Odilorhabdins inhibit bacterial translation by a new mechanism of action on ribosomes. Antibacterial activity screening of a collection of Xenorhabdus strains led to the discovery of the odilorhabdins, a new antibiotic class with broad-spectrum activity against Gram-positive and Gram-negative pathogens. Odilorhabdins inhibit bacterial translation by a new mechanism of action on ribosomes. A lead optimization program identified NOSO-502 as a promising candidate. NOSO-502 has MIC values ranging from 0.5 to 4 μg/ml against standard Enterobacteriaceae strains and carbapenem-resistant Enterobacteriaceae (CRE) isolates that produce KPC, AmpC, or OXA enzymes and metallo-β-lactamases. In addition, this compound overcomes multiple chromosome-encoded or plasmid-mediated resistance mechanisms of acquired resistance to colistin. It is effective in mouse systemic infection models against Escherichia coli EN122 (extended-spectrum β-lactamase [ESBL]) or E. coli ATCC BAA-2469 (NDM-1), achieving a 50% effective dose (ED50) of 3.5 mg/kg of body weight and 1-, 2-, and 3-log reductions in blood burden at 2.6, 3.8, and 5.9 mg/kg, respectively, in the first model and 100% survival in the second, starting with a dose as low as 4 mg/kg. In a urinary tract infection (UTI) model with E. coli UTI89, urine, bladder, and kidney burdens were reduced by 2.39, 1.96, and 1.36 log10 CFU/ml, respectively, after injection of 24 mg/kg. There was no cytotoxicity against HepG2, HK-2, or human renal proximal tubular epithelial cells (HRPTEpiC), no inhibition of hERG-CHO or Nav 1.5-HEK current, and no increase of micronuclei at 512 μM. NOSO-502, a compound with a new mechanism of action, is active against Enterobacteriaceae, including all classes of CRE, has a low potential for resistance development, shows efficacy in several mouse models, and has a favorable in vitro safety profile.
Collapse
|
33
|
Naro Y, Ankenbruck N, Thomas M, Tivon Y, Connelly CM, Gardner L, Deiters A. Small Molecule Inhibition of MicroRNA miR-21 Rescues Chemosensitivity of Renal-Cell Carcinoma to Topotecan. J Med Chem 2018; 61:5900-5909. [PMID: 29993250 DOI: 10.1021/acs.jmedchem.7b01891] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical probes of microRNA (miRNA) function are potential tools for understanding miRNA biology that also provide new approaches for discovering therapeutics for miRNA-associated diseases. MicroRNA-21 (miR-21) is an oncogenic miRNA that is overexpressed in most cancers and has been strongly associated with driving chemoresistance in cancers such as renal cell carcinoma (RCC). Using a cell-based luciferase reporter assay to screen small molecules, we identified a novel inhibitor of miR-21 function. Following structure-activity relationship studies, an optimized lead compound demonstrated cytotoxicity in several cancer cell lines. In a chemoresistant-RCC cell line, inhibition of miR-21 via small molecule treatment rescued the expression of tumor-suppressor proteins and sensitized cells to topotecan-induced apoptosis. This resulted in a >10-fold improvement in topotecan activity in cell viability and clonogenic assays. Overall, this work reports a novel small molecule inhibitor for perturbing miR-21 function and demonstrates an approach to enhancing the potency of chemotherapeutics specifically for cancers derived from oncomir addiction.
Collapse
Affiliation(s)
- Yuta Naro
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Nicholas Ankenbruck
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Meryl Thomas
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Yaniv Tivon
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Colleen M Connelly
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Laura Gardner
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Alexander Deiters
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
34
|
Betamethasone prevents human rhinovirus- and cigarette smoke- induced loss of respiratory epithelial barrier function. Sci Rep 2018; 8:9688. [PMID: 29946071 PMCID: PMC6018698 DOI: 10.1038/s41598-018-27022-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
The respiratory epithelium is a barrier against pathogens and allergens and a target for therapy in respiratory allergy, asthma and chronic obstructive pulmonary disease (COPD). We investigated barrier-damaging factors and protective factors by real-time measurement of respiratory cell barrier integrity. Barrier integrity to cigarette smoke extract (CSE), house dust mite (HDM) extract, interferon-γ (IFN-γ) or human rhinovirus (HRV) infection alone or in combination was assessed. Corticosteroids, lipopolysaccharide (LPS), and nasal mucus proteins were tested for their ability to prevent loss of barrier integrity. Real-time impedance-based measurement revealed different patterns of CSE-, HDM-, IFN-γ- and HRV-induced damage. When per se non-damaging concentrations of harmful factors were combined, a synergetic effect was observed only for CSE and HDM. Betamethasone prevented the damaging effect of HRV and CSE, but not damage caused by HDM or IFN-γ. Real-time impedance-based measurement of respiratory epithelial barrier function is useful to study factors, which are harmful or protective. The identification of a synergetic damaging effect of CSE and HDM as well as the finding that Betamethasone protects against HRV- and CSE-induced damage may be important for asthma and COPD.
Collapse
|
35
|
Fraser K, Bruckner DM, Dordick JS. Advancing Predictive Hepatotoxicity at the Intersection of Experimental, in Silico, and Artificial Intelligence Technologies. Chem Res Toxicol 2018; 31:412-430. [PMID: 29722533 DOI: 10.1021/acs.chemrestox.8b00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adverse drug reactions, particularly those that result in drug-induced liver injury (DILI), are a major cause of drug failure in clinical trials and drug withdrawals. Hepatotoxicity-mediated drug attrition occurs despite substantial investments of time and money in developing cellular assays, animal models, and computational models to predict its occurrence in humans. Underperformance in predicting hepatotoxicity associated with drugs and drug candidates has been attributed to existing gaps in our understanding of the mechanisms involved in driving hepatic injury after these compounds perfuse and are metabolized by the liver. Herein we assess in vitro, in vivo (animal), and in silico strategies used to develop predictive DILI models. We address the effectiveness of several two- and three-dimensional in vitro cellular methods that are frequently employed in hepatotoxicity screens and how they can be used to predict DILI in humans. We also explore how humanized animal models can recapitulate human drug metabolic profiles and associated liver injury. Finally, we highlight the maturation of computational methods for predicting hepatotoxicity, the untapped potential of artificial intelligence for improving in silico DILI screens, and how knowledge acquired from these predictions can shape the refinement of experimental methods.
Collapse
Affiliation(s)
- Keith Fraser
- Department of Chemical and Biological Engineering and Department of Biological Sciences Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Dylan M Bruckner
- Department of Chemical and Biological Engineering and Department of Biological Sciences Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Department of Biological Sciences Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|
36
|
Velandia SA, Quintero E, Stashenko EE, Ocazionez RE. Actividad antiproliferativa de aceites esenciales de plantas cultivadas en Colombia. ACTA BIOLÓGICA COLOMBIANA 2018. [DOI: 10.15446/abc.v23n2.67394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Colombia posee gran diversidad de plantas medicinales, pero pocas han sido objeto de investigación. En este trabajo se evaluó la actividad antiproliferativa de aceites esenciales obtenidos por hidrodestilación asistida por microondas. Se analizaron 15 muestras de 11 especies en ensayos del MTT en células cancerosas MCF-7, HeLa y HepG-2 y se incluyeron células normales humanas (HEK293) y de animales (Vero y BF16F10) para evaluar selectividad. La composición química de muestras activas se determinó por cromatografía de gases acoplada a espectrometría de masas (GC-MS). Aceites esenciales de cuatro especies mostraron actividad antiproliferativa (CI50: 50 μg/mL) en células HeLa y/o MCF-7, en el siguiente rango (índice de selectividad en paréntesis): Piper cumanense H.B.K. (4,7) > Piper subflavum var. espejuelanum C.DC (3,9) > Salvia officinalis L. (3,6) > Piper eriopodom (Miq.) C. DC. (3,1). Ninguna muestra fue activa en células HepG-2. El análisis por CG-MS identificó β-cariofileno, α-copaeno, β-pineno, α-pineno y linalol como componentes mayoritarios. Los aceites esenciales activos pueden ser punto de partida para desarrollo de medicamentos herbales para cuidado paliativo del cáncer.
Collapse
|
37
|
Haji Mansor M, Najberg M, Contini A, Alvarez-Lorenzo C, Garcion E, Jérôme C, Boury F. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur J Pharm Biopharm 2018; 125:38-50. [DOI: 10.1016/j.ejpb.2017.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 12/28/2022]
|
38
|
Sheikh TI, de Paz AM, Akhtar S, Ausió J, Vincent JB. MeCP2_E1 N-terminal modifications affect its degradation rate and are disrupted by the Ala2Val Rett mutation. Hum Mol Genet 2018; 26:4132-4141. [PMID: 28973632 DOI: 10.1093/hmg/ddx300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
Methyl CpG-binding protein 2 (MeCP2), the mutated protein in Rett syndrome (RTT), is a crucial chromatin-modifying and gene-regulatory protein that has two main isoforms (MeCP2_E1 and MeCP2_ E2) due to the alternative splicing and switching between translation start codons in exons one and two. Functionally, these two isoforms appear to be virtually identical; however, evidence suggests that only MeCP2_E1 is relevant to RTT, including a single RTT missense mutation in exon 1, Ala2Val. Here, we show that N-terminal co- and post-translational modifications differ for MeCP2_E1 and MeCP2_E1-Ala2Val, which result in different protein degradation rates in vitro. We report complete N-methionine excision (NME) for MeCP2_E1 and evidence of excision of multiple alanine residues from the N-terminal polyalanine stretch. For MeCP2_E1-Ala2Val, we observed only partial NME and N-acetylation (NA) of either methionine or valine. The localization of MeCP2_E1 and co-localization with chromatin appear to be unaffected by the Ala2Val mutation. However, a higher proteasomal degradation rate was observed for MeCP2_E1-Ala2Val compared with that for wild type MeCP2_E1. Thus, the etiopathology of Ala2Val is likely due to a reduced bio-availability of MeCP2 because of the faster degradation rate of the unmodified defective protein. Our data on the effects of the Ala2Val mutation on N-terminal modifications of MeCP2 may be applicable to Ala2Val mutations in other disease genes for which no etiopathological mechanism has been established.
Collapse
Affiliation(s)
- Taimoor I Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab, Brain Science Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Shamim Akhtar
- University of Engineering and Technology Taxila, Taxila, Punjab 47080, Pakistan
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, BC V8P 5C2, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Brain Science Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
39
|
Feng WW, Zhang Y, Tang JF, Zhang CE, Dong Q, Li RY, Xiao XH, Peng C, Dong XP, Yan D. Combination of chemical fingerprinting with bioassay, a preferable approach for quality control of Safflower Injection. Anal Chim Acta 2018; 1003:56-63. [DOI: 10.1016/j.aca.2017.11.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/23/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
40
|
Tong ZB, Huang R, Wang Y, Klumpp-Thomas CA, Braisted JC, Itkin Z, Shinn P, Xia M, Simeonov A, Gerhold DL. The Toxmatrix: Chemo-Genomic Profiling Identifies Interactions That Reveal Mechanisms of Toxicity. Chem Res Toxicol 2018; 31:127-136. [PMID: 29156121 PMCID: PMC9724813 DOI: 10.1021/acs.chemrestox.7b00290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A chemical genomics "Toxmatrix" method was developed to elucidate mechanisms of cytotoxicity using neuronal models. Quantitative high-throughput screening (qHTS) was applied to systematically screen each toxicant against a panel of 70 modulators, drugs or chemicals that act on a known target, to identify interactions that either protect or sensitize cells to each toxicant. Thirty-two toxicants were tested at 10 concentrations for cytotoxicity to SH-SY5Y human neuroblastoma cells, with results fitted to the Hill equation to determine an IC50 for each toxicant. Thirty-three toxicant:modulator interactions were identified in SH-SY5Y cells for 14 toxicants, as modulators that shifted toxicant IC50 values lower or higher. The target of each modulator that sensitizes cells or protects cells from a toxicant suggests a mode of toxicant action or cellular adaptation. In secondary screening, we tested modulator-toxicant pairs identified from the SH-SY5Y primary screening for interactions in three differentiated neuronal human cell lines: dSH-SY5Y, conditionally immortalized dopaminergic neurons (LUHMES), and neural stem cells. Twenty toxicant-modulator pairs showed pronounced interactions in one or several differentiated cell models. Additional testing confirmed that several modulators acted through their primary targets. For example, several chelators protected differentiated LUHMES neurons from four toxicants by chelation of divalent cations and buthionine sulphoximine sensitized cells to 6-hydroxydopamine and 4-(methylamino)phenol hemisulfate by blocking glutathione synthesis. Such modulators that interact with multiple neurotoxicants suggest these may be vulnerable toxicity pathways in neurons. Thus, the Toxmatrix method is a systematic high-throughput approach that can identify mechanisms of toxicity and cellular adaptation.
Collapse
Affiliation(s)
- Zhi-Bin Tong
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Yuhong Wang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Carleen A. Klumpp-Thomas
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - John C. Braisted
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Zina Itkin
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Paul Shinn
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Menghang Xia
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - David L. Gerhold
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Parallel in vivo and in vitro transcriptomics analysis reveals calcium and zinc signalling in the brain as sensitive targets of HBCD neurotoxicity. Arch Toxicol 2017; 92:1189-1203. [PMID: 29177809 PMCID: PMC5866835 DOI: 10.1007/s00204-017-2119-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/18/2017] [Indexed: 11/04/2022]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant (BFR) that accumulates in humans and affects the nervous system. To elucidate the mechanisms of HBCD neurotoxicity, we used transcriptomic profiling in brains of female mice exposed through their diet to HBCD (199 mg/kg body weight per day) for 28 days and compared with those of neuronal N2A and NSC-19 cell lines exposed to 1 or 2 µM HBCD. Similar pathways and functions were affected both in vivo and in vitro, including Ca2+ and Zn2+ signalling, glutamatergic neuron activity, apoptosis, and oxidative stress. Release of cytosolic free Zn2+ by HBCD was confirmed in N2A cells. This Zn2+ release was partially quenched by the antioxidant N-acetyl cysteine indicating that, in accordance with transcriptomic analysis, free radical formation is involved in HBCD toxicity. To investigate the effects of HBCD in excitable cells, we isolated mouse hippocampal neurons and monitored Ca2+ signalling triggered by extracellular glutamate or zinc, which are co-released pre-synaptically to trigger postsynaptic signalling. In control cells application of zinc or glutamate triggered a rapid rise of intracellular [Ca2+]. Treatment of the cultures with 1 µM of HBCD was sufficient to reduce the glutamate-dependent Ca2+ signal by 50%. The effect of HBCD on zinc-dependent Ca2+ signalling was even more pronounced, resulting in the reduction of the Ca2+ signal with 86% inhibition at 1 µM HBCD. Our results show that low concentrations of HBCD affect neural signalling in mouse brain acting through dysregulation of Ca2+ and Zn2+ homeostasis.
Collapse
|
42
|
Chiaravalli J, Glickman JF. A High-Content Live-Cell Viability Assay and Its Validation on a Diverse 12K Compound Screen. SLAS DISCOVERY 2017; 22:1120-1130. [DOI: 10.1177/2472555217724745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have developed a new high-content cytotoxicity assay using live cells, called “ImageTOX.” We used a high-throughput fluorescence microscope system, image segmentation software, and the combination of Hoechst 33342 and SYTO 17 to simultaneously score the relative size and the intensity of the nuclei, the nuclear membrane permeability, and the cell number in a 384-well microplate format. We then performed a screen of 12,668 diverse compounds and compared the results to a standard cytotoxicity assay. The ImageTOX assay identified similar sets of compounds to the standard cytotoxicity assay, while identifying more compounds having adverse effects on cell structure, earlier in treatment time. The ImageTOX assay uses inexpensive commercially available reagents and facilitates the use of live cells in toxicity screens. Furthermore, we show that we can measure the kinetic profile of compound toxicity in a high-content, high-throughput format, following the same set of cells over an extended period of time.
Collapse
Affiliation(s)
- Jeanne Chiaravalli
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - J. Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, USA
| |
Collapse
|
43
|
A new approach for the assessment of the toxicity of polyphenol-rich compounds with the use of high content screening analysis. PLoS One 2017; 12:e0180022. [PMID: 28662177 PMCID: PMC5491109 DOI: 10.1371/journal.pone.0180022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022] Open
Abstract
The toxicity of in vitro tested compounds is usually evaluated based on AC50 values calculated from dose-response curves. However, there is a large group of compounds for which a standard four-parametric sigmoid curve fitting may be inappropriate for estimating AC50. In the present study, 22 polyphenol-rich compounds were prioritized from the least to the most toxic based on the total area under and over the dose-response curves (AUOC) in relation to baselines. The studied compounds were ranked across three key cell indicators (mitochondrial membrane potential, cell membrane integrity and nuclear size) in a panel of five cell lines (HepG2, Caco-2, A549, HMEC-1, and 3T3), using a high-content screening (HCS) assay. Regarding AUOC score values, naringin (negative control) was the least toxic phenolic compound. Aronox, spent hop extract and kale leaf extract had very low cytotoxicity with regard to mitochondrial membrane potential and cell membrane integrity, as well as nuclear morphology (nuclear area). Kaempferol (positive control) exerted strong cytotoxic effects on the mitochondrial and nuclear compartments. Extracts from buckthorn bark, walnut husk and hollyhock flower were highly cytotoxic with regard to the mitochondrion and cell membrane, but not the nucleus. We propose an alternative algorithm for the screening of a large number of agents and for identifying those with adverse cellular effects at an early stage of drug discovery, using high content screening analysis. This approach should be recommended for series of compounds producing a non-sigmoidal cell response, and for agents with unknown toxicity or mechanisms of action.
Collapse
|
44
|
Hsieh JH, Huang R, Lin JA, Sedykh A, Zhao J, Tice RR, Paules RS, Xia M, Auerbach SS. Real-time cell toxicity profiling of Tox21 10K compounds reveals cytotoxicity dependent toxicity pathway linkage. PLoS One 2017; 12:e0177902. [PMID: 28531190 PMCID: PMC5439695 DOI: 10.1371/journal.pone.0177902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/04/2017] [Indexed: 01/01/2023] Open
Abstract
Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2) using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo) while the other evaluates cell membrane integrity (i.e., cell death, flor). Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our analysis, it is possible to formulate mechanism-based hypotheses on the cytotoxic properties of the tested chemicals.
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Kelly Government Solutions, Durham, North Carolina, United States of America
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ja-An Lin
- US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | | | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Raymond R. Tice
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Richard S. Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Scott S. Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| |
Collapse
|
45
|
Fischer FC, Henneberger L, König M, Bittermann K, Linden L, Goss KU, Escher BI. Modeling Exposure in the Tox21 in Vitro Bioassays. Chem Res Toxicol 2017; 30:1197-1208. [DOI: 10.1021/acs.chemrestox.7b00023] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabian C. Fischer
- Department
Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Maria König
- Department
Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Kai Bittermann
- Department
Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Lukas Linden
- Department
Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Kai-Uwe Goss
- Department
Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
46
|
Ganguly D, Jain CK, Santra RC, Roychoudhury S, Majumder HK, Mondal TK, Das S. Anticancer Activity of a Complex of CuIIwith 2-(2-hydroxyphenylazo)-indole-3/-acetic Acid on three different Cancer Cell Lines: A Novel Feature for Azo Complexes. ChemistrySelect 2017. [DOI: 10.1002/slct.201601270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Durba Ganguly
- Department of Chemistry (Inorganic Section); Jadavpur University; Kolkata-700 032 India
| | - Chetan Kumar Jain
- Cancer Biology & Inflammatory Disorder Division; Indian Institute of Chemical Biology; Kolkata-700032, India
- Infectious Diseases and Immunology Division; Indian Institute of Chemical Biology; Kolkata-700032 India
| | - Ramesh Chandra Santra
- Department of Chemistry (Inorganic Section); Jadavpur University; Kolkata-700 032 India
| | - Susanta Roychoudhury
- Cancer Biology & Inflammatory Disorder Division; Indian Institute of Chemical Biology; Kolkata-700032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division; Indian Institute of Chemical Biology; Kolkata-700032 India
| | - Tapan Kumar Mondal
- Department of Chemistry (Inorganic Section); Jadavpur University; Kolkata-700 032 India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section); Jadavpur University; Kolkata-700 032 India
| |
Collapse
|
47
|
Li S, Zhao J, Huang R, Steiner T, Bourner M, Mitchell M, Thompson DC, Zhao B, Xia M. Development and Application of Human Renal Proximal Tubule Epithelial Cells for Assessment of Compound Toxicity. Curr Chem Genom Transl Med 2017; 11:19-30. [PMID: 28401035 PMCID: PMC5362976 DOI: 10.2174/2213988501711010019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023] Open
Abstract
Kidney toxicity is a major problem both in drug development and clinical settings. It is difficult to predict nephrotoxicity in part because of the lack of appropriate in vitro cell models, limited endpoints, and the observation that the activity of membrane transporters which plays important roles in nephrotoxicity by affecting the pharmacokinetic profile of drugs is often not taken into account. We developed a new cell model using pseudo-immortalized human primary renal proximal tubule epithelial cells. This cell line (SA7K) was characterized by the presence of proximal tubule cell markers as well as several functional properties, including transporter activity and response to a few well-characterized nephrotoxicants. We subsequently evaluated a group of potential nephrotoxic compounds in SA7K cells and compared them to a commonly used human immortalized kidney cell line (HK-2). Cells were treated with test compounds and three endpoints were analyzed, including cell viability, apoptosis and mitochondrial membrane potential. The results showed that most of the known nephrotoxic compounds could be detected in one or more of these endpoints. There were sensitivity differences in response to several of the chemicals between HK-2 and SA7K cells, which may relate to differences in expressions of key transporters or other components of nephrotoxicity pathways. Our data suggest that SA7K cells appear as promising for the early detection of renal toxicants.
Collapse
Affiliation(s)
- Shuaizhang Li
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Jinghua Zhao
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Ruili Huang
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Toni Steiner
- Sigma-Aldrich Corporation, St. Louis, MO 63103, USA
| | | | | | | | - Bin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Menghang Xia
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| |
Collapse
|
48
|
Nardon C, Boscutti G, Gabbiani C, Massai L, Pettenuzzo N, Fassina A, Messori L, Fregona D. Cell and Cell-Free Mechanistic Studies on Two Gold(III) Complexes with Proven Antitumor Properties. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601215] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chiara Nardon
- Dept. Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Giulia Boscutti
- Dept. Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Chiara Gabbiani
- Dept. Chemistry and Industrial Chemistry; University of Pisa; Via Moruzzi 13 56124 Pisa Italy
| | - Lara Massai
- Laboratory of Metals in Medicine; Dept. Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino, Florence Italy
| | - Nicolò Pettenuzzo
- Dept. Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Ambrogio Fassina
- Dept. Medicine; Dept. Chemistry; University of Padova; Via Giustiniani 2 35128 Padova Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine; Dept. Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino, Florence Italy
| | - Dolores Fregona
- Dept. Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
49
|
Svensson F, Norinder U, Bender A. Modelling compound cytotoxicity using conformal prediction and PubChem HTS data. Toxicol Res (Camb) 2017; 6:73-80. [PMID: 30090478 PMCID: PMC6061930 DOI: 10.1039/c6tx00252h] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/28/2016] [Indexed: 12/28/2022] Open
Abstract
The assessment of compound cytotoxicity is an important part of the drug discovery process. Accurate predictions of cytotoxicity have the potential to expedite decision making and save considerable time and effort. In this work we apply class conditional conformal prediction to model the cytotoxicity of compounds based on 16 high throughput cytotoxicity assays from PubChem. The data span 16 cell lines and comprise more than 440 000 unique compounds. The data sets are heavily imbalanced with only 0.8% of the tested compounds being cytotoxic. We trained one classification model for each cell line and validated the performance with respect to validity and accuracy. The generated models deliver high quality predictions for both toxic and non-toxic compounds despite the imbalance between the two classes. On external data collected from the same assay provider as one of the investigated cell lines the model had a sensitivity of 74% and a specificity of 65% at the 80% confidence level among the compounds assigned to a single class. Compared to previous approaches for large scale cytotoxicity modelling, this represents a balanced performance in the prediction of the toxic and non-toxic classes. The conformal prediction framework also allows the modeller to control the error frequency of the predictions, allowing predictions of cytotoxicity outcomes with confidence.
Collapse
Affiliation(s)
- Fredrik Svensson
- Centre for Molecular Informatics , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Ulf Norinder
- Swedish Toxicology Sciences Research Center , SE-151 36 Södertälje , Sweden
- Dept. Computer and Systems Sciences , Stockholm Univ. , Box 7003 , SE-164 07 Kista , Sweden
| | - Andreas Bender
- Centre for Molecular Informatics , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
50
|
Moe B, Peng H, Lu X, Chen B, Chen LWL, Gabos S, Li XF, Le XC. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing. J Environ Sci (China) 2016; 49:113-124. [PMID: 28007166 DOI: 10.1016/j.jes.2016.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 05/26/2023]
Abstract
The occurrence of a large number of diverse arsenic species in the environment and in biological systems makes it important to compare their relative toxicity. The toxicity of arsenic species has been examined in various cell lines using different assays, making comparison difficult. We report real-time cell sensing of two human cell lines to examine the cytotoxicity of fourteen arsenic species: arsenite (AsIII), monomethylarsonous acid (MMAIII) originating from the oxide and iodide forms, dimethylarsinous acid (DMAIII), dimethylarsinic glutathione (DMAGIII), phenylarsine oxide (PAOIII), arsenate (AsV), monomethylarsonic acid (MMAV), dimethylarsinic acid (DMAV), monomethyltrithioarsonate (MMTTAV), dimethylmonothioarsinate (DMMTAV), dimethyldithioarsinate (DMDTAV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox), and 4-aminobenzenearsenic acid (p-arsanilic acid, p-ASA). Cellular responses were measured in real time for 72hr in human lung (A549) and bladder (T24) cells. IC50 values for the arsenicals were determined continuously over the exposure time, giving rise to IC50 histograms and unique cell response profiles. Arsenic accumulation and speciation were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). On the basis of the 24-hr IC50 values, the relative cytotoxicity of the tested arsenicals was in the following decreasing order: PAOIII≫MMAIII≥DMAIII≥DMAGIII≈DMMTAV≥AsIII≫MMTTAV>AsV>DMDTAV>DMAV>MMAV≥Rox≥p-ASA. Stepwise shapes of cell response profiles for DMAIII, DMAGIII, and DMMTAV coincided with the conversion of these arsenicals to the less toxic pentavalent DMAV. Dynamic monitoring of real-time cellular responses to fourteen arsenicals provided useful information for comparison of their relative cytotoxicity.
Collapse
Affiliation(s)
- Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Baowei Chen
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lydia W L Chen
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Stephan Gabos
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|