1
|
Ribeiro GO, Rodrigues LDAP, dos Santos TBS, Alves JPS, Oliveira RS, Nery TBR, Barbosa JDV, Soares MBP. Innovations and developments in single cell protein: Bibliometric review and patents analysis. Front Microbiol 2023; 13:1093464. [PMID: 36741879 PMCID: PMC9897208 DOI: 10.3389/fmicb.2022.1093464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Background Global demand for food products derived from alternative proteins and produced through sustainable technological routes is increasing. Evaluation of research progress, main trends and developments in the field are valuable to identify evolutionary nuances. Methods In this study, a bibliometric analysis and search of patents on alternative proteins from fermentation processes was carried out using the Web of Science and Derwent World Patents Index™ databases, using the keywords and Boolean operators "fermentation" AND "single cell protein" OR "single-cell protein." The dataset was processed and graphics generated using the bibliometric software VOSviewer and OriginPro 8.1. Results The analysis performed recovered a total of 360 articles, of which 271 were research articles, 49 literature review articles and 40 publications distributed in different categories, such as reprint, proceedings paper, meeting abstract among others. In addition, 397 patents related to the field were identified, with China being the country with the largest number of publications and patents deposits. While this topic is largely interdisciplinary, the majority of work is in the area of Biotechnology Applied Microbiology, which boasts the largest number of publications. The area with the most patent filings is the food sector, with particular emphasis on the fields of biochemistry, beverages, microbiology, enzymology and genetic engineering. Among these patents, 110 are active, with industries or companies being the largest depositors. Keyword analysis revealed that the area of study involving single cell protein has included investigation into types of microorganisms, fermentation, and substrates (showing a strong trend in the use of agro-industrial by-products) as well as optimization of production processes. Conclusion This bibliometric analysis provided important information, challenges, and trends on this relevant subject.
Collapse
Affiliation(s)
- Gislane Oliveira Ribeiro
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Leticia de Alencar Pereira Rodrigues
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil,SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil,*Correspondence: Leticia de Alencar Pereira Rodrigues, ✉
| | | | - João Pedro Santos Alves
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Roseane Santos Oliveira
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Tatiana Barreto Rocha Nery
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Josiane Dantas Viana Barbosa
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil,SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil
| | - Milena Botelho Pereira Soares
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil,SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil,Milena Botelho Pereira Soares,
| |
Collapse
|
2
|
Hadi J, Brightwell G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021; 10:1226. [PMID: 34071292 PMCID: PMC8230205 DOI: 10.3390/foods10061226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
Food security and environmental issues have become global crises that need transformative solutions. As livestock production is becoming less sustainable, alternative sources of proteins are urgently required. These include cultured meat, plant-based meat, insect protein and single-cell protein. Here, we describe the food safety aspects of these novel protein sources, in terms of their technological backgrounds, environmental impacts and the necessary regulatory framework for future mass-scale production. Briefly, cultured meat grown in fetal bovine serum-based media can be exposed to viruses or infectious prion, in addition to other safety risks associated with the use of genetic engineering. Plant-based meat may contain allergens, anti-nutrients and thermally induced carcinogens. Microbiological risks and allergens are the primary concerns associated with insect protein. Single-cell protein sources are divided into microalgae, fungi and bacteria, all of which have specific food safety risks that include toxins, allergens and high ribonucleic acid (RNA) contents. The environmental impacts of these alternative proteins can mainly be attributed to the production of growth substrates or during cultivation. Legislations related to novel food or genetic modification are the relevant regulatory framework to ensure the safety of alternative proteins. Lastly, additional studies on the food safety aspects of alternative proteins are urgently needed for providing relevant food governing authorities with sufficient data to oversee that the technological progress in this area is balanced with robust safety standards.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand;
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand;
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
3
|
Ma J, Wang P. Effects of rising atmospheric CO 2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141889. [PMID: 32920383 DOI: 10.1016/j.scitotenv.2020.141889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 05/19/2023]
Abstract
Increasing atmospheric CO2 concentration negatively impacts aquatic ecosystems and may exacerbate the problem of undesirable cyanobacterial bloom development in freshwater ecosystems. Elevated levels of atmospheric CO2 may increase the levels of dissolved CO2 in freshwater systems, via air-water exchanges, enhancing primary production in the water and catchments. Although high CO2 levels improve cyanobacterial growth and increase cyanobacterial biomass, the impacts on their internal physiological processes can be more complex. Here, we have reviewed previous studies to evaluate the physiological responses of cyanobacteria to high concentrations of CO2. In response to high CO2 concentrations, the pressures of inorganic carbon absorption are reduced, and carbon concentration mechanisms are downregulated, affecting the intracellular metabolic processes and competitiveness of the cyanobacteria. Nitrogen and phosphorus metabolism and light utilization are closely related to CO2 assimilation, and these processes are likely to be affected by resource and energy reallocation when CO2 levels are high. Additionally, the responses of diazotrophic and toxic cyanobacteria to elevated CO2 levels were specifically reviewed. The responses of diazotrophic cyanobacteria to elevated CO2 concentrations were found to be inconsistent, probably because of differences in other factors in experimental designs. Toxic cyanobacteria tended to be superior to non-toxic strains at low levels of CO2; however, the specific effects of microcystin on the regulation require further investigation. Furthermore, the effects of increasing CO2 levels on cyanobacterial competitiveness in phytoplankton communities and nutrient cycling in aquatic ecosystems were reviewed. High CO2 concentrations may make cyanobacteria less competitive relative to other algal taxa; however, due to the complexity of natural systems and the specificity of algal species, the dominant positions of the cyanobacteria do not seems to be changed. To better understand cyanobacterial responses to elevated CO2 levels and help control cyanobacterial bloom developments, this review has identified key areas for future research.
Collapse
Affiliation(s)
- Jingjie Ma
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| |
Collapse
|
4
|
Sopezki MS, Josende ME, Cruz LC, Yunes JS, Lima JV, Zanette J. The effects of Microcystis aeruginosa cells lysate containing microcystins on physiological and molecular responses in the nematode Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY 2020; 35:591-598. [PMID: 31916382 DOI: 10.1002/tox.22894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Microcystins (MCs) are potent toxins produced by environmental cyanobacterial blooms. The present study evaluated the effects of a Microcystis aeruginosa cyanobacterial lysate containing 0.1, 1, and 10 μg L-1 MC-LR equivalent in the C. elegans Bristol N2 wild-type and the effects caused by equivalent concentrations of a MC-LR standard. The lysate was prepared from a culture of toxic strain (RST9501) originated from the Patos Lagoon Estuary (RS, Brazil). The minimal concentration necessary to cause significant effects in C. elegans under exposure to M. aeruginosa lysate or to MC-LR standard were, respectively, 10 and 0.1 μg L-1 MC-LR equivalent for growth and 10 and 1 μg L-1 MC-LR equivalent for fertility. Reproduction (ie, brood size) was only affected by the exposure to 10 μg L-1 MC-LR standard and was not affected by the lysate. The nematodes that were exposed to lysate containing 1 μg L-1 MC-LR equivalent or MC-LR were also analyzed for pharyngeal pumping and gene expression using RT-qPCR. The worms' rhythmic contractions of the pharynx were similarly affected by the lysate containing 1 μg L-1 of MC-LR equivalent and the MC-LR standard. The MC-LR standard caused down-regulation of genes related to growth (daf-16), fertility (spe-10), and biotransformation (gst-2). This is the first study to evaluate the effects of a toxic cyanobacterial lysate using the C. elegans model. This study suggests the organism as a potential biotest to evaluate toxicity of natural waters containing M. aeruginosa cells and to environmental risk assessment associated to cyanobacterial bloom events.
Collapse
Affiliation(s)
- Mauricio S Sopezki
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Marcelo E Josende
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Litiele C Cruz
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - João S Yunes
- Laboratório de Cianobactérias e Ficotoxinas, Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Juliane V Lima
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Juliano Zanette
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| |
Collapse
|
5
|
Lang-Yona N, Kunert AT, Vogel L, Kampf CJ, Bellinghausen I, Saloga J, Schink A, Ziegler K, Lucas K, Schuppan D, Pöschl U, Weber B, Fröhlich-Nowoisky J. Fresh water, marine and terrestrial cyanobacteria display distinct allergen characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:767-774. [PMID: 28866404 DOI: 10.1016/j.scitotenv.2017.08.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
During the last decades, global cyanobacteria biomass increased due to climate change as well as industrial usage for production of biofuels and food supplements. Thus, there is a need for thorough characterization of their potential health risks, including allergenicity. We therefore aimed to identify and characterize similarities in allergenic potential of cyanobacteria originating from the major ecological environments. Different cyanobacterial taxa were tested for immunoreactivity with IgE from allergic donors and non-allergic controls using immunoblot and ELISA. Moreover, mediator release from human FcεR1-transfected rat basophilic leukemia (RBL) cells was measured, allowing in situ examination of the allergenic reaction. Phycocyanin content and IgE-binding potential were determined and inhibition assays performed to evaluate similarities in IgE-binding epitopes. Mass spectrometry analysis identified IgE-reactive bands ranging between 10 and 160kDa as phycobiliprotein compounds. Levels of cyanobacterial antigen-specific IgE in plasma of allergic donors and mediator release from sensitized RBL cells were significantly higher compared to non-allergic controls (p<0.01). Inhibition studies indicated cross-reactivity between IgE-binding proteins from fresh water cyanobacteria and phycocyanin standard. We further addressed IgE-binding characteristics of marine water and soil-originated cyanobacteria. Altogether, our data suggest that the intensive use and the strong increase in cyanobacterial abundance due to climate change call for increasing awareness and further monitoring of their potential health hazards.
Collapse
Affiliation(s)
- Naama Lang-Yona
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany.
| | - Anna Theresa Kunert
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Lothar Vogel
- Paul-Ehrlich-Institut, Department of Allergology, Langen, Germany
| | - Christopher Johannes Kampf
- Johannes Gutenberg University, Institute of Organic Chemistry, Mainz, Germany; Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Iris Bellinghausen
- University Medical Center of the Johannes Gutenberg University, Department of Dermatology, Mainz, Germany
| | - Joachim Saloga
- University Medical Center of the Johannes Gutenberg University, Department of Dermatology, Mainz, Germany
| | - Anne Schink
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Kira Ziegler
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Kurt Lucas
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Detlef Schuppan
- University Medical Center of the Johannes Gutenberg University, Institute of Translational Immunology and Research Center for Immunotherapy; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Bettina Weber
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | | |
Collapse
|
6
|
Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Fushimi A, Enami S, Arangio AM, Fröhlich-Nowoisky J, Fujitani Y, Furuyama A, Lakey PSJ, Lelieveld J, Lucas K, Morino Y, Pöschl U, Takahama S, Takami A, Tong H, Weber B, Yoshino A, Sato K. Aerosol Health Effects from Molecular to Global Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13545-13567. [PMID: 29111690 DOI: 10.1021/acs.est.7b04417] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Kayo Ueda
- Kyoto University , Kyoto 606-8501, Japan
| | | | - Gerhard Lammel
- Research Centre for Toxic Compounds in the Environment, Masaryk University , 625 00 Brno, Czech Republic
| | - Christopher J Kampf
- Institute for Organic Chemistry, Johannes Gutenberg University , 55122 Mainz, Germany
| | - Akihiro Fushimi
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Andrea M Arangio
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | | | - Yuji Fujitani
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Akiko Furuyama
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Pascale S J Lakey
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | - Yu Morino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | - Satoshi Takahama
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Akinori Takami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | | | - Ayako Yoshino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Kei Sato
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| |
Collapse
|
7
|
Funari E, Manganelli M, Buratti FM, Testai E. Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:867-880. [PMID: 28458204 DOI: 10.1016/j.scitotenv.2017.03.232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacteria thrive in many aquatic environments, where they can produce cyanotoxins with different toxicological profile. Anthropic pressure and climate changes are causing the expansion in terms of time and space of their blooms, increasing the concerns for human health in several exposure scenarios. Here the update of the Italian guidelines for the management of cyanobacterial blooms in bathing water is presented. A risk-based approach has been developed according to the current scientific knowledge on cyanobacteria distribution in the Italian Lakes and on chemical, toxicological and epidemiological aspects of different cyanotoxins, summarized in the first part of the paper. Oral, dermal and inhalation exposure to cyanotoxins, during recreational activities, are individually examined, to develop a framework of thresholds and actions aimed at preventing harmful effects for bathers. Guidelines, also by comparing international guidance values and/or guidelines, provide criteria to plan environmental monitoring activities, health surveillance and public communication systems. Finally the still important scientific gaps and research needs are highlighted.
Collapse
Affiliation(s)
- Enzo Funari
- Istituto Superiore di Sanità, Dept. of Environment and Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maura Manganelli
- Istituto Superiore di Sanità, Dept. of Environment and Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Franca M Buratti
- Istituto Superiore di Sanità, Dept. of Environment and Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Emanuela Testai
- Istituto Superiore di Sanità, Dept. of Environment and Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
8
|
Lohia N, Baranwal M. Immune responses to highly conserved influenza A virus matrix 1 peptides. Microbiol Immunol 2017; 61:225-231. [PMID: 28429374 DOI: 10.1111/1348-0421.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023]
Abstract
Influenza vaccine development is considered to be complicated and challenging. Constantly evolving influenza viruses require continuous global monitoring and reformulation of the vaccine strains. Peptides that are conserved among different strains and subtypes of influenza A virus are strongly considered to be attractive targets for development of cross protective influenza vaccines that stimulate cellular responses. In this study, three highly conserved (>90%) matrix 1 peptides that contain multiple T cell epitopes, ILGFVFTLTVPSERGLQRRRF (PM 1), LIRHENRMVLASTTAKA (PM 2) and LQAYQKRMGVQMQR (PM 3), were assessed for their immunogenic potential in vitro by subjecting peripheral blood mononuclear cells from healthy volunteers to repetitive stimulation with these chemically synthesised peptides and measuring their IFN-γ concentrations, proliferation by ELISA, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, respectively. Seven samples were screened for immunogenicity of PM 1 and PM 2, and six for that of PM 3. All six samples had positive responses (IFN-γ secretion) to PM 3 stimulation, as did five and three for PM 2 and PM 1 respectively. In contrast, seven (PM 1 and PM 2) and four (PM 3) samples showed proliferative response as compared with unstimulated cells. The encouraging immunogenic response generated by these highly conserved matrix 1 peptides indicates they are prospective candidates for development of broadly reactive influenza vaccines.
Collapse
Affiliation(s)
- Neha Lohia
- Department of Biotechnology, Thapar University, Patiala147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar University, Patiala147004, India
| |
Collapse
|
9
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
10
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
11
|
Geh EN, de la Cruz AA, Ghosh D, Stelma G, Bernstein JA. Sensitization of a child to Cyanobacteria after recreational swimming in a lake. J Allergy Clin Immunol 2016; 137:1902-1904.e3. [DOI: 10.1016/j.jaci.2015.12.1340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 01/04/2023]
|