1
|
Kreutz A, Chang X, Hogberg HT, Wetmore BA. Advancing understanding of human variability through toxicokinetic modeling, in vitro-in vivo extrapolation, and new approach methodologies. Hum Genomics 2024; 18:129. [PMID: 39574200 PMCID: PMC11580331 DOI: 10.1186/s40246-024-00691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
The merging of physiology and toxicokinetics, or pharmacokinetics, with computational modeling to characterize dosimetry has led to major advances for both the chemical and pharmaceutical research arenas. Driven by the mutual need to estimate internal exposures where in vivo data generation was simply not possible, the application of toxicokinetic modeling has grown exponentially in the past 30 years. In toxicology the need has been the derivation of quantitative estimates of toxicokinetic and toxicodynamic variability to evaluate the suitability of the tenfold uncertainty factor employed in risk assessment decision-making. Consideration of a host of physiologic, ontogenetic, genetic, and exposure factors are all required for comprehensive characterization. Fortunately, the underlying framework of physiologically based toxicokinetic models can accommodate these inputs, in addition to being amenable to capturing time-varying dynamics. Meanwhile, international interest in advancing new approach methodologies has fueled the generation of in vitro toxicity and toxicokinetic data that can be applied in in vitro-in vivo extrapolation approaches to provide human-specific risk-based information for historically data-poor chemicals. This review will provide a brief introduction to the structure and evolution of toxicokinetic and physiologically based toxicokinetic models as they advanced to incorporate variability and a wide range of complex exposure scenarios. This will be followed by a state of the science update describing current and emerging experimental and modeling strategies for population and life-stage variability, including the increasing application of in vitro-in vivo extrapolation with physiologically based toxicokinetic models in pharmaceutical and chemical safety research. The review will conclude with case study examples demonstrating novel applications of physiologically based toxicokinetic modeling and an update on its applications for regulatory decision-making. Physiologically based toxicokinetic modeling provides a sound framework for variability evaluation in chemical risk assessment.
Collapse
Affiliation(s)
- Anna Kreutz
- Inotiv, 601 Keystone Park Drive, Suite 200, Morrisville, NC, 27560, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - Xiaoqing Chang
- Inotiv, 601 Keystone Park Drive, Suite 200, Morrisville, NC, 27560, USA
| | | | - Barbara A Wetmore
- Office of Research and Development, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
2
|
Silva M, Kwok RKH. Use of computational toxicology models to predict toxicological points of departure: A case study with triazine herbicides. Birth Defects Res 2023; 115:525-544. [PMID: 36584090 DOI: 10.1002/bdr2.2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atrazine simazine and propazine, widely used triazine herbicides on food crops and in residential areas, disrupt the neuroendocrine system raising human health concerns. USEPA developed a PBPK model based on triazine common Mode of Action (MOA)-suppression of luteinizing hormone surge in female rats-to generate human regulatory points of departure (POD: mg/kg/day). We compared triazine Human Administered Equivalent Dose (AEDHuman mg/kg/day) predictions from open access computational tools to the PBPK PODs to assess concordance. METHODS Computational tools were the following: ToxCast/Tox21 in vitro assays; Toxicogenomic databases to assess concordance with ToxCast/Tox21 targets; integrated chemical environment (ICE) models with ToxCast/Tox21 inputs to predict AEDHuman PODs and population-based age-refined high throughput toxicokinetics (HTTK-Pop) to compare to age-related PBPK PODs. RESULTS ToxCast/Tox21 assays identified critical targets in the triazine common MOA and gene databases; ICE AEDHuman predictions were mainly concordant with the USEPA PBPK PODs quantitatively. Low fold-differences between PBPK POD and ICE AEDHuman predictions indicated that the ICE models are health-protective. HTTK-Pop age-refinements were within 10-fold of the USEPA PBPK PODs. CONCLUSIONS CompTox tools were used to identify assay targets in the MOA and identify potential molecular initiating targets in the adverse outcome pathway for potential use in risk assessment.
Collapse
Affiliation(s)
- Marilyn Silva
- Retired from the California Environmental Protection Agency, Sacramento, California, USA
| | | |
Collapse
|
3
|
Silva M, Kwok RKH. Use of Computational Toxicology Tools to Predict In Vivo Endpoints Associated with Mode of Action and the Endocannabinoid System: A Case Study with Chlorpyrifos, Chlorpyrifos-oxon and Δ9Tetrahydrocannabinol. Curr Res Toxicol 2022; 3:100064. [PMID: 35243363 PMCID: PMC8860916 DOI: 10.1016/j.crtox.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 01/04/2023] Open
|
4
|
O'Shaughnessy KL, Fischer F, Zenclussen AC. Perinatal exposure to endocrine disrupting chemicals and neurodevelopment: How articles of daily use influence the development of our children. Best Pract Res Clin Endocrinol Metab 2021; 35:101568. [PMID: 34565681 PMCID: PMC10111869 DOI: 10.1016/j.beem.2021.101568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substances that interfere with the body's hormonal balance or their function are called endocrine disrupting chemicals (EDCs). Many EDCs are ubiquitous in the environment and are an unavoidable aspect of daily life, including during early embryogenesis. Developmental exposure to these chemicals is of critical relevance, as EDCs can permanently alter developmental programs, including those that pattern and wire the brain. Of emerging interest is how these chemicals may also affect the immune response, given the cross-talk between the endocrine and immune systems. As brain development is strongly dependent on hormones including thyroid, androgens, and estrogens, and can also be affected by immunomodulation, this complicated interplay may have long-lasting neurodevelopmental consequences. This review focuses on data available from human cohorts, in vivo models, and in vitro assays regarding the impact of EDCs after a gestational and/or lactational exposure, and how they may impact the immune system and/or neurodevelopment.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
5
|
Khan KM, Hatch LC, Akhter S, Eunus M, Zhou Z, Parvez F, Rohlman D. Reliability of a computer-based neurobehavioral assessment test battery for Bangladeshi adolescent children. Neurotoxicology 2021; 85:47-53. [PMID: 33940044 DOI: 10.1016/j.neuro.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
In developing countries, there is a need for low-cost neurobehavioral (NB) test batteries for vulnerable populations, particularly for children exposed to environmental neurotoxicants. The objective of the current study was to assess the feasibility and test-retest reliability of the Behavioral Assessment and Research System (BARS) in children from a rural community in Bangladesh. Fifty healthy adolescents living in the Health Effects of Arsenic Longitudinal Study (HEALS) area in Araihazar, Bangladesh completed all six tests from the BARS in two test sessions scheduled two weeks apart. The BARS tests evaluated NB functions such as motor coordination, attention, memory, and information processing speed. The reliability assessment, evaluated by test-retest correlations demonstrated moderate to strong correlations (i.e., correlation coefficients ranged from 0.43 to 0.85), which were statistically significant (p < 0.05). Paired t-tests for comparing the test and retest outcomes indicated significant improvement in NB performance, highlighting learning and practice effects. NB performance improved with increasing age in most cases. Adolescent boys performed better than the girls in Finger Tapping, Digit Span, and Simple Reaction Time, whereas the girls performed better in Continuous Performance and Symbol Digit tests. The reliability scores (Pearson's correlations 0.43-0.85) were consistent with other children studies in different cultural settings. The effects of age and sex on NB tests were also consistent with findings reported in other countries. Overall, the findings of the study support the feasibility of using this computer-based test system to assess vulnerability of brain health due to environmental exposures among rural Bangladeshi children.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Population Health, College of Health Sciences, Sam Houston State University, 1901 Ave I, CHSS Suite 432, Huntsville, TX, 77341, USA.
| | - Lynette C Hatch
- Department of Psychology and Philosophy, College of Humanities and Social Sciences, Sam Houston State University, 1905 University Ave, Huntsville, TX, 77340, USA.
| | - Salma Akhter
- Department of Occupational and Environmental Health Science, College of Health and Human Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907.
| | - Mahbubul Eunus
- U-Chicago Research Bangladesh Ltd., House 04, Road 2B, Sector 4, Uttara, Dhaka, 1230, Bangladesh.
| | - Zheng Zhou
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, 1025 E 7thStreet, Room 029, Bloomington, IN, 47405, USA.
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722 W, 168thStreet, New York, NY, 10032, USA.
| | - Diane Rohlman
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, S324 CPHB, 145 N Riverside Dr, Iowa City, 52242, Iowa, USA.
| |
Collapse
|
6
|
Deng L, Liu H, Deng Q. Physiologically-based pharmacokinetic modeling of benzo(a)pyrene and the metabolite in humans of different ages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:202-214. [PMID: 31296039 DOI: 10.1080/09603123.2019.1640355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
Age-specific differences in the pharmacokinetics of benzo(a)pyrene (BaP) and its metabolite 3-hydroxybenzo(a)pyrene (3-OHBaP) potentially affect time courses of tissue concentration; however, the quantitative impact of these differences is not well characterized. Our objective was to quantify the effect of age-specific differences in physiological and biochemical parameters on the pharmacokinetics of BaP and 3-OHBaP from newborn at birth to adulthood following inhalation exposure. The time courses of BaP and 3-OHBaP were simulated by using a physiologically based pharmacokinetic model with Advanced Continuous Simulation Language (ACSLX). The concentrations of BaP increased with age in the liver but decreased with age in most tissues, urine, and blood. The concentrations of 3-OHBaP were the highest in the newborns. Our results also showed that the concentration of BaP has almost reached a steady state in the kidney, liver, lung, rapidly perfused tissues, slowly perfused tissues, and skin except for adipose tissues. However, the concentration of 3-OHBaP has reached a steady state in all tissues. This study suggests that age-specific parameters have an effect on the pharmacokinetics of BaP and 3-OHBaP. In particular, tissue concentration in the newborns is higher than other age groups, which indicates that the newborns are susceptible to environmental BaP exposure.
Collapse
Affiliation(s)
- Linjing Deng
- School of Architecture and Art, Central South University , Changsha, HN, China
| | - Hui Liu
- School of Architecture and Art, Central South University , Changsha, HN, China
| | - Qihong Deng
- School of Architecture and Art, Central South University , Changsha, HN, China
- XiangYa School of Public Health, Central South University , Changsha, China
- School of Public Health, Zhengzhou University , Zhengzhou, HN, China
| |
Collapse
|
7
|
Rocha A, Trujillo KA. Neurotoxicity of low-level lead exposure: History, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 2019; 73:58-80. [PMID: 30836127 PMCID: PMC7462347 DOI: 10.1016/j.neuro.2019.02.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
Lead is a neurotoxin that produces long-term, perhaps irreversible, effects on health and well-being. This article summarizes clinical and preclinical studies that have employed a variety of research techniques to examine the neurotoxic effects of low levels of lead exposure. A historical perspective is presented, followed by an overview of studies that examined behavioral and cognitive outcomes. In addition, a short summary of potential mechanisms of action is provided with a focus on calcium-dependent processes. The current level of concern, or reference level, set by the CDC is 5 μg/dL of lead in blood and a revision to 3.5 μg/dL has been suggested. However, levels of lead below 3 μg/dL have been shown to produce diminished cognitive function and maladaptive behavior in humans and animal models. Because much of the research has focused on higher concentrations of lead, work on low concentrations is needed to better understand the neurobehavioral effects and mechanisms of action of this neurotoxic metal.
Collapse
MESH Headings
- Adolescent
- Adolescent Behavior/drug effects
- Adolescent Development/drug effects
- Adult
- Age Factors
- Aged
- Animals
- Brain/drug effects
- Brain/growth & development
- Child
- Child Behavior/drug effects
- Child Development/drug effects
- Child, Preschool
- Cognition/drug effects
- Dose-Response Relationship, Drug
- History, 20th Century
- History, 21st Century
- Humans
- Lead Poisoning, Nervous System, Adult/history
- Lead Poisoning, Nervous System, Adult/physiopathology
- Lead Poisoning, Nervous System, Adult/psychology
- Lead Poisoning, Nervous System, Childhood/history
- Lead Poisoning, Nervous System, Childhood/physiopathology
- Lead Poisoning, Nervous System, Childhood/psychology
- Mice
- Middle Aged
- Rats
- Risk Assessment
- Risk Factors
- Toxicity Tests
- Young Adult
Collapse
Affiliation(s)
- Angelica Rocha
- California State University San Marcos, San Marcos, CA 92069, USA.
| | - Keith A Trujillo
- California State University San Marcos, San Marcos, CA 92069, USA
| |
Collapse
|
8
|
Lewis RC, Meeker JD, Basu N, Gauthier AM, Cantoral A, Mercado-García A, Peterson KE, Téllez-Rojo MM, Watkins DJ. Urinary metal concentrations among mothers and children in a Mexico City birth cohort study. Int J Hyg Environ Health 2018; 221:609-615. [PMID: 29703512 PMCID: PMC6197859 DOI: 10.1016/j.ijheh.2018.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Personal care product use is a potential source of metals exposure among children, but studies have been limited. We measured urinary concentrations of 10 metals (aluminum, arsenic [As], barium [Ba], cadmium, cobalt [Co], lead [Pb], manganese [Mn], molybdenum [Mo], nickel, and zinc [Zn]) in third trimester pregnant women (n = 212) and their children at 8-14 years of age (n = 250). Demographic factors (child sex, age, socioeconomic status, and maternal education), body mass index (BMI) z-score, and child personal care product use in the 24 h prior to urine collection were examined as predictors of urinary metal concentrations. Metals were detected in 80-100% of urine samples, with significant differences in maternal versus childhood levels. However, metal concentrations were not strongly correlated within or between time points. In linear regression models including all demographic characteristics, BMI z-score, and specific gravity, age was associated with higher Co (6% [95% CI: 2, 10]), while BMI z-score was associated with lower Mo (-6% [95% CI: -11, -1). In addition, significantly higher metal concentrations were observed among users of colored cosmetics (Mo: 42% [95% CI: 1, 99]), deodorant (Ba: 28% [3, 58]), hair spray/hair gel (Mn: 22% [3, 45]), and other toiletries (As: 50% [9, 108]), as well as with an increasing number of personal care products used (As: 7% [3, 11]) after adjustment for child sex, age, total number of products used, and specific gravity. However, significantly lower metal concentrations were noted for users of hair cream (As and Zn: -20% [-36, -2] and -21% [-35, -2], respectively), shampoo (Pb: -40% [-62, -7]), and other hair products (Pb: -44% [-65, -9]). We found that personal care product use may be a predictor of exposure to multiple metals among children. Further research is recommended to inform product-specific exposure source identification and related child health risk assessment efforts.
Collapse
Affiliation(s)
- Ryan C Lewis
- Center for Health Sciences, Exponent, Inc., Oakland, CA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | | | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, MOR, Mexico
| | - Adriana Mercado-García
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, MOR, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, MOR, Mexico
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
McHale CM, Osborne G, Morello-Frosch R, Salmon AG, Sandy MS, Solomon G, Zhang L, Smith MT, Zeise L. Assessing health risks from multiple environmental stressors: Moving from G×E to I×E. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 775:11-20. [PMID: 29555026 DOI: 10.1016/j.mrrev.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
Research on disease causation often attempts to isolate the effects of individual factors, including individual genes or environmental factors. This reductionist approach has generated many discoveries, but misses important interactive and cumulative effects that may help explain the broad range of variability in disease occurrence observed across studies and individuals. A disease rarely results from a single factor, and instead results from a broader combination of factors, characterized here as intrinsic (I) and extrinsic (E) factors. Intrinsic vulnerability or resilience emanates from a variety of both fixed and shifting biological factors including genetic traits, while extrinsic factors comprise all biologically-relevant external stressors encountered across the lifespan. The I×E concept incorporates the multi-factorial and dynamic nature of health and disease and provides a unified, conceptual basis for integrating results from multiple areas of research, including genomics, G×E, developmental origins of health and disease, and the exposome. We describe the utility of the I×E concept to better understand and characterize the cumulative impact of multiple extrinsic and intrinsic factors on individual and population health. New research methods increasingly facilitate the measurement of multifactorial and interactive effects in epidemiological and toxicological studies. Tiered or indicator-based approaches can guide the selection of potentially relevant I and E factors for study and quantification, and exposomics methods may eventually produce results that can be used to generate a response function over the life course. Quantitative data on I×E interactive effects should generate a better understanding of the variability in human response to environmental factors. The proposed I×E concept highlights the role for broader study design in order to identify extrinsic and intrinsic factors amenable to interventions at the individual and population levels in order to enhance resilience, reduce vulnerability and improve health.
Collapse
Affiliation(s)
- Cliona M McHale
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| | - Rachel Morello-Frosch
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Andrew G Salmon
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| | - Gina Solomon
- California Environmental Protection Agency, Sacramento, CA 95814, USA
| | - Luoping Zhang
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Martyn T Smith
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| |
Collapse
|
10
|
Ring CL, Pearce RG, Setzer RW, Wetmore BA, Wambaugh JF. Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability. ENVIRONMENT INTERNATIONAL 2017; 106:105-118. [PMID: 28628784 PMCID: PMC6116525 DOI: 10.1016/j.envint.2017.06.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 05/17/2023]
Abstract
The thousands of chemicals present in the environment (USGAO, 2013) must be triaged to identify priority chemicals for human health risk research. Most chemicals have little of the toxicokinetic (TK) data that are necessary for relating exposures to tissue concentrations that are believed to be toxic. Ongoing efforts have collected limited, in vitro TK data for a few hundred chemicals. These data have been combined with biomonitoring data to estimate an approximate margin between potential hazard and exposure. The most "at risk" 95th percentile of adults have been identified from simulated populations that are generated either using standard "average" adult human parameters or very specific cohorts such as Northern Europeans. To better reflect the modern U.S. population, we developed a population simulation using physiologies based on distributions of demographic and anthropometric quantities from the most recent U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey (NHANES) data. This allowed incorporation of inter-individual variability, including variability across relevant demographic subgroups. Variability was analyzed with a Monte Carlo approach that accounted for the correlation structure in physiological parameters. To identify portions of the U.S. population that are more at risk for specific chemicals, physiologic variability was incorporated within an open-source high-throughput (HT) TK modeling framework. We prioritized 50 chemicals based on estimates of both potential hazard and exposure. Potential hazard was estimated from in vitro HT screening assays (i.e., the Tox21 and ToxCast programs). Bioactive in vitro concentrations were extrapolated to doses that produce equivalent concentrations in body tissues using a reverse dosimetry approach in which generic TK models are parameterized with: 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. For risk-based prioritization of chemicals, predicted bioactive equivalent doses were compared to demographic-specific inferences of exposure rates that were based on NHANES urinary analyte biomonitoring data. The inclusion of NHANES-derived inter-individual variability decreased predicted bioactive equivalent doses by 12% on average for the total population when compared to previous methods. However, for some combinations of chemical and demographic groups the margin was reduced by as much as three quarters. This TK modeling framework allows targeted risk prioritization of chemicals for demographic groups of interest, including potentially sensitive life stages and subpopulations.
Collapse
Affiliation(s)
- Caroline L Ring
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, United States; National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Robert G Pearce
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, United States; National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - R Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Barbara A Wetmore
- ScitoVation, LLC, Research Triangle Park, NC, United States; National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - John F Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
11
|
Epstein SS. Reach: An Unprecedented European Initiative for Regulating Industrial Chemicals. INTERNATIONAL JOURNAL OF HEALTH SERVICES 2016; 35:1-38. [PMID: 15759555 DOI: 10.2190/qwvt-32g7-ud0b-x727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In February 2001, the European Commission (EC) released a White Paper, REACH 2001, detailing unique and unprecedented legislative proposals for the regulation of industrial chemicals, based on the Precautionary Principle. The object of these proposals was to reverse the escalating incidence of avoidable cancers, a wide range of other industrial diseases, and environmental contamination. However, REACH was aggressively opposed by the European and U.S. chemical industries, and even more so by the U.S. administration. The EC responded by making major concessions in its October 2003 REACH-based legislative proposals. This report critically analyzes REACH, and its 2003 revised proposals, and recommends that REACH be strengthened, not weakened. Furthermore, the report urges that regulatory policies of the United States and other industrialized nations be drastically reformed to comply with those of REACH.
Collapse
Affiliation(s)
- Samuel S Epstein
- University of Illinois at Chicago, School of Public Health, IL 60612, USA.
| |
Collapse
|
12
|
Saadeh R, Klaunig J. Children's Inter-Individual Variability and Asthma Development. Int J Health Sci (Qassim) 2015; 9:456-467. [PMID: 26715926 PMCID: PMC4682601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
Children of different ages vary in their response to environmental stressors due to their continuous development and changes in their bodies' anatomy, physiology, and biochemistry. Each age group of children has special biological features that distinguish their toxicokinetic and toxicodynamic characteristics from other age groups. The variability in responses extends to include children of the same age group. These intra- and inter-group differences in biological features explains the variability in responses to environmental exposures. Based on such differences in children's responses to exposures, adverse health outcomes and diseases develop differently in children. One of these diseases that are common in children is asthma. Asthma is a complex respiratory chronic disease that is multifactorial in origin. This paper discusses how variability in certain factors among children contributes to asthma occurrence or exacerbation, and links these factors to asthma in children of different ages. The importance of this review is to provide an insight on factors affecting asthma prevalence among children. These factors are usually overlooked in clinical or public health practice, which might significantly affect asthma management, and decrease the predictability of asthma detection measures. Therefore, keeping these factors into consideration can significantly improve asthma treatment and assist in asthma prevention amongst susceptible populations.
Collapse
Affiliation(s)
- Rami Saadeh
- Department of Environmental Health, School of Public Health, Indiana University at Bloomington, Bloomington, Indiana, USA
| | - James Klaunig
- Department of Environmental Health, School of Public Health, Indiana University at Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
13
|
Felter SP, Daston GP, Euling SY, Piersma AH, Tassinari MS. Assessment of health risks resulting from early-life exposures: Are current chemical toxicity testing protocols and risk assessment methods adequate? Crit Rev Toxicol 2015; 45:219-44. [PMID: 25687245 DOI: 10.3109/10408444.2014.993919] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Over the last couple of decades, the awareness of the potential health impacts associated with early-life exposures has increased. Global regulatory approaches to chemical risk assessment are intended to be protective for the diverse human population including all life stages. However, questions persist as to whether the current testing approaches and risk assessment methodologies are adequately protective for infants and children. Here, we review physiological and developmental differences that may result in differential sensitivity associated with early-life exposures. It is clear that sensitivity to chemical exposures during early-life can be similar, higher, or lower than that of adults, and can change quickly within a short developmental timeframe. Moreover, age-related exposure differences provide an important consideration for overall susceptibility. Differential sensitivity associated with a life stage can reflect the toxicokinetic handling of a xenobiotic exposure, the toxicodynamic response, or both. Each of these is illustrated with chemical-specific examples. The adequacy of current testing protocols, proposed new tools, and risk assessment methods for systemic noncancer endpoints are reviewed in light of the potential for differential risk to infants and young children.
Collapse
|
14
|
Wetmore BA, Allen B, Clewell HJ, Parker T, Wambaugh JF, Almond LM, Sochaski MA, Thomas RS. Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing. Toxicol Sci 2014; 142:210-24. [PMID: 25145659 DOI: 10.1093/toxsci/kfu169] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Momentum is growing worldwide to use in vitro high-throughput screening (HTS) to evaluate human health effects of chemicals. However, the integration of dosimetry into HTS assays and incorporation of population variability will be essential before its application in a risk assessment context. Previously, we employed in vitro hepatic metabolic clearance and plasma protein binding data with in vitro in vivo extrapolation (IVIVE) modeling to estimate oral equivalent doses, or daily oral chemical doses required to achieve steady-state blood concentrations (Css) equivalent to media concentrations having a defined effect in an in vitro HTS assay. In this study, hepatic clearance rates of selected ToxCast chemicals were measured in vitro for 13 cytochrome P450 and five uridine 5'-diphospho-glucuronysyltransferase isozymes using recombinantly expressed enzymes. The isozyme-specific clearance rates were then incorporated into an IVIVE model that captures known differences in isozyme expression across several life stages and ethnic populations. Comparison of the median Css for a healthy population against the median or the upper 95th percentile for more sensitive populations revealed differences of 1.3- to 4.3-fold or 3.1- to 13.1-fold, respectively. Such values may be used to derive chemical-specific human toxicokinetic adjustment factors. The IVIVE model was also used to estimate subpopulation-specific oral equivalent doses that were directly compared with subpopulation-specific exposure estimates. This study successfully combines isozyme and physiologic differences to quantitate subpopulation pharmacokinetic variability. Incorporation of these values with dosimetry and in vitro bioactivities provides a viable approach that could be employed within a high-throughput risk assessment framework.
Collapse
Affiliation(s)
- Barbara A Wetmore
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Brittany Allen
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Harvey J Clewell
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Timothy Parker
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - John F Wambaugh
- United States Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, North Carolina 27711
| | - Lisa M Almond
- Simcyp Limited (a Certara company), Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK
| | - Mark A Sochaski
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Russell S Thomas
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| |
Collapse
|
15
|
O'Brien E, Dolinoy DC, Mancuso P. Perinatal bisphenol A exposures increase production of pro-inflammatory mediators in bone marrow-derived mast cells of adult mice. J Immunotoxicol 2013; 11:205-12. [PMID: 23914806 DOI: 10.3109/1547691x.2013.822036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bisphenol A (BPA) is a widely used monomer of polycarbonate plastics and epoxide resin that has been implicated in asthma pathogenesis when exposure occurs to the developing fetus. However, few studies have examined the relationship between perinatal BPA exposure and asthma pathogenesis in adulthood. This study used an isogenic mouse model to examine the influence of perinatal BPA exposure via maternal diet on inflammatory mediators associated with asthma in 6-month-old adult offspring by measuring bone marrow-derived mast cell (BMMC) production of lipid mediators (cysteinyl leukotrienes and prostaglandin D2), cytokines (interleukin [IL]-4, IL-5, IL-6, IL-13, and tumor necrosis factor [TNF]-α), and histamine. Global DNA methylation levels in BMMCs from adult offspring were determined to elucidate a potential regulatory mechanism linking perinatal exposure to mast cell phenotype later in life. Four BPA exposure doses were tested: low (50 ng BPA/kg diet, n = 5), medium (50 μg BPA/kg diet, n = 4), high (50 mg BPA/kg diet, n = 4), and control (n = 3). Following BMMC activation, increases in cysteinyl leukotriene (p < 0.01) and TNFα (p < 0.05) production were observed in all BPA-exposure groups, and increases in prostaglandin D2 (p < 0.01) and IL-13 (p < 0.01) production were observed in the high exposure group. Additionally, BMMCs from adult mice in all exposure groups displayed a decrease in global DNA methylation compared to control animals. Thus, perinatal BPA exposure displayed a long-term influence on mast cell-mediated production of pro-inflammatory mediators associated with asthma and global DNA methylation levels, suggesting a potential for mast cell dysregulation, which could affect pulmonary inflammation associated with allergic airway disease into adulthood.
Collapse
Affiliation(s)
- Edmund O'Brien
- Department of Environmental Health Sciences, School of Public Health, University of Michigan , Ann Arbor, MI , USA
| | | | | |
Collapse
|
16
|
Leung HW, Jin L, Wei S, Tsui MMP, Zhou B, Jiao L, Cheung PC, Chun YK, Murphy MB, Lam PKS. Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:839-46. [PMID: 23665928 PMCID: PMC3702003 DOI: 10.1289/ehp.1206244] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/01/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. OBJECTIVES We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. METHODS We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. RESULTS We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median-maximum, nanograms per liter: 24.4-564), metronidazole (1.8-19.3), salicylic acid (16.6-41.2), clofibric acid (1.2-3.3), carbamazepine (1.3-6.7), and dimetridazole (6.9-14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. CONCLUSION Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere.
Collapse
Affiliation(s)
- Ho Wing Leung
- State Key Laboratory in Marine Pollution, and Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Concurrent determination of bisphenol A pharmacokinetics in maternal and fetal rhesus monkeys. Toxicol Appl Pharmacol 2013; 267:41-8. [DOI: 10.1016/j.taap.2012.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/04/2012] [Accepted: 12/08/2012] [Indexed: 11/22/2022]
|
18
|
Amaya E, Gil F, Freire C, Olmedo P, Fernández-Rodríguez M, Fernández MF, Olea N. Placental concentrations of heavy metals in a mother-child cohort. ENVIRONMENTAL RESEARCH 2013; 120:63-70. [PMID: 23140988 DOI: 10.1016/j.envres.2012.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 09/12/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Heavy metals are environmental contaminants with properties known to be toxic for wildlife and humans. Despite strong concerns about their harmful effects, little information is available on intrauterine exposure in humans. The aim of this study was to evaluate prenatal exposure to As, Cd, Cr, Hg, Mn, and Pb and its association with maternal factors in a population-based mother-child cohort in Southern Spain. Between 2000 and 2002, 700 pregnant women were recruited and 137 placentas from the cohort were randomly selected and analyzed for the selected metals by atomic absorption. Maternal sociodemographic and lifestyle factors were obtained by questionnaire after delivery. Bivariate analysis and multivariate linear regression were performed. Cd and Mn concentrations were detected in all placentas, while Cr, Pb, and Hg were found in 98.5%, 35.0%, and 30.7% of samples, respectively. The highest concentrations were observed for Pb (mean: 94.80 ng/g wet weight of placenta), followed by Mn (63.80 ng/g), Cr (63.70 ng/g), Cd (3.45 ng/g), and Hg (0.024 ng/g). Arsenic was not detected in any sample. Gestational age and smoking during pregnancy were associated with placental Cd concentrations, while no factor appeared to influence concentrations of Cr, Hg, Mn, or Pb. In comparison to results of European studies, these concentrations are in a low-intermediate position. Studies are required to investigate the factors contributing to early exposure to heavy metals and to determine how placental transfer of these toxic compounds may affect children's health.
Collapse
Affiliation(s)
- E Amaya
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, 18071 Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
19
|
Fernandez MF, Parera J, Arrebola JP, Marina LS, Vrijheid M, Llop S, Abalos M, Tardon A, Castaño A, Abad E, Olea N. Levels of polychlorinated dibenzo-p-dioxins, dibenzofurans and dioxin-like polychlorinated biphenyls in placentas from the Spanish INMA birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 441:49-56. [PMID: 23134768 DOI: 10.1016/j.scitotenv.2012.09.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 09/01/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
Because fetuses are considered significantly more sensitive to various environment toxicants, there is a need for continuous biomonitoring of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls PCBs (DL-PCBs) to assess their impact on this susceptible population. The aim of this study was to assess the concentration of PCDD/Fs and DL-PCBs in placenta samples from women participating in the Spanish Environment and Childhood (INMA) birth cohort study and to evaluate whether maternal and child characteristics predict placenta concentrations of these pollutants. The presence of PCDD/Fs and DL-PCBs was investigated in 50 placenta samples selected at random in the recruitment period 2000-2008. Multivariable regression models were constructed. Mothers had a mean age at delivery of 30.7 years (18.0-38.0 years), pre-pregnancy BMI of 23.3 kg/m² (18.0-40.2 kg/m²), and 31% were smokers. Median total concentrations of PCDD/Fs and DL-PCBs were 6.9 pg WHO-TEQ/g lipid and 2.1 pg WHO-TEQ/g lipid, respectively. In comparison to the few previous studies in placenta, total TEQ levels were among the lowest recorded in comparable general populations. The congener distribution pattern and the frequencies and concentrations of PCDD/F and DL-PCB congeners were similar to previous reports in placenta. PCDD/F and DL-PCB exposure was related to the age of the mother and the year of the delivery. Although placental concentrations cannot be considered wholly appropriate predictors for evaluating fetal exposure to these contaminants, they can provide a good indication of both maternal and infant prenatal and postnatal exposure and can be used as a proxy for fetal exposure.
Collapse
Affiliation(s)
- Mariana F Fernandez
- Biomedical Research Center, University of Granada, Laboratory of Medical Investigations, San Cecilio University Hospital, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pleil JD, Williams MA, Sobus JR. Chemical Safety for Sustainability (CSS): Human in vivo biomonitoring data for complementing results from in vitro toxicology—A commentary. Toxicol Lett 2012; 215:201-7. [DOI: 10.1016/j.toxlet.2012.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 01/12/2023]
|
21
|
Cole TB, Fisher JC, Burbacher TM, Costa LG, Furlong CE. Neurobehavioral assessment of mice following repeated postnatal exposure to chlorpyrifos-oxon. Neurotoxicol Teratol 2012; 34:311-22. [PMID: 22425525 PMCID: PMC3367041 DOI: 10.1016/j.ntt.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/08/2012] [Accepted: 02/29/2012] [Indexed: 11/17/2022]
Abstract
Chlorpyrifos (CPF), one of the most widely-used organophosphorus (OP) insecticides in agriculture, is degraded in the field to its oxon form, chlorpyrifos-oxon (CPO), which can represent a significant contaminant in exposures to adults and children. CPO is also responsible for the acetylcholinesterase (AChE) inhibition associated with CPF exposures; CPF is converted by liver CYP450 enzymes to CPO, which binds to and inhibits AChE and other serine active-site esterases, lipases and proteases. Young children represent a particularly susceptible population for exposure to CPF and CPO, in part because levels of the plasma enzyme, paraoxonase (PON1), which hydrolyzes CPO, are very low during early development. While a number of studies have demonstrated developmental neurotoxicity associated with CPF exposure, including effects at or below the threshold levels for AChE inhibition, it is unclear whether these effects were due directly to CPF or to its active metabolite, CPO. PON1 knockout (PON1-/-) mice, which lack PON1, represent a highly sensitive mouse model for toxicity associated with exposure to CPF or CPO. To examine the neurobehavioral consequences of CPO exposure during postnatal development, PON1-/- mice were exposed daily from PND 4 to PND 21 to CPO at 0.15, 0.18, or 0.25 mg/kg/d. A neurobehavioral test battery did not reveal significant effects of CPO on early reflex development, motor coordination, pre-pulse inhibition of startle, startle amplitude, open field behavior, or learning and memory in the contextual fear conditioning, Morris water maze, or water radial-arm maze tests. However, body weight gain and startle latency were significantly affected by exposure to 0.25 mg/kg/d CPO. Additionally, from PNDs 15-20 the mice exposed repeatedly to CPO at all three doses exhibited a dose-related transient hyperkinesis in the 20-min period following CPO administration, suggesting possible effects on catecholaminergic neurotransmission. Our previous study demonstrated wide-ranging effects of neonatal CPO exposure on gene expression in the brain and on brain AChE inhibition, and modulation of both of these effects by the PON1(Q192R) polymorphism. The current study indicates that the neurobehavioral consequences of these effects are more elusive, and suggests that alternative neurobehavioral tests might be warranted, such as tests of social interactions, age-dependent effects on learning and memory, or tests designed specifically to assess dopaminergic or noradrenergic function.
Collapse
Affiliation(s)
- Toby B. Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Jenna C. Fisher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Thomas M. Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Clement E. Furlong
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Paintner A, Williams AD, Burd L. Fetal alcohol spectrum disorders-- implications for child neurology, part 1: prenatal exposure and dosimetry. J Child Neurol 2012; 27:258-63. [PMID: 22351188 DOI: 10.1177/0883073811428376] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the United States, approximately 80 000 women consume ethanol through all 3 trimesters of pregnancy each year. In this article, we review prevalence rates of prenatal alcohol exposure in the United States and discuss the mechanisms of prenatal alcohol exposure and placental-umbilical effects. Cigarette smoking and delayed prenatal care are often associated with prenatal alcohol exposure. In addition, increased risk for postnatal adversity is common, including maternal depression, foster care placement, and developmental delay. In part 2, we review prevalence rates and the diagnostic criteria for fetal alcohol spectrum disorder and the implications for child neurologists. We discuss management strategies and the importance of a long-term management plan and anticipatory management to prevent the development of secondary disabilities in fetal alcohol spectrum disorders. Child neurologists play a key role in diagnosis and the development of appropriate intervention programs for affected children and their families.
Collapse
Affiliation(s)
- Ashley Paintner
- North Dakota Fetal Alcohol Syndrome Center, Department of Pediatrics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | | | | |
Collapse
|
23
|
Eichenbaum G, Skibbe J, Parkinson A, Johnson MD, Baumgardner D, Ogilvie B, Usuki E, Tonelli F, Holsapple J, Schmitt-Hoffmann A. Use of enzyme inhibitors to evaluate the conversion pathways of ester and amide prodrugs: a case study example with the prodrug ceftobiprole medocaril. J Pharm Sci 2011; 101:1242-52. [PMID: 22095741 DOI: 10.1002/jps.22816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022]
Abstract
An approach was developed that uses enzyme inhibitors to support the assessment of the pathways that are responsible for the conversion of intravenously administered ester and amide prodrugs in different biological matrices. The methodology was applied to ceftobiprole medocaril (BAL5788), the prodrug of the cephalosporin antibiotic, ceftobiprole. The prodrug was incubated in plasma, postmitochondrial supernatant fractions from human liver (impaired and nonimpaired), kidney, and intestine as well as erythrocytes, in the presence and absence of different enzyme inhibitors (acetylcholinesterase, pseudocholinesterase, retinyl palmitoyl hydrolase, serine esterases, amidases, and cholinesterase). Hydrolysis was rapid, extensive, and not dependent on the presence of β-nicotinamide-adenine dinucleotide phosphate (reduced form) in all matrices tested, suggesting the involvement of carboxylesterases but not P450 enzymes. Hydrolysis in healthy human plasma was rapid and complete and only partially inhibited in the presence of paraoxonase inhibitors or in liver from hepatic impaired patients, suggesting involvement of nonparaoxonase pathways. The results demonstrate the utility of this approach in confirming the presence of multiple conversion pathways of intravenously administered prodrugs and in the case of BAL5788 demonstrated that this prodrug is unlikely to be affected by genetic polymorphisms, drug interactions, or other environmental factors that might inhibit or induce the enzymes involved in its conversion.
Collapse
Affiliation(s)
- Gary Eichenbaum
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Raritan, New Jersey 08869, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats. Toxicol Appl Pharmacol 2011; 255:261-70. [PMID: 21820460 DOI: 10.1016/j.taap.2011.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/21/2022]
Abstract
Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA metabolites in urine of >90% of Americans aged 6-60 suggests ubiquitous and frequent exposure in the range of 0.02-0.2μg/kgbw/d (25th-95th percentiles). The current study used LC/MS/MS to measure placental transfer and concentrations of aglycone (receptor-active) and conjugated (inactive) BPA in tissues from Sprague-Dawley rats administered deuterated BPA (100μg/kg bw) by oral and IV routes. In adult female rat tissues, the tissue/serum concentration ratios for aglycone BPA ranged from 0.7 in liver to 5 in adipose tissue, reflecting differences in tissue perfusion, composition, and metabolic capacity. Following IV administration to dams, placental transfer was observed for aglycone BPA into fetuses at several gestational days (GD), with fetal/maternal serum ratios of 2.7 at GD 12, 1.2 at GD 16, and 0.4 at GD 20; the corresponding ratios for conjugated BPA were 0.43, 0.65, and 3.7. These ratios were within the ranges observed in adult tissues and were not indicative of preferential accumulation of aglycone BPA or hydrolysis of conjugates in fetal tissue in vivo. Concentrations of aglycone BPA in GD 20 fetal brain were higher than in liver or serum. Oral administration of the same dose did not produce measurable levels of aglycone BPA in fetal tissues. Amniotic fluid consistently contained levels of BPA at or below those in maternal serum. Concentrations of aglycone BPA in tissues of neonatal rats decreased with age in a manner consistent with the corresponding circulating levels. Phase II metabolism of BPA increased with fetal age such that near-term fetus was similar to early post-natal rats. These results show that concentrations of aglycone BPA in fetal tissues are similar to those in other maternal and neonatal tissues and that maternal Phase II metabolism, especially following oral administration, and fetal age are critical in reducing exposures to the fetus.
Collapse
|
25
|
Al-Saleh I, Shinwari N, Mashhour A, Mohamed GED, Rabah A. Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health 2010; 214:79-101. [PMID: 21093366 DOI: 10.1016/j.ijheh.2010.10.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 10/05/2010] [Accepted: 10/25/2010] [Indexed: 11/18/2022]
Abstract
Lead, cadmium and mercury were measured in placental tissue, umbilical cord and maternal blood samples of 1578 women who delivered at the Al-Kharj King Khalid Hospital between 2005 and 2006. The aim of this study was to evaluate the status of heavy metal exposure in mothers and their newborns and to identify predictors of maternal exposure. Lead was detected in all cord and maternal blood and in 96% of placental tissues. Only in 0.89% and 0.83% of cord and maternal blood samples were the levels of lead above the CDC threshold limit of 10 μg/dl. Maternal blood lead was also higher (2.3%) than the German Reference value in women of 7 μg/dl. Approximately 9.3% of women had a placental lead above the 95th percentile in the range of 0.83-78 μg/g dry wt., a level of possible developmental toxicity. Cadmium was detected in 94.8% and 97.9% of cord and maternal blood samples respectively, though only five newborns had a cadmium level above the OSHA threshold limit of 5 μg/l. Comparing our results to the newly revised German Reference value for nonsmokers, 48.6% of mothers had blood cadmium levels >1.0 μg/l. We found as well that 25% of women had placental cadmium in the >75th percentile, in the range of 0.048-4.36 μg/g dry wt., which is likely to affect fetal growth and development. Of the maternal and cord blood samples, 11.2% and 13%, respectively, had mercury levels >5.8 μg/l, which is the EPA reference dose. Nearly 49% of women had mercury levels >2.0 μg/l, the German Reference value for those who consume fish ≤3 times a month. Around 50% of the mothers had placental mercury in the range of 0.031-13.0 μg/g dry wt. Regression analyses indicated that the levels of metals in the blood and placenta were influenced by several factors. This study provides informative baseline biomonitoring data and reveals a substantial exposure to heavy metals in non-occupationally exposed Saudi mothers and their newborns that might jeopardize the health of both. Additional research is also urgently needed to explore factors such as environment, diet, lifestyle and/or cultural habits contributing to maternal and fetal exposures. Preventive measures to eliminate or minimize the unnecessary risk of fetus exposure to heavy metals or other pollutants during pregnancy should be initiated once these factors are identified.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Biological & Medical Research Department, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia.
| | | | | | | | | |
Collapse
|
26
|
Ennulat D, Walker D, Clemo F, Magid-Slav M, Ledieu D, Graham M, Botts S, Boone L. Effects of Hepatic Drug-metabolizing Enzyme Induction on Clinical Pathology Parameters in Animals and Man. Toxicol Pathol 2010; 38:810-28. [DOI: 10.1177/0192623310374332] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic drug-metabolizing enzyme (DME) induction is an adaptive response associated with changes in preclinical species; this response can include increases in liver weight, hepatocellular hyperplasia and hypertrophy, and upregulated tissue expression of DMEs. Effects of DME induction on clinical pathology markers of hepatobiliary injury and function in animals as well as humans are not well established. This component of a multipart review of the comparative pathology of xenobiotically mediated induction of hepatic metabolizing enzymes reviews pertinent data from retrospective and prospective preclinical and clinical studies. Particular attention is given to studies with confirmation of DME induction and concurrent evaluation of liver and/or serum hepatobiliary marker enzyme activities and histopathology. These results collectively indicate that in the rat, when histologic findings are limited to hepatocellular hypertrophy, DME induction is not expected to be associated with consistent or substantive changes in serum or plasma activity of hepatobiliary marker enzymes such as alanine aminotransferase, alkaline phosphatase, and gamma glutamyltransferase. In the dog and the monkey, published studies also do not demonstrate a consistent relationship across DME-inducing agents and changes in these clinical pathology parameters. However, increased liver alkaline phosphatase or gamma glutamyltransferase activity in dogs treated with phenobarbital or corticosteroids suggests that direct or indirect induction of select hepatobiliary injury markers can occur both in the absence of liver injury and independently of induction of DME activity. Although correlations between tissue and serum levels of these hepatobiliary markers are limited and inconsistent, increases in serum/plasma activities that are substantial or involve changes in other markers generally reflect hepatobiliary insult rather than DME induction. Extrahepatic effects, including disruption of the hypothalamic-pituitary-thyroid axis, can also occur as a direct outcome of hepatic DME induction in humans and animals. Importantly, hepatic DME induction and associated changes in preclinical species are not necessarily predictive of the occurrence, magnitude, or enzyme induction profile in humans.
Collapse
Affiliation(s)
| | - Dana Walker
- Bristol-Myers Squibb, East Syracuse, New York, USA
| | | | | | | | - Mark Graham
- AstraZeneca, Loughborough, Leicestershire, UK
| | | | - Laura Boone
- Covance Laboratories, Greenfield, Indiana, USA
| |
Collapse
|
27
|
Tornero-Velez R, Mirfazaelian A, Kim KB, Anand SS, Kim HJ, Haines WT, Bruckner JV, Fisher JW. Evaluation of deltamethrin kinetics and dosimetry in the maturing rat using a PBPK model. Toxicol Appl Pharmacol 2010; 244:208-17. [DOI: 10.1016/j.taap.2009.12.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 01/10/2023]
|
28
|
Cytochrome 3A and 2E1 in human liver tissue: Individual variations among normal Japanese subjects. Life Sci 2010; 86:393-401. [PMID: 20102722 DOI: 10.1016/j.lfs.2010.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 12/28/2022]
Abstract
AIMS The metabolism of drugs, xenobiotic compounds, and other endogenous/exogenous substrates generally begins with their oxidation through cytochrome P450 (CYP). The results of recent pharmacogenetic analyses have demonstrated CYP's polymorphisms to be related to individual differences in metabolism, but only a limited number of CYP3A4 and CYP2E1 variant alleles influence enzymatic activities. Therefore, CYP gene expression profiling of both normal and pathological human livers should provide critical information for an evaluation of the biological significance of CYPs. MAIN METHODS In our present study, we first characterized the individual differences in CYP3A4 and CYP2E1 expression levels among Japanese normal or non-pathological liver tissue obtained from autopsy or surgery using immunohistochemistry and quantitative RT-PCR array of phase I metabolic enzymes with combined laser capture microscopy and qPCR analysis. KEY FINDINGS Both CYP3A4 and CYP2E1 mRNA and proteins were predominantly detected in hepatocytes surrounding central veins in normal liver, but there were marked individual differences in both CYP3A4 and CYP2E1 mRNA and proteins among the 23 Japanese subjects examined. Individual differences in CYP3A and CYP2E1 subtypes were also detected in the livers obtained from monozygotic neonatal Japanese female twins with different survival periods. CYP3A and CYP2E1-positive cells were decreased in number in non-pathological hepatocytes of diseased livers compared to those in disease-free livers from autopsy. SIGNIFICANCE The above results suggest that individual differences in CYP3A4 and CYP2E1 exist among normal human liver tissues and in non-pathological hepatocytes between diseased and normal liver, and these differences may be important in evaluating the pharmacodynamics of various substances.
Collapse
|
29
|
|
30
|
Hines RN, Sargent D, Autrup H, Birnbaum LS, Brent RL, Doerrer NG, Cohen Hubal EA, Juberg DR, Laurent C, Luebke R, Olejniczak K, Portier CJ, Slikker W. Approaches for assessing risks to sensitive populations: lessons learned from evaluating risks in the pediatric population. Toxicol Sci 2009; 113:4-26. [PMID: 19770482 DOI: 10.1093/toxsci/kfp217] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Assessing the risk profiles of potentially sensitive populations requires a "tool chest" of methodological approaches to adequately characterize and evaluate these populations. At present, there is an extensive body of literature on methodologies that apply to the evaluation of the pediatric population. The Health and Environmental Sciences Institute Subcommittee on Risk Assessment of Sensitive Populations evaluated key references in the area of pediatric risk to identify a spectrum of methodological approaches. These approaches are considered in this article for their potential to be extrapolated for the identification and assessment of other sensitive populations. Recommendations as to future research needs and/or alternate methodological considerations are also made.
Collapse
Affiliation(s)
- Ronald N Hines
- Medical College of Wisconsin, Department of Pediatrics, Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin 53226-4801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ejaz S, Ejaz A, Sohail A, Ahmed M, Nasir A, Lim CW. Exposure of smoke solutions from CNG-powered four-stroke auto-rickshaws induces distressed embryonic movements, embryonic hemorrhaging and ectopia cordis. Food Chem Toxicol 2009; 47:1442-52. [PMID: 19332102 DOI: 10.1016/j.fct.2009.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 02/20/2009] [Accepted: 03/23/2009] [Indexed: 11/30/2022]
Abstract
In south Asian countries, a campaign has launched to promote CNG-powered four-stroke auto-rickshaws (CNFAR) to decrease emission load in the environment. Even though, CNFAR are considered environmentally safe, emissions of some other toxic chemicals would amplify, which may effect the development of growing fetus and may result in different growth defects. By utilizing the in vivo chicken embryo model, this report analyzes the toxic potential of CNFAR smoke solutions (CNFARSS) on embryonic movements (EM) and cardiovascular development. Application of CNFARSS to embryos caused profound decline (p<0.001) in all four types of EMs. Several recovery attempts of all EMs were observed in oscillating fashion, however, EMs did not recover by the end of experiment. Exposure of CNFARSS escorted intense decline (p<0.001) with temperate recovery phases in the EM of tail. Macroscopic evaluation of all CNFARSS treated chicken embryos revealed several widespread hemorrhaging throughout the whole body. Moreover, four different types of ectopia cordis were prominently observed among all CNFARSS treated embryos, namely; incomplete ectopia cordis, complete ectopia cordis, cervico-thoracic ectopia cordis and thoraco-abdominal ectopia cordis.
Collapse
Affiliation(s)
- Sohail Ejaz
- Department of Clinical Neurosciences, Neurology Unit, Addenbrookes Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Brown RC, Barone S, Kimmel CA. Children's health risk assessment: incorporating a lifestage approach into the risk assessment process. ACTA ACUST UNITED AC 2009; 83:511-21. [PMID: 19025790 DOI: 10.1002/bdrb.20172] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This overview paper provides the historical context for the incorporation of lifestage-specific concerns in human health risk assessment, briefly explains the process employed in a lifestage framework for risk assessment, and discusses the scientific rationale for how utilizing lifestage data will strengthen the overall risk assessment process. This risk assessment approach will add value by: (1) providing a more complete evaluation of the potential for vulnerability at different lifestages, including a focus on the underlying biological events and incorporation of mode of action information related to different critical developmental periods; (2) evaluating the potential for toxicity during all lifestages after early lifestage exposure; (3) reviewing the importance of integrating exposure information and adverse health effects across lifestages; and (4) serving as a basis to extend some aspects of the children's health risk assessment framework to all lifestages.
Collapse
Affiliation(s)
- Rebecca C Brown
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Office of Research and Development, 1200 Pennsylvania Avenue NW, Washington, DC 20460, USA.
| | | | | |
Collapse
|
33
|
Makris SL, Thompson CM, Euling SY, Selevan SG, Sonawane B. A lifestage-specific approach to hazard and dose-response characterization for children's health risk assessment. ACTA ACUST UNITED AC 2009; 83:530-46. [PMID: 19085945 DOI: 10.1002/bdrb.20176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In 2006, the U.S. EPA published a report entitled A Framework for Assessing Health Risks of Environmental Exposures to Children (hereafter referred to as the "Framework") describing a lifestage approach to risk assessment that includes the evaluation of existing data from a temporal perspective (i.e., the timing of both the exposure and the outcome). This article summarizes the lifestage-specific issues discussed in the Framework related to the qualitative and the quantitative hazard and dose-response characterization. Lifestage-specific hazard characterization includes an evaluation of relevant human and experimental animal studies, focusing on the identification of critical windows of development (i.e., exposure intervals of maximum susceptibility) for observed outcomes, evaluation of differential exposure at individual lifestages, the relevance and impact of lifestage-specific toxicokinetic and toxicodynamic data, mode of action information, variability and latency of effects from early lifestage exposure, and describing uncertainties. The interpretation of the hazard data to determine the strength of association between early life exposures and the timing and type of outcomes depends upon the overall weight of evidence. Lifestage-specific dose-response characterization relies on the identification of susceptible lifestages in order to quantify health risk, information on the point of departure, key default assumptions, and descriptions of uncertainty, sensitivity, and variability. Discussion of the strength and limitations of the hazard and dose-response data provides a basis for confidence in risk determinations. Applying a lifestage approach to hazard and dose-response characterization is likely to improve children's health risk assessment by identifying data gaps and providing a better understanding of sources of uncertainty.
Collapse
Affiliation(s)
- Susan L Makris
- National Center for Environmental Assessment (NCEA), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), 1200 Pennsylvania Avenue, NW, Washington, DC 20460, USA.
| | | | | | | | | |
Collapse
|
34
|
Biggs ML, Davis MD, Eaton DL, Weiss NS, Barr DB, Doody DR, Fish S, Needham LL, Chen C, Schwartz SM. Serum organochlorine pesticide residues and risk of testicular germ cell carcinoma: a population-based case-control study. Cancer Epidemiol Biomarkers Prev 2008; 17:2012-8. [PMID: 18708392 DOI: 10.1158/1055-9965.epi-08-0032] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Testicular germ cell carcinoma (TGCC) is the most common malignancy among men ages 20 to 34 years. Although the pathogenesis of TGCC is poorly understood, suboptimal androgen levels or impaired androgen signaling may play a role. Some persistent organochlorine pesticides commonly found in human tissue possess antiandrogenic properties. We examined whether the risk of TGCC is associated with serum levels of 11 organochlorine pesticides, including p,p'-DDE, and whether the p,p'-DDE-TGCC association is modified by CAG or GGN repeat polymorphisms in the androgen receptor gene. We conducted a population-based case-control study among 18- to 44-year-old male residents of three Washington State counties. Cases (n = 246) were diagnosed during 1999 to 2003 with a first, primary TGCC. Controls (n = 630) were men of similar age with no history of TGCC from the same population identified through random-digit telephone dialing. Questionnaires elicited information on demographic, medical, and lifestyle factors. A blood specimen provided serum for gas chromatography-high-resolution mass spectrometry analysis of organochlorine pesticide residues and DNA for genotyping. We observed no clear patterns between TGCC risk and concentrations of any of the organochlorines measured, nor did we observe that the risk associated with p,p'-DDE was modified by androgen receptor CAG (<23 versus > or =23 repeats) or GGN (<17 versus > or =17 repeats) genotype. This study does not provide support for the hypothesis that adult exposure to organochlorine pesticides is associated with risk of TGCC. Due to uncertainty regarding how well organochlorine levels measured in adulthood reflect exposures during early life, further research is needed using exposure measurements collected in utero or during infancy.
Collapse
Affiliation(s)
- Mary L Biggs
- Department of Biostatistics, School of Public Health and Community Medicine, University of Washington, Box 354922, Seattle, WA 98195-4922, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Castoldi AF, Johansson C, Onishchenko N, Coccini T, Roda E, Vahter M, Ceccatelli S, Manzo L. Human developmental neurotoxicity of methylmercury: impact of variables and risk modifiers. Regul Toxicol Pharmacol 2008; 51:201-14. [PMID: 18367301 DOI: 10.1016/j.yrtph.2008.01.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 11/26/2022]
Abstract
Methylmercury (MeHg) is a widespread environmental and food toxicant which has long been known to affect neurodevelopment in both humans and experimental animals. Risk assessment for MeHg is mainly based on human data coming from the massive episodes of poisoning in Japan and Iraq, as well as from large scale epidemiological studies concerning childhood development and neurotoxicity in relation to in utero exposure in various fish eating communities around the world. Despite the extensive literature and research, the threshold dose for MeHg neurotoxic effects is still unclear, in particular when it comes to subtle effects on neurobehaviour. In this article clinical and epidemiological findings concerning the neurodevelopmental toxicity of MeHg are reviewed. Much attention is focussed on the potential impact of factors, such as diet and nutrition, gender, pattern of exposure and co-exposure to other neurotoxic pollutants, which may modulate MeHg toxic effects. These factors, together with the notion that some symptoms may ensue or exacerbate with aging, contribute to the difficulties in the definition of safe levels for developmental exposure.
Collapse
Affiliation(s)
- Anna F Castoldi
- Toxicology Division, University of Pavia, Via Palestro 26, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Alcorn J, Elbarbry FA, Allouh MZ, McNamara PJ. Evaluation of the assumptions of an ontogeny model of rat hepatic cytochrome P450 activity. Drug Metab Dispos 2007; 35:2225-31. [PMID: 17881659 DOI: 10.1124/dmd.107.017590] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We previously reported an ontogeny model of hepatic cytochrome P450 (P450) activity that predicts in vivo P450 elimination from in vitro intrinsic clearance. The purpose of this study was to conduct investigations into key assumptions of the P450 ontogeny model using the developing rat model system. We used two developmentally dissimilar enzymes, CYP2E1 and CYP1A2, and male rats (n = 4) at age groups representing critical developmental stages. Total body and liver weights and hepatic microsomal protein contents were measured. Following high-performance liquid chromatography analysis, apparent K(M) and V(max) estimates were calculated using nonlinear regression analysis for CYP2E1- and CYP1A2-mediated chlorzoxazone 6-hydroxylation and methoxyresorufin O-dealkylation, and V(max) estimates for p-nitrophenol and phenacetin hydroxylations, respectively. Hepatic scaling factors and V(max) values provided estimates for infant scaling factors (ISF). The data show microsomal protein contents increased with postnatal age and reached adult values after postnatal day (PD) 7. Apparent K(M) values were similar at all developmental stages except at < or =PD7. Developmental increases in probe substrate V(max) values did not correlate with the biphasic increase in immunoquantifiable P450. The activity of two different probe substrates for each P450 covaried as a function of age. A plot of observed ISF values as a function of age reflected the developmental pattern of rat hepatic P450. In summation, these observations diverge from several of the model's assumptions. Further investigations are required to explain these inconsistencies and to investigate whether the developing rat may provide a predictive paradigm for pediatric risk assessment for P450-mediated elimination processes.
Collapse
Affiliation(s)
- Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | |
Collapse
|
37
|
Mirfazaelian A, Fisher JW. Organ growth functions in maturing male Sprague-Dawley rats based on a collective database. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1052-63. [PMID: 17497417 DOI: 10.1080/15287390601172106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ten different organ weights (liver, spleen, kidneys, heart, lungs, brain, adrenals, testes, epididymes, and seminal vesicles) of male Sprague-Dawley (S-D) rats of different ages (1-280 d) were extracted based on a thorough literature survey database. A generalized Michaelis-Menten (GMM) model, used to fit organ weights versus age in a previous study (Schoeffner et al., 1999) based on a limited data, was used to find the best fit model for the present expanded data compilation. The GMM model has the functional form: Wt = (Wt(o).K(gamma) + Wt(max).Age(gamma))/(K(gamma) + Age(gamma)) where Wt is organ/tissue weight at a specified age, Wt(o) and Wt(max) are weight at birth and maximal growth, respectively, and K and gamma are constants. Organ weights were significantly correlated with their respective ages for all organs and tissues. GMM-derived organ growth and percent body weight (%BW) fractions of different tissues were plotted against animal age and compared with experimental values as well as previously published models. The GMM-based organ growth and %BW fraction profiles were in general agreement with our empirical data as well as with previous studies. The present model was compared with the GMM model developed previously for six organs--liver, spleen, kidneys, heart, lungs, and brain--based on a limited data, and no significant difference was noticed between the two sets of predictions. It was concluded that the GMM models presented herein for different male S-D rats organs (liver, spleen, kidneys, heart, lungs, brain, adrenals, testes, epididymes, and seminal vesicles) are capable of predicting organ weights and %BW ratios accurately at different ages.
Collapse
Affiliation(s)
- Ahmad Mirfazaelian
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
38
|
Ginsberg GL, Hattis DB, Zoeller RT, Rice DC. Evaluation of the U.S. EPA/OSWER preliminary remediation goal for perchlorate in groundwater: focus on exposure to nursing infants. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:361-9. [PMID: 17431484 PMCID: PMC1849902 DOI: 10.1289/ehp.9533] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 12/11/2006] [Indexed: 05/03/2023]
Abstract
BACKGROUND Perchlorate is a common contaminant of drinking water and food. It competes with iodide for uptake into the thyroid, thus interfering with thyroid hormone production. The U.S. Environmental Protection Agency's Office of Solid Waste and Emergency Response (OSWER) set a groundwater preliminary remediation goal (PRG) of 24.5 microg/L to prevent exposure of pregnant women that would affect the fetus. This does not account for the greater exposure that is possible in nursing infants or for the relative source contribution (RSC), a factor normally used to lower the PRG due to nonwater exposures. OBJECTIVES Our goal was to assess whether the OSWER PRG protects infants against exposures from breast-feeding, and to evaluate the perchlorate RSC. METHODS We used Monte Carlo analysis to simulate nursing infant exposures associated with the OSWER PRG when combined with background perchlorate. RESULTS The PRG can lead to a 7-fold increase in breast milk concentration, causing 90% of nursing infants to exceed the reference dose (RfD) (average exceedance, 2.8-fold). Drinking-water perchlorate must be < 6.9 microg/L to keep the median, and < 1.3 microg/L to keep the 90th-percentile nursing infant exposure below the RfD. This is 3.6- to 19-fold below the PRG. Analysis of biomonitoring data suggests an RSC of 0.7 for pregnant women and of 0.2 for nursing infants. Recent data from the Centers for Disease Control and Prevention (CDC) suggest that the RfD itself needs to be reevaluated because of hormonal effects in the general population. CONCLUSIONS The OSWER PRG for perchlorate can be improved by considering infant exposures, by incorporating an RSC, and by being responsive to any changes in the RfD resulting from the new CDC data.
Collapse
Affiliation(s)
- Gary L Ginsberg
- Connecticut Department of Public Health, Hartford, Connecticut 06134, USA.
| | | | | | | |
Collapse
|
39
|
Mirfazaelian A, Kim KB, Lee S, Kim HJ, Bruckner JV, Fisher JW. Organ growth functions in maturing male Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:429-38. [PMID: 17454567 DOI: 10.1080/15287390600755265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Growth equations can be used in physiologically based pharmacokinetic (PBPK) modeling to provide physiological parameters (e.g., body weight, tissue/organ volumes) for maturing rodents. No diligent systematic exercise was found in the literature dealing with growth equations for developing rats' tissues. A generalized Michaelis-Menten (GMM) model, originally developed to fit body weight vs. age data, was chosen to estimate different physiological compartment sizes. The GMM model has the functional form: Wt = (Wt(o).K(gamma) + Wt(max).Age(gamma))/(K(gamma) + Age(gamma)) where Wt is organ/tissue weight at a specified age, Wt(o) and Wt(max) are weight at birth and maximal growth respectively, and K and gamma are constants. Weights of freshly collected organs (liver, spleen, kidneys, heart, lungs, brain, gastrointestinal tract and adipose tissue), measured in male Sprague-Dawley rats of different ages (1-280 d) in our laboratory, were used to evaluate this model's performance. The GMM model was fitted to the organ weights, and the resulting parameters were statistically significant for all organs and tissues. Organ weights were highly correlated with their respective ages. GMM-derived organ growth and percent body weight (%BW) fractions of different tissues were plotted against animal age and compared with experimental values. The GMM-based organ growth and %BW fraction profiles were in general agreement with our empirical data as well as previous studies. The GMM model gave adequately precise weight predictions at all ages for all the tissues/organs examined.
Collapse
Affiliation(s)
- Ahmad Mirfazaelian
- Department of Pharmaceutics, School of Pharmacy, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
40
|
Elbarbry FA, McNamara PJ, Alcorn J. Ontogeny of hepatic CYP1A2 and CYP2E1 expression in rat. J Biochem Mol Toxicol 2007; 21:41-50. [PMID: 17366540 DOI: 10.1002/jbt.20156] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report a comprehensive examination of rat hepatic CYP1A2 and CYP2E1 ontogeny. We compare the data to human data to determine the rat's capacity as a model to identify CYP-mediated mechanisms underlying age-dependent differences in susceptibility to toxicity. We evaluated CYP expression using real-time RT-PCR, immunoblot and immunohistochemistry, and specific probe activity in male rat livers (n = 4) at critical developmental life stages. CYP2E1 mRNA expression was low at birth, then increased rapidly to peak prior to weaning. CYP1A2 transcript levels remained very low postnatally and then increased dramatically to reach peak expression during weaning. Immunoreactive CYP1A2 and CYP2E1 was first detected at postnatal day 3 (PD3), and reached 50% of adult levels after weaning, and adult levels by puberty. CYP1A2 and CYP2E1 probe activity (pmol/(min mg)) was detected at PD3 and peaked during weaning and late neonatal period, respectively. CYP activity fell to adult values by puberty, a pattern that closely mirrored the temporal changes in mRNA but not protein. An increasing preferential localization of CYP1A2 and CYP2E1 immunoreactivity in perivenous hepatocytes was observed with maturation to adulthood. Although differences in CYP1A2 and CYP2E1 ontogeny between rats and humans exist, knowledge of these differences will aid interspecies extrapolation of developmental toxicokinetic data.
Collapse
Affiliation(s)
- Fawzy A Elbarbry
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N5C9
| | | | | |
Collapse
|
41
|
Koppe JG, Bartonova A, Bolte G, Bistrup ML, Busby C, Butter M, Dorfman P, Fucic A, Gee D, van den Hazel P, Howard V, Kohlhuber M, Leijs M, Lundqvist C, Moshammer H, Naginiene R, Nicolopoulou-Stamati P, Ronchetti R, Salines G, Schoeters G, ten Tusscher G, Wallis MK, Zuurbier M. Exposure to multiple environmental agents and their effect. Acta Paediatr 2006; 95:106-13. [PMID: 17000577 DOI: 10.1080/08035320600886646] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION All children are exposed to multiple physical, chemical and biological challenges that can result in adverse health effects before and after birth. In this context, the danger of multiple exposures cannot be assessed from a single-chemical approach as used in classical toxicology. AIM To open up a 'negotiation space' for the problem of multiple exposure to environmental stressors, defined as any physical, chemical or biological entity that can induce an adverse response. In this context, two further questions obtain: to what extent can synergistic risks be assessed, and how far could potential adverse effects be prevented by enhanced regulation? METHODS A discussion of two general approaches is taken: 1) the investigation of mixtures such as smoking or air pollution without specifying the individual agents, and 2) the investigation of individual substances with a focus on possible interactions in the context of dose to receptor. RESULTS Although mixtures of compounds can have effects, it may not be possible to ascribe causation to a single compound. Furthermore, cumulative low-dose insult can, in some circumstances, be more toxic than a single high-dose exposure, e.g. endocrine disruptive effects of a combination of PCBs and dioxins which disrupt the thyroid hormone status; this tends to contradict elements of classical toxicology, . These cumulative insults may further combine with heavy metals and can disrupt the heme synthesis. It is possible that groups of pollutants could be used to test their cumulative capacity to multiple stress-susceptible receptor targets as is done in smoking and air pollution. This methodology could be used for further groups of potential pollutants, for example those associated with cleaning products, or cosmetics. Testing individual substances with a focus on interactions means that not only chemicals but also concurrent diseases should be taken into account. We suggest that the enhanced regulation of potential multiple stressors falls into two discrete categories. The first comprises a more precautionary approach (as demonstrated by the banning of chemicals such as some brominated flame retardants in Europe). The second comprises a more 'permissive' liberal approach involving the initial study of an individual compound, and subsequent interrogation of that compound in combination with another (as demonstrated by lowering the carcinogenicity of aflatoxin by vaccination against hepatitis B). CONCLUSIONS It is necessary to define and study groups of multiple stressors as in US EPA's Framework for Cumulative Risk Assessment (U.S. EPA 2003). Recent increased knowledge of the greater sensitivity of the unborn baby, the infant and the child, has led to general recognition that a higher degree of precaution is now needed in regulating for multiple stressors on the young. The more liberal permissive approach proceeding from established effects of the individual exposures is becoming less acceptable now that we know that there is much we do not understand about chronic effects of stressors during the early development phases. Conflicts over which approach to take may have to be resolved through engagement and negotiation with a wide community of stakeholders. This "community of interest" may include fundamental research scientists, practicing clinical paediatricians, patient groups, and others concerned with the health and wellbeing of infants and children.
Collapse
Affiliation(s)
- Janna G Koppe
- Ecobaby Foundation and Emma Children's Hospital Academic Medical Centre University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Johri A, Yadav S, Singh RL, Dhawan A, Ali M, Parmar D. Long lasting effects of prenatal exposure to deltamethrin on cerebral and hepatic cytochrome P450s and behavioral activity in rat offspring. Eur J Pharmacol 2006; 544:58-68. [PMID: 16859670 DOI: 10.1016/j.ejphar.2006.06.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/09/2006] [Accepted: 06/19/2006] [Indexed: 01/28/2023]
Abstract
Prenatal exposure to different doses (0.25, or 0.5 or 1.0 mg/kg corresponding to 1/320 th or 1/160 th or 1/80 th of LD50) of deltamethrin to the pregnant Wistar rats from gestation day 5 to 21 were found to produce a dose dependent increase in the activity of cytochrome P450 (CYP) dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-D) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of cytochrome P450 monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver of offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have indicated that increase in cytochrome P450 activity may lead to the accumulation of deltamethrin and its metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic cytochrome P450s was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.5 and 1.0 mg/kg) of deltamethrin and up to 9 weeks at the highest dose (1.0 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6 weeks of age, have further indicated that due to the reduced activity of the cytochrome P450s during the ontogeny, the pyrethroid or its metabolites accumulating in the brain may not be cleared from the brain, thereby leading to the persistence in the increase in the expression of cerebral and hepatic cytochrome P450s in the offspring postnatally up to 9 weeks. The data suggests that low dose prenatal exposure to pyrethroids has the potential to produce long lasting effects on the expression of xenobiotic metabolizing cytochrome P450s in brain and liver of the offspring.
Collapse
Affiliation(s)
- Ashu Johri
- Developmental Toxicology Division, Industrial Toxicology Research Centre, P. O. Box 80, M. G. Marg, Lucknow-226 001, India
| | | | | | | | | | | |
Collapse
|
43
|
Rohlman DS, Bodner T, Arcury TA, Quandt SA, McCauley L. Developing methods for assessing neurotoxic effects in Hispanic non-English speaking children. Neurotoxicology 2006; 28:240-4. [PMID: 16759705 DOI: 10.1016/j.neuro.2006.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 03/10/2006] [Indexed: 11/17/2022]
Abstract
Many factors affect the growth and development of children, including chemicals in the environment. Children have greater exposure to toxicants than adults due to both behavior and their increased food: body-mass ratio. Furthermore, the developing brain and organ systems of infants and children and their immature metabolism also make them more vulnerable to environmental toxins. Children from all cultures and backgrounds are at risk. However, minorities may be at greatest risk. In order to evaluate the impact of environmental exposures on neurodevelopment it is necessary to have effective methods that will allow accurate conclusions to be drawn. We have developed a battery to assess neurobehavioral performance in non-English speaking Hispanic children ages 4 years and older. This paper will examine the associations between age and performance and present test-retest correlations. Two hundred and forty one Hispanic children between the ages of 4 and 9 years completed a neurobehavioral test battery twice, approximately 1 month apart. The battery consists of computerized tests from the Behavioral Assessment and Research System, tests selected from the Pediatric Environmental Neurobehavioral Test Battery, and the Object Memory Test. Multiple regression was used to examine the association between age, gender and mother's education on performance. All of the tests, except for Continuous Performance, showed that performance improved as the child gets older. Gender differences were found on several tests with females generally performing worse than males. Correlation coefficients on performance retest measures ranged from .51 to .88. This study has demonstrated the utility of using this test battery to assess cognitive and motor performance in non-English speaking Hispanic children. Tests in the battery assess a range of functions and the measures are sensitive to differences in ages. Test-retest correlations show the reliability of the battery. These support the use of this battery in both cross-sectional and longitudinal studies.
Collapse
Affiliation(s)
- Diane S Rohlman
- Center for Research on Occupational and Environmental Toxicology, CROET, L606, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
44
|
Slikker W, Bowyer JF. Biomarkers of adult and developmental neurotoxicity. Toxicol Appl Pharmacol 2005; 206:255-60. [PMID: 15967216 DOI: 10.1016/j.taap.2004.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 09/08/2004] [Indexed: 11/16/2022]
Abstract
Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessary for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s), (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.
Collapse
Affiliation(s)
- William Slikker
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, HFT-132, 3900 NCTR Road, Jefferson, AR 72079-9502, USA.
| | | |
Collapse
|
45
|
Walker B. Pediatric environmental health. J Natl Med Assoc 2005; 97:262-9. [PMID: 15712790 PMCID: PMC2568784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The links between environmental agents, environmental conditions, and disease and disability among children are receiving increasing attention. Evidence abounds that children are more susceptible than adults to the damaging effects of environmental agents and conditions. This evidence is illuminated by the much-publicized and expanding research agenda on the prevention, recognition, diagnosis and treatment of environmentally related disease in the pediatric population. Encouragingly, advances in molecular biology and other sciences are providing important tools to aid pediatricians and other healthcare professionals in meeting the environmental health needs of children.
Collapse
Affiliation(s)
- Bailus Walker
- Environmental and Occupational Medicine program, Department of Community Health and Family Practice, Howard University Medical Center, Washington, DC 20059, USA
| |
Collapse
|
46
|
Abraham K, Mielke H, Huisinga W, Gundert-Remy U. Elevated internal exposure of children in simulated acute inhalation of volatile organic compounds: effects of concentration and duration. Arch Toxicol 2004; 79:63-73. [PMID: 15565428 DOI: 10.1007/s00204-004-0599-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
When deriving health-based exposure limits in recent years, increasing attention has been drawn to susceptible subpopulations, in particular to children. We investigated the differences in kinetics between children and adults during inhalation of styrene as a typical category-3 volatile organic compound (VOC), i.e., a gas with a low reactivity and low water solubility allowing a high rate of alveolar absorption. Internal exposure was simulated using a physiologically based kinetic model over a broad range of airborne concentrations (1-1000 ppm) and for an exposure time of up to 8 h according to the scenario in the acute exposure guideline level (AEGL) program. Age-specific anatomical and physiological parameters and compound-specific data was derived from the literature. The calculated concentrations in arterial blood are higher in children than in adults, and are highest in the newborn. For an 8-h exposure to low concentrations, the calculated arterial concentration in the newborn is higher by a factor of 2.3 than in the adult. This is due mainly to the relatively high ventilation rate and the immature metabolism. With increasing airborne concentration, the ratio of arterial concentrations (newborn/adult) increases to a maximum of 3.8 at 130 ppm in ambient air, and declines with further increments of concentration to a value of 1.7. This is because the metabolism of the newborn becomes non-linear at lower concentrations than in adults. At high concentrations, metabolism is saturated in both age groups. For shorter exposures, the dose dependency of the concentration ratios (newborn/adult) is less pronounced. This is the first article to show that the intraspecies assessment factor may vary with concentration and duration of exposure.
Collapse
Affiliation(s)
- Klaus Abraham
- Federal Institute for Risk Assessment, Thielallee 88-92, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
47
|
Daston G, Faustman E, Ginsberg G, Fenner-Crisp P, Olin S, Sonawane B, Bruckner J, Breslin W, McLaughlin TJ. A framework for assessing risks to children from exposure to environmental agents. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:238-56. [PMID: 14754580 PMCID: PMC1241835 DOI: 10.1289/ehp.6182] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In recent years there has been an increasing focus in environmental risk assessment on children as a potentially susceptible population. There also has been growing recognition of the need for a systematic approach for organizing, evaluating, and incorporating the available data on children's susceptibilities in risk assessments. In this article we present a conceptual framework for assessing risks to children from environmental exposures. The proposed framework builds on the problem formulation-->analysis-->risk characterization paradigm, identifying at each phase the questions and issues of particular importance for characterizing risks to the developing organism (from conception through organ maturation). The framework is presented and discussed from the complementary perspectives of toxicokinetics and toxicodynamics.
Collapse
|