1
|
Ford LC, Lin HC, Zhou YH, Wright FA, Gombar VK, Sedykh A, Shah RR, Chiu WA, Rusyn I. Characterizing PFAS hazards and risks: a human population-based in vitro cardiotoxicity assessment strategy. Hum Genomics 2024; 18:92. [PMID: 39218963 PMCID: PMC11368000 DOI: 10.1186/s40246-024-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, and cell-based assays are the most sensible approach for screening and prioritization of PFAS. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a widely used method to test for cardiotoxicity, and recent studies showed that many PFAS affect these cells. Because iPSC-derived cardiomyocytes are available from different donors, they also can be used to quantify human variability in responses to PFAS. The primary objective of this study was to characterize potential human cardiotoxic hazard, risk, and inter-individual variability in responses to PFAS. A total of 56 PFAS from different subclasses were tested in concentration-response using human iPSC-derived cardiomyocytes from 16 donors without known heart disease. Kinetic calcium flux and high-content imaging were used to evaluate biologically-relevant phenotypes such as beat frequency, repolarization, and cytotoxicity. Of the tested PFAS, 46 showed concentration-response effects in at least one phenotype and donor; however, a wide range of sensitivities were observed across donors. Inter-individual variability in the effects could be quantified for 19 PFAS, and risk characterization could be performed for 20 PFAS based on available exposure information. For most tested PFAS, toxicodynamic variability was within a factor of 10 and the margins of exposure were above 100. This study identified PFAS that may pose cardiotoxicity risk and have high inter-individual variability. It also demonstrated the feasibility of using a population-based human in vitro method to quantify population variability and identify cardiotoxicity risks of emerging contaminants.
Collapse
Affiliation(s)
- Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred A Wright
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | | | | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA.
| |
Collapse
|
2
|
Agarwal M, Roth K, Yang Z, Sharma R, Maddipati K, Westrick J, Petriello MC. Loss of flavin-containing monooxygenase 3 modulates dioxin-like polychlorinated biphenyl 126-induced oxidative stress and hepatotoxicity. ENVIRONMENTAL RESEARCH 2024; 250:118492. [PMID: 38373550 PMCID: PMC11102846 DOI: 10.1016/j.envres.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Rahul Sharma
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Krishnarao Maddipati
- Department of Pathology, Lipidomic Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
3
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
4
|
Lin HC, Rusyn I, Chiu WA. Assessing proarrhythmic potential of environmental chemicals using a high throughput in vitro-in silico model with human induced pluripotent stem cell-derived cardiomyocytes. ALTEX 2024; 41:37-49. [PMID: 37921411 PMCID: PMC10898275 DOI: 10.14573/altex.2306231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
QT prolongation and the potentially fatal arrhythmia Torsades de Pointes are common causes for withdrawing or restricting drugs; however, little is known about similar liabilities of environmental chemicals. Current in vitro-in silico models for testing proarrhythmic liabilities, using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), provide an opportunity to address this data gap. These methods are still low- to medium-throughput and not suitable for testing the tens of thousands of chemicals in commerce. We hypothesized that combining high-throughput population- based in vitro testing in hiPSC-CMs with a fully in silico data analysis workflow can offer sensitive and specific predictions of proarrhythmic potential. We calibrated the model with a published hiPSC-CM dataset of drugs known to be positive or negative for proarrhythmia and tested its performance using internal cross-validation and external validation. Additionally, we used computational down-sampling to examine three study designs for hiPSC-CM data: one replicate of one donor, five replicates of one donor, and one replicate of a population of five donors. We found that the population of five donors had the best performance for predicting proarrhythmic potential. The resulting model was then applied to predict the proarrhythmic potential of environmental chemicals, additionally characterizing risk through margin of exposure (MOE) calculations. Out of over 900 environmental chemicals tested, over 150 were predicted to have proarrhythmic potential, but only seven chemicals had a MOE < 1. We conclude that a high-throughput in vitro-in silico approach using population-based hiPSC-CM testing provides a reasonable strategy to screen environmental chemicals for proarrhythmic potential.
Collapse
Affiliation(s)
- Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Bi J, Liu Q, Fan G, Fang Q, Zhang X, Qin X, Wu M, Wan Z, Lv Y, Wang Y, Song L. Exposure to organochlorine pesticides and polychlorinated biphenyls, adherence to an ideal cardiovascular health, and arterial stiffness among Chinese adults. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:10. [PMID: 38142250 DOI: 10.1007/s10653-023-01791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/17/2023] [Indexed: 12/25/2023]
Abstract
This study aimed to assess the relationships between exposure to individual organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and their mixture and arterial stiffness and explore whether adherence to an ideal cardiovascular health (CVH) could mitigate these associations. The cross-sectional study enrolled 1437 Chinese adults between March and May 2019 in Wuhan, China. OCPs and PCBs concentrations were measured using solid phase extraction coupled with gas chromatography-tandem mass spectrometry. Arterial stiffness was evaluated by brachial-ankle pulse wave velocity (baPWV). CVH was determined by three behavioral and four biological metrics and categorized as ideal, intermediate, and poor CVH. We applied generalized linear model and weighted quantile sum (WQS) regression to evaluate the associations of exposure to individual OCPs or PCBs and their mixture with baPWV, respectively. We found that participants with detectable levels of heptachlor epoxide, PCB-153, and PCB-180 had higher baPWV (β: 34.25, 95% CI 14.28-54.22; β: 27.64, 95% CI 7.90-47.38; and β: 30.51, 95% CI 10.68-50.35) than those with undetectable levels. In WQS regression, the mixture of OCPs and PCBs was related to a higher baPWV (β: 24.93, 95% CI 2.70-47.15). Compared with participants with ideal CVH and undetectable OCPs or PCBs levels, those with poor CVH and detectable OCPs or PCBs levels had the highest increase in baPWV (heptachlor epoxide: β: 147.94, 95% CI 112.52-183.55; PCB-153: β: 150.22, 95% CI 115.40-185.04; PCB-180: β: 147.02, 95% CI 111.66-182.38). Our findings suggested that individual OCPs, PCBs, and their mixture exposure were positively associated with arterial stiffness, and adherence to an ideal CVH may mitigate the adverse effect.
Collapse
Affiliation(s)
- Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xukuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Assad J, Cho S, Dileo V, Gascoigne G, Hubberstey AV, Patterson D, Williams R. Contaminated sediment in the Detroit River provokes acclimated responses in wild brown bullhead (Ameiurus nebulosus) populations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106772. [PMID: 38039693 DOI: 10.1016/j.aquatox.2023.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
In a previous study, adaptive responses to a single polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), were identified in brown bullhead (Ameiurus nebulosus) captured from contaminated sites across the Great Lakes. The tumor suppressor p53 and phase I toxin metabolizing CYP1A genes showed a elevated and refractory response, respectively, up to the F1 generation (Williams and Hubberstey, 2014). As an extension to the first study, bullhead were exposed to sediment collected from sites along the Detroit River to see if these adaptive responses are attainable when fish from a contaminated site are exposed to a mixture of contaminants, instead of a single compound. p53 and CYP1A proteins were measured again with the addition of phase II glutathione-s-transferase (GST) activity in the present study. Three treatment groups were measured: acute (treated immediately), cleared (depurated for three months and subsequent treatment), and farm raised F1 offspring. All three treatment groups were exposed to clean and contaminated sediment for 24 and 96 h. Acute fish from contaminated sites exposed to contaminated sediment revealed an initial elevated p53 response that did not persist in fish after long-term contaminated sediment exposure. Acute fish from contaminated sites exposed to contaminated sediment revealed refractory CYP1A expression, which disappeared in cleared fish and whose F1 response overlapped with clean site F1 offspring. Decreasing GST activity was evident in both clean and contaminated fish over time, and only clean site fish responded to long-term contaminated sediment deliberately with increasing GST activity. Because p53 and CYP1A gene expression and GST activity responses did not overlap between contaminated fish treatment groups, our study suggests that contaminated fish have acclimated to the contaminants present in their environments and no evidence of adaptation could be detected within these biomarkers.
Collapse
Affiliation(s)
- J Assad
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - S Cho
- Department of Biology, University of Windsor, Windsor, ON N9B3P4, Canada
| | - V Dileo
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - G Gascoigne
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - A V Hubberstey
- Department of Biolomedical Sciences, University of Windsor, Windsor, ON N9B3P4, Canada
| | - D Patterson
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - R Williams
- Department of Biology, University of Windsor, Windsor, ON N9B3P4, Canada.
| |
Collapse
|
7
|
Agarwal M, Hoffman J, Ngo Tenlep SY, Santarossa S, Pearson KJ, Sitarik AR, Cassidy-Bushrow AE, Petriello MC. Maternal polychlorinated biphenyl 126 (PCB 126) exposure modulates offspring gut microbiota irrespective of diet and exercise. Reprod Toxicol 2023; 118:108384. [PMID: 37061048 PMCID: PMC10257154 DOI: 10.1016/j.reprotox.2023.108384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The gut microbiota plays an important role throughout the lifespan in maintaining host health, and several factors can modulate microbiota composition including diet, exercise, and environmental exposures. Maternal microbiota is transferred to offspring during early life; thus, environmental exposures before gestation may also modulate offspring microbiota. Here we aimed to investigate the effects of maternal exposure to dioxin-like polychlorinated biphenyls (PCBs) on the microbiota of aged offspring and to determine if lifestyle factors, including maternal exercise or offspring high-fat feeding alter these associations. To test this, dams were exposed to PCB 126 (0.5 μmole/kg body weight) or vehicle oil by oral gavage during preconception, gestation, and during lactation. Half of each group was allowed access to running wheels for ≥ 7 days before and during pregnancy and up through day 14 of lactation. Female offspring born from the 4 maternal groups (PCB exposure or not, with/without exercise) were subsequently placed either on regular diet or switched to a high-fat diet during adulthood. Microbiota composition was quantified in female offspring at 49 weeks of age by 16 S rRNA sequencing. Maternal exposure to PCB 126 resulted in significantly reduced richness and diversity in offspring microbiota regardless of diet or exercise. Overall compositional differences were largely driven by offspring diet, but alterations in specific taxa due to maternal PCB 126 exposure, included the depletion of Verrucomicrobiaceae and Akkermansia muciniphila, and an increase in Anaeroplasma. Perturbation of microbiota due to PCB 126 may predispose offspring to a variety of chronic diseases later in adulthood.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Jessie Hoffman
- Department of Human Nutrition, Winthrop University, Rock Hill, SC 29733, USA
| | - Sara Y Ngo Tenlep
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Sara Santarossa
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Alexandra R Sitarik
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | | | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
8
|
Deen L, Clark A, Hougaard KS, Meyer HW, Frederiksen M, Pedersen EB, Petersen KU, Flachs EM, Bonde JPE, Tøttenborg SS. Risk of cardiovascular diseases following residential exposure to airborne polychlorinated biphenyls: A register-based cohort study. ENVIRONMENTAL RESEARCH 2023; 222:115354. [PMID: 36709868 DOI: 10.1016/j.envres.2023.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Indoor air in buildings constructed with materials containing polychlorinated biphenyls (PCBs) may be contaminated with especially lower-chlorinated PCBs. So far, the cardiovascular consequences of living with such contamination are unknown. OBJECTIVES To determine the risk of cardiovascular disease (CVD) following residential exposure to predominantly lower-chlorinated PCBs in indoor air. METHODS The Health Effects of PCBs in Indoor Air (HESPAIR) cohort is register-based with 51 921 residents of two residential areas near Copenhagen: Farum Midtpunkt and Brøndby Strand Parkerne. Here, indoor air was contaminated with PCB in one third of the apartments due to construction with materials containing PCB. Individual PCB exposure was estimated based on register-based information on relocation dates and indoor air PCB measurements in subsets of the apartments. Information on CVD was retrieved from the Danish National Patient Register for the follow-up period of 1977-2018. We estimated adjusted hazard ratios using Cox regression with time-varying exposure. RESULTS Cumulative residential exposure to airborne PCB was not associated with a higher overall risk for CVD (HR for highly exposed (≥3300 ng/m3 PCB × year): 1.02, 95% CI 0.94-1.10). This was also the case for most of the specific cardiovascular diseases, apart from acute myocardial infarction where a higher risk was observed for residents exposed to ≥3300 ng/m3 PCB × year compared to the reference group (HR 1.17, 95% CI 1.00-1.35). However, no exposure-response relationship was apparent and additional adjustment for education attenuated the risk estimate. DISCUSSION In this, to our knowledge, first study ever to examine the risk of CVD following residential exposure to PCBs in indoor air, we observed limited support for cardiovascular effects of living in PCB-contaminated indoor air. Considering the prevalence of exposure to airborne PCBs and lack of literature on their potential health effects, these findings need to be corroborated in other studies.
Collapse
Affiliation(s)
- Laura Deen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark; Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - Alice Clark
- Real World Science, Novo Nordisk, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Denmark; National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Harald William Meyer
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark
| | - Marie Frederiksen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ellen Bøtker Pedersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark
| | - Kajsa Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark
| | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark
| | - Jens Peter Ellekilde Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark; Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark; Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
10
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
11
|
Daley MC, Mende U, Choi BR, McMullen PD, Coulombe KLK. Beyond pharmaceuticals: Fit-for-purpose new approach methodologies for environmental cardiotoxicity testing. ALTEX 2022; 40:103-116. [PMID: 35648122 PMCID: PMC10502740 DOI: 10.14573/altex.2109131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Environmental factors play a substantial role in determining cardiovascular health, but data informing the risks presented by environmental toxicants is insufficient. In vitro new approach methodologies (NAMs) offer a promising approach with which to address the limitations of traditional in vivo and in vitro assays for assessing cardiotoxicity. Driven largely by the needs of pharmaceutical toxicity testing, considerable progress in developing NAMs for cardiotoxicity analysis has already been made. As the scientific and regulatory interest in NAMs for environmental chemicals continues to grow, a thorough understanding of the unique features of environmental cardiotoxicants and their associated cardiotoxicities is needed. Here, we review the key characteristics of as well as important regulatory and biological considerations for fit-for-purpose NAMs for environmental cardiotoxicity. By emphasizing the challenges and opportunities presented by NAMs for environmental cardiotoxicity we hope to accelerate their development, acceptance, and application.
Collapse
Affiliation(s)
- Mark C Daley
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
12
|
Zhang D, Saktrakulkla P, Marek RF, Lehmler HJ, Wang K, Thorne PS, Hornbuckle KC, Duffel MW. PCB Sulfates in Serum from Mothers and Children in Urban and Rural U.S. Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6537-6547. [PMID: 35500099 PMCID: PMC9118556 DOI: 10.1021/acs.est.2c00223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Serum samples from 24 subjects (6 mother-daughter and 6 mother-son dyads) in a rural community (Columbus Junction, Iowa) and 24 subjects (6 mother-daughter and 6 mother-son dyads) in an urban community (East Chicago, Indiana) were analyzed for 74 sulfated metabolites of polychlorinated biphenyls (PCBs). We detected significantly higher mean concentrations of total assessed PCB sulfates in the urban group (110-8900 ng/g fresh weight of serum, mean = 3400 ng/g, standard error = 300) than in the rural cohort (530-6700 ng/g fresh weight of serum, mean = 1800 ng/g, standard error = 500). Eight PCB sulfate congeners (4-PCB 2 sulfate, 4'-PCB 2 sulfate, 2'-PCB 3 sulfate, 4'-PCB 3 sulfate, 4-PCB 11 sulfate, 4'-PCB 18 sulfate, 4'-PCB 25 sulfate, and 4-PCB 52 sulfate) contributed over 90% of the total assessed PCB sulfates in most individuals. The serum samples were enriched in PCB sulfates with fewer than 5 chlorine atoms, and this congener distribution differed from those of PCBs and hydroxylated PCBs in previous studies in the same communities. Regression analysis indicated several significant congener-specific correlations in mother-child dyads, and these relationships differed by location and by mother-daughter or mother-son dyads. This is the first study reporting a broad range of PCB sulfates in populations from urban and rural areas.
Collapse
Affiliation(s)
- Duo Zhang
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Panithi Saktrakulkla
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242 United States
| | - Rachel F. Marek
- Department
of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242 United States
- IIHR-Hydroscience
& Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kai Wang
- Department
of Biostatistics, The University of Iowa, Iowa City, Iowa 52242 United States
| | - Peter S. Thorne
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242 United States
- IIHR-Hydroscience
& Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Michael W. Duffel
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
13
|
Wang MY, Zhang LF, Wu D, Cai YQ, Huang DM, Tian LL, Fang CL, Shi YF. Simulation experiment on OH-PCB being ingested through daily diet: Accumulation, transformation and distribution of hydroxylated-2, 2', 4, 5, 5'-pentachlorobiphenyl (OH-PCB101) in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149891. [PMID: 34474296 DOI: 10.1016/j.scitotenv.2021.149891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 05/16/2023]
Abstract
Animals exposure to polychlorinated biphenyls (PCBs) may result in retention of hydroxylated PCBs (OH-PCBs). OH-PCBs can be accumulated in animals, including humans, through the transmission of food chain. However, there are few studies on the accumulation and metabolism of OH-PCBs exposed to the body through daily diet. Therefore, this study was conducted to investigate the fate of OH-PCBs after being ingested through dietary intake. By adding 3-OH-PCB101 and 4-OH-PCB101 to the edible tissue of crucian carp, which were used as raw materials to prepare mouse feed, with an exposure concentration of 2.5 μg/kg ww. The exposure experiment lasted for a total of 80 days. The blood, feces and 11 tissues of mice at different times were analyzed qualitatively and quantitatively. It was found that major OH-PCB101 were accumulated in intestine or excreted with feces. A small part was accumulated in heart, lung and spleen. For the first time that the conversion from OH-PCB101 to PCB101 in mice was discovered, which shows from another perspective that persistent organic pollutants are difficult to be completely degraded in the environment. 4-MeO-PCB101, 3-MeSO2-PCB101, and 4-MeSO2-PCB101 were also found in various tissues. The results of this study show that after OH-PCBs accumulated in animals re-enter the organism through the food chain, they can be metabolized again and may be reversely transformed into the parent compounds. The present research shed new light on simulating the metabolic transformation process of OH-PCBs exposed to mammals through ingestion of fish. Available data show that second-generation persistent organic pollutants in the environment still need to be continuously concerned.
Collapse
Affiliation(s)
- Meng-Yuan Wang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long-Fei Zhang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - You-Qiong Cai
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Dong-Mei Huang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Liang-Liang Tian
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Chang-Ling Fang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Yong-Fu Shi
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China.
| |
Collapse
|
14
|
Aly NA, Dodds JN, Luo YS, Grimm FA, Foster M, Rusyn I, Baker ES. Utilizing ion mobility spectrometry-mass spectrometry for the characterization and detection of persistent organic pollutants and their metabolites. Anal Bioanal Chem 2022; 414:1245-1258. [PMID: 34668045 PMCID: PMC8727508 DOI: 10.1007/s00216-021-03686-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Persistent organic pollutants (POPs) are xenobiotic chemicals of global concern due to their long-range transport capabilities, persistence, ability to bioaccumulate, and potential to have negative effects on human health and the environment. Identifying POPs in both the environment and human body is therefore essential for assessing potential health risks, but their diverse range of chemical classes challenge analytical techniques. Currently, platforms coupling chromatography approaches with mass spectrometry (MS) are the most common analytical methods employed to evaluate both parent POPs and their respective metabolites and/or degradants in samples ranging from d rinking water to biofluids. Unfortunately, different types of analyses are commonly needed to assess both the parent and metabolite/degradant POPs from the various chemical classes. The multiple time-consuming analyses necessary thus present a number of technical and logistical challenges when rapid evaluations are needed and sample volumes are limited. To address these challenges, we characterized 64 compounds including parent per- and polyfluoroalkyl substances (PFAS), pesticides, polychlorinated biphenyls (PCBs), industrial chemicals, and pharmaceuticals and personal care products (PPCPs), in addition to their metabolites and/or degradants, using ion mobility spectrometry coupled with MS (IMS-MS) as a potential rapid screening technique. Different ionization sources including electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) were employed to determine optimal ionization for each chemical. Collectively, this study advances the field of exposure assessment by structurally characterizing the 64 important environmental pollutants, assessing their best ionization sources, and evaluating their rapid screening potential with IMS-MS.
Collapse
Affiliation(s)
- Noor A Aly
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Fabian A Grimm
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - MaKayla Foster
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
15
|
Chen Z, Jang S, Kaihatu JM, Zhou YH, Wright FA, Chiu WA, Rusyn I. Potential Human Health Hazard of Post-Hurricane Harvey Sediments in Galveston Bay and Houston Ship Channel: A Case Study of Using In Vitro Bioactivity Data to Inform Risk Management Decisions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13378. [PMID: 34948986 PMCID: PMC8702027 DOI: 10.3390/ijerph182413378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
Natural and anthropogenic disasters may be associated with redistribution of chemical contaminants in the environment; however, current methods for assessing hazards and risks of complex mixtures are not suitable for disaster response. This study investigated the suitability of in vitro toxicity testing methods as a rapid means of identifying areas of potential human health concern. We used sediment samples (n = 46) from Galveston Bay and the Houston Ship Channel (GB/HSC) areas after hurricane Harvey, a disaster event that led to broad redistribution of chemically-contaminated sediments, including deposition of the sediment on shore due to flooding. Samples were extracted with cyclohexane and dimethyl sulfoxide and screened in a compendium of human primary or induced pluripotent stem cell (iPSC)-derived cell lines from different tissues (hepatocytes, neuronal, cardiomyocytes, and endothelial) to test for concentration-dependent effects on various functional and cytotoxicity phenotypes (n = 34). Bioactivity data were used to map areas of potential concern and the results compared to the data on concentrations of polycyclic aromatic hydrocarbons (PAHs) in the same samples. We found that setting remediation goals based on reducing bioactivity is protective of both "known" risks associated with PAHs and "unknown" risks associated with bioactivity, but the converse was not true for remediation based on PAH risks alone. Overall, we found that in vitro bioactivity can be used as a comprehensive indicator of potential hazards and is an example of a new approach method (NAM) to inform risk management decisions on site cleanup.
Collapse
Affiliation(s)
- Zunwei Chen
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (Z.C.); (S.J.); (W.A.C.)
| | - Suji Jang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (Z.C.); (S.J.); (W.A.C.)
| | - James M. Kaihatu
- Civil & Environmental Engineering and Ocean Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Yi-Hui Zhou
- Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; (Y.-H.Z.); (F.A.W.)
| | - Fred A. Wright
- Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; (Y.-H.Z.); (F.A.W.)
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (Z.C.); (S.J.); (W.A.C.)
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (Z.C.); (S.J.); (W.A.C.)
| |
Collapse
|
16
|
Burnett SD, Blanchette AD, Chiu WA, Rusyn I. Cardiotoxicity Hazard and Risk Characterization of ToxCast Chemicals Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes from Multiple Donors. Chem Res Toxicol 2021; 34:2110-2124. [PMID: 34448577 PMCID: PMC8762671 DOI: 10.1021/acs.chemrestox.1c00203] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heart disease remains a significant human health burden worldwide with a significant fraction of morbidity attributable to environmental exposures. However, the extent to which the thousands of chemicals in commerce and the environment may contribute to heart disease morbidity is largely unknown, because in contrast to pharmaceuticals, environmental chemicals are seldom tested for potential cardiotoxicity. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes have become an informative in vitro model for cardiotoxicity testing of drugs with the availability of cells from multiple individuals allowing in vitro testing of population variability. In this study, we hypothesized that a panel of iPSC-derived cardiomyocytes from healthy human donors can be used to screen for the potential cardiotoxicity hazard and risk of environmental chemicals. We conducted concentration-response testing of 1029 chemicals (drugs, pesticides, flame retardants, polycyclic aromatic hydrocarbons (PAHs), plasticizers, industrial chemicals, food/flavor/fragrance agents, etc.) in iPSC-derived cardiomyocytes from 5 donors. We used kinetic calcium flux and high-content imaging to derive quantitative measures as inputs into Bayesian population concentration-response modeling of the effects of each chemical. We found that many environmental chemicals pose a hazard to human cardiomyocytes in vitro with more than half of all chemicals eliciting positive or negative chronotropic or arrhythmogenic effects. However, most of the tested environmental chemicals for which human exposure and high-throughput toxicokinetics data were available had wide margins of exposure and, thus, do not appear to pose a significant human health risk in a general population. Still, relatively narrow margins of exposure (<100) were estimated for some perfuoroalkyl substances and phthalates, raising concerns that cumulative exposures may pose a cardiotoxicity risk. Collectively, this study demonstrated the value of using a population-based human in vitro model for rapid, high-throughput hazard and risk characterization of chemicals for which little to no cardiotoxicity data are available from guideline studies in animals.
Collapse
Affiliation(s)
- Sarah D. Burnett
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Alexander D. Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| |
Collapse
|
17
|
Chen Z, Lloyd D, Zhou YH, Chiu WA, Wright FA, Rusyn I. Risk Characterization of Environmental Samples Using In Vitro Bioactivity and Polycyclic Aromatic Hydrocarbon Concentrations Data. Toxicol Sci 2021; 179:108-120. [PMID: 33165562 DOI: 10.1093/toxsci/kfaa166] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Methods to assess environmental exposure to hazardous chemicals have primarily focused on quantification of individual chemicals, although chemicals often occur in mixtures, presenting challenges to the traditional risk characterization framework. Sampling sites in a defined geographic region provide an opportunity to characterize chemical contaminants, with spatial interpolation as a tool to provide estimates for non-sampled sites. At the same time, the use of in vitro bioactivity measurements has been shown to be informative for rapid risk-based decisions. In this study, we measured in vitro bioactivity in 39 surface soil samples collected immediately after flooding associated with Hurricane Harvey in Texas in a residential area known to be inundated with polycyclic aromatic hydrocarbon (PAH) contaminants. Bioactivity data were from a number of functional and toxicity assays in 5 human cell types, such as induced pluripotent stem cell-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as human umbilical vein endothelial cells. Data on concentrations of PAH in these samples were also available and the combination of data sources offered a unique opportunity to assess the joint spatial variation of PAH components and bioactivity. We found significant evidence of spatial correlation of a subset of PAH contaminants and of cell-based phenotypes. In addition, we show that the cell-based bioactivity data can be used to predict environmental concentrations for several PAH contaminants, as well as overall PAH summaries and cancer risk. This study's impact lies in its demonstration that cell-based profiling can be used for rapid hazard screening of environmental samples by anchoring the bioassays to concentrations of PAH. This work sets the stage for identification of the areas of concern and direct quantitative risk characterization based on bioactivity data, thereby providing an important supplement to traditional individual chemical analyses by shedding light on constituents that may be missed from targeted chemical monitoring.
Collapse
Affiliation(s)
- Zunwei Chen
- Interdisciplinary Faculty of Toxicology.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Dillon Lloyd
- Bioinformatics Research Center.,Departments of Biological Sciences and Statistics, North Carolina State University, Raleigh, North Carolina 27695
| | - Yi-Hui Zhou
- Bioinformatics Research Center.,Departments of Biological Sciences and Statistics, North Carolina State University, Raleigh, North Carolina 27695
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Fred A Wright
- Bioinformatics Research Center.,Departments of Biological Sciences and Statistics, North Carolina State University, Raleigh, North Carolina 27695
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
18
|
Adithya S, Jayaraman RS, Krishnan A, Malolan R, Gopinath KP, Arun J, Kim W, Govarthanan M. A critical review on the formation, fate and degradation of the persistent organic pollutant hexachlorocyclohexane in water systems and waste streams. CHEMOSPHERE 2021; 271:129866. [PMID: 33736213 DOI: 10.1016/j.chemosphere.2021.129866] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 05/05/2023]
Abstract
The environmental impacts of persistent organic pollutants (POPs) is an increasingly prominent topic in the scientific community. POPs are stable chemicals that are accumulated in living beings and can act as endocrine disruptors or carcinogens on prolonged exposure. Although efforts have been taken to minimize or ban the use of certain POPs, their use is still widespread due to their importance in several industries. As a result, it is imperative that POPs in the ecosystem are degraded efficiently and safely in order to avoid long-lasting environmental damage. This review focuses on the degradation techniques of hexachlorocyclohexane (HCH), a pollutant that has strong adverse effects on a variety of organisms. Different technologies such as adsorption, bioremediation and advanced oxidation process have been critically analyzed in this study. All 3 techniques have exhibited near complete removal of HCH under ideal conditions, and the median removal efficiency values for adsorption, bioremediation and advanced oxidation process were found to be 80%, 93% and 82% respectively. However, it must be noted that there is no ideal HCH removal technique and the selection of removal method depends on several factors. Furthermore, the fates of HCH in the environment and challenges faced by HCH degradation have also been explained in this study. The future scope for research in this field has also received attention.
Collapse
Affiliation(s)
- Srikanth Adithya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Ramesh Sai Jayaraman
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Abhishek Krishnan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai, 600119, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
19
|
Burnett SD, Blanchette AD, Chiu WA, Rusyn I. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for hazard identification and risk characterization. Expert Opin Drug Metab Toxicol 2021; 17:887-902. [PMID: 33612039 DOI: 10.1080/17425255.2021.1894122] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes is one of the most widely used cell-based models that resulted from the discovery of how non-embryonic stem cells can be differentiated into multiple cell types. In just one decade, iPSC-derived cardiomyocytes went from a research lab to widespread use in biomedical research and preclinical safety evaluation for drugs and other chemicals. AREAS COVERED This manuscript reviews data on toxicology applications of human iPSC-derived cardiomyocytes. We detail the outcome of a systematic literature search on their use (i) in hazard assessment for cardiotoxicity liabilities, (ii) for risk characterization, (iii) as models for population variability, and (iv) in studies of personalized medicine and disease. EXPERT OPINION iPSC-derived cardiomyocytes are useful to increase the accuracy, precision, and efficiency of cardiotoxicity hazard identification for both drugs and non-pharmaceuticals, with recent efforts beginning to demonstrate their utility for risk characterization. Notable limitations include the needs to improve the maturation of cells in culture, to better understand their potential use identifying structural cardiotoxicity, and for additional case studies involving population-wide and disease-specific risk characterization. Ultimately, the greatest future benefits are likely for non-pharmaceutical chemicals, filling a critical gap where no routine testing for cardiotoxicity is currently performed.
Collapse
Affiliation(s)
- Sarah D Burnett
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Alexander D Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Luo YS, Chen Z, Blanchette AD, Zhou YH, Wright FA, Baker ES, Chiu WA, Rusyn I. Relationships between constituents of energy drinks and beating parameters in human induced pluripotent stem cell (iPSC)-Derived cardiomyocytes. Food Chem Toxicol 2021; 149:111979. [PMID: 33450301 DOI: 10.1016/j.fct.2021.111979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
Consumption of energy drinks has been associated with adverse cardiovascular effects; however, little is known about the ingredients that may contribute to these effects. We therefore characterized the chemical profiles and in vitro effects of energy drinks and their ingredients on human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, and identified the putative active ingredients using a multivariate prediction model. Energy drinks from 17 widely-available over-the-counter brands were evaluated in this study. The concentrations of six common ingredients (caffeine, taurine, riboflavin, pantothenic acid, adenine, and L-methionine) were quantified by coupling liquid chromatography with a triple quadrupole mass spectrometer for the acquisition of LC-MS/MS spectra. In addition, untargeted analyses for each beverage were performed with a platform combining LC, ion mobility spectrometry and mass spectrometry (LC-IMS-MS) measurements. Approximately 300 features were observed across samples in the untargeted studies, and of these ~100 were identified. In vitro effects of energy drinks and some of their ingredients were then tested in iPSC-derived cardiomyocytes. Data on the beat rate (positive and negative chronotropy), ion channel function (QT prolongation), and cytotoxicity were collected in a dilution series. We found that some of the energy drinks elicited adverse effects on the cardiomyocytes with the most common being an increase in the beat rate, while QT prolongation was also observed at the lowest concentrations. Finally, concentration addition modeling using quantitative data from the 6 common ingredients and multivariate prediction modeling was used to determine potential ingredients responsible for the adverse effects on the cardiomyocytes. These analyses suggested theophylline, adenine, and azelate as possibly contributing to the in vitro effects of energy drinks on QT prolongation in cardiomyocytes.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Alexander D Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yi-Hui Zhou
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Fred A Wright
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
21
|
Liu Y, Sakolish C, Chen Z, Phan DTT, Bender RHF, Hughes CCW, Rusyn I. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. Toxicology 2020; 445:152601. [PMID: 32980478 PMCID: PMC7606810 DOI: 10.1016/j.tox.2020.152601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Angiogenesis is a complex process that is required for development and tissue regeneration and it may be affected by many pathological conditions. Chemicals and drugs can impact formation and maintenance of the vascular networks; these effects may be both desirable (e.g., anti-cancer drugs) or unwanted (e.g., side effects of drugs). A number of in vivo and in vitro models exist for studies of angiogenesis and endothelial cell function, including organ-on-a-chip microphysiological systems. An arrayed organ-on-a-chip platform on a 96-well plate footprint that incorporates perfused microvessels, with and without tumors, was recently developed and it was shown that survival of the surrounding tissue was dependent on delivery of nutrients through the vessels. Here we describe a technology transfer of this complex microphysiological model between laboratories and demonstrate that reproducibility and robustness of these tissue chip-enabled experiments depend primarily on the source of the endothelial cells. The model was highly reproducible between laboratories and was used to demonstrate the advantages of the perfusable vascular networks for drug safety evaluation. As a proof-of-concept, we tested Fluorouracil (1-1,000 μM), Vincristine (1-1,000 nM), and Sorafenib (0.1-100 μM), in the perfusable and non-perfusable micro-organs, and in a colon cancer-containing micro-tumor model. Tissue chip experiments were compared to the traditional monolayer cultures of endothelial or tumor cells. These studies showed that human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. The data from the 3D models confirmed advantages of the physiological environment as compared to 2D cell cultures. We demonstrated how these models can be translated into practice by verifying that the endothelial cell source and passage are critical elements for establishing a perfusable model.
Collapse
Affiliation(s)
- Yizhong Liu
- Interdisciplinary Faculty of Toxicology, College Station, TX, 77843, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Courtney Sakolish
- Interdisciplinary Faculty of Toxicology, College Station, TX, 77843, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Zunwei Chen
- Interdisciplinary Faculty of Toxicology, College Station, TX, 77843, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Duc T T Phan
- Departments of Molecular Biology and Biochemistry, USA
| | | | - Christopher C W Hughes
- Departments of Molecular Biology and Biochemistry, USA; Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College Station, TX, 77843, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
22
|
Pascual F. Polychlorinated Biphenyls as a Cardiovascular Health Risk: A New Threat from an Old Enemy? ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:114003. [PMID: 33200950 PMCID: PMC7671093 DOI: 10.1289/ehp8382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
|