1
|
Merrick BA, Martin NP, Brooks AM, Foley JF, Dunlap PE, Ramaiahgari S, Fannin RD, Gerrish KE. Insights into Repeated Renal Injury Using RNA-Seq with Two New RPTEC Cell Lines. Int J Mol Sci 2023; 24:14228. [PMID: 37762531 PMCID: PMC10531624 DOI: 10.3390/ijms241814228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 μM cisplatin (CisPt) or 12.5-100 μM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 μM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.
Collapse
Affiliation(s)
- B. Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Paul E. Dunlap
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Sreenivasa Ramaiahgari
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| |
Collapse
|
2
|
Zhu J, Xiang X, Hu X, Li C, Song Z, Dong Z. miR-147 Represses NDUFA4, Inducing Mitochondrial Dysfunction and Tubular Damage in Cold Storage Kidney Transplantation. J Am Soc Nephrol 2023; 34:1381-1397. [PMID: 37211637 PMCID: PMC10400108 DOI: 10.1681/asn.0000000000000154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
SIGNIFICANCE STATEMENT Cold storage-associated transplantation (CST) injury occurs in renal transplant from deceased donors, the main organ source. The pathogenesis of CST injury remains poorly understood, and effective therapies are not available. This study has demonstrated an important role of microRNAs in CST injury and revealed the changes in microRNA expression profiles. Specifically, microRNA-147 (miR-147) is consistently elevated during CST injury in mice and in dysfunctional renal grafts in humans. Mechanistically, NDUFA4 (a key component of mitochondrial respiration complex) is identified as a direct target of miR-147. By repressing NDUFA4, miR-147 induces mitochondrial damage and renal tubular cell death. Blockade of miR-147 and overexpression of NDUFA4 reduce CST injury and improve graft function, unveiling miR-147 and NDUFA4 as new therapeutic targets in kidney transplantation. BACKGROUND Kidney injury due to cold storage-associated transplantation (CST) is a major factor determining the outcome of renal transplant, for which the role and regulation of microRNAs remain largely unclear. METHODS The kidneys of proximal tubule Dicer (an enzyme for microRNA biogenesis) knockout mice and their wild-type littermates were subjected to CST to determine the function of microRNAs. Small RNA sequencing then profiled microRNA expression in mouse kidneys after CST. Anti-microRNA-147 (miR-147) and miR-147 mimic were used to examine the role of miR-147 in CST injury in mouse and renal tubular cell models. RESULTS Knockout of Dicer from proximal tubules attenuated CST kidney injury in mice. RNA sequencing identified multiple microRNAs with differential expression in CST kidneys, among which miR-147 was induced consistently in mouse kidney transplants and in dysfunctional human kidney grafts. Anti-miR-147 protected against CST injury in mice and ameliorated mitochondrial dysfunction after ATP depletion injury in renal tubular cells in intro . Mechanistically, miR-147 was shown to target NDUFA4, a key component of the mitochondrial respiration complex. Silencing NDUFA4 aggravated renal tubular cell death, whereas overexpression of NDUFA4 prevented miR-147-induced cell death and mitochondrial dysfunction. Moreover, overexpression of NDUFA4 alleviated CST injury in mice. CONCLUSIONS microRNAs, as a class of molecules, are pathogenic in CST injury and graft dysfunction. Specifically, miR-147 induced during CST represses NDUFA4, leading to mitochondrial damage and renal tubular cell death. These results unveil miR-147 and NDUFA4 as new therapeutic targets in kidney transplantation.
Collapse
Affiliation(s)
- Jiefu Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Xiaohong Xiang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Critical Care Medicine, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xiaoru Hu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Zhixia Song
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Nephrology, Yichang Central People's Hospital, The First Clinical Medical College of Three Gorges University, Yichang, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
3
|
Li X, Zhuo J. Intracellular Angiotensin II Stimulation of Sodium Transporter Expression in Proximal Tubule Cells via AT 1 (AT 1a) Receptor-Mediated, MAP Kinases ERK1/2- and NF-кB-Dependent Signaling Pathways. Cells 2023; 12:1492. [PMID: 37296613 PMCID: PMC10252550 DOI: 10.3390/cells12111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The current prevailing paradigm in the renin-angiotensin system dictates that most, if not all, biological, physiological, and pathological responses to its most potent peptide, angiotensin II (Ang II), are mediated by extracellular Ang II activating its cell surface receptors. Whether intracellular (or intracrine) Ang II and its receptors are involved remains incompletely understood. The present study tested the hypothesis that extracellular Ang II is taken up by the proximal tubules of the kidney by an AT1 (AT1a) receptor-dependent mechanism and that overexpression of an intracellular Ang II fusion protein (ECFP/Ang II) in mouse proximal tubule cells (mPTC) stimulates the expression of Na+/H+ exchanger 3 (NHE3), Na+/HCO3- cotransporter, and sodium and glucose cotransporter 2 (Sglt2) by AT1a/MAPK/ERK1/2/NF-kB signaling pathways. mPCT cells derived from male wild-type and type 1a Ang II receptor-deficient mice (Agtr1a-/-) were transfected with an intracellular enhanced cyan fluorescent protein-tagged Ang II fusion protein, ECFP/Ang II, and treated without or with AT1 receptor blocker losartan, AT2 receptor blocker PD123319, MEK1/MEK2 inhibitor U0126, NF-кB inhibitor RO 106-9920, or p38 MAP kinase inhibitor SB202196, respectively. In wild-type mPCT cells, the expression of ECFP/Ang II significantly increased NHE3, Na+/HCO3-, and Sglt2 expression (p < 0.01). These responses were accompanied by >3-fold increases in the expression of phospho-ERK1/2 and the p65 subunit of NF-кB (p < 0.01). Losartan, U0126, or RO 106-9920 all significantly attenuated ECFP/Ang II-induced NHE3 and Na+/HCO3- expression (p < 0.01). Deletion of AT1 (AT1a) receptors in mPCT cells attenuated ECFP/Ang II-induced NHE3 and Na+/HCO3- expression (p < 0.01). Interestingly, the AT2 receptor blocker PD123319 also attenuated ECFP/Ang II-induced NHE3 and Na+/HCO3- expression (p < 0.01). These results suggest that, similar to extracellular Ang II, intracellular Ang II may also play an important role in Ang II receptor-mediated proximal tubule NHE3, Na+/HCO3-, and Sglt2 expression by activation of AT1a/MAPK/ERK1/2/NF-kB signaling pathways.
Collapse
Affiliation(s)
- Xiaochun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA;
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| | - Jialong Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA;
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| |
Collapse
|
4
|
Lei L, Zhang F, Huang J, Yang X, Zhou X, Yan H, Chen C, Zheng S, Si L, Jose PA, Zeng C, Yang J. Selenium deficiency causes hypertension by increasing renal AT 1 receptor expression via GPx1/H 2O 2/NF-κB pathway. Free Radic Biol Med 2023; 200:59-72. [PMID: 36868433 PMCID: PMC10164092 DOI: 10.1016/j.freeradbiomed.2023.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Epidemiological studies show an association between low body selenium and the risk of hypertension. However, whether selenium deficiency causes hypertension remains unknown. Here, we report that Sprague-Dawley rats fed a selenium-deficient diet for 16 weeks developed hypertension, accompanied with decreased sodium excretion. The hypertension of selenium-deficient rats was associated with increased renal angiotensin II type 1 receptor (AT1R) expression and function that was reflected by the increase in sodium excretion after the intrarenal infusion of the AT1R antagonist candesartan. Selenium-deficient rats had increased systemic and renal oxidative stress; treatment with the antioxidant tempol for 4 weeks decreased the elevated blood pressure, increased sodium excretion, and normalized renal AT1R expression. Among the altered selenoproteins in selenium-deficient rats, the decrease in renal glutathione peroxidase 1 (GPx1) expression was most prominent. GPx1, via regulation of NF-κB p65 expression and activity, was involved in the regulation of renal AT1R expression because treatment with dithiocarbamate (PDTC), an NF-κB inhibitor, reversed the up-regulation of AT1R expression in selenium-deficient renal proximal tubule (RPT) cells. The up-regulation of AT1R expression with GPx1 silencing was restored by PDTC. Moreover, treatment with ebselen, a GPX1 mimic, reduced the increased renal AT1R expression, Na+-K+-ATPase activity, hydrogen peroxide (H2O2) generation, and the nuclear translocation of NF-κB p65 protein in selenium-deficient RPT cells. Our results demonstrated that long-term selenium deficiency causes hypertension, which is due, at least in part, to decreased urine sodium excretion. Selenium deficiency increases H2O2 production by reducing GPx1 expression, which enhances NF-κB activity, increases renal AT1R expression, causes sodium retention and consequently increases blood pressure.
Collapse
Affiliation(s)
- Lifu Lei
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Xiaoxin Zhou
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjia Yan
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Liangyi Si
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Gastrin, via activation of PPARα, protects the kidney against hypertensive injury. Clin Sci (Lond) 2021; 135:409-427. [PMID: 33458737 DOI: 10.1042/cs20201340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Hypertensive nephropathy (HN) is a common cause of end-stage renal disease with renal fibrosis; chronic kidney disease is associated with elevated serum gastrin. However, the relationship between gastrin and renal fibrosis in HN is still unknown. We, now, report that mice with angiotensin II (Ang II)-induced HN had increased renal cholecystokinin receptor B (CCKBR) expression. Knockout of CCKBR in mice aggravated, while long-term subcutaneous infusion of gastrin ameliorated the renal injury and interstitial fibrosis in HN and unilateral ureteral obstruction (UUO). The protective effects of gastrin on renal fibrosis can be independent of its regulation of blood pressure, because in UUO, gastrin decreased renal fibrosis without affecting blood pressure. Gastrin treatment decreased Ang II-induced renal tubule cell apoptosis, reversed Ang II-mediated inhibition of macrophage efferocytosis, and reduced renal inflammation. A screening of the regulatory factors of efferocytosis showed involvement of peroxisome proliferator-activated receptor α (PPAR-α). Knockdown of PPAR-α by shRNA blocked the anti-fibrotic effect of gastrin in vitro in mouse renal proximal tubule cells and macrophages. Immunofluorescence microscopy, Western blotting, luciferase reporter, and Cut&tag-qPCR analyses showed that CCKBR may be a transcription factor of PPAR-α, because gastrin treatment induced CCKBR translocation from cytosol to nucleus, binding to the PPAR-α promoter region, and increasing PPAR-α gene transcription. In conclusion, gastrin protects against HN by normalizing blood pressure, decreasing renal tubule cell apoptosis, and increasing macrophage efferocytosis. Gastrin-mediated CCKBR nuclear translocation may make it act as a transcription factor of PPAR-α, which is a novel signaling pathway. Gastrin may be a new potential drug for HN therapy.
Collapse
|
6
|
Gilloteaux J. Primary cilia in the Syrian hamster biliary tract: Bile flow antennae and outlooks about signaling on the hepato-biliary-pancreatic stem cells. TRANSLATIONAL RESEARCH IN ANATOMY 2020. [DOI: 10.1016/j.tria.2020.100063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Li XC, Zhou X, Zhuo JL. Evidence for a Physiological Mitochondrial Angiotensin II System in the Kidney Proximal Tubules: Novel Roles of Mitochondrial Ang II/AT 1a/O 2- and Ang II/AT 2/NO Signaling. Hypertension 2020; 76:121-132. [PMID: 32475319 DOI: 10.1161/hypertensionaha.119.13942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study tested the hypotheses that overexpression of an intracellular Ang II (angiotensin II) fusion protein, mito-ECFP/Ang II, selectively in the mitochondria of mouse proximal tubule cells induces mitochondrial oxidative and glycolytic responses and elevates blood pressure via the Ang II/AT1a receptor/superoxide/NHE3 (the Na+/H+ exchanger 3)-dependent mechanisms. A PT-selective, mitochondria-targeting adenoviral construct encoding Ad-sglt2-mito-ECFP/Ang II was used to test the hypotheses. The expression of mito-ECFP/Ang II was colocalized primarily with Mito-Tracker Red FM in mouse PT cells or with TMRM in kidney PTs. Mito-ECFP/Ang II markedly increased oxygen consumption rate as an index of mitochondrial oxidative response (69.5%; P<0.01) and extracellular acidification rate as an index of mitochondrial glycolytic response (34%; P<0.01). The mito-ECFP/Ang II-induced oxygen consumption rate and extracellular acidification rate responses were blocked by AT1 blocker losartan (P<0.01) and a mitochondria-targeting superoxide scavenger mito-TEMPO (P<0.01). By contrast, the nonselective NO inhibitor L-NAME alone increased, whereas the mitochondria-targeting expression of AT2 receptors (mito-AT2/GFP) attenuated the effects of mito-ECFP/Ang II (P<0.01). In the kidney, overexpression of mito-ECFP/Ang II in the mitochondria of the PTs increased systolic blood pressure 12±3 mm Hg (P<0.01), and the response was attenuated in PT-specific PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Conversely, overexpression of AT2 receptors selectively in the mitochondria of the PTs induced natriuretic responses in PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Taken together, these results provide new evidence for a physiological role of PT mitochondrial Ang II/AT1a/superoxide/NHE3 and Ang II/AT2/NO/NHE3 signaling pathways in maintaining blood pressure homeostasis.
Collapse
Affiliation(s)
- Xiao Chun Li
- From the Tulane Hypertension and Renal Center of Excellence (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Physiology (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Pharmacology and Toxicology (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| | - Xinchun Zhou
- Department of Pathology (X.Z.), University of Mississippi Medical Center, Jackson
| | - Jia Long Zhuo
- From the Tulane Hypertension and Renal Center of Excellence (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Physiology (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Pharmacology and Toxicology (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
8
|
Cuevas S, Asico LD, Jose PA, Konkalmatt P. Renal Hydrogen Peroxide Production Prevents Salt-Sensitive Hypertension. J Am Heart Assoc 2020; 9:e013818. [PMID: 31902320 PMCID: PMC6988155 DOI: 10.1161/jaha.119.013818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Background The regulation of sodium excretion is important in the pathogenesis of hypertension and salt sensitivity is predictive of cardiovascular events and mortality. C57Bl/6 and BALB/c mice have different blood pressure sensitivities to salt intake. High salt intake increases blood pressure in some C57Bl/6J mouse strains but not in any BALB/c mouse strain. Methods and Results We determined the cause of the difference in salt sensitivity between C57Bl/6 and BALB/c mice. Basal levels of superoxide and H2O2 were higher in renal proximal tubule cells (RPTCs) from BALB/c than C57Bl/6J mice. High salt diet increased H2O2 production in kidneys from BALB/c but C57Bl/6J mice. High sodium concentration (170 mmol/L) in the incubation medium increased H2O2 levels in BALB/c-RPTCs but not in C57Bl/6J-RPTCs. H2O2 (10 μmol/L) treatment decreased sodium transport in RPTCs from BALB/c but not C57Bl/6J mice. Overexpression of catalase in the mouse kidney predisposed BALB/c mice to salt-sensitive hypertension. Conclusions Our data show that the level of salt-induced H2O2 production negatively regulates RPTC sodium transport and determines the state of salt sensitivity in 2 strains of mice. High concentrations of antioxidants could prevent H2O2 production in renal proximal tubules, which would result in sodium retention and increased blood pressure.
Collapse
Affiliation(s)
- Santiago Cuevas
- Division of Renal Diseases & HypertensionDepartment of MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDC
| | - Laureano D. Asico
- Division of Renal Diseases & HypertensionDepartment of MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDC
| | - Pedro A. Jose
- Division of Renal Diseases & HypertensionDepartment of MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDC
| | - Prasad Konkalmatt
- Division of Renal Diseases & HypertensionDepartment of MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDC
| |
Collapse
|
9
|
Han F, Konkalmatt P, Mokashi C, Kumar M, Zhang Y, Ko A, Farino ZJ, Asico LD, Xu G, Gildea J, Zheng X, Felder RA, Lee REC, Jose PA, Freyberg Z, Armando I. Dopamine D 2 receptor modulates Wnt expression and control of cell proliferation. Sci Rep 2019; 9:16861. [PMID: 31727925 PMCID: PMC6856370 DOI: 10.1038/s41598-019-52528-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
The Wnt/β-catenin pathway is one of the most conserved signaling pathways across species with essential roles in development, cell proliferation, and disease. Wnt signaling occurs at the protein level and via β-catenin-mediated transcription of target genes. However, little is known about the underlying mechanisms regulating the expression of the key Wnt ligand Wnt3a or the modulation of its activity. Here, we provide evidence that there is significant cross-talk between the dopamine D2 receptor (D2R) and Wnt/β-catenin signaling pathways. Our data suggest that D2R-dependent cross-talk modulates Wnt3a expression via an evolutionarily-conserved TCF/LEF site within the WNT3A promoter. Moreover, D2R signaling also modulates cell proliferation and modifies the pathology in a renal ischemia/reperfusion-injury disease model, via its effects on Wnt/β-catenin signaling. Together, our results suggest that D2R is a transcriptional modulator of Wnt/β-catenin signal transduction with broad implications for health and development of new therapeutics.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Dependovirus/genetics
- Dependovirus/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Primary Cell Culture
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Transfection
- Wnt3A Protein/genetics
- Wnt3A Protein/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Fei Han
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Prasad Konkalmatt
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Chaitanya Mokashi
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Megha Kumar
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Yanrong Zhang
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Allen Ko
- Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Laureano D Asico
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Gaosi Xu
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - John Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiaoxu Zheng
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Robin E C Lee
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pedro A Jose
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Ines Armando
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
10
|
Zhuo JL, Kobori H, Li XC, Satou R, Katsurada A, Navar LG. Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT1a/MAPK/NF-кB signaling pathways. Am J Physiol Renal Physiol 2016; 310:F1103-12. [PMID: 26864937 PMCID: PMC4889322 DOI: 10.1152/ajprenal.00350.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
Long-term angiotensin II (ANG II) infusion significantly increases ANG II levels in the kidney through two major mechanisms: AT1 receptor-mediated augmentation of angiotensinogen (AGT) expression and uptake of circulating ANG II by the proximal tubules. However, it is not known whether intracellular ANG II stimulates AGT expression in the proximal tubule. In the present study, we overexpressed an intracellular cyan fluorescent ANG II fusion protein (Ad-sglt2-ECFP/ANG II) selectively in the proximal tubule of rats and mice using the sodium and glucose cotransporter 2 (sglt2) promoter. AGT mRNA and protein expression in the renal cortex and 24-h urinary AGT excretion were determined 4 wk following overexpression of ECFP/ANG II in the proximal tubule. Systolic blood pressure was significantly increased with a small antinatriuretic effect in rats and mice with proximal tubule-selective expression of ECFP/ANG II (P < 0.01). AGT mRNA and protein expression in the cortex were increased by >1.5-fold and 61 ± 16% (P < 0.05), whereas urinary AGT excretion was increased from 48.7 ± 5.7 (n = 13) to 102 ± 13.5 (n = 13) ng/24 h (P < 0.05). However, plasma AGT, renin activity, and ANG II levels remained unaltered by ECFP/ANG II. The increased AGT mRNA and protein expressions in the cortex by ECFP/ANG II were blocked in AT1a-knockout (KO) mice. Studies in cultured mouse proximal tubule cells demonstrated involvement of AT1a receptor/MAP kinases/NF-кB signaling pathways. These results indicate that intracellular ANG II stimulates AGT expression in the proximal tubules, leading to increased AGT formation and secretion into the tubular fluid, which contributes to ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - H Kobori
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - R Satou
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - A Katsurada
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
11
|
Zhang Y, Jiang X, Qin C, Cuevas S, Jose PA, Armando I. Dopamine D2 receptors' effects on renal inflammation are mediated by regulation of PP2A function. Am J Physiol Renal Physiol 2016; 310:F128-34. [PMID: 26290374 PMCID: PMC4719046 DOI: 10.1152/ajprenal.00453.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 06/15/2015] [Indexed: 01/11/2023] Open
Abstract
Lack or downregulation of the dopamine D2 receptor (D2R) results in increased renal expression of injury markers and proinflammatory factors that is independent of a blood pressure increase. This study aimed to determine the mechanisms involved in the regulation of renal inflammation by D2Rs. Silencing D2Rs in mouse renal proximal tubule cells increased the expression of the proinflammatory TNF-α, monocyte chemoattractant protein-1 (MCP-1), and IL-6. D2R downregulation also increased Akt phosphorylation and activity, and glycogen synthase kinase-3β (GSK3β) phosphorylation and cyclin D1 expression, downstream targets of Akt; however. phosphatidylinositol 3-kinase (PI3K) activity was not affected. Conversely, D2R stimulation decreased Akt and GSK3β phosphorylation and cyclin D1 expression. Increased phospho-Akt, in the absence of increased PI3K activity, may result from decreased Akt dephosphorylation. Inhibition of protein phosphatase 2A (PP2A) with okadaic acid reproduced the effects of D2R downregulation on Akt, GSK3β, and cyclin D1. The PP2A catalytic subunit and regulatory subunit PPP2R2C coimmunoprecipitated with the D2R. Basal phosphatase activity and the expression of PPP2R2C were decreased by D2R silencing that also blunted the increase in phosphatase activity induced by D2R stimulation. Similarly, silencing PPP2R2C also increased the phosphorylation of Akt and GSK3β. Moreover, downregulation of PPP2R2C resulted in increased expression of TNF-α, MCP-1, and IL-6, indicating that decreased phosphatase activity may be responsible for the D2R effect on inflammatory factors. Indeed, the increase in NF-κB reporter activity induced by D2R silencing was blunted by increasing PP2A activity with protamine. Our results show that D2R controls renal inflammation, at least in part, by modulation of the Akt pathway through effects on PP2A activity/expression.
Collapse
Affiliation(s)
- Yanrong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China; and
| | - Xiaoliang Jiang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China; and
| | - Chuan Qin
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China; and
| | - Santiago Cuevas
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Li XC, Gu V, Miguel-Qin E, Zhuo JL. Role of caveolin 1 in AT1a receptor-mediated uptake of angiotensin II in the proximal tubule of the kidney. Am J Physiol Renal Physiol 2014; 307:F949-61. [PMID: 25164083 DOI: 10.1152/ajprenal.00199.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caveolin 1 (CAV-1) functions not only as a constitutive scaffolding protein of caveolae but also as a vesicular transporter and signaling regulator. In the present study, we tested the hypothesis that CAV-1 knockout (CAV-1 KO) inhibits ANG II type 1 [AT1 (AT1a)] receptor-mediated uptake of ANG II in the proximal tubule and attenuates blood pressure responses in ANG II-induced hypertension. To determine the role of CAV-1 in mediating the uptake of FITC-labeled ANG II, wild-type (WT) mouse proximal convoluted tubule cells were transfected with CAV-1 small interfering (si)RNA for 48 h before AT1 receptor-mediated uptake of FITC-labeled ANG II was studied. CAV-1 siRNA knocked down CAV-1 expression by >90% (P < 0.01) and inhibited FITC-labeled ANG II uptake by >50% (P < 0.01). Moreover, CAV-1 siRNA attenuated ANG II-induced activation of MAPK ERK1/2 and Na(+)/H(+) exchanger 3 expression, respectively (P < 0.01). To determine whether CAV-1 regulates ANG II uptake in the proximal tubule, Alexa 488-labeled ANG II was infused into anesthetized WT and CAV-1 KO mice for 60 min (20 ng/min iv). Imaging analysis revealed that Alexa 488-labeled ANG II uptake was decreased by >50% in CAV-1 KO mice (P < 0.01). Furthermore, Val(5)-ANG II was infused into WT and CAV-1 KO mice for 2 wk (1.5 mg·kg(-1)·day(-1) ip). Basal systolic pressure was higher, whereas blood pressure and renal excretory and signaling responses to ANG II were attenuated, in CAV-1 KO mice (P < 0.01). We concluded that CAV-1 plays an important role in AT1 receptor-mediated uptake of ANG II in the proximal tubule and modulates blood pressure and renal responses to ANG II.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Victor Gu
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Elise Miguel-Qin
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
13
|
Li XC, Zhuo JL. Mechanisms of AT1a receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin. Am J Physiol Renal Physiol 2014; 307:F222-33. [PMID: 24740791 DOI: 10.1152/ajprenal.00693.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study tested the hypothesis that the multiligand endocytic receptor megalin is partially involved in the uptake of ANG II and downstream signaling responses in mouse proximal tubule cells (mPCT) by interacting with AT1a receptors. mPCT cells of wild-type (WT) and AT1a receptor-deficient (AT1a-KO) mice were treated with vehicle, the AT1 receptor blocker losartan (10 μM), or a selective megalin small interfering (si) RNA for 48 h. The uptake of fluorescein (FITC)-labeled ANG II (10 nM, 37°C) and downstream signaling responses were analyzed by fluorescence imaging and Western blotting. AT1a receptors and megalin were abundantly expressed in mPCT cells, whereas AT1a receptors were absent in AT1a-KO mPCT cells (P < 0.01). In WT mPCT cells, FITC-ANG II uptake was visualized at 30 min in the cytoplasm and in the nuclei 1 h after exposure. Losartan alone completely blocked the uptake of FITC-ANG II, whereas megalin siRNA inhibited only 30% of the response (P < 0.01). The remaining FITC-ANG II uptake in the presence of megalin siRNA was completely abolished by losartan. ANG II induced threefold increases in phosphorylated MAP kinases ERK1/2 and a onefold increase in phosphorylated sodium and hydrogen exchanger 3 (NHE3) proteins, which were also blocked by losartan and megalin-siRNA. By contrast, losartan and megalin siRNA had no effects on these signaling proteins in AT1a-KO mPCT cells. We conclude that the uptake of ANG II and downstream MAP kinases ERK1/2 and NHE3 signaling responses in mPCT cells are mediated primarily by AT1a receptors. However, megalin may also play a partial role in these responses to ANG II.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Cardiovascular and Renal Research Center, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Cardiovascular and Renal Research Center, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
14
|
Li XC, Zhuo JL. Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 2013; 304:R588-98. [PMID: 23427083 PMCID: PMC3627953 DOI: 10.1152/ajpregu.00338.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/18/2013] [Indexed: 02/08/2023]
Abstract
The role of intracellular ANG II in proximal tubules of the kidney remains poorly understood. We tested the hypothesis that proximal tubule-dominant transfer of AT(1a) receptors in the cortex mediates intracellular ANG II-induced blood pressure responses in AT(1a) receptor-deficient (Agtr1a-/-) mice. A GFP-tagged AT(1a) receptor, AT(1a)R/GFP, and an enhanced cyan fluorescent intracellular ANG II fusion protein, ECFP/ANG II, were expressed in proximal tubules of Agtr1a-/- mouse kidneys via the adenoviral transfer using a sodium and glucose cotransporter 2 promoter. Transfer of AT(1a)R/GFP alone or with ECFP/ANG II induced proximal tubule-dominant expression of AT(1a)R/GFP and/or ECFP/ANG II with a peak response at 2 wk. No significant AT(1a)R/GFP and/or ECFP/ANG II expression was observed in the glomeruli, medulla, or extrarenal tissues. Transfer of AT(1a)R/GFP alone, but not ECFP/ANG II, increased systolic blood pressure by 12 ± 2 mmHg by day 14 (n = 9, P < 0.01). However, cotransfer of AT(1a)R/GFP with ECFP/ANG II increased blood pressure by 18 ± 2 mmHg (n = 12, P < 0.01). Twenty-four hour urinary sodium excretion was decreased by day 7 with proximal tubule-dominant transfer of AT(1a)R/GFP alone (P < 0.01) or with AT(1a)R/GFP and ECFP/ANG II cotransfer (P < 0.01). These responses were associated with twofold increases in phosphorylated ERK1/2, lysate, and membrane NHE-3 proteins in freshly isolated proximal tubules (P < 0.01). By contrast, transfer of control CMV-GFP (a recombinant human adenovirus type 5 expresses enhanced green fluorescent protein under the control of a cytomegalovirus (CMV) promoter), ECFP/ANG II, or a scrambled control ECFP/ANG IIc alone in proximal tubules had no effect on all indices. These results suggest that AT(1a) receptors and intracellular ANG II in proximal tubules of the kidney play an important physiological role in blood pressure regulation.
Collapse
MESH Headings
- Angiotensin II/biosynthesis
- Angiotensin II/pharmacology
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Blotting, Western
- Dependovirus
- Drinking/physiology
- Electrolytes/urine
- Enzyme-Linked Immunosorbent Assay
- Genetic Vectors
- Green Fluorescent Proteins/genetics
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Low Density Lipoprotein Receptor-Related Protein-2/biosynthesis
- Low Density Lipoprotein Receptor-Related Protein-2/genetics
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Sodium-Glucose Transporter 2/metabolism
- Sodium-Hydrogen Exchanger 3
- Sodium-Hydrogen Exchangers/biosynthesis
- Sodium-Hydrogen Exchangers/genetics
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Xiao C. Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia L. Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Center of Excellence for Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi; and
- Division of Nephrology, Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
15
|
Li XC, Hopfer U, Zhuo JL. Novel signaling mechanisms of intracellular angiotensin II-induced NHE3 expression and activation in mouse proximal tubule cells. Am J Physiol Renal Physiol 2012; 303:F1617-28. [PMID: 23034941 DOI: 10.1152/ajprenal.00219.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Expression of a cytosolic cyan fluorescent fusion protein of angiotensin II (ECFP/ANG II) in proximal tubules increases blood pressure in rodents. To determine cellular signaling pathways responsible for this response, we expressed ECFP/ANG II in transport-competent mouse proximal convoluted tubule cells (mPCT) from wild-type (WT) and type 1a ANG II receptor-deficient (AT(1a)-KO) mice and measured its effects on intracellular ANG II levels, surrogates of Na/H exchanger 3 (NHE3)-dependent Na(+) absorption, as well as MAP kinases and NF-κB signaling. In WT mPCT cells, ECFP/ANG II expression doubled ANG II levels, increased NHE3 expression and membrane phospho-NHE3 proteins threefold and intracellular Na(+) concentration by 65%. These responses were associated with threefold increases in phospho-ERK 1/2 and phospho-p38 MAPK, fivefold increases in p65 subunit of NF-κB, and threefold increases in phospho-IKKα/β (Ser 176/180) proteins. These signaling responses to ECFP/ANG II were inhibited by losartan (AT(1) blocker), PD123319 (AT(2) blocker), U0126 (MEK1/MEK2 inhibitor), and RO 106-9920 (NF-κB inhibitor). In mPCT cells of AT(1a)-KO mice, ECFP/ANG II also increased the levels of NHE3, p-ERK1/2, and p65 proteins above their controls, but considerably less so than in WT cells. In WT mice, selective expression of ECFP/ANG II in vivo in proximal tubules significantly increased blood pressure and indices of sodium reabsorption, in particular levels of phosphorylated NHE3 protein in the membrane fraction and proton gradient-stimulated (22)Na(+) uptake by proximal tubules. We conclude that intracellular ANG II may induce NHE3 expression and activation in mPCTs via AT(1a)- and AT(2) receptor-mediated activation of MAP kinases ERK 1/2 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- X C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | |
Collapse
|
16
|
Zhang Y, Cuevas S, Asico LD, Escano C, Yang Y, Pascua AM, Wang X, Jones JE, Grandy D, Eisner G, Jose PA, Armando I. Deficient dopamine D2 receptor function causes renal inflammation independently of high blood pressure. PLoS One 2012; 7:e38745. [PMID: 22719934 PMCID: PMC3375266 DOI: 10.1371/journal.pone.0038745] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the dopamine D(2) receptor gene (DRD2) are associated with essential hypertension, but the mechanisms of their contribution are incompletely understood. Mice lacking Drd2 (D(2)-/-) have elevated blood pressure, increased renal expression of inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D(2) receptor (D(2)R) function increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and contributes to the subsequent development of hypertension. In D(2)-/- mice, treatment with apocynin normalized blood pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2 silencing increased the expression of TNFα and MCP-1, while treatment with a D(2)R agonist abolished the angiotensin II-induced increase in TNF-α and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results demonstrate that the impact of decreased D(2)R function on renal inflammation is a primary effect, not necessarily associated with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal D(2)R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D(2)R expression and function.
Collapse
Affiliation(s)
- Yanrong Zhang
- Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cuevas S, Zhang Y, Yang Y, Escano C, Asico L, Jones JE, Armando I, Jose PA. Role of renal DJ-1 in the pathogenesis of hypertension associated with increased reactive oxygen species production. Hypertension 2012; 59:446-52. [PMID: 22215708 DOI: 10.1161/hypertensionaha.111.185744] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The D(2) dopamine receptor (D(2)R) is important in the pathogenesis of essential hypertension. We have already reported that systemic deletion of the D(2)R gene in mice results in reactive oxygen species (ROS)-dependent hypertension, suggesting that the D(2)R has antioxidant effects. However, the mechanism of this effect is unknown. DJ-1 is a protein that has antioxidant properties. D(2)R and DJ-1 are expressed in the mouse kidney and colocalize and coimunoprecipitate in mouse renal proximal tubule cells. We hypothesized that D(2)Rs regulate renal ROS production in the kidney through regulation of DJ-1 expression or function. Heterozygous D(2)(+/-) mice have increased blood pressure, urinary 8-isoprostanes, and renal Nox 4 expression, but decreased renal DJ-1 expression. Silencing D(2)R expression in mouse renal proximal tubule cells increases ROS production and decreases the expression of DJ-1. Conversely, treatment of these cells with a D(2)R agonist increases DJ-1 expression and decreases Nox 4 expression and NADPH oxidase activity, effects that are partially blocked by a D(2)R antagonist. Silencing DJ-1 expression in mouse renal proximal tubule cells increases ROS production and Nox 4 expression. Selective renal DJ-1 silencing by the subcapsular infusion of DJ-1 siRNA in mice increases blood pressure, renal Nox4 expression, and NADPH oxidase activity. These results suggest that the inhibitory effects of D(2)R on renal ROS production are at least, in part, mediated by a positive regulation of DJ-1 expression/function and that DJ-1 may have a role in the prevention of hypertension associated with increased ROS production.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Molecular Physiology Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kohn EA, Du Z, Sato M, Van Schyndle CMH, Welsh MA, Yang YA, Stuelten CH, Tang B, Ju W, Bottinger EP, Wakefield LM. A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFβ signaling in the mammary gland. Breast Cancer Res 2010; 12:R83. [PMID: 20942910 PMCID: PMC3096976 DOI: 10.1186/bcr2728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 07/29/2010] [Accepted: 10/13/2010] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Molecular dissection of the signaling pathways that underlie complex biological responses in the mammary epithelium is limited by the difficulty of propagating large numbers of mouse mammary epithelial cells, and by the inability of ribonucleic acid interference (RNAi)-based knockdown approaches to fully ablate gene function. Here we describe a method for the generation of conditionally immortalized mammary epithelial cells with defined genetic defects, and we show how such cells can be used to investigate complex signal transduction processes using the transforming growth factor beta (TGFβ/Smad pathway as an example. METHODS We intercrossed the previously described H-2Kb-tsA58 transgenic mouse (Immortomouse) which expresses a temperature-sensitive mutant of the simian virus-40 large T-antigen (tsTAg), with mice of differing Smad genotypes. A panel of conditionally immortalized mammary epithelial cell (IMEC) cultures were derived from the virgin mammary glands of offspring of these crosses and used to assess the Smad dependency of different biological responses to TGFβ. RESULTS IMECs could be propagated indefinitely at permissive temperatures and had a stable epithelial phenotype, resembling primary mammary epithelial cells with respect to several criteria, including responsiveness to TGFβ. Using this panel of cells, we demonstrated that Smad3, but not Smad2, is necessary for TGFβ-induced apoptotic, growth inhibitory and EMT responses, whereas either Smad can support TGFβ-induced invasion as long as a threshold level of total Smad is exceeded. CONCLUSIONS This work demonstrates the practicality and utility of generating conditionally immortalized mammary epithelial cell lines from genetically modified Immortomice for detailed investigation of complex signaling pathways in the mammary epithelium.
Collapse
Affiliation(s)
- Ethan A Kohn
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4255, Bethesda MD 20892, USA
| | - Zhijun Du
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4255, Bethesda MD 20892, USA
| | - Misako Sato
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4255, Bethesda MD 20892, USA
| | - Catherine MH Van Schyndle
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4255, Bethesda MD 20892, USA
| | - Michael A Welsh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4255, Bethesda MD 20892, USA
| | - Yu-an Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4255, Bethesda MD 20892, USA
| | - Christina H Stuelten
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4255, Bethesda MD 20892, USA
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4255, Bethesda MD 20892, USA
| | - Wenjun Ju
- Department of Internal Medicine, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Erwin P Bottinger
- Division of Nephrology, Department of Medicine, Charles R Bronfman Institute for Personalized Medicine, Mount Sinai School of Medicine, 1468 Madison Avenue, New York, NY 10029, USA
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4255, Bethesda MD 20892, USA
| |
Collapse
|
19
|
Li XC, Hopfer U, Zhuo JL. AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through a microtubule-dependent endocytic pathway. Am J Physiol Renal Physiol 2009; 297:F1342-52. [PMID: 19726542 DOI: 10.1152/ajprenal.90734.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Angiotensin II (ANG II) is taken up by proximal tubule (PT) cells via AT1 (AT1a) receptor-mediated endocytosis, but the underlying cellular mechanisms remain poorly understood. The present study tested the hypothesis that the microtubule- rather than the clathrin-dependent endocytic pathway regulates AT1-mediated uptake of ANG II and ANG II-induced sodium and hydrogen exchanger-3 (NHE-3) expression in PT cells. The expression of AT1 receptors, clathrin light (LC) and heavy chain (HC) proteins, and type 1 microtubule-associated proteins (MAPs; MAP-1A and MAP-1B) in PT cells were knocked down by their respective small interfering (si) RNAs before AT1-mediated FITC-ANG II uptake and ANG II-induced NHE-3 expression were studied. AT1 siRNAs inhibited AT1 expression and blocked ANG II-induced NHE-3 expression in PT cells, as expected (P < 0.01). Clathrin LC or HC siRNAs knocked down their respective proteins by approximately 90% with a peak response at 24 h, and blocked the clathrin-dependent uptake of Alexa Fluor 594-transferrin (P < 0.01). However, neither LC nor HC siRNAs inhibited AT1-mediated uptake of FITC-ANG II or affected ANG II-induced NHE-3 expression. MAP-1A or MAP-1B siRNAs markedly knocked down MAP-1A or MAP-1B proteins in a time-dependent manner with peak inhibitions at 48 h (>76.8%, P < 0.01). MAP protein knockdown resulted in approximately 52% decreases in AT1-mediated FITC-ANG II uptake and approximately 66% decreases in ANG II-induced NHE-3 expression (P < 0.01). These effects were associated with threefold decreases in ANG II-induced MAP kinases ERK 1/2 activation (P < 0.01), but not with altered AT1 expression or clathrin-dependent transferrin uptake. Both losartan and AT1a receptor deletion in mouse PT cells completely abolished the effects of MAP-1A knockdown on ANG II-induced NHE-3 expression and activation of MAP kinases ERK1/2. Our findings suggest that the alternative microtubule-dependent endocytic pathway, rather than the canonical clathrin-dependent pathway, plays an important role in AT1 (AT1a)-mediated uptake of extracellular ANG II and ANG II-induced NHE-3 expression in PT cells.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
20
|
Kovacs JJ, Whalen EJ, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz RJ. Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 2008; 320:1777-81. [PMID: 18497258 PMCID: PMC2587210 DOI: 10.1126/science.1157983] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
beta-Arrestins have important roles in the regulation of seven-transmembrane receptors (7TMRs). Smoothened (Smo) is a 7TMR that mediates effects of Hedgehog on developmental processes and whose dysregulation may cause tumorigenesis. beta-Arrestins are required for endocytosis of Smo and signaling to Gli transcription factors. In mammalian cells, Smo-dependent signaling requires translocation to primary cilia. We demonstrated that beta-arrestins mediate the activity-dependent interaction of Smo and the kinesin motor protein Kif3A. This multimeric complex localized to primary cilia and was disrupted in cells transfected with beta-arrestin small interfering RNA. beta-Arrestin 1 or beta-arrestin 2 depletion prevented the localization of Smo to primary cilia and the Smo-dependent activation of Gli. These results suggest roles for beta-arrestins in mediating the intracellular transport of a 7TMR to its obligate subcellular location for signaling.
Collapse
Affiliation(s)
- Jeffrey J Kovacs
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Woost PG, Kolb RJ, Chang CH, Finesilver M, Inagami T, Hopfer U. Development of an AT2-deficient proximal tubule cell line for transport studies. In Vitro Cell Dev Biol Anim 2007; 43:352-60. [PMID: 17963016 DOI: 10.1007/s11626-007-9061-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/11/2007] [Indexed: 12/22/2022]
Abstract
Angiotensin II is a major regulatory peptide for proximal tubule Na(+) reabsorption acting through two distinct receptor subtypes: AT(1) and AT(2). Physiological or pathological roles of AT(2) have been difficult to unravel because angiotensin II can affect Na(+) transport either directly via AT(2) on luminal or peritubular plasma membranes of proximal tubule cells or indirectly via the renal vasculature. Furthermore, separate systemic and intratubular renin-angiotensin systems impart considerable complexity to angiotensin's regulation. A transport-competent, proximal tubule cell model that lacks AT(2) is a potentially useful tool to assess cellular angiotensin II regulation. To this end, AT(2)-receptor-deficient mice were bred with an Immortomouse, which harbors the thermolabile immortalization gene SV40 large-T antigen (Tag), and AT(2)-receptor-deficient [AT(2) (-/-)], Tag heterozygous [Tag (+/-)] F(2) offspring were selected for cell line generation. S1 proximal tubule segments were microdissected, and epithelial cell outgrowth was expanded in culture. Cells that formed confluent, electrically resistive monolayers were selected for cryopreservation, and one isolate was extensively characterized for conductance (2 mS/cm(2)), short-circuit current (Isc; 0.2 microA/cm(2)), and proximal tubule-specific Na3(+) - succinate (DeltaIsc = 0.8 microA/cm(2) at 2 mM succinate) and Na3(+) - phosphate cotransport (DeltaIsc = 3 microA/cm(2) at 1 mM phosphate). Light microscopy showed a uniform, cobblestone-shaped monolayer with prominent cilia and brush borders. AT(2) receptor functionality, as demonstrated by angiotensin II inhibition of ANF-stimulated cGMP synthesis, was absent in AT(2)-deficient cells but prominent in wild-type cells. This transport competent cell line in conjunction with corresponding wild type and AT(1)-deficient lines should help explain angiotensin II signaling relevant to Na(+) transport.
Collapse
Affiliation(s)
- Philip G Woost
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Background CLIC1 is a chloride channel whose cellular role remains uncertain. The distribution of CLIC1 in normal tissues is largely unknown and conflicting data have been reported regarding the cellular membrane fraction in which CLIC1 resides. Results New antisera to CLIC1 were generated and were found to be sensitive and specific for detecting this protein. These antisera were used to investigate the distribution of CLIC1 in mouse tissue sections and three cultured cell lines. We find CLIC1 is expressed in the apical domains of several simple columnar epithelia including glandular stomach, small intestine, colon, bile ducts, pancreatic ducts, airway, and the tail of the epididymis, in addition to the previously reported renal proximal tubule. CLIC1 is expressed in a non-polarized distribution in the basal epithelial cell layer of the stratified squamous epithelium of the upper gastrointesitinal tract and the basal cells of the epididymis, and is present diffusely in skeletal muscle. Distribution of CLIC1 was examined in Panc1 cells, a relatively undifferentiated, non-polarized human cell line derived from pancreatic cancer, and T84 cells, a human colon cancer cell line which can form a polarized epithelium that is capable of regulated chloride transport. Digitonin extraction was used to distinguish membrane-inserted CLIC1 from the soluble cytoplasmic form of the protein. We find that digitonin-resistant CLIC1 is primarily present in the plasma membrane of Panc1 cells. In T84 cells, we find digitonin-resistant CLIC1 is present in an intracellular compartment which is concentrated immediately below the apical plasma membrane and the extent of apical polarization is enhanced with forskolin, which activates transepithelial chloride transport and apical membrane traffic in these cells. The sub-apical CLIC1 compartment was further characterized in a well-differentiated mouse renal proximal tubule cell line. The distribution of CLIC1 was found to overlap that of megalin and the sodium-phosphate cotransporter, NaPi-II, which are markers of the apical endocytic/recycling compartment in proximal tubule. Conclusion The cell and tissue specific patterns of CLIC1 expression suggest it may play distinct roles in different cell types. In certain polarized columnar epithelia, it may play a role in apical membrane recycling.
Collapse
|