1
|
Al-Gallas N, Fadel ME, Altammar KA, Awadi Y, Aissa RB. Pathovars, occurrence, and characterization of plasmid-mediated quinolone resistance in diarrheal Escherichia coli isolated from farmers and farmed chickens in Tunisia and Nigeria. Lett Appl Microbiol 2024; 77:ovae043. [PMID: 38653718 DOI: 10.1093/lambio/ovae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The poultry industry is a very important agricultural and industrial sector in Tunisia and Nigeria, with little information about occurrence of diarrheagenic Escherichia coli in the farmers and chickens. This study aimed to detect the prevalence of diarrheal E. coli in humans and poultry and to investigate plasmid-mediated quinolone resistance (PMQR) genes in both countries. Seventy-four isolates of E. coli were studied; nine different virulence genes were screened by PCR. Serotyping was performed only for pathotypes as well as the determining of antibiotic resistance profiles against 21 antibiotics. PMQR genes were investigated by PCR. EAEC was the most abundant pathotype (37/74; 50%) in human and chicken isolates, whereas single EHEC and EPEC (1/74, 1.35%) pathotypes were detected in Tunisia and Nigeria, respectively. About 17 (45.95%) quinolones/fluoroquinolones-resistant isolates were detected, from which the following PMQR genes were detected: aac(6')-Ib-cr (8/17, 47.05%), qepA (6/17, 35.29%), qnrA + qnrB (2/17, 11.76%), and qnrS gene (1/17, 5.88%). Our findings highlight high occurrence of EAEC pathotype in Tunisia and Nigeria, more frequent than EPEC and EHEC. Additionally, all E. coli pathotypes isolated from different sources (humans, poultry) showed resistance to several antibiotics, which are in use as therapeutic choices in Tunisia and Nigeria.
Collapse
Affiliation(s)
- Nazek Al-Gallas
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Kingdom of Saudi Arabia
- Water and Food Control Lab, National Center of Salmonella, Shigella, Vibrio-Enteropathogens-Institut Pasteur de Tunis (IPT) Tunis-Belvédère, Tunis 1002, Tunisia
| | - Mohamed-Elamen Fadel
- Medical Laboratory Department, Faculty of Engineering and Technology, University of Sebha, Sebha 19631, Libya
| | - Khadijah A Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Kingdom of Saudi Arabia
| | - Yasmin Awadi
- Water and Food Control Lab, National Center of Salmonella, Shigella, Vibrio-Enteropathogens-Institut Pasteur de Tunis (IPT) Tunis-Belvédère, Tunis 1002, Tunisia
| | - Ridha Ben Aissa
- Water and Food Control Lab, National Center of Salmonella, Shigella, Vibrio-Enteropathogens-Institut Pasteur de Tunis (IPT) Tunis-Belvédère, Tunis 1002, Tunisia
| |
Collapse
|
2
|
Hassan J, Awasthi SP, Hatanaka N, Hoang PH, Nagita A, Hinenoya A, Faruque SM, Yamasaki S. Presence of Functionally Active Cytolethal Distending Toxin Genes on a Conjugative Plasmid in a Clinical Isolate of Providencia rustigianii. Infect Immun 2023; 91:e0012122. [PMID: 37158737 PMCID: PMC10269090 DOI: 10.1128/iai.00121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Providencia rustigianii is potentially enteropathogenic in humans. Recently, we identified a P. rustigianii strain carrying a part of the cdtB gene homologous to that of Providencia alcalifacines that produces an exotoxin called cytolethal distending toxin (CDT), encoded by three subunit genes (cdtA, cdtB, and cdtC). In this study, we analyzed the P. rustigianii strain for possible presence of the entire cdt gene cluster and its organization, location, and mobility, as well as expression of the toxin as a putative virulence factor of P. rustigianii. Nucleotide sequence analysis revealed the presence of the three cdt subunit genes in tandem, and over 94% homology to the corresponding genes carried by P. alcalifaciens both at nucleotide and amino acid sequence levels. The P. rustigianii strain produced biologically active CDT, which caused distension of eukaryotic cell lines with characteristic tropism of CHO and Caco-2 cells but not of Vero cells. S1-nuclease digested pulsed-field gel electrophoresis followed by Southern hybridization analysis demonstrated that the cdt genes in both P. rustigianii and P. alcalifaciens strains are located on large plasmids (140 to 170 kb). Subsequently, conjugation assays using a genetically marked derivative of the P. rustigianii strain showed that the plasmid carrying cdt genes in the P. rustigianii was transferable to cdt gene-negative recipient strains of P. rustigianii, Providencia rettgeri, and Escherichia coli. Our results demonstrated the presence of cdt genes in P. rustigianii for the first time, and further showed that the genes are located on a transferable plasmid, which can potentially spread to other bacterial species.
Collapse
Affiliation(s)
- Jayedul Hassan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Sharda Prasad Awasthi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Noritoshi Hatanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Phuong Hoai Hoang
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Akira Nagita
- Department of Pediatrics, Mizushima Central Hospital, Okayama, Japan
| | - Atsushi Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Shah M. Faruque
- School of Environment and Life Sciences, Independent University Bangladesh (IUB), Bashundhara, Dhaka, Bangladesh
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
3
|
Phu DH, Wongtawan T, Truong DB, Van Cuong N, Carrique-Mas J, Thomrongsuwannakij T. A systematic review and meta-analysis of integrated studies on antimicrobial resistance in Vietnam, with a focus on Enterobacteriaceae, from a One Health perspective. One Health 2022; 15:100465. [PMID: 36561710 PMCID: PMC9767812 DOI: 10.1016/j.onehlt.2022.100465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Vietnam is a low- and middle-income country (LMIC), a primary food producer, and an antimicrobial resistance (AMR) hotspot. AMR is recognized as a One Health challenge since it may transfer between humans, animals and the environment. This study aimed to apply systematic review and meta-analysis to investigate the phenotypic profiles and correlations of antimicrobial-resistant Enterobacteriaceae across three compartments: humans, animals and the environment in Vietnam. A total of 89 articles found in PubMed, Science Direct, and Google Scholar databases were retrieved for qualitative synthesis. E. coli and non-typhoidal Salmonella (NTS) were the most common bacterial species in studies of all compartments (60/89 studies). Among antimicrobials classified as critically important, the resistance levels were observed to be highest to quinolones, 3rd generation of cephalosporins, penicillins, and aminoglycosides. Of 89 studies, 55 articles reported the resistance prevalence of E. coli and NTS in healthy humans, animals and the environment against ciprofloxacin, ceftazidime, ampicillin, gentamicin, sulfamethoxazole-trimethoprim, chloramphenicol was used for meta-analysis. The pooled prevalence was found highest in E. coli against ampicillin 84.0% (95% CI 73.0-91.0%) and sulfamethoxazole-trimethoprim 66.0% (95% CI 56.0-75.0%) while in NTS they were 34.0% (95% CI 24.0-46.0%), 33.0% (95% CI 25.0-42.0%), respectively. There were no significant differences in the pooled prevalence of E. coli and NTS to these antimicrobials across healthy humans, animals and the environment, except for ceftazidime-resistant E. coli (χ2 = 8.29, p = 0.02), chloramphenicol-resistant E.coli (χ2 = 9.65, p < 0.01) and chloramphenicol-resistant NTS (χ2 = 7.51, p = 0.02). Findings from the multiple meta-regression models indicated that the AMR levels in E. coli (β = 1.887, p < 0.001) and the North (β = 0.798, p = 0.047) had a higher fraction of AMR than NTS and other regions of Vietnam. The outcomes of this study play an important role as the baseline information for further investigation and follow-up intervention strategies to tackle AMR in Vietnam, and more generally, can be adapted to other LMICs.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand,Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Viet Nam
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Dinh Bao Truong
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Viet Nam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Viet Nam,Ausvet PTY LTD, Bruce ACT 2617, Canberra, Australia
| | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi 10000, Viet Nam
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand,Corresponding author at: Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
4
|
Prevalence of Multidrug-Resistant Diarrheagenic Escherichia coli in Asia: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11101333. [PMID: 36289991 PMCID: PMC9598397 DOI: 10.3390/antibiotics11101333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Diarrhea is one of the leading causes of morbidity and mortality in developing countries. Diarrheagenic Escherichia coli (DEC) is an important bacterial agent for diarrhea in infants, children, and international travelers, and accounts for more than 30% of diarrheal cases in children less than 5 years old. However, the choices of antimicrobial agents are now being limited by the ineffectiveness of many first-line drugs, in relation to the emergence of antimicrobial-resistant E. coli strains. The aim of this systematic review and meta-analysis was to provide an updated prevalence of antimicrobial-resistant DEC in Asia. A comprehensive systematic search was conducted on three electronic databases (PubMed, ScienceDirect, and Scopus), where 40 eligible studies published between 2010 and 2022 were identified. Using meta-analysis of proportions and a random-effects model, the pooled prevalence of DEC in Asian diarrheal patients was 22.8% (95% CI: 16.5–29.2). The overall prevalence of multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL)-producing DEC strains was estimated to be 66.3% (95% CI: 58.9–73.7) and 48.6% (95% CI: 35.1–62.1), respectively. Considering antimicrobial drugs for DEC, the resistance prevalence was highest for the penicillin class of antibiotics, where 80.9% of the DEC isolates were resistant to amoxicillin and 73.5% were resistant to ampicillin. In contrast, resistance to carbapenems such as imipenem (0.1%), ertapenem (2.6%), and meropenem (7.9%) was the lowest. The relatively high prevalence estimation signifies that the multidrug-resistant DEC is a public health threat. Effective antibiotic treatment strategies, which may lead to better outcomes for the control of E. coli infections in Asia, are necessary.
Collapse
|
5
|
Nhung NT, Yen NTP, Dung NTT, Nhan NTM, Phu DH, Kiet BT, Thwaites G, Geskus RB, Baker S, Carrique-Mas J, Choisy M. Antimicrobial resistance in commensal Escherichia coli from humans and chickens in the Mekong Delta of Vietnam is driven by antimicrobial usage and potential cross-species transmission. JAC Antimicrob Resist 2022; 4:dlac054. [PMID: 35663829 PMCID: PMC9154321 DOI: 10.1093/jacamr/dlac054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/28/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives To investigate phenotypic antimicrobial resistance (AMR) in relation to antimicrobial use (AMU) and potential inter-species transmission among Escherichia coli from humans and chickens located in the same households in the Mekong Delta of Vietnam. Methods We collected data on AMU and faecal swabs from humans (N = 426) and chickens (N = 237) from 237 small-scale farms. From each sample, one E. coli strain was isolated and tested for its susceptibility against 11 antimicrobials by Sensititre AST. The association between AMR and AMU was investigated by logistic regression modelling. Using randomization, we compared the degree of similarity in AMR patterns between human and chicken E. coli from the same farms compared with isolates from different farms. Results The AMU rate was ∼19 times higher in chickens (291.1 per 1000 chicken-days) than in humans (15.1 per 1000 person-days). Isolates from chickens also displayed a higher prevalence of multidrug resistance (63.3%) than those of human origin (55.1%). AMU increased the probability of resistance in isolates from human (ORs between 2.1 and 5.3) and chicken (ORs between 1.9 and 4.8). E. coli from humans and chickens living on same farms had a higher degree of similarity in their AMR patterns than isolates from humans and chicken living on different farms. Conclusions We demonstrated the co-influence of AMU and potential transmission on observed phenotypic AMR patterns among E. coli isolates from food-producing animals and in-contact humans. Restricting unnecessary AMU alongside limiting interspecies contact (i.e. increasing hygiene and biocontainment) are essential for reducing the burden of AMR.
Collapse
Affiliation(s)
- Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Doan Hoang Phu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Bach Tuan Kiet
- Sub-Department of Animal Health and Production, Dong Thap Province, Vietnam
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Ronald B. Geskus
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Tawfick MM, Elshamy AA, Mohamed KT, El Menofy NG. Gut Commensal Escherichia coli, a High-Risk Reservoir of Transferable Plasmid-Mediated Antimicrobial Resistance Traits. Infect Drug Resist 2022; 15:1077-1091. [PMID: 35321080 PMCID: PMC8934708 DOI: 10.2147/idr.s354884] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Background Escherichia coli (E. coli), the main human gut microorganism, is one of the evolved superbugs because of acquiring antimicrobial resistance (AMR) determinants via horizontal gene transfer (HGT). Purpose This study aimed to screen isolates of gut commensal E. coli from healthy adult individuals for antimicrobial susceptibility and plasmid-mediated AMR encoding genes. Methods Gut commensal E. coli bacteria were isolated from fecal samples that were taken from healthy adult individuals and investigated phenotypically for their antimicrobial susceptibility against diverse classes of antimicrobials using the Kirby Bauer disc method. PCR-based molecular assays were carried out to detect diverse plasmid-carried AMR encoding genes and virulence genes of different E. coli pathotypes (eaeA, stx, ipaH, est, elt, aggR and pCVD432). The examined AMR genes were β-lactam resistance encoding genes (blaCTX-M1, blaTEM, blaCMY-2), tetracycline resistance encoding genes (tetA, tetB), sulfonamides resistance encoding genes (sul1, sulII), aminoglycoside resistance encoding genes (aac(3)-II, aac(6′)-Ib-cr) and quinolones resistance encoding genes (qnrA, qnrB, qnrS). Results PCR results revealed the absence of pathotypes genes in 56 isolates that were considered gut commensal isolates. E. coli isolates showed high resistance rates against tested antimicrobial agents belonging to both β-lactams and sulfonamides (42/56, 75%) followed by quinolones (35/56, 62.5%), tetracyclines (31/56, 55.4%), while the lowest resistance rate was to aminoglycosides (24/56, 42.9%). Antimicrobial susceptibility profiles revealed that 64.3% of isolates were multidrug-resistant (MDR). High prevalence frequencies of plasmid-carried AMR genes were detected including blaTEM (64%) sulI (60.7%), qnrA (51.8%), aac(3)-II (37.5%), and tetA (46.4%). All isolates harbored more than one gene with the most frequent genetic profile among isolates was blaTEM-blaCTX-M1-like-qnrA-qnrB-tetA-sulI. Conclusion Results are significant in the evaluation of plasmid-carried AMR genes in the human gut commensal E. coli, suggesting a potential human health risk and the necessity of strict regulation of the use of antibiotics in Egypt. Commensal E. coli bacteria may constitute a potential reservoir of AMR genes that can be transferred to other bacterial species.
Collapse
Affiliation(s)
- Mahmoud Mohamed Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (For Boys), Al-Azhar University, Cairo, 11751, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Correspondence: Mahmoud Mohamed Tawfick, Department of Microbiology and Immunology, Faculty of Pharmacy (For Boys), Al-Azhar University, 1 El-Mokhayam El-Daem Street, Nasr City, Cairo, 11751, Egypt, Tel +20 1157336676, Fax +20 238371543, Email
| | - Aliaa Ali Elshamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Kareem Talaat Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, Giza, 11787, Egypt
| | - Nagwan Galal El Menofy
- Department of Microbiology and Immunology, Faculty of Pharmacy (For Girls), Al-Azhar University, Cairo, 11751, Egypt
| |
Collapse
|
7
|
Singh SR, Teo AKJ, Prem K, Ong RTH, Ashley EA, van Doorn HR, Limmathurotsakul D, Turner P, Hsu LY. Epidemiology of Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing Enterobacterales in the Greater Mekong Subregion: A Systematic-Review and Meta-Analysis of Risk Factors Associated With Extended-Spectrum Beta-Lactamase and Carbapenemase Isolation. Front Microbiol 2021; 12:695027. [PMID: 34899618 PMCID: PMC8661499 DOI: 10.3389/fmicb.2021.695027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the rapid spread of extended-spectrum beta-lactamase (ESBL) producing-Enterobacterales (ESBL-E) and carbapenemase-producing Enterobacterales (CPE), little is known about the extent of their prevalence in the Greater Mekong Subregion (GMS). In this systematic review, we aimed to determine the epidemiology of ESBL-E and CPE in clinically significant Enterobacterales: Escherichia coli and Klebsiella pneumoniae from the GMS (comprising of Cambodia, Laos, Myanmar, Thailand, Vietnam and Yunnan province and Guangxi Zhuang region of China). Methods: Following a list of search terms adapted to subject headings, we systematically searched databases: Medline, EMBASE, Scopus and Web of Science for articles published on and before October 20th, 2020. The search string consisted of the bacterial names, methods involved in detecting drug-resistance phenotype and genotype, GMS countries, and ESBL and carbapenemase detection as the outcomes. Meta-analyses of the association between the isolation of ESBL from human clinical and non-clinical specimens were performed using the "METAN" function in STATA 14. Results: One hundred and thirty-nine studies were included from a total of 1,513 identified studies. Despite the heterogeneity in study methods, analyzing the prevalence proportions on log-linear model scale for ESBL producing-E. coli showed a trend that increased by 13.2% (95%CI: 6.1-20.2) in clinical blood specimens, 8.1% (95%CI: 1.7-14.4) in all clinical specimens and 17.7% (95%CI: 4.9-30.4) increase in carriage specimens. Under the log-linear model assumption, no significant trend over time was found for ESBL producing K. pneumoniae and ESBL-E specimens. CPE was reported in clinical studies and carriage studies past 2010, however a trend could not be determined because of the small dataset. Twelve studies were included in the meta-analysis of risk factors associated with isolation of ESBL. Recent antibiotic exposure was the most studied variable and showed a significant positive association with ESBL-E isolation (pooled OR: 2.9, 95%CI: 2.3-3.8) followed by chronic kidney disease (pooled OR: 4.7, 95%CI: 1.8-11.9), and other co-morbidities (pooled OR: 1.6, 95%CI: 1.2-2.9). Conclusion: Data from GMS is heterogeneous with significant data-gaps, especially in community settings from Laos, Myanmar, Cambodia and Yunnan and Guangxi provinces of China. Collaborative work standardizing the methodology of studies will aid in better monitoring, surveillance and evaluation of interventions across the GMS.
Collapse
Affiliation(s)
- Shweta R. Singh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Alvin Kuo Jing Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Kiesha Prem
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Infectious Disease Epidemiology, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Elizabeth A. Ashley
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - H. Rogier van Doorn
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Direk Limmathurotsakul
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul Turner
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Yang L, Bajinka O, Jarju PO, Tan Y, Taal AM, Ozdemir G. The varying effects of antibiotics on gut microbiota. AMB Express 2021; 11:116. [PMID: 34398323 PMCID: PMC8368853 DOI: 10.1186/s13568-021-01274-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotics are lifesaving therapeutic drugs that have been used by human for decades. They are used both in the fight against bacterial pathogens for both human and for animal feeding. However, of recent, their effects on the gut microbial compositions and diversities have attracted much attention. Existing literature have established the dysbiosis (reduced diversity) in the gut microbiota in association with antibiotic and antibiotic drug doses. In the light of spelling out the varying effects of antibiotic use on gut microbiota, this review aimed at given an account on the degree of gut microbial alteration caused by common antibiotics. While some common antibiotics are found to destroy the common phyla, other debilitating effects were observed. The effects can be attributed to the mode of mechanism, the class of antibiotic, the degree of resistance of the antibiotic used, the dosage used during the treatment, the route of administration, the pharmacokinetic and pharmacodynamics properties and the spectrum of the antibiotic agent. Health status, stress or the type of diet an individual feeds on could be a great proportion as confounding factors. While it is understood that only the bacterial communities are explored in the quest to establishing the role of gut in health, other gut microbial species are somehow contributing to the dysbiosis status of the gut microbiota. Until now, long term natural fluctuations like diseases outbreaks and mutations of the strain might as well rendered alteration to the gut independent of antibiotic treatments.
Collapse
|
9
|
Ombarak RA, Awasthi SP, Hatanaka N, Yamasaki S. Detection of plasmid mediated colistin resistance mcr-1 gene in ESBL producing Escherichia coli isolated from raw milk hard cheese in Egypt. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.104986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Vornhagen J, Bassis CM, Ramakrishnan S, Hein R, Mason S, Bergman Y, Sunshine N, Fan Y, Holmes CL, Timp W, Schatz MC, Young VB, Simner PJ, Bachman MA. A plasmid locus associated with Klebsiella clinical infections encodes a microbiome-dependent gut fitness factor. PLoS Pathog 2021; 17:e1009537. [PMID: 33930099 PMCID: PMC8115787 DOI: 10.1371/journal.ppat.1009537] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/12/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is an important cause of healthcare-associated infections, which increases patient morbidity, mortality, and hospitalization costs. Gut colonization by Kp is consistently associated with subsequent Kp disease, and patients are predominantly infected with their colonizing strain. Our previous comparative genomics study, between disease-causing and asymptomatically colonizing Kp isolates, identified a plasmid-encoded tellurite (TeO3-2)-resistance (ter) operon as strongly associated with infection. However, TeO3-2 is extremely rare and toxic to humans. Thus, we used a multidisciplinary approach to determine the biological link between ter and Kp infection. First, we used a genomic and bioinformatic approach to extensively characterize Kp plasmids encoding the ter locus. These plasmids displayed substantial variation in plasmid incompatibility type and gene content. Moreover, the ter operon was genetically independent of other plasmid-encoded virulence and antibiotic resistance loci, both in our original patient cohort and in a large set (n = 88) of publicly available ter operon-encoding Kp plasmids, indicating that the ter operon is likely playing a direct, but yet undescribed role in Kp disease. Next, we employed multiple mouse models of infection and colonization to show that 1) the ter operon is dispensable during bacteremia, 2) the ter operon enhances fitness in the gut, 3) this phenotype is dependent on the colony of origin of mice, and 4) antibiotic disruption of the gut microbiota eliminates the requirement for ter. Furthermore, using 16S rRNA gene sequencing, we show that the ter operon enhances Kp fitness in the gut in the presence of specific indigenous microbiota, including those predicted to produce short chain fatty acids. Finally, administration of exogenous short-chain fatty acids in our mouse model of colonization was sufficient to reduce fitness of a ter mutant. These findings indicate that the ter operon, strongly associated with human infection, encodes factors that resist stress induced by the indigenous gut microbiota during colonization. This work represents a substantial advancement in our molecular understanding of Kp pathogenesis and gut colonization, directly relevant to Kp disease in healthcare settings.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Christine M. Bassis
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan, Ann Arbor, MI, United States of America
| | - Srividya Ramakrishnan
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States of America
| | - Robert Hein
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan, Ann Arbor, MI, United States of America
| | - Sophia Mason
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
| | - Yehudit Bergman
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nicole Sunshine
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
| | - Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Caitlyn L. Holmes
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States of America
- Simons Center for Quantitative Biology, Cold Spring Harbor, NY, United States of America
| | - Vincent B. Young
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan, Ann Arbor, MI, United States of America
| | - Patricia J. Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Michael A. Bachman
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
11
|
Prevalence of mobile colistin resistance (mcr) genes in extended-spectrum β-lactamase-producing Escherichia coli isolated from retail raw foods in Nha Trang, Vietnam. Int J Food Microbiol 2021; 346:109164. [PMID: 33813365 DOI: 10.1016/j.ijfoodmicro.2021.109164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The aim of the study was to assess the presence of genes in ESBL-producing E. coli (ESBL-Ec) isolated from retail raw food in Nha Trang, Vietnam. A total of 452 food samples comprising chicken (n = 116), pork (n = 112), fish (n = 112) and shrimp (n = 112) collected between 2015 and 2017 were examined for the prevalence of ESBL-Ec. ESBL-Ec were detected in 46.0% (208/452) of retail food samples, particularly in 66.4% (77/116), 55.4% (62/112), 42.0% (47/112) 19.6% (22/112) of chicken, pork, fish and shrimp, respectively. Sixty-five out of the 208 (31.3%) ESBL-Ec isolates were positive for mcr genes including mcr-1, mcr-3 and both mcr-1 and mcr-3 genes in 56/208 (26.9%), 1/208 (0.5%) and 8/208 (3.9%) isolates, respectively. Particularly, there was higher prevalence of mcr-1 in ESBL-Ec isolates from chicken (53.2%, 41/77) in comparison to shrimp (22.7%, 5/22), pork (11.3%, 7/62) and fish (6.4%, 3/47). mcr-3 gene was detected in co-existence with mcr-1 in ESBL-Ec isolates from shrimp (9.1%, 2/22), pork (8.1%, 5/62) and fish (2.1%, 1/47) but not chicken. The 65 mcr-positive ESBL-Ec (mcr-ESBL-Ec) were colistin-resistant with the MICs of 4-8 μg/mL. All mcr-3 gene-positive isolates belonged to group A, whereas phylogenetic group distribution of isolates harboring only mcr-1 was B1 (44.6%), A (28.6%) and D (26.8%). PFGE analysis showed diverse genotypes, although some isolates demonstrated nearly clonal relationships. S1-PFGE and Southern hybridization illustrated that the mcr-1 and mcr-3 genes were located either on chromosomes or on plasmids. However, the types of mcr genes were harbored on different plasmids with varied sizes of 30-390 kb. Besides, the ESBL genes of CTX-M-1 or CTX-M-9 were also detected to be located on plasmids. Noteworthy, co-location of CTX-M-1 with mcr-1 or mcr-3 genes on the same plasmid was identified. The conjugation experiment indicated that the mcr-1 or mcr-3 was horizontally transferable. All mcr-ESBL-Ec isolates were multidrug resistance (resistance to ≥3 antimicrobial classes). Moreover, β-Lactamase-encoding genes of the CTX-M-1 (78.5%), CTX-M-9 (21.5%), TEM (61.5%) groups were found in mcr-ESBL-Ec. The astA gene was detected in 27 (41.5%) mcr-ESBL-Ec isolates demonstrating their potential virulence. In conclusion, mcr-1 and mcr-3 genes existed individually or concurrently in ESBL-Ec isolates recovered from retail raw food in Nha Trang city, which might further complicate the antimicrobial-resistant situation in Vietnam, and is a possible health risk for human.
Collapse
|
12
|
Nji E, Kazibwe J, Hambridge T, Joko CA, Larbi AA, Damptey LAO, Nkansa-Gyamfi NA, Stålsby Lundborg C, Lien LTQ. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci Rep 2021; 11:3372. [PMID: 33564047 PMCID: PMC7873077 DOI: 10.1038/s41598-021-82693-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
Antibiotic resistance is a global health crisis that requires urgent action to stop its spread. To counteract the spread of antibiotic resistance, we must improve our understanding of the origin and spread of resistant bacteria in both community and healthcare settings. Unfortunately, little attention is being given to contain the spread of antibiotic resistance in community settings (i.e., locations outside of a hospital inpatient, acute care setting, or a hospital clinic setting), despite some studies have consistently reported a high prevalence of antibiotic resistance in the community settings. This study aimed to investigate the prevalence of antibiotic resistance in commensal Escherichia coli isolates from healthy humans in community settings in LMICs. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we synthesized studies conducted from 1989 to May 2020. A total of 9363 articles were obtained from the search and prevalence data were extracted from 33 articles and pooled together. This gave a pooled prevalence of antibiotic resistance (top ten antibiotics commonly prescribed in LMICs) in commensal E. coli isolates from human sources in community settings in LMICs of: ampicillin (72% of 13,531 isolates, 95% CI: 65-79), cefotaxime (27% of 6700 isolates, 95% CI: 12-44), chloramphenicol (45% of 7012 isolates, 95% CI: 35-53), ciprofloxacin (17% of 10,618 isolates, 95% CI: 11-25), co-trimoxazole (63% of 10,561 isolates, 95% CI: 52-73), nalidixic acid (30% of 9819 isolates, 95% CI: 21-40), oxytetracycline (78% of 1451 isolates, 95% CI: 65-88), streptomycin (58% of 3831 isolates, 95% CI: 44-72), tetracycline (67% of 11,847 isolates, 95% CI: 59-74), and trimethoprim (67% of 3265 isolates, 95% CI: 59-75). Here, we provided an appraisal of the evidence of the high prevalence of antibiotic resistance by commensal E. coli in community settings in LMICs. Our findings will have important ramifications for public health policy design to contain the spread of antibiotic resistance in community settings. Indeed, commensal E. coli is the main reservoir for spreading antibiotic resistance to other pathogenic enteric bacteria via mobile genetic elements.
Collapse
Affiliation(s)
- Emmanuel Nji
- BioStruct-Africa, Vårby, 143 43, Stockholm, Sweden.
| | - Joseph Kazibwe
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Thomas Hambridge
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Carolyn Alia Joko
- BioStruct-Africa, Vårby, 143 43, Stockholm, Sweden
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Amma Aboagyewa Larbi
- BioStruct-Africa, Vårby, 143 43, Stockholm, Sweden
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | | | | | - Cecilia Stålsby Lundborg
- Health Systems and Policy (HSP): Improving the Use of Medicines, Department of Global Public Health, Karolinska Institutet, Tomtebodavägen 18A, 17177, Stockholm, Sweden
| | - La Thi Quynh Lien
- Department of Pharmaceutical Management and Pharmaco-Economics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem District, Hanoi, 110403, Vietnam
| |
Collapse
|
13
|
Fukuda A, Nakamura H, Umeda K, Yamamoto K, Hirai Y, Usui M, Ogasawara J. Seven-year surveillance of the prevalence of antimicrobial-resistant Escherichia coli isolates, with a focus on ST131 clones, among healthy people in Osaka, Japan. Int J Antimicrob Agents 2021; 57:106298. [PMID: 33556490 DOI: 10.1016/j.ijantimicag.2021.106298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Escherichia coli (E. coli) is an indicator of antimicrobial resistance, and some strains of E. coli cause infectious diseases. E. coli sequence type 131 (ST131) - a global antimicrobial-resistant pandemic E. coli clone - is frequently detected in clinical specimens. Antimicrobial-resistant bacteria are monitored via national surveillance in clinical settings; however, monitoring information in non-clinical settings is limited. This study elucidated antimicrobial resistance trends of E. coli and dissemination of ST131 among healthy people in non-clinical settings. METHODS This study collected 517 E. coli isolates from healthy people in Osaka, Japan, between 2013 and 2019. It analysed antimicrobial susceptibility of the isolates and detected the bla and mcr genes in ampicillin-resistant and colistin-resistant isolates, respectively, and the ST131 clone. RESULTS Antimicrobial resistance rates of the bacteria isolated from healthy people in non-clinical settings were lower than for those in clinical settings. The resistance of the isolates to cefotaxime (4.4%) and ciprofloxacin (13.5%) gradually increased during the study period. In 23 cefotaxime-resistant isolates, the most frequent bla genes belonged to the blaCTX-M-9 group, followed by blaCTX-M-1 goup, blaTEM and blaCMY-2. One mcr-1-harbouring colistin-resistant isolate was detected in 2016. The incidence of the E. coli O25b-ST131 clone was approximately 5% until 2015 and 10% after 2016. CONCLUSION Both ciprofloxacin resistance and O25b-ST131 clone frequency increased during the study period. Antimicrobial-resistant bacteria gradually spread in healthy people in non-clinical settings; one reason behind this spread was dissemination of global antimicrobial-resistant pandemic clones.
Collapse
Affiliation(s)
- Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| | - Hiromi Nakamura
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Kaoru Umeda
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Kaori Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yuji Hirai
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Jun Ogasawara
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| |
Collapse
|
14
|
Glushchenko OE, Prianichnikov NA, Olekhnovich EI, Manolov AI, Tyakht AV, Starikova EV, Odintsova VE, Kostryukova ES, Ilina EI. VERA: agent-based modeling transmission of antibiotic resistance between human pathogens and gut microbiota. Bioinformatics 2020; 35:3803-3811. [PMID: 30825306 DOI: 10.1093/bioinformatics/btz154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION The resistance of bacterial pathogens to antibiotics is one of the most important issues of modern health care. The human microbiota can accumulate resistance determinants and transfer them to pathogenic microbiota by means of horizontal gene transfer. Thus, it is important to develop methods of prediction and monitoring of antibiotics resistance in human populations. RESULTS We present the agent-based VERA model, which allows simulation of the spread of pathogens, including the possible horizontal transfer of resistance determinants from a commensal microbiota community. The model considers the opportunity of residents to stay in the town or in a medical institution, have incorrect self-treatment, treatment with several antibiotics types and transfer and accumulation of resistance determinants from commensal microorganism to a pathogen. In this model, we have also created an assessment of optimum observation frequency of infection spread among the population. Investigating model behavior, we show a number of non-linear dependencies, including the exponential nature of the dependence of the total number of those infected on the average resistance of a pathogen. As the model infection, we chose infection with Shigella spp., though it could be applied to a wide range of other pathogens. AVAILABILITY AND IMPLEMENTATION Source code and binaries VERA and VERA.viewer are freely available for download at github.com/lpenguin/microbiota-resistome. The code is written in Java, JavaScript and R for Linux platform. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Oksana E Glushchenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.,Moscow State University, Moscow, Russia
| | - Nikita A Prianichnikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Evgenii I Olekhnovich
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Alexander I Manolov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Alexander V Tyakht
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.,ITMO University, Saint Petersburg, Russia
| | - Elizaveta V Starikova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Vera E Odintsova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena S Kostryukova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena I Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
15
|
Neogi SB, Islam MM, Islam SKS, Akhter AHMT, Sikder MMH, Yamasaki S, Kabir SML. Risk of multi-drug resistant Campylobacter spp. and residual antimicrobials at poultry farms and live bird markets in Bangladesh. BMC Infect Dis 2020; 20:278. [PMID: 32293315 PMCID: PMC7158023 DOI: 10.1186/s12879-020-05006-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Understanding potential risks of multi-drug resistant (MDR) pathogens from the booming poultry sector is a crucial public health concern. Campylobacter spp. are among the most important zoonotic pathogens associated with MDR infections in poultry and human. This study systematically examined potential risks and associated socio-environmental factors of MDR Campylobacter spp. in poultry farms and live bird markets (LBMs) of Bangladesh. METHODS Microbial culture and PCR-based methods were applied to examine the occurrence and MDR patterns of Campylobacter spp. in potential sources (n = 224) at 7 hatcheries, 9 broiler farms and 4 LBMs in three sub-districts. Antimicrobial residues in broiler meat and liver samples (n = 50) were detected by advanced chromatographic techniques. A questionnaire based cross-sectional survey was conducted on socio-environmental factors. RESULTS Overall, 32% (71/ 224) samples were found contaminated with Campylobacter spp. In poultry farms, Campylobacter spp. was primarily found in cloacal swab (21/49, 43%), followed by drinking water (8/24, 33%), and meat (8/28, 29%) samples of broilers. Remarkably, at LBMs, Campylobacter spp. was detected in higher prevalence (p < 0.05) in broiler meat (14/26, 54%), which could be related (p < 0.01) to bacterial contamination of drinking water (11/21, 52%) and floor (9/21, 43%). Campylobacter isolates, one from each of 71 positive samples, were differentiated into Campylobacter jejuni (66%) and Campylobacter coli (34%). Alarmingly, 49 and 42% strains of C. jejuni and C. coli, respectively, were observed as MDR, i.e., resistant to three or more antimicrobials, including, tetracycline, amoxicillin, streptomycin, fluoroquinolones, and macrolides. Residual antimicrobials (oxytetracycline, ciprofloxacin and enrofloxacin) were detected in majority of broiler liver (79%) and meat (62%) samples, among which 33 and 19%, respectively, had concentration above acceptable limit. Inadequate personal and environmental hygiene, unscrupulously use of antimicrobials, improper waste disposal, and lack of health surveillance were distinguishable risk factors, with local diversity and compound influences on MDR pathogens. CONCLUSION Potential contamination sources and anthropogenic factors associated with the alarming occurrence of MDR Campylobacter, noted in this study, would aid in developing interventions to minimize the increasing risks of poultry-associated MDR pathogens under 'One Health' banner that includes poultry, human and environment perspectives.
Collapse
Affiliation(s)
- Sucharit Basu Neogi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Md Mehedul Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - S K Shaheenur Islam
- Epidemiology Unit, Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka, 1215, Bangladesh
| | - A H M Taslima Akhter
- FAO-Food Safety Program (FSP), Institute of Public Health, Mohakhali, Dhaka, 1215, Bangladesh
| | | | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - S M Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
16
|
Shabana I, Al-Enazi A. Investigation of plasmid-mediated resistance in E. coli isolated from healthy and diarrheic sheep and goats. Saudi J Biol Sci 2020; 27:788-796. [PMID: 32127753 PMCID: PMC7042619 DOI: 10.1016/j.sjbs.2020.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli is zoonotic bacteria and the emergence of antimicrobial-resistant strains becomes a critical issue in both human and animal health globally. This study was therefore aimed to investigate the plasmid-mediated resistance in E. coli strains isolated from healthy and diarrheic sheep and goats. A total of 234 fecal samples were obtained from 157 sheep (99 healthy and 58 diarrheic) and 77 goats (32 healthy and 45 diarrheic) for the isolation and identification of E. coli. Plasmid DNA was extracted using the alkaline lysis method. Phenotypic antibiotic susceptibility profiles were determined against the three classes of antimicrobials, which resistance is mediated by plasmids (Cephalosporins, Fluoroquinolone, and Aminoglycosides) using the disc-diffusion method. The frequency of plasmid-mediated resistance genes was investigated by PCR. A total of 159 E. coli strains harbored plasmids. The isolates antibiogram showed different patterns of resistance in both healthy and diarrheic animals. A total of (82; 51.5%) E. coli strains were multidrug-resistant. rmtB gene was detected in all Aminoglycoside-resistant E. coli, and the ESBL-producing E. coli possessed different CTX-M genes. Similarly, fluoroquinolone-resistant E. coli possessed different qnr genes. On the analysis of the gyrB gene sequence of fluoroquinolone-resistant E. coli, multiple point mutations were revealed. In conclusion, a high prevalence of E. coli with high resistance patterns to antimicrobials was revealed in the current study, in addition to a wide distribution of their resistance determinants. These findings highlight the importance of sheep and goats as reservoirs for the dissemination of MDR E. coli and resistance gene horizontal transfer.
Collapse
Affiliation(s)
- I.I. Shabana
- Faculty of Veterinary Medicine, Department of Bacteriology, Immunology and Mycology, Suez Canal University, Egypt
| | - A.T. Al-Enazi
- Biology Department, Faculty of Science, Taibah University, Al-madinah Al-munawarah, Saudi Arabia
| |
Collapse
|
17
|
Nkansa-Gyamfi NA, Kazibwe J, Traore DAK, Nji E. Prevalence of multidrug-, extensive drug-, and pandrug-resistant commensal Escherichia coli isolated from healthy humans in community settings in low- and middle-income countries: a systematic review and meta-analysis. Glob Health Action 2019; 12:1815272. [PMID: 32909519 PMCID: PMC7782630 DOI: 10.1080/16549716.2020.1815272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The majority of existing studies aimed at investigating the incidence and prevalence of multidrug-resistance by bacteria have been performed in healthcare settings. Relatively few studies have been conducted in community settings, but these have consistently shown a high prevalence of multidrug-resistant bacteria in low- and middle-income countries (LMICs). OBJECTIVES To provide an appraisal of the evidence on the high prevalence of multidrug-, extensive drug-, and pandrug-resistance in commensal Escherichia coli isolates from human sources in community settings in LMICs. METHODS Using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, PubMed, EMBASE, MEDLINE, Web of Science, CINAHL, and Cochrane Library databases were systematically searched with the search string: 'Enterobacteriaceae', OR 'E. coli', OR 'Escherichia coli', AND 'antibiotic resistance', OR 'antimicrobial resistance', OR 'drug-resistance', AND 'prevalence', OR 'incidence', OR 'morbidity', OR 'odds ratio', OR 'risk ratio', OR 'confidence interval', OR 'p-value', OR 'rate'. Data were extracted and proportional meta-analysis was performed using the Freeman-Tukey transformation random effect model. RESULTS The prevalence of multidrug-, extensive drug- and pandrug-resistance were extracted from articles that met our inclusion criteria and pooled together after a systematic screening of 9,369 items. The prevalence of multidrug-resistance was 28% of 14,336 total cases of isolates tested, 95% CI: 23-32. Extensive drug-resistance was 24% of 8,686 total cases of isolates tested, 95% CI: 14-36. Lastly, pandrug-resistance was 5% of 5,670 total cases of isolates tested, 95% CI: 3-8. CONCLUSION This paper provides an appraisal of the evidence on the high prevalence of multidrug-, extensive drug- and pandrug-resistance by commensal E. coli in community settings in LMICs. Our results call for greater effort to be placed at the community level in the design of new and improved public health policies to counter the global threat of antibiotic-resistant infections and bacteria.
Collapse
Affiliation(s)
| | - Joseph Kazibwe
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Daouda A. K. Traore
- BioStruct-Africa, Vårby, Sweden
- Faculte ′ Des Sciences Et Techniques, Universite ′ Des Sciences, Des Techniques Et Des Technologies De Bamako (USTTB), Bamako, Mali
- Life Sciences Group, Institut Laue- Langevin, Grenoble, France
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, UK
| | | |
Collapse
|
18
|
Schutzius G, Nguyen M, Navab-Daneshmand T. Antibiotic resistance in fecal sludge and soil in Ho Chi Minh City, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34521-34530. [PMID: 31643014 DOI: 10.1007/s11356-019-06537-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the prevalence of antibiotic-resistant bacteria and genes in fecal sludge and soil in Ho Chi Minh City, Vietnam, and identified the factors contributing to the survival of antibiotic-resistant bacteria in soil. Sludge and soil samples (n = 24 and 55, respectively) were collected from residential septic systems and environmental reservoirs (i.e., canals, rivers, and parks) in twelve districts of Ho Chi Minh City and tested against a library of 12 antibiotic-resistant genes and 1 integron gene. The susceptibility of isolated Escherichia coli from sludge and soil (n = 104 and 129, respectively) was tested against nine antibiotics. Over 60% of sludge and soil samples harbored sul1, ere(A), intI1, cmIA, and tet(A) genes. The three most common phenotypic resistances found in E. coli isolated from sludge and soil were to ampicillin, tetracycline, and sulfamethoxazole/trimethoprim. In a temporal microcosm study of antibiotic-susceptible and multi-drug-resistant E. coli inoculated in soil, temperature (21.4 vs. 30 °C), resistance phenotype, and soil background microbial community were associated with E. coli decay rates over 73 days. This is the first study that provides insights into the high prevalence of antibiotic resistance in septic systems and environmental reservoirs in Ho Chi Minh City, Vietnam. Findings highlight that the fecal sludge and soil environments in Vietnam are likely reservoirs for dissemination of and human exposure to antibiotic resistance.
Collapse
Affiliation(s)
- Genevieve Schutzius
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR, 97331, USA
| | - Mi Nguyen
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
19
|
Malchione MD, Torres LM, Hartley DM, Koch M, Goodman JL. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: Review and mapping of emerging and overlapping challenges. Int J Antimicrob Agents 2019; 54:381-399. [DOI: 10.1016/j.ijantimicag.2019.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 01/21/2023]
|
20
|
Prevalence of extended-spectrum β-lactamase-producing Escherichia coli and residual antimicrobials in the environment in Vietnam. Anim Health Res Rev 2019; 18:128-135. [PMID: 29665885 DOI: 10.1017/s1466252317000160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Emergence and spread of antimicrobial-resistant bacteria, including extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, have become serious problems worldwide. Recent studies conducted in Vietnam revealed that ESBL-producing E. coli are widely distributed in food animals and people. CTX-M-9 and CTX-M-1 are the most prevalent β-lactamases among the identified ESBLs. Furthermore, most of the ESBL-producing E. coli isolates were multi-drug resistant. Residual antimicrobials such as sulfamethoxazole, trimethoprim, sulfadimidine, cephalexin, and sulfadiazine were also detected at a high level in both animal meats and environmental water collected from several cities, including Ho Chi Minh city and Can Tho city. These recent studies indicated that improper use of antimicrobials in animal-originated food production might contribute to the emergence and high prevalence of ESBL-producing E. coli in Vietnam. Although clonal ESBL-producing E. coli was not identified, CTX-M-55 gene-carrying plasmids with similar sizes (105-139 kb) have been commonly detected in the ESBL-producing E. coli strains isolated from various food animals and human beings. This finding strongly suggests that horizontal transfer of the CTX-M plasmid among various E. coli strains played a critical role in the emergence and high prevalence of ESBL-producing E. coli in Vietnam.
Collapse
|
21
|
Li B, Ke B, Zhao X, Guo Y, Wang W, Wang X, Zhu H. Antimicrobial Resistance Profile of mcr-1 Positive Clinical Isolates of Escherichia coli in China From 2013 to 2016. Front Microbiol 2018; 9:2514. [PMID: 30405572 PMCID: PMC6206212 DOI: 10.3389/fmicb.2018.02514] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023] Open
Abstract
Multidrug-resistant (MDR) Escherichia coli poses a great challenge for public health in recent decades. Polymyxins have been reconsidered as a valuable therapeutic option for the treatment of infections caused by MDR E. coli. A plasmid-encoded colistin resistance gene mcr-1 encoding phosphoethanolamine transferase has been recently described in Enterobacteriaceae. In this study, a total of 123 E. coli isolates obtained from patients with diarrheal diseases in China were used for the genetic analysis of colistin resistance in clinical isolates. Antimicrobial resistance profile of polymyxin B (PB) and 11 commonly used antimicrobial agents were determined. Among the 123 E. coli isolates, 9 isolates (7.3%) were resistant to PB and PCR screening showed that seven (5.7%) isolates carried the mcr-1 gene. A hybrid sequencing analysis using single-molecule, real-time (SMRT) sequencing and Illumina sequencing was then performed to resolve the genomes of the seven mcr-1 positive isolates. These seven isolates harbored multiple plasmids and are MDR, with six isolates carrying one mcr-1 positive plasmid and one isolate (14EC033) carrying two mcr-1 positive plasmids. These eight mcr-1 positive plasmids belonged to the IncX4, IncI2, and IncP1 types. In addition, the mcr-1 gene was the solo antibiotic resistance gene identified in the mcr-1 positive plasmids, while the rest of the antibiotic resistance genes were mostly clustered into one or two plasmids. Interestingly, one mcr-1 positive isolate (14EC047) was susceptible to PB, and we showed that the activity of MCR-1-mediated colistin resistance was not phenotypically expressed in 14EC047 host strain. Furthermore, three isolates exhibited resistance to PB but did not carry previously reported mcr-related genes. Multilocus sequence typing (MLST) showed that these mcr-1 positive E. coli isolates belonged to five different STs, and three isolates belonged to ST301 which carried multiple virulence factors related to diarrhea. Additionally, the mcr-1 positive isolates were all susceptible to imipenem (IMP), suggesting that IMP could be used to treat infection caused by mcr-1 positive E. coli isolates. Collectively, this study showed a high occurrence of mcr-1 positive plasmids in patients with diarrheal diseases of Guangzhou in China and the abolishment of the MCR-1 mediated colistin resistance in one E. coli isolate.
Collapse
Affiliation(s)
- Baiyuan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bixia Ke
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xuanyu Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Weiquan Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
22
|
Thi Quynh Nhi L, Thanh Tuyen H, Duc Trung P, Do Hoang Nhu T, Duy PT, Hao CT, Thi Thanh Nhan N, Vi LL, Thi Diem Tuyet H, Thi Thuy Tien T, Van Vinh Chau N, Khanh Lam P, Thwaites G, Baker S. Excess body weight and age associated with the carriage of fluoroquinolone and third-generation cephalosporin resistance genes in commensal Escherichia coli from a cohort of urban Vietnamese children. J Med Microbiol 2018; 67:1457-1466. [PMID: 30113307 DOI: 10.1099/jmm.0.000820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Antimicrobial-resistant bacterial infections in low- and middle-income countries (LMICs) are a well-established global health issue. We aimed to assess the prevalence of and epidemiological factors associated with the carriage of ciprofloxacin- and ceftriaxone-resistant Escherichia coli and associated resistance genes in a cohort of 498 healthy children residing in urban Vietnam. METHODOLOGY We cultured rectal swabs onto MacConkey agar supplemented with resistant concentrations of ciprofloxacin and ceftriaxone. Additionally, we screened meta-E. coli populations by conventional PCR to detect plasmid-mediated quinolone resistance (PMQR)- and extended-spectrum β-lactamase (ESBL)-encoding genes. We measured the associations between phenotypic/genotypic resistance and demographic characteristics using logistic regression.Results/Key findings. Ciprofloxacin- and ceftriaxone-resistant E. coli were cultured from the faecal samples of 67.7 % (337/498) and 80.3 % (400/498) of children, respectively. The prevalence of any associated resistance marker in the individual samples was 86.7 % (432/498) for PMQR genes and 90.6 % (451/498) for β-lactamase genes. Overweight children were significantly more likely to carry qnr genes than children with lower weight-for-height z-scores [odds ratios (OR): 1.24; 95 % confidence interval (CI): 10.5-1.48 for each unit increase in weight for height; P=0.01]. Additionally, younger children were significantly more likely to carry ESBL CTX-M genes than older children (OR: 0.97, 95 % CI: 0.94-0.99 for each additional year, P=0.01). CONCLUSION The carriage of genotypic and phenotypic antimicrobial resistance is highly prevalent among E. coli in healthy children in the community in Vietnam. Future investigations on the carriage of antimicrobial resistant organisms in LMICs should focus on the progression of carriage from birth and structure of the microbiome in obesity.
Collapse
Affiliation(s)
- Le Thi Quynh Nhi
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- 2University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Ha Thanh Tuyen
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Pham Duc Trung
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Do Hoang Nhu
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Pham Thanh Duy
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Chung The Hao
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Thanh Nhan
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Lu Lan Vi
- 3The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | | | - Phung Khanh Lam
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy Thwaites
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- 5Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Stephen Baker
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- 6The Department of Medicine, University of Cambridge, Cambridge, UK
- 5Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| |
Collapse
|
23
|
Ferjani S, Saidani M, Maamar E, Harbaoui S, Hamzaoui Z, Hosni H, Amine FS, Boubaker IBB. Escherichia coli colonizing healthy children in Tunisia: High prevalence of extra-intestinal pathovar and occurrence of non-extended-spectrum-β-lactamase-producing ST131 clone. Int J Antimicrob Agents 2018; 52:878-885. [PMID: 30036576 DOI: 10.1016/j.ijantimicag.2018.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 11/16/2022]
Abstract
This study was performed to investigate the distribution of antimicrobial resistance genes and extra-intestinal virulence determinants in a collection of 98 Escherichia coli strains isolated from rectal swabs of healthy children. Forty-six isolated strains were resistant to at least one of the tested antibiotics (usually active against enterobacteria). They were mainly resistant to ampicillin and ticarcillin (42.97%), tetracyclin (26.5%), and trimethoprim/sulfamethoxazole (18.4%). No resistance to the third generation of cephalosporins, carbapenems, aminoglycosides and colistin was found. Resistance to penicillins was encoded by blaTEM-1 (n=34) and blaSHV-1 genes (n=4). Tetracyclin resistance was encoded by tetB (n=12), tetA (n= 5), and tetC (n=1) genes. Amongst resistant quinolones isolated (n=5), chromosomal mutations in gyrA and parC genes were detected in four isolates and qnrS1 gene in two strains. Nine plasmid replicon types were detected; IncFIB (n=36) and IncI1 (n=7) were the most frequent ones. Isolates frequently belonged to phylogenetic groups A (51.1%) and D (27.5%). Extra-intestinal pathovar (n=38) occurred mainly in B2 phylogroup (P=0.0002). Amongst them, two isolates (non-extended-spectrum-β-lactamase (ESBL)-producers) belonged to the pandemic clone ST131. A significant distribution of virulence determinants and pathogenicity island marker was observed within strains belonging to B2 and D phylogroups. Interestingly, our results showed that ExPEC strains, including ST131 pandemic clone, are present within fecal isolates in healthy children. These findings highlight the importance of intestinal microbiota as a reservoir for virulent and resistant strains. Thus, reinforcing hand hygiene and antibiotic rational use is imperative to avoid the diffusion of these pathogens in the community.
Collapse
Affiliation(s)
- Sana Ferjani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche «Résistance aux antimicrobiens» 1007, Tunis, Tunisia.
| | - Mabrouka Saidani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche «Résistance aux antimicrobiens» 1007, Tunis, Tunisia; CHU Charles Nicolle, Service de Microbiologie, 1006, Tunis, Tunisia
| | - Elaa Maamar
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche «Résistance aux antimicrobiens» 1007, Tunis, Tunisia
| | - Sarra Harbaoui
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche «Résistance aux antimicrobiens» 1007, Tunis, Tunisia
| | - Zeineb Hamzaoui
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche «Résistance aux antimicrobiens» 1007, Tunis, Tunisia
| | - Houda Hosni
- CHU Charles Nicolle, Service de Microbiologie, 1006, Tunis, Tunisia
| | | | - Ilhem Boutiba Ben Boubaker
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche «Résistance aux antimicrobiens» 1007, Tunis, Tunisia; CHU Charles Nicolle, Service de Microbiologie, 1006, Tunis, Tunisia
| |
Collapse
|
24
|
Wang W, Lin X, Jiang T, Peng Z, Xu J, Yi L, Li F, Fanning S, Baloch Z. Prevalence and Characterization of Staphylococcus aureus Cultured From Raw Milk Taken From Dairy Cows With Mastitis in Beijing, China. Front Microbiol 2018; 9:1123. [PMID: 29988423 PMCID: PMC6024008 DOI: 10.3389/fmicb.2018.01123] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
The colonization of dairy herds and subsequent contamination of raw milk by Staphylococcus aureus (S. aureus), especially those expressing a multi-drug resistance (MDR), biofilm and toxins producing ability, remains an important issue for both the dairy producer and public health. In this study, we investigated the prevalence, antimicrobial resistance, virulence, and genetic diversity of S. aureus in raw milk taken from 2 dairy farms in Beijing, China. Ninety (46.2%, 90/195) samples were positive for S. aureus. Resistant to penicillin (PEN) (31.3%), ciprofloxacin (18.8%) and enrofloxacin (15.6%) were the most often observed. Isolates cultured from farm B showed significantly higher resistance to penicillin (73.9%), ciprofloxacin (34.8%), enrofloxacin (34.8%), tilmicosin (17.4%), and erythromycin (17.4%) than those from farm A (p < 0.05). Totally, 94.8% S. aureus harbored at least one virulence gene and the pvl (93.8%), sec (65.6%), and sea (60.4%) genes were the most frequently detected. The pvl and sec genes were more often detected in isolates from farm A (97.3% and 84.9% respectively) than those from farm B (p < 0.05). Of all 77 staphylococcus enterotoxin (SE)-positive isolates, more than 90% could produce enterotoxins and 70.1% could produce two types. Biofilm related genes (icaA/D, clf/B, can, and fnbA) were detected in all96 isolates. All 96 isolates could produce biofilm with 8.3, 70.8, and 18.8% of the isolates demonstrating weak, moderate and strong biofilm formation, respectively. A total of 5 STs, 7 spa types (1 novel spa type t17182), 3agr types (no agrII), and 14 SmaI-pulso-types were found in this study. PFGE cluster II-CC1-ST1-t127-agr III was the most prevalent clone (56.3%). Isolates of agr III (PFGE Cluster I/II-CC1-ST1-t127/2279) had higher detection of virulence genes than those of agr I and agr IV. TheMSSA-ST398-t1456-agr I clone expressed the greatest MDRbut with no virulence genes and weakly biofilm formation. Our finding indicated a relatively high prevalence of S. aureus with less antimicrobial resistance but often positive for enterotoxigenicity and biofilm formation. This study could help identify predominant clones and provide surveillance measures to eliminate and decrease the contamination of S. aureus in raw milk of dairy cows with mastitis.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaohui Lin
- Physics and Chemical Department, Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Tao Jiang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zixin Peng
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Lingxian Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Nahar A, Awasthi SP, Hatanaka N, Okuno K, Hoang PH, Hassan J, Hinenoya A, Yamasaki S. Prevalence and characteristics of extended-spectrum β-lactamase-producing Escherichia coli in domestic and imported chicken meats in Japan. J Vet Med Sci 2018; 80:510-517. [PMID: 29434117 PMCID: PMC5880835 DOI: 10.1292/jvms.17-0708] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study was to investigate the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-Ec) in retail chicken meats in Japan. Fifty-six domestic and 50 imported (Brazil, n=36; United States, n=8; Thailand, n=6) chicken meat samples were analyzed. The 162 ESBL-Ec included 111 from 43 (77%) domestic samples and 51 from 26 (52%) Brazilian samples. Fifty-three and 30 of 111 and 51 ESBL-Ec from domestic and Brazilian chickens, respectively, were selected for ESBL genotyping. The blaCTX-M (91%), blaTEM (36%) and blaSHV (15%) genes were detected in ESBL-Ec isolated from domestic chickens, whereas blaCTX-M (100%) and blaTEM (20%) were detected in ESBL-Ec isolated from imported chickens. Among the blaCTX-M group, blaCTX-M-2 (45%) and blaCTX-M-1 (34%) were prevalent in domestic chicken isolates, whereas blaCTX-M-2 (53%) and blaCTX-M-8 (43%) were prevalent in imported chicken isolates. Domestic chicken isolates were mostly resistant to tetracycline (83%), followed by streptomycin (70%) and nalidixic acid (62%). Imported chicken isolates were resistant to streptomycin (77%), followed by nalidixic acid (63%) and tetracycline (57%). Notably, extensive multidrug resistance was detected in 60% (32/53) and 70% (21/30) ESBL-Ec from domestic and imported chickens, respectively. Virulence genes associated with diarrheagenic and extra-intestinal pathogenic E. coli were detected in ESBL-Ec isolated from domestic and imported chickens. These data suggest that ESBL-Ec in retail chicken meats could be a potential reservoir for antimicrobial resistance determinants and that some are potentially harmful to humans.
Collapse
Affiliation(s)
- Azimun Nahar
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Sharda Prasad Awasthi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Noritoshi Hatanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Kentaro Okuno
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Phuong Hoai Hoang
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan.,Present address: The Southern Regional Testing Center for Food Safety, Institute of Public Health in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Jayedul Hassan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Atsushi Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| |
Collapse
|