1
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
2
|
Porta NG, Suarez-Archilla G, Miotti C, Molineri AI, Alvarez I, Trono K, Signorini M, Ruiz V. Seroprevalence and risk factors associated with bovine Leukemia virus infection in argentine beef cattle. Res Vet Sci 2023; 164:104999. [PMID: 37708828 DOI: 10.1016/j.rvsc.2023.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, an endemic disease in dairy cattle of Argentina. However, little is known about the seroprevalence of BLV in beef cattle. In this study, we conducted a cross-sectional study including farms from thirteen provinces of Argentina. A total of 5827 bovine serum samples were collected from 76 farms and analyzed using an in-house developed enzyme-linked immunosorbent assay. Information about herd management was collected through a questionnaire, and univariate and multivariate analyses were performed to detect risk factors associated with BLV infection. Herd-level seroprevalence was 71.05%, while the mean animal-level seroprevalence was 7.23% (median = 2.69%; min = 0, max = 75). Only two provinces had no positive BLV samples. The other eleven provinces showed more than 50% of their farms infected with BLV. The multivariate model revealed that BLV prevalence was significantly associated with the use of animals raised in the same farm for cattle replacement (P = 0.005), breeding cows by natural mating with a bull (P < 0.001), and weaning calves after 6 months of age (P = 0.011). This extensive study revealed that BLV seroprevalence in Argentine beef farms has increased during the last years and allowed identifying some management practices associated with BLV prevalence. These data deserve special attention because BLV infection in beef cattle seems to lead to a dissemination pattern similar to that observed during the last decades in dairy cattle, especially considering that Argentina is the sixth beef producer in the world, with about 5% of global beef production.
Collapse
Affiliation(s)
- Natalia Gabriela Porta
- Laboratorio de Virus Adventicios, Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET. Nicolás Repetto y De los Reseros (s/n), Hurlingham (CP1686), Buenos Aires, Argentina.
| | - Guillermo Suarez-Archilla
- Instituto de Investigación de la Cadena Láctea (IDICaL) INTA-CONICET. Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina.
| | - Camila Miotti
- Instituto de Investigación de la Cadena Láctea (IDICaL) INTA-CONICET. Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina.
| | - Ana Inés Molineri
- Instituto de Investigación de la Cadena Láctea (IDICaL) INTA-CONICET. Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina.
| | - Irene Alvarez
- Laboratorio de Virus Adventicios, Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET. Nicolás Repetto y De los Reseros (s/n), Hurlingham (CP1686), Buenos Aires, Argentina
| | - Karina Trono
- Laboratorio de Virus Adventicios, Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET. Nicolás Repetto y De los Reseros (s/n), Hurlingham (CP1686), Buenos Aires, Argentina.
| | - Marcelo Signorini
- Instituto de Investigación de la Cadena Láctea (IDICaL) INTA-CONICET. Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina.
| | - Vanesa Ruiz
- Laboratorio de Virus Adventicios, Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET. Nicolás Repetto y De los Reseros (s/n), Hurlingham (CP1686), Buenos Aires, Argentina.
| |
Collapse
|
3
|
LE DT, NGUYEN SV, LE TAN, NGUYEN VH, LE PD, DINH DV, DUONG HT, VU HV, FUJIMOTO Y, KUNIEDA T, HAGA T. Detection of bovine leukemia virus in beef cattle kept in the Central Coast Regions of Vietnam. J Vet Med Sci 2023; 85:111-116. [PMID: 36450501 PMCID: PMC9887213 DOI: 10.1292/jvms.22-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leucosis. Our previous study showed the BLV existence in cattle kept in the Red River Delta Region of Vietnam. However, no positive samples were identified in beef cattle. Besides, information related to the BLV circulation in the remained parts of Vietnam is limited. Therefore, we tested the existence of BLV in 48 beef cattle kept in the Central Coast Regions. Nested PCR targeting the BLV-env-gp51 confirmed the prevalence of 14.6% in investigated regions. Phylogenetic analysis suggested the co-existence of genotypes 1 and 10. The close relationship between strains found in Vietnam, Thailand, Myanmar, and China was revealed suggesting the possibility of BLV transmission through the movement of live cattle.
Collapse
Affiliation(s)
- Dung Thi LE
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Son Vu NGUYEN
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thu Anh Nu LE
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam,Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Van Huu NGUYEN
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Phung Dinh LE
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Dung Van DINH
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Hai Thanh DUONG
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Hai Van VU
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Yuri FUJIMOTO
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
Japan
| | - Tetsuo KUNIEDA
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Takeshi HAGA
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
Japan,Correspondence to: Haga T: , Division of Infection Control and Disease
Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Transcriptome Analysis of Bovine Macrophages (BoMac) Cells after Infection with Bovine Immunodeficiency Virus. J Vet Res 2022; 66:487-495. [PMID: 36846036 PMCID: PMC9944999 DOI: 10.2478/jvetres-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
Introduction Bovine immunodeficiency virus (BIV) is found worldwide in cattle under natural conditions. However, the effect of BIV infection on immune functions has not been fully characterised. Material and Methods Transcriptome analysis of BoMac cells after in vitro infection with BIV was performed using BLOPlus bovine microarrays. Genes identified as differentially expressed were subjected to functional analysis with the Ingenuity Pathway Analysis software (IPA). Results Out of 1,743 genes with altered expression, 1,315 were mapped as unique molecules. In total, 718 genes were identified as upregulated and 597 genes as downregulated. Differentially expressed genes were involved in 16 pathways related to immune response. The most enriched canonical pathway was leukocyte extravasation signalling. Interleukin-15 (IL-15) production was indicated as the most activated pathway and the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) signalling pathway was the most inhibited one. In addition, the study showed that the inflammatory response was decreased during BIV infection. Conclusion This is the first report to describe the microarray analysis of changes in gene expression upon BIV infection of bovine macrophages. Our data indicated how BIV influences the expression of genes and signalling pathways engaged in the immune response.
Collapse
|
5
|
Keshavarz H, Mohammadi A, Morovati S. Evidence of bovine immunodeficiency virus: A molecular survey in water buffalo populations of Iran. Vet Med Sci 2022; 8:2167-2172. [PMID: 35781800 PMCID: PMC9514501 DOI: 10.1002/vms3.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Objective Methods Results and conclusions
Collapse
Affiliation(s)
- Haniyeh Keshavarz
- Department of Pathobiology School of Veterinary Medicine Shiraz University Shiraz Iran
| | - Ali Mohammadi
- Department of Pathobiology School of Veterinary Medicine Shiraz University Shiraz Iran
| | - Solmaz Morovati
- Department of Pathobiology School of Veterinary Medicine Shiraz University Shiraz Iran
| |
Collapse
|
6
|
Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021; 13:v13112167. [PMID: 34834973 PMCID: PMC8618541 DOI: 10.3390/v13112167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.
Collapse
Affiliation(s)
- Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Suleiman El Tokhy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Sara Badawy
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Natural Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues Huazhong Agricultural University, Wuhan 430070, China
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad 2601, Afghanistan
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Mashal M. Almutairi
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 22334, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Arar 73211, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| |
Collapse
|
7
|
Sakhawat A, Rola-Łuszczak M, Osiński Z, Bibi N, Kuźmak J. Bayesian Estimation of the True Seroprevalence and Risk Factor Analysis of Bovine Leukemia Virus Infection in Pakistan. Animals (Basel) 2021; 11:ani11051404. [PMID: 34069156 PMCID: PMC8156210 DOI: 10.3390/ani11051404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The enzootic bovine leucosis is the most common and economically important viral disease of cattle, caused by bovine leukemia virus (BLV). In cattle, infection with BLV leads to decreased milk production and premature culling and also impairs the immune system predisposing animals to other infections and increasing severity of disease. The aim of this study was to estimate the true seropositivity to BLV at the farm and within-farm levels in Pakistan, using a latent class analysis. In addition, some factors influencing BLV seropositivity were analyzed. We tested 1380 dairy cattle from 451 herds and 92 water buffalo. Analysis at the within-herd and herd levels showed 3.8% of cattle and 1.4% of herds were truly seropositive. All 92 serum samples from water buffalo were negative. The study demonstrated strong association between BLV seroprevalence and herd size but not with common housing of cattle representing indigenous breeds with exotic breed or their crossbred and also common housing of cattle and water buffalo. Abstract The objective of this study was to determine the true seroprevalence of bovine leukemia virus (BLV) infection in dairy cattle from Pakistan at the animal and herd-level. We tested 1380 dairy cattle from 451 herds and 92 water buffalo. The sera were tested by ELISA and the results were analyzed using Bayesian inference. The median posterior estimate of the herd level true BLV prevalence was 1.4%, with a 95% credible interval (CI) 0.7–3.1, whereas the median posterior estimate of the within-farm true seroprevalence was 3.8% with a 95% CI 2.8–4.8. All 92 sera collected from water buffalo were negative. Several risk factors potentially associated with seropositivity to BLV infections in Pakistan were analyzed using logistic regression model based on calculation of an odds ratio (OR). The study showed an association between seropositivity and medium herd (≥50) size (OR = 23.57, 95% CI: 3.01–103.48). Common housing of indigenous cattle with exotic-breed cattle (OR = 0.67, 95% CI: 06–2.35) or housing indigenous or their crossbred cattle with exotic-breed cattle (OR = 0.95, 95% CI: 0.14–3.01) had no effect on the BLV seroprevalence. Similarly, common housing of cattle and water buffalo was not risk factor for increased BLV seropositivity (OR = 27.10, 95% CI: 0.63–119.34).
Collapse
Affiliation(s)
- Ali Sakhawat
- National Veterinary Laboratories, Islamabad 45500, Pakistan;
- Animal Quarantine Department, Ministry of National Food Security and Research, Peshawar 25000, Pakistan
- Department of Bio Sciences, COMSATS University, Islamabad 45500, Pakistan;
| | - Marzena Rola-Łuszczak
- National Veterinary Research Institute, 24-100 Puławy, Poland; (Z.O.); (J.K.)
- Correspondence:
| | - Zbigniew Osiński
- National Veterinary Research Institute, 24-100 Puławy, Poland; (Z.O.); (J.K.)
| | - Nazia Bibi
- Department of Bio Sciences, COMSATS University, Islamabad 45500, Pakistan;
| | - Jacek Kuźmak
- National Veterinary Research Institute, 24-100 Puławy, Poland; (Z.O.); (J.K.)
| |
Collapse
|
8
|
González-Fernández VD, Tórtora Pérez JL, García Flores MM, Aguilar Setién JÁ, Ramírez Álvarez H. First evidence of bovine immunodeficiency virus infection in Mexican cattle. Transbound Emerg Dis 2020; 67:1768-1775. [PMID: 32129921 DOI: 10.1111/tbed.13530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
This study set out to identify the presence of bovine immunodeficiency virus (BIV) in animals geographically located in Mexico. BIV was first discovered in the United States in a dairy cow with persistent lymphocytosis, lymphoid hyperplasia and lymphocytic encephalitis. Many studies indicate that BIV infection is globally distributed, but its presence in Mexico remains unknown. We collected 1,168 heparinized blood samples from cattle in ten states across the Mexican Republic, then separated plasma using centrifugation and tested for antibodies against BIV. We used an indirect ELISA based on the use of a synthetic peptide derived from transmembrane glycoprotein (gp45/TM). In order to identify the viral genome, we designed a synthetic gene as a PCR control, as well as a pair of oligonucleotides for amplifying a 519 bp product of the env gene which encodes the surface protein. Positive amplicons were purified and subjected to nucleotide sequencing. A total of 189 (28.94%) tested plasma samples suggest the presence of specific anti-BIV antibodies in all states studied except for Chiapas. Additionally, PCR results identified six positive cows in the states of Puebla and Coahuila. BIV in these cows was confirmed via nucleotide sequencing and in silico analysis of these samples. This is the first report of the presence of BIV in Mexican cattle.
Collapse
Affiliation(s)
- Víctor David González-Fernández
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, National Autonomous University of Mexico, Cuautitlán Izcalli, Mexico
| | - Jorge Luis Tórtora Pérez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, National Autonomous University of Mexico, Cuautitlán Izcalli, Mexico
| | - María Martha García Flores
- Laboratory of Immunovirology, Medical Research in Immunology Unit, Pediatric Hospital, National Medical Center XXI Century, Mexican Institute of Social Security, Mexico City, Mexico
| | - José Álvaro Aguilar Setién
- Laboratory of Immunovirology, Medical Research in Immunology Unit, Pediatric Hospital, National Medical Center XXI Century, Mexican Institute of Social Security, Mexico City, Mexico
| | - Hugo Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, National Autonomous University of Mexico, Cuautitlán Izcalli, Mexico
| |
Collapse
|
9
|
LE DT, Yamashita-Kawanishi N, Okamoto M, Nguyen SV, Nguyen NH, Sugiura K, Miura T, Haga T. Detection and genotyping of bovine leukemia virus (BLV) in Vietnamese cattle. J Vet Med Sci 2020; 82:1042-1050. [PMID: 32475959 PMCID: PMC7399327 DOI: 10.1292/jvms.20-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) belongs to the genus, Deltaretrovirus of the family, Retroviridae and it is the causative agent of enzootic bovine leukosis. The prevalence of BLV in three provinces in the Red River Delta Region in the North of Vietnam, Hanoi, Vinhphuc and Bacninh was studied from April 2017 to June 2018. A total of 275 blood samples collected from cattle were used for serum isolation and DNA extraction. Of these samples, 266 sera were subjected to ELISA test for detecting antibody against BLV gp51 protein and 152 DNA samples were used to detect the 444 bp fragment corresponding to a part of the gp51 region of the env by nested PCR. The results showed that 16.5% (n=44) and 21.1% (n=32) of samples were positive for BLV gp51 antibody and BLV proviral DNA, respectively. Phylogenetic analysis of the partial (423 bp) and complete (913 bp) BLV env-gp51 gene indicated that Vietnamese strains were clustered into genotypes 1, 6 and 10 (G1, G6 and G10). Of those genotypes, G1 genotype was dominant; G6 strains were designated as G6e and G6f subgenotypes; the existence of genotype 10 was confirmed for the first time in Vietnam. The present study provides important information regarding the prevalence of BLV infection and genetic characteristics of BLV strains identified in Vietnam, contributing to promote the establishment of disease control and eradication strategies in Vietnam.
Collapse
Affiliation(s)
- Dung Thi LE
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nanako Yamashita-Kawanishi
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mari Okamoto
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Son Vu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Nam Huu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Katsuaki Sugiura
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoyuki Miura
- Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
Polat M, Takeshima SN, Aida Y. Epidemiology and genetic diversity of bovine leukemia virus. Virol J 2017; 14:209. [PMID: 29096657 PMCID: PMC5669023 DOI: 10.1186/s12985-017-0876-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/10/2022] Open
Abstract
Bovine leukemia virus (BLV), an oncogenic member of the Deltaretrovirus genus, is closely related to human T-cell leukemia virus (HTLV-I and II). BLV infects cattle worldwide and causes important economic losses. In this review, we provide a summary of available information about commonly used diagnostic approaches for the detection of BLV infection, including both serological and viral genome-based methods. We also outline genotyping methods used for the phylogenetic analysis of BLV, including PCR restriction length polymorphism and modern DNA sequencing-based methods. In addition, detailed epidemiological information on the prevalence of BLV in cattle worldwide is presented. Finally, we summarize the various BLV genotypes identified by the phylogenetic analyses of the whole genome and env gp51 sequences of BLV strains in different countries and discuss the distribution of BLV genotypes worldwide.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|
11
|
Lee E, Kim EJ, Ratthanophart J, Vitoonpong R, Kim BH, Cho IS, Song JY, Lee KK, Shin YK. Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. INFECTION GENETICS AND EVOLUTION 2016; 41:245-254. [DOI: 10.1016/j.meegid.2016.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
12
|
Khudhair YI, Hasso SA, Yaseen NY, Al-Shammari AM. Serological and molecular detection of bovine leukemia virus in cattle in Iraq. Emerg Microbes Infect 2016; 5:e56. [PMID: 27273225 PMCID: PMC4932651 DOI: 10.1038/emi.2016.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/07/2016] [Accepted: 03/07/2016] [Indexed: 02/04/2023]
Abstract
Bovine leukemia virus (BLV) is highly endemic in many countries, including Iraq, and it impacts the beef and dairy industries. The current study sought to determine the percentage of BLV infection and persistent lymphocytosis (PL) in cattle in central Iraq. Hematological, serological, and molecular observations in cross breeds and local breeds of Iraqi cattle naturally infected with BLV were conducted in the peripheral blood mononuclear cells of 400 cattle (340 cross breed and 60 local breed) using enzyme-linked immunosorbent assay and polymerase chain reaction (PCR). On the basis of the absolute number of lymphocytes, five of the 31 positive PCR cases had PL. Among these leukemic cattle, one case exhibited overt neutrophilia. Serum samples were used to detect BLV antibodies, which were observed in 28 (7%) samples. PCR detected BLV provirus in 31 samples (7.75%). All 28 of the seropositive samples and the 3 seronegative samples were positive using PCR. Associations were observed between bovine leukosis and cattle breed, age and sex. Age-specific analysis showed that the BLV percentage increased with age in both breeds. Female cattle (29 animals; 7.34%) exhibited significantly higher infectivity than male cattle (two animals; 4.34%). In conclusion, comprehensive screening for all affected animals is needed in Iraq; programs that segregate cattle can be an effective and important method to control and/or eliminate the BLV.
Collapse
Affiliation(s)
- Yahia Ismail Khudhair
- Department of Veterinary Medicine, College of Veterinary Medicine, Al-University of Qadisiyah, Al Diwaniyah 58002, Iraq
| | - Saleem Amin Hasso
- Department of Veterinary Medicine, College of Veterinary Medicine, University of Baghdad, Baghdad 10001, Iraq
| | - Nahi Y Yaseen
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad 10001, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad 10001, Iraq
| |
Collapse
|
13
|
De Oliveira CHS, Resende CF, Oliveira CMC, Barbosa JD, Fonseca AA, Leite RC, Reis JKP. Absence of Bovine leukemia virus (BLV) infection in buffaloes from Amazon and southeast region in Brazil. Prev Vet Med 2016; 129:9-12. [PMID: 27317318 DOI: 10.1016/j.prevetmed.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Abstract
Enzootic bovine leucosis is an infectious disease caused by Bovine leukemia virus (BLV) and is well described in bovines. The majority of infected animals are asymptomatic, one to five percent develop lymphoma and from 30 to 50% present a persistent lymphocytosis. The virus occurs naturally in cattle and experimentally in buffaloes, capybaras and rabbits. The occurrence of lymphoma in buffaloes has been attributed to BLV infection by some authors in India and Venezuela, but not confirmed by other studies and little information on natural BLV infection in buffaloes is available. The aim of this study was to evaluate the occurrence of BLV in a sub-sample of buffalo from Amazon and southeast regions in Brazil. Three hundred and fifteen serum samples were negative using commercial AGID and ELISA (ELISA-gp51) which detect anti-BLV glycoprotein gp51 antibodies. The same samples were also evaluated for antibodies to whole virus through a commercial ELISA (ELISA-BLV) in which 77 (24.44%) were found seropositive and two (0.63%) inconclusive. On the other hand, all animals were negative by PCR to BLV targeted to the env and tax genes. These results suggest that ELISA-BLV produces false positive results in buffalo serum (p<0.001). In addition, one buffalo lymphoma sample was negative in both PCR assays used in this study. BLV was not detected in buffaloes from the Amazon basin and the southeast region of Brazil. Serological tests, like ELISA-BLV, usually used for cattle may produce false-positive results for BLV in buffaloes and direct detection tests such as PCR should be chosen in these surveys. The occurrence of lymphoma in buffalo was not associated with BLV infection in the one case analyzed in this work and the etiology and pathogenesis of this disease should be clarified.
Collapse
Affiliation(s)
- Cairo H S De Oliveira
- Laboratório de Retroviroses, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Setor de Medicina Veterinária Preventiva, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Cláudia F Resende
- Laboratório de Retroviroses, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Carlos M C Oliveira
- Hospital Veterinário, Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal, Pará, Brazil.
| | - José D Barbosa
- Hospital Veterinário, Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal, Pará, Brazil.
| | - Antônio A Fonseca
- Ministério da Agricultura Pecuária e Abastecimento-LANAGRO, Pedro Leopoldo, Minas Gerais, Brazil.
| | - Rômulo C Leite
- Laboratório de Retroviroses, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Hospital Veterinário, Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal, Pará, Brazil.
| | - Jenner K P Reis
- Laboratório de Retroviroses, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Abstract
Different animal models have been proposed to investigate the mechanisms of Human T-lymphotropic Virus (HTLV)-induced pathogenesis: rats, transgenic and NOD-SCID/γcnull (NOG) mice, rabbits, squirrel monkeys, baboons and macaques. These systems indeed provide useful information but have intrinsic limitations such as lack of disease relevance, species specificity or inadequate immune response. Another strategy based on a comparative virology approach is to characterize a related pathogen and to speculate on possible shared mechanisms. In this perspective, bovine leukemia virus (BLV), another member of the deltaretrovirus genus, is evolutionary related to HTLV-1. BLV induces lymphoproliferative disorders in ruminants providing useful information on the mechanisms of viral persistence, genetic determinants of pathogenesis and potential novel therapies.
Collapse
|
15
|
Albernaz TT, Leite RC, Reis JKP, de Sousa Rodrigues AP, da Cunha Kassar T, Resende CF, de Oliveira CHS, Silva RDM, Salvarani FM, Barbosa JD. Molecular detection of bovine immunodeficiency virus in water buffaloes (Bubalus bubalis) from the Amazon region, Brazil. Trop Anim Health Prod 2015; 47:1625-8. [PMID: 26174574 DOI: 10.1007/s11250-015-0884-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Bovine immunodeficiency is a chronic progressive disease caused by a lentivirus that affects cattle and buffaloes. Although the infection has been described in cattle in some countries, including in Brazil, there are only two reports of infection in buffaloes: one in Pakistan and one in Cambodia. The aim of the present study was to survey the occurrence of bovine immunodeficiency virus (BIV) in water buffaloes from the Amazon region, Pará state, Brazil. BIV proviral DNA was surveyed in 607 whole blood samples of water buffaloes from 10 farms located in the state of Pará using semi-nested polymerase chain reaction (PCR) (PCR-SN) to amplify the pol region of the viral genome. Of the 607 samples tested, 27 (4.4 %) were positive for BIV proviral DNA. The amplified fragments were confirmed by sequence analysis after cloning and nucleotide sequencing. The sequence obtained had 99 % similarity to the reference strain (R-29). The present study provides important epidemiological data because BIV was detected for the first time in water buffaloes in Brazil. Further, the results suggest the possibility of the virus being a risk factor for herd health because it may be a potential causal agent of chronic disease and, also may be associated to other infectious diseases.
Collapse
Affiliation(s)
- Tatiane Teles Albernaz
- Instituto de Medicina Veterinária, Hospital Veterinário de Grandes Animais, Universidade Federal do Pará, Rodovia BR 316 Km 61, Bairro Saudade, 68740-970, Castanhal, PA, Brazil.
| | - Rômulo Cerqueira Leite
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jenner Karlison Pimenta Reis
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula de Sousa Rodrigues
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Telissa da Cunha Kassar
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Claudia Fideles Resende
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cairo Henrique Sousa de Oliveira
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafaela das Mercês Silva
- Instituto de Medicina Veterinária, Hospital Veterinário de Grandes Animais, Universidade Federal do Pará, Rodovia BR 316 Km 61, Bairro Saudade, 68740-970, Castanhal, PA, Brazil
| | - Felipe Masiero Salvarani
- Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará, Santarém, PA, Brazil
| | - José Diomedes Barbosa
- Instituto de Medicina Veterinária, Hospital Veterinário de Grandes Animais, Universidade Federal do Pará, Rodovia BR 316 Km 61, Bairro Saudade, 68740-970, Castanhal, PA, Brazil
| |
Collapse
|
16
|
|
17
|
Bovine herpesvirus 6 in buffaloes (Bubalus bulalis) from the Amazon region, Brazil. Trop Anim Health Prod 2014; 47:465-8. [DOI: 10.1007/s11250-014-0733-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022]
|
18
|
Nikbakht G, Tabatabaei S, Lotfollahzadeh S, Nayeri Fasaei B, Bahonar A, Khormali M. Seroprevalence of bovine viral diarrhoea virus, bovine herpesvirus 1 and bovine leukaemia virus in Iranian cattle and associations among studied agents. JOURNAL OF APPLIED ANIMAL RESEARCH 2014. [DOI: 10.1080/09712119.2014.883995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Young JR, O'Reilly RA, Ashley K, Suon S, Leoung IV, Windsor PA, Bush RD. Impacts on Rural Livelihoods in Cambodia Following Adoption of Best Practice Health and Husbandry Interventions by Smallholder Cattle Farmers. Transbound Emerg Dis 2014; 61 Suppl 1:11-24. [DOI: 10.1111/tbed.12193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 11/26/2022]
Affiliation(s)
- J. R. Young
- Faculty of Veterinary Science; University of Sydney; Camden NSW Australia
| | - R. A. O'Reilly
- Faculty of Veterinary Science; University of Sydney; Camden NSW Australia
| | - K. Ashley
- Faculty of Veterinary Science; University of Sydney; Camden NSW Australia
| | - S. Suon
- Department of Animal Health and Production; Ministry of Agriculture Forestry and Fisheries; Phnom Penh Cambodia
| | - I. V. Leoung
- Department of Animal Health and Production; Ministry of Agriculture Forestry and Fisheries; Phnom Penh Cambodia
| | - P. A. Windsor
- Faculty of Veterinary Science; University of Sydney; Camden NSW Australia
| | - R. D. Bush
- Faculty of Veterinary Science; University of Sydney; Camden NSW Australia
| |
Collapse
|
20
|
Rodríguez SM, Florins A, Gillet N, de Brogniez A, Sánchez-Alcaraz MT, Boxus M, Boulanger F, Gutiérrez G, Trono K, Alvarez I, Vagnoni L, Willems L. Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses 2011; 3:1210-48. [PMID: 21994777 PMCID: PMC3185795 DOI: 10.3390/v3071210] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 01/06/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus closely related to the human T-lymphotropic virus type 1 (HTLV-1). BLV is a major animal health problem worldwide causing important economic losses. A series of attempts were developed to reduce prevalence, chiefly by eradication of infected cattle, segregation of BLV-free animals and vaccination. Although having been instrumental in regions such as the EU, these strategies were unsuccessful elsewhere mainly due to economic costs, management restrictions and lack of an efficient vaccine. This review, which summarizes the different attempts previously developed to decrease seroprevalence of BLV, may be informative for management of HTLV-1 infection. We also propose a new approach based on competitive infection with virus deletants aiming at reducing proviral loads.
Collapse
Affiliation(s)
- Sabrina M. Rodríguez
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
| | - Arnaud Florins
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - Nicolas Gillet
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
| | - Alix de Brogniez
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - María Teresa Sánchez-Alcaraz
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - Mathieu Boxus
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - Fanny Boulanger
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
| | - Gerónimo Gutiérrez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Karina Trono
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Irene Alvarez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Lucas Vagnoni
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Luc Willems
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| |
Collapse
|
21
|
Desport M, Ditcham WGF, Lewis JR, McNab TJ, Stewart ME, Hartaningsih N, Wilcox GE. Analysis of Jembrana disease virus replication dynamics in vivo reveals strain variation and atypical responses to infection. Virology 2009; 386:310-6. [PMID: 19230948 DOI: 10.1016/j.virol.2009.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Jembrana disease virus (JDV) is an acute lentiviral infection of Bali cattle in Indonesia. Data generated during a series of cattle infection experiments was examined and significant differences were identified in the mean plasma viral load on the first and second days of the febrile response in cattle infected with JDV(TAB/87) compared to those infected with JDV(PUL/01). The peak and total viral loads >or=10(6) genome copies/ml during the acute stage of the disease were significantly higher in JDV(TAB/87) infected cattle. JDV(PUL/01) infected cattle developed peak rectal temperatures earlier than the JDV(TAB/87) cattle but there were no differences in the duration of the febrile responses observed for the 2 groups of animals. The plasma viremia was above 10(6) genome copies/ml for almost 3 days longer in JDV(TAB/87) compared to JDV(PUL/01) infected cattle. Atypical responses to infection occurred in approximately 15% of experimentally infected animals, characterized by reduced viral loads, lower or absent febrile responses and absence of p26-specific antibody responses. Most of these cattle developed normal Tm-specific antibody responses between 4-12 weeks post-infection.
Collapse
Affiliation(s)
- Moira Desport
- School of Veterinary and Biomedical Science, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kurtinaitiene B, Ambrozaite D, Laurinavicius V, Ramanaviciene A, Ramanavicius A. Amperometric immunosensor for diagnosis of BLV infection. Biosens Bioelectron 2008; 23:1547-54. [PMID: 18294837 DOI: 10.1016/j.bios.2008.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 11/29/2022]
Abstract
A new amperometric immunosensor for detection of antibodies against bovine leukemia protein (gp51) was designed. The detection of antibody-antigen complex formation was based on application of secondary antibodies labeled with horseradish peroxidase (HRP). Ferrocenecarboxylic acid (FCA) and N,N,N',N'-tetramethylbenzidine (TMB) were selected as suitable mediators for this immunosensor. Optimal conditions for amperometric detection were found. Sensitivity of created system was compared with the results of enzyme-linked immunosorbent assay (ELISA) and agar gel immunodiffusion (AGID) reaction, and was sufficient for detection of usual anti-gp51 antibody concentration present in the blood serum of BLV-infected cattle.
Collapse
|
23
|
St-Louis MC, Cojocariu M, Archambault D. The molecular biology of bovine immunodeficiency virus: a comparison with other lentiviruses. Anim Health Res Rev 2005; 5:125-43. [PMID: 15984320 DOI: 10.1079/ahr200496] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine immunodeficiency virus (BIV) was first isolated in 1969 from a cow, R-29, with a wasting syndrome. The virus isolated induced the formation of syncytia in cell cultures and was structurally similar to maedi-visna virus. Twenty years later, it was demonstrated that the bovine R-29 isolate was indeed a lentivirus with striking similarity to the human immunodeficiency virus. Like other lentiviruses, BIV has a complex genomic structure characterized by the presence of several regulatory/accessory genes that encode proteins, some of which are involved in the regulation of virus gene expression. This manuscript aims to review biological and, more particularly, molecular aspects of BIV, with emphasis on regulatory/accessory viral genes/proteins, in comparison with those of other lentiviruses.
Collapse
Affiliation(s)
- Marie-Claude St-Louis
- University of Québec at Montréal, Department of Biological Sciences, Montréal, Québec, Canada
| | | | | |
Collapse
|
24
|
Desport M, Stewart ME, Sheridan CA, Ditcham WGF, Setiyaningsih S, Tenaya WM, Hartaningsih N, Wilcox GE. Recombinant Jembrana disease virus gag proteins identify several different antigenic domains but do not facilitate serological differentiation of JDV and nonpathogenic bovine lentiviruses. J Virol Methods 2005; 124:135-42. [PMID: 15664061 DOI: 10.1016/j.jviromet.2004.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 11/18/2004] [Accepted: 11/22/2004] [Indexed: 11/28/2022]
Abstract
In Indonesia, it is suspected that there are two bovine lentiviruses circulating in the cattle population: a pathogenic Jembrana disease virus (JDV), and a nonpathogenic bovine immunodeficiency-like virus (BIV). Both viruses cross-react antigenically and cannot be differentiated by current serological tests using JDV antigens. To identify possible type-specific epitopes, a series of recombinant protein constructs including the matrix, capsid and nucleocapsid proteins were produced from JDV gag and the expressed proteins were tested by Western blot using JDV and BIV hyperimmune sera. JDV matrix and truncated capsid proteins were recognised by both JDV and BIV hyperimmune sera indicating that there were multiple cross-reactive epitopes present in JDV gag. At least three epitopic regions were identified in these constructs, including the major homology region, by monoclonal antibody binding studies. JDV nucleocapsid recombinant protein was not recognised by either JDV or BIV hyperimmune sera and none of the recombinant gag proteins were able to differentiate between JDV positive sera from Jembrana disease endemic and Jembrana disease-free areas. Additionally, a 40 amino acid recombinant subunit protein encompassing the region recently found to contain an epitope unique to BIV [Zheng, L., Zhang, S., Wood, C., Kapil, S., Wilcox, G.E., Loughin, T.A., Minocha, H.C., 2001. Differentiation of two bovine lentiviruses by a monoclonal antibody on the basis of epitope specificity. Clin. Diagn. Lab. Immunol. 8, 283-287] was tested but was not recognised by either JDV positive sera from Jembrana disease-endemic or Jembrana disease-free areas.
Collapse
Affiliation(s)
- Moira Desport
- Department of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Usui T, Meas S, Konnai S, Ohashi K, Onuma M. Seroprevalence of bovine immunodeficiency virus and bovine leukemia virus in dairy and beef cattle in hokkaido. J Vet Med Sci 2003; 65:287-9. [PMID: 12655131 DOI: 10.1292/jvms.65.287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serological survey of bovine immunodeficiency virus (BIV) and bovine leukemia virus (BLV) infection was conducted in dairy cattle from 10 different regions of Hokkaido, Japan. Among 390 cattle, 11.0% of cattle were BIV-seropositive and 3.3% were BLV-seropositive. Moreover, in two dairy farms, where bovine leukosis has been reported, prevalence of BIV infections were 6.4 and 9.1%, respectively. In contrast, among 150 beef cattle, 16.6% were BIV-seropositive while none was BLV-seropositive. Dual infections with BLV and BIV in dairy cattle were tested by using 107 BLV-seropositive sera, and 20 sera were found BIV-positive (18.7%). These results indicate that BIV infection was widespread in Hokkaido.
Collapse
Affiliation(s)
- Tatsufumi Usui
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
26
|
Scobie L, Venables C, Sayers AR, Weightman S, Jarrett O. Prevalence of bovine immunodeficiency virus infection in cattle in Great Britain. Vet Rec 2001; 149:459-60. [PMID: 11688750 DOI: 10.1136/vr.149.15.459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- L Scobie
- Department of Veterinary Pathology, University of Glasgow
| | | | | | | | | |
Collapse
|