1
|
Kostova V, Hanke D, Kaspar H, Fiedler S, Schwarz S, Krüger-Haker H. Macrolide resistance in Mannheimia haemolytica isolates associated with bovine respiratory disease from the German national resistance monitoring program GE RM-Vet 2009 to 2020. Front Microbiol 2024; 15:1356208. [PMID: 38495516 PMCID: PMC10940430 DOI: 10.3389/fmicb.2024.1356208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Data collected from the German national resistance monitoring program GERM-Vet showed slowly increasing prevalence of macrolide resistance among bovine respiratory disease (BRD)-associated Pasteurellacae from cattle over the last decade. The focus of this study was to analyze the genetic basis of antimicrobial resistance (AMR) and the prevalence of multidrug-resistance (MDR)-mediating integrative and conjugative elements (ICEs) in 13 German BRD-associated Mannheimia haemolytica isolates collected between 2009 and 2020 via whole-genome sequencing. Antimicrobial susceptibility testing (AST) was performed via broth microdilution according to the recommendations of the Clinical and Laboratory Standards Institute for the macrolides erythromycin, tilmicosin, tulathromycin, gamithromycin, tildipirosin, and tylosin as well as 25 other antimicrobial agents. All isolates either had elevated MICs or were resistant to at least one of the macrolides tested. Analysis of whole-genome sequences obtained by hybrid assembly of Illumina MiSeq and Oxford Nanopore MinION reads revealed the presence of seven novel Tn7406-like ICEs, designated Tn7694, and Tn7724- Tn7729. These ICEs harbored the antimicrobial resistance genes erm(T), mef (C), mph(G), floR, catA3, aad(3")(9), aph(3')-Ia, aac(3)-IIa, strA, strB, tet(Y), and sul2 in different combinations. In addition, mutational changes conferring resistance to macrolides, nalidixic acid or streptomycin, respectively, were detected among the M. haemolytica isolates. In addition, four isolates carried a 4,613-bp plasmid with the β-lactamase gene blaROB - 1. The detection of the macrolide resistance genes erm(T), mef (C), and mph(G) together with other resistance genes on MDR-mediating ICEs in bovine M. haemolytica may explain the occurrence of therapeutic failure when treating BRD with regularly used antimicrobial agents, such as phenicols, penicillins, tetracyclines, or macrolides. Finally, pathogen identification and subsequent AST is essential to ensure the efficacy of the antimicrobial agents applied to control BRD in cattle.
Collapse
Affiliation(s)
- Valeria Kostova
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Alvarez J, Calderón Bernal JM, Torre-Fuentes L, Hernández M, Jimenez CEP, Domínguez L, Fernández-Garayzábal JF, Vela AI, Cid D. Antimicrobial Susceptibility and Resistance Mechanisms in Mannheimia haemolytica Isolates from Sheep at Slaughter. Animals (Basel) 2023; 13:1991. [PMID: 37370501 DOI: 10.3390/ani13121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Mannheimia haemolytica is the main pathogen contributing to pneumonic pasteurellosis in sheep. The aim of this study was to investigate the antimicrobial resistance levels in M. haemolytica isolates from the lungs of slaughtered sheep and to examine the genetic resistance mechanisms involved. A total of 256 M. haemolytica isolates, 169 from lungs with pneumonic lesions and 87 from lungs without lesions, were analyzed by the disk diffusion method for 12 antimicrobials, and the whole genome of 14 isolates was sequenced to identify antimicrobial resistance determinants. Levels of phenotypic resistance ranged from <2% for 10 antimicrobials (amoxicillin, amoxicillin-clavulanic, ceftiofur, cefquinome, lincomycin/spectinomycin, gentamicin, erythromycin, florfenicol, enrofloxacin, and doxycycline) to 4.3% for tetracycline and 89.1% for tylosin. Six isolates carried tetH genes and four isolates carried, in addition, the strA and sul2 genes in putative plasmid sequences. No mutations associated with macrolide resistance were identified in 23 rDNA sequences, suggesting that the M. haemolytica phenotypic results for tylosin should be interpreted with care in the absence of well-established epidemiological and clinical breakpoints. The identification of strains phenotypically resistant to tetracycline and of several resistance genes, some of which were present in plasmids, highlights the need for continuous monitoring of susceptibility patterns in Pasteurellaceae isolates from livestock.
Collapse
Affiliation(s)
- Julio Alvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Johan M Calderón Bernal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Laura Torre-Fuentes
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain
| | - Chris E Pinto Jimenez
- London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Lucas Domínguez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - José F Fernández-Garayzábal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Ana I Vela
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Dolores Cid
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
3
|
Andrés-Lasheras S, Ha R, Zaheer R, Lee C, Booker CW, Dorin C, Van Donkersgoed J, Deardon R, Gow S, Hannon SJ, Hendrick S, Anholt M, McAllister TA. Prevalence and Risk Factors Associated With Antimicrobial Resistance in Bacteria Related to Bovine Respiratory Disease-A Broad Cross-Sectional Study of Beef Cattle at Entry Into Canadian Feedlots. Front Vet Sci 2021; 8:692646. [PMID: 34277758 PMCID: PMC8280473 DOI: 10.3389/fvets.2021.692646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
A broad, cross-sectional study of beef cattle at entry into Canadian feedlots investigated the prevalence and epidemiology of antimicrobial resistance (AMR) in Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis, bacterial members of the bovine respiratory disease (BRD) complex. Upon feedlot arrival and before antimicrobials were administered at the feedlot, deep nasopharyngeal swabs were collected from 2,824 feedlot cattle in southern and central Alberta, Canada. Data on the date of feedlot arrival, cattle type (beef, dairy), sex (heifer, bull, steer), weight (kg), age class (calf, yearling), source (ranch direct, auction barn, backgrounding operations), risk of developing BRD (high, low), and weather conditions at arrival (temperature, precipitation, and estimated wind speed) were obtained. Mannheimia haemolytica, P. multocida, and H. somni isolates with multidrug-resistant (MDR) profiles associated with the presence of integrative and conjugative elements were isolated more often from dairy-type than from beef-type cattle. Our results showed that beef-type cattle from backgrounding operations presented higher odds of AMR bacteria as compared to auction-derived calves. Oxytetracycline resistance was the most frequently observed resistance across all Pasteurellaceae species and cattle types. Mycoplasma bovis exhibited high macrolide minimum inhibitory concentrations in both cattle types. Whether these MDR isolates establish and persist within the feedlot environment, requires further evaluation.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Reuben Ha
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Craig Dorin
- Veterinary Agri-Health Systems, Airdrie, AB, Canada
| | | | - Rob Deardon
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
| | - Sheryl Gow
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Public Health Agency of Canada, Saskatoon, SK, Canada
| | | | | | - Michele Anholt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,POV Inc., Airdrie, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
4
|
Antimicrobial Resistance in Members of the Bacterial Bovine Respiratory Disease Complex Isolated from Lung Tissue of Cattle Mortalities Managed with or without the Use of Antimicrobials. Microorganisms 2020; 8:microorganisms8020288. [PMID: 32093326 PMCID: PMC7074851 DOI: 10.3390/microorganisms8020288] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Over a two-year period, Mannheimia haemolytica (MH; n = 113), Pasteurella multocida (PM; n = 47), Histophilus somni (HS; n = 41) and Mycoplasma bovis (MB; n = 227) were isolated from bovine lung tissue at necropsy from cattle raised conventionally (CON, n = 29 feedlots) or without antimicrobials [natural (NAT), n = 2 feedlots]. Excluding MB, isolates were assayed by PCR to detect the presence of 13 antimicrobial resistance (AMR) genes and five core genes associated with integrative and conjugative elements (ICEs). Antimicrobial susceptibility phenotypes and minimum inhibitory concentrations (MICs, µg/mL) were determined for a subset of isolates (MH, n = 104; PM, n = 45; HS, n = 23; and MB, n = 61) using Sensititre analyses. A subset of isolates (n = 21) was also evaluated by whole-genome sequencing (WGS) based on variation in AMR phenotype. All five ICE core genes were detected in PM and HS by PCR, but only 3/5 were present in MH. Presence of mco and tnpA ICE core genes in MH was associated with higher MICs (p < 0.05) for all tetracyclines, and 2/3 of all macrolides, aminoglycosides and fluoroquinolones evaluated. In contrast, association of ICE core genes with MICs was largely restricted to macrolides for PM and to individual tetracyclines and macrolides for HS. For MH, the average number of AMR genes markedly increased (p < 0.05) in year 2 of the study due to the emergence of a strain that was PCR positive for all 13 PCR-tested AMR genes as well as two additional AMR genes (aadA31 and blaROB-1) detected by WGS. Conventional management of cattle increased (p < 0.05) MICs of tilmicosin and tulathromycin for MH; neomycin and spectinomycin for PM; and gamithromycin and tulathromycin for MB. The average number of PCR-detected AMR genes in PM was also increased (p < 0.05) in CON mortalities. This study demonstrates increased AMR especially to macrolides by bovine respiratory disease organisms in CON as compared to NAT feedlots and a rapid increase in AMR following dissemination of strain(s) carrying ICE-associated multidrug resistance.
Collapse
|
5
|
Snyder ER, Alvarez-Narvaez S, Credille BC. Genetic characterization of susceptible and multi-drug resistant Mannheimia haemolytica isolated from high-risk stocker calves prior to and after antimicrobial metaphylaxis. Vet Microbiol 2019; 235:110-117. [PMID: 31282368 DOI: 10.1016/j.vetmic.2019.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022]
Abstract
Bovine Respiratory Disease (BRD) is a major threat to animal health and welfare in the cattle industry. Strains of Mannheimia haemolytica (Mh) that are resistant to multiple classes of antimicrobials are becoming a major concern in the beef industry, as the frequency of isolation of these strains has been increasing. Mobile genetic elements, such as integrative conjugative elements (ICE), are frequently implicated in this rapid increase in multi-drug resistance. The objectives of the current study were to determine the genetic relationship between the isolates collected at arrival before metaphylaxis and at revaccination after metaphylaxis, to identify which resistance genes might be present in these isolates, and to determine if they were carried on an ICE. Twenty calves culture positive for Mh at arrival and revaccination were identified, and a total of 48 isolates with unique susceptibility profiles (26 from arrival, and 22 from revaccination) were submitted for whole-genome sequencing (WGS). A phylogenetic tree was constructed, showing the arrival isolates falling into four clades, and all revaccination isolates within one clade. All revaccination isolates, and one arrival isolate, were positive for the presence of an ICE. Three different ICEs with resistance gene modules were identified. The resistance genes aphA1, strA, strB, sul2, floR, erm42, tetH/R, aadB, aadA25, blaOXA-2, msrE, mphE were all located within an ICE. The gene bla-ROB1 was also present in the isolates, but was not located within an ICE.
Collapse
Affiliation(s)
- Emily R Snyder
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, United States.
| | - Sonsiray Alvarez-Narvaez
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, United States
| | - Brent C Credille
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, United States
| |
Collapse
|
6
|
Woolums AR, Karisch BB, Frye JG, Epperson W, Smith DR, Blanton J, Austin F, Kaplan R, Hiott L, Woodley T, Gupta SK, Jackson CR, McClelland M. Multidrug resistant Mannheimia haemolytica isolated from high-risk beef stocker cattle after antimicrobial metaphylaxis and treatment for bovine respiratory disease. Vet Microbiol 2018; 221:143-152. [PMID: 29981701 DOI: 10.1016/j.vetmic.2018.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
Antimicrobial resistance (AMR) in bacterial respiratory pathogens in high-risk stocker cattle has been poorly characterized. The objective of this study was to describe the prevalence of multidrug resistant (MDR; resistance to > 3 antimicrobial classes) respiratory pathogens in 50 conventionally managed stocker cattle over 21 days after arrival. Cattle received tildipirosin metaphylaxis on day 0 and were eligible to receive up to 3 additional antimicrobials for bovine respiratory disease (BRD): florfenicol, ceftiofur and enrofloxacin. Nasopharyngeal swabs were collected on days 0, 7, 14, and 21 for bacterial culture and antimicrobial susceptibility testing using disc diffusion and broth microdilution. Mannheimia haemolytica was isolated from 5 of 48, 27 of 50, 44 of 50, and 40 of 50 cattle on days 0, 7, 14, and 21, respectively. One of 5, 27 of 27, 43 of 44, and 40 of 40 M. haemolytica were MDR on days 0, 7, 14, and 21, respectively. Pasteurella multocida was isolated from 6 of 48 cattle on day 0 and none were MDR; no other pathogens were isolated. Twenty-four cattle required at least one BRD treatment; M. haemolytica was isolated before treatment from 13 of 24 cattle; all were MDR. One hundred-eighteen M. haemolytica isolates were subjected to pulsed-field gel electrophoresis (PFGE); multiple genotypes were identified. Whole genome sequencing of 33 isolates revealed 14 known AMR genes. Multidrug resistant M. haemolytica can be highly prevalent and genetically diverse in stocker cattle; additional research is necessary to determine factors that influence prevalence and the impact on cattle health.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA.
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - William Epperson
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - David R Smith
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - John Blanton
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Frank Austin
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Ray Kaplan
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Lari Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Tiffanie Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Sushim K Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, and Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
7
|
Kong LC, Gao D, Gao YH, Liu SM, Ma HX. Fluoroquinolone resistance mechanism of clinical isolates and selected mutants of Pasteurella multocida from bovine respiratory disease in China. J Vet Med Sci 2014; 76:1655-7. [PMID: 25649952 PMCID: PMC4300385 DOI: 10.1292/jvms.14-0240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The minimum inhibitory
concentrations (MICs), mutation prevention concentrations (MPCs) and contribution of
quinolone resistance-determining region (QRDR) mutations to fluoroquinolone
(ciprofloxacin, enrofloxacin and orbifloxacin) susceptibility in 23 Pasteurella
multocida (Pm) isolates were investigated.
Fluoroquinolone-susceptible isolates (MICs ≤0.25 µg/ml,
9 isolates) had no QRDR mutations, and their respective MPCs were low.
Fluoroquinolone-intermediate isolates (MICs=0.5 µg/ml,
14 isolates) had QRDR mutations (Asp87 to Asn or Ala84 to Pro in gyrA),
and their respective MPCs were high (4–32 µg/ml).
First-step mutants (n=5) and laboratory-derived highly resistant fluoroquinolone mutants
(n=5) also had QRDR mutations. The MICs of fluoroquinolones for mutant-derived strains
were decreased in the presence of efflux inhibitors. The results indicated that the
fluoroquinolone resistance of Pm is mainly due to multiple target gene
mutations in gyrA and parC and the overexpression of
efflux pump genes.
Collapse
Affiliation(s)
- Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.#2888, Changchun 130118, P.R. China
| | | | | | | | | |
Collapse
|
8
|
Yu DJ, Lai BS, Li J, Ma YF, Yang F, Li Z, Luo XQ, Chen X, Huang YF. Cornmeal-induced resistance to ciprofloxacin and erythromycin in enterococci. CHEMOSPHERE 2012; 89:70-75. [PMID: 22633859 DOI: 10.1016/j.chemosphere.2012.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 03/29/2012] [Accepted: 04/04/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE To establish a model ecosystem to study the impact of cornmeal on the appearance and persistence of the erythromycin (ERY)- and ciprofloxacin (CIP)-resistant phenotypes in waterborne enterococci. METHODS After the model ecosystem was established, the system was divided into six dose groups, with the addition of 8, 4, 1, 0.25, 0.05, and 0 g L(-1) sterilized cornmeal. System mud samples were collected at 0, 1, 3, 7, 14, 30, 40, 61, and 130 d, and enterococci present in the mud samples were evaluated for their sensitivities to CIP and ERY. PCR was employed to detect genes such as gyrA and ermB. The gyrA gene was sequenced, and codons 83 and 87 were analyzed for mutations. RESULTS (1) The addition of 0.05-8 g L(-1) cornmeal had an impact on CIP resistance. The higher the dose of cornmeal added, the larger the impact it generated. Furthermore, the earlier the emergence of CIP-resistant strains, the greater the incidence of drug resistance. The impact of cornmeal on resistance to ERY was less consistent, and the degree of the impact was not in proportion to the dose of cornmeal added. (2) There were no mutations at codons 83 and 87 in the gyrA genes from 102 strains isolated from the model ecosystem. The incidence of ermB-positive strains of ERY-resistant enterococci (28 strains) was 78.6%, and the incidence of ermB-positive strains of ERY-sensitive enterococci (16 strains) was 0%. CONCLUSIONS (1) Adding different doses of cornmeal can facilitate resistance to CIP and ERY in waterborne enterococci. In this study, the degree of resistance was related to the cornmeal dose. (2) In the model ecosystem, enterococcal CIP resistance was not caused by a gyrA gene mutation; however, in the vast majority of cases, resistance to ERY was related to the ermB resistance gene.
Collapse
Affiliation(s)
- Dao-Jin Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fu Zhou, Fujian Province 350002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kroemer S, Galland D, Guérin-Faublée V, Giboin H, Woehrlé-Fontaine F. Survey of marbofloxacin susceptibility of bacteria isolated from cattle with respiratory disease and mastitis in Europe. Vet Rec 2011; 170:53. [PMID: 22121154 DOI: 10.1136/vr.100246] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A monitoring programme conducted in Europe since 1994 to survey the marbofloxacin susceptibility of bacterial pathogens isolated from cattle has established the susceptibility of bacterial strains isolated before any antibiotic treatment from bovine mastitis and bovine respiratory disease (BRD) cases between 2002 and 2008. Minimum inhibitory concentration (MIC) was determined by a standardised microdilution technique. For respiratory pathogens, Pasteurella multocida and Mannheimia haemolytica isolates (751 and 514 strains, respectively) were highly susceptible to marbofloxacin (MIC≤0.03 µg/ml for 77.39 per cent of the strains) and only 1.75 per cent of M haemolytica strains were resistant (MIC≥4 µg/ml). Histophilus somni isolates (73 strains) were highly susceptible to marbofloxacin (0.008 to 0.06 µg/ml). Mycoplasma bovis MIC (171 strains) ranged from 0.5 to 4 µg/ml. For mastitis pathogens, the majority of Escherichia coli isolates were highly susceptible to marbofloxacin (95.8 per cent of 617 strains). Staphylococcus aureus and coagulase-negative staphylococci (568 and 280 strains) had a homogenous population with MIC centred on 0.25 µg/ml. Streptococcus uberis and Streptococcus dysgalactiae (660 and 217 strains) were moderately susceptible with MIC centred on 1 µg/ml. Marbofloxacin MIC for these various pathogens appeared stable over the seven years of the monitoring programme and was similar to previously published MIC results.
Collapse
Affiliation(s)
- S Kroemer
- Vétoquinol S. A, Centre de recherche, 34 rue du Chêne Sainte Anne, 70200 Lure, France.
| | | | | | | | | |
Collapse
|