1
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
2
|
Hashimoto Y, Hamaguchi M, Fukui M. Fermented soybean foods and diabetes. J Diabetes Investig 2023; 14:1329-1340. [PMID: 37799064 PMCID: PMC10688128 DOI: 10.1111/jdi.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
The number of patients with type 2 diabetes mellitus is increasing, and its prevention and management are important. One of the factors contributing to the increased incidence of type 2 diabetes mellitus is the change in dietary habits, including a Westernized diet. Fermented foods are foods that are transformed by the action of microorganisms to produce beneficial effects in humans and have been consumed for thousands of years. The production and consumption of fermented soy foods, including natto, miso, douchi, cheonggukjang, doenjang, tempeh, and fermented soy milk, are widespread in Asian countries. This review focuses on fermented soybean foods and summarizes their effects on diabetes. Fermentation increases the content of ingredients originally contained in soybeans and adds new ingredients that are not present in the original soybeans. Recent studies have revealed that fermented soybean food modifies the gut microbiota-related metabolites by modifying dysbiosis. Furthermore, it has been reported that fermented soybean foods have antioxidant, anti-inflammatory, and anti-diabetic effects. In recent years, fermented foods, including fermented soybeans, have shown various beneficial effects. Therefore, it is necessary to continue focusing on the benefits and mechanisms of action of fermented foods.
Collapse
Affiliation(s)
- Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
3
|
Wang C, Chen J, Tian W, Han Y, Xu X, Ren T, Tian C, Chen C. Natto: A medicinal and edible food with health function. CHINESE HERBAL MEDICINES 2023; 15:349-359. [PMID: 37538862 PMCID: PMC10394349 DOI: 10.1016/j.chmed.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 08/05/2023] Open
Abstract
Natto is a soybean product fermented by natto bacteria. It is rich in a variety of amino acids, vitamins, proteins and active enzymes. It has a number of biological activities, such as thrombolysis, prevention of osteoporosis, antibacterial, anticancer, antioxidant and so on. It is widely used in medicine, health-care food, biocatalysis and other fields. Natto is rich in many pharmacological active substances and has significant medicinal research value. This paper summarizes the pharmacological activities and applications of natto in and outside China, so as to provide references for further research and development of natto.
Collapse
Affiliation(s)
- Chunfang Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Jinpeng Chen
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Wenguo Tian
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Yanqi Han
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Xu Xu
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Tao Ren
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Chengwang Tian
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Changqing Chen
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| |
Collapse
|
4
|
Wang C, Shan H, Chen H, Bai X, Ding J, Ye D, Adam FEA, Yang Y, Wang J, Yang Z. Probiotics and vitamins modulate the cecal microbiota of laying hens submitted to induced molting. Front Microbiol 2023; 14:1180838. [PMID: 37228378 PMCID: PMC10203222 DOI: 10.3389/fmicb.2023.1180838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Induced molting enables laying hens to relax, restore energy and prolong the laying hen cycle, resolving problems such as poor egg quality and minimizing economic losses caused by rising global feeding costs. However, traditional molting methods may disrupt gut microflora and promote potential pathogens infections. This study used a customized additive with a mixture of probiotics and vitamins to induce molting and examine the cecal microbiota post molting. A total of two hundred 377 day-of-ISA Brown laying hens were randomly assigned to four groups: non-molt with basal diet (C), 12-day feeding restriction (FR) in earlier-molting (B), feed again to 27.12% egg production in middle-molting (A) and reach second peak of egg production over 81.36% in post-molting (D). Sequencing 16S rRNA to analyze cecal microbial composition revealed that there is no significant change in bacterial community abundance post-molting. In contrast to group C, the number of potentially harmful bacteria such as E. coli and Enterococcus was not found to increase in groups B, A, or D. This additive keeps cecal microbiota diversity and community richness steady. In cecal contents, hens in group B had lower Lactobacillus, Lachnospiraceae and Prevotellaceae (vsC, A, and D), no significant differences were found between post-molting and the non-molting. Furthermore, cecal microbiota and other chemicals (antibodies, hormones, and enzymes, etc.) strongly affect immunological function and health. Most biochemical indicators are significantly positively correlated with Prevotellaceae, Ruminococcaceae and Subdoligranulum, while negatively with Phascolarctobacterium and Desulfovibrio. In conclusion, the additive of probiotics and vitamins improved the cecal microbiota composition, no increase in the associated pathogenic microbial community due to traditional molting methods, and enhances hepatic lipid metabolism and adaptive immunological function, supporting their application and induced molting technology in the poultry breeding industry.
Collapse
Affiliation(s)
- Chunyang Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Honghu Shan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Hui Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Xindong Bai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Jingru Ding
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Dongyang Ye
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | | | - Yawei Yang
- Hongyan Molting Research Institute, Xianyang, Shanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| |
Collapse
|
5
|
Hu H, Wu C, Ge F, Ren Y, Li W, Li J. Poly-γ-glutamic acid-producing Bacillus velezensis fermentation can improve the feed properties of soybean meal. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|