1
|
Vinayashree S, Hemakumar C, Veeranna RP, Kumar R, Pavithra V, Mahendra VP, Vasu P. In Vitro Studies of Pumpkin (Cucurbita moschata var. Kashi Harit) Seed Protein Fraction(s) to Evaluate Anticancer and Antidiabetic Properties. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:632-640. [PMID: 38951376 DOI: 10.1007/s11130-024-01205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/03/2024]
Abstract
Chronic diseases like cancer and diabetes are the major public health concerns of India and worldwide. Nowadays, plant-derived products are in great demand for the treatment of these diseases. Pumpkin seeds are traditionally implicated for their pharmacological properties, as exemplified by benign prostatic hyperplasia. Earlier, pumpkin seed proteins were extracted by the Osborne method, and their functional and nutritional qualities were evaluated. Here, the aim is to assess in vitro, the anticancer and antidiabetic properties of seed protein fractions. HepG2, MDA-MB-231, and MCF-7 cell lines were treated with water-soluble (WF) and alkali-soluble fractions (AF) to assess cytotoxicity, while pancreatic β-cells and insulin resistance (IR) - HepG2 cell lines were treated with WF to evaluate the antidiabetic potential. WF and AF showed cytotoxic effects towards HepG2 and MDA-MB-231 cell lines, suggesting apoptosis-mediated anticancerous activity. WF potentiates glucose-stimulated insulin secretion in pancreatic β-cells, in a dose-dependent manner. In IR-HepG2 cell line studies, control, metformin, and WF-treated groups showed uptake of glucose, when compared to the diabetic group, which is well-correlated with the upregulated expressions of GLUT2 and GLUT4 transporters in these groups. These results indicate that proteins from WF and AF may have anticancerous and antidiabetic properties and thus have the potential to utilize pumpkin proteins in the management of cancer and diabetes.
Collapse
Affiliation(s)
- S Vinayashree
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - C Hemakumar
- Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- Department of Biotechnology, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, KS Layout, Bengaluru, Karnataka, India
| | - Ravindra P Veeranna
- Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- Xavier University School of Medicine, Xavier University School of Veterinary Medicine, Santa Helenastraat #23, Oranjestad, Aruba
| | - Ravi Kumar
- Department of Molecular Nutrition, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - V Pavithra
- Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - V P Mahendra
- Department of Molecular Nutrition, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Prasanna Vasu
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
2
|
Zhu Y, Wu S, Guo F, Dong Z, Chen Y, Chen Y. Structural characteristics of sulfated xylogalactomannan isolated from Caulerpa okamurae and its anticoagulant activity. Int J Biol Macromol 2024; 275:133743. [PMID: 38986975 DOI: 10.1016/j.ijbiomac.2024.133743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Due to wonderful taste, rich nutrition and biological functions, many marine green algae in the genus Caulerpa have been recently developed as candidates for green caviar. A novel water-soluble sulfated xylogalactomannan CO-0-1 was obtained from the green algae Caulerpa okamurae. CO-0-1 was mainly composed of mannose (Man), galactose (Gal), and xylose (Xyl) at the ratio of 4.4:4.0:1.4 with the molecular weight at 470 kDa and the sulfate content at 12.78 %. The sulfated xylogalactomannan had Man at the backbone with →4)-β-D-Manp-(1→ and →2)-β-D-Manp-(1→ as the main chain and branches at O-3 position. The side chains contained →3)-β-D-Galp-(1→ and minor →2)-β-D-Xylp(1→. The sulfate groups only distributed at the side chains and at O-6 position of →3)-β-D-Galp-(1→ and O-4 position of (1→2)-β-D-Xylp. The anticoagulant activity indicated that CO-0-1 displayed intrinsic anticoagulant and specific anti-thrombin activities. The investigation expanded the utilization and development scene and scope of the green algae Caulerpa okamurae.
Collapse
Affiliation(s)
- Yanlin Zhu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Sitong Wu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Feng Guo
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Zhe Dong
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yan Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
3
|
Seo J, Jeong C, Choi WJ, Park JHY, Lee CH, Lee KW. Photoprotective activities of Capsosiphon fulvescens in UVB-induced SKH-1 mice and human keratinocytes. J Food Sci 2024; 89:5150-5163. [PMID: 38992886 DOI: 10.1111/1750-3841.17246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Capsosiphon fulvescens (CF) is a green alga widely consumed in East Asian countries, particularly in Korea. It has a rich composition of vitamins, minerals, dietary fibers, and bioactive compounds, which contribute to its multiple therapeutic properties. Its application ranges from acting as an antioxidant and anti-inflammatory agent to supporting the skin system. Despite these benefits of CF, the effects and mechanisms of action related to photoaging of the skin have not yet been elucidated. To investigate the photoprotective effects of CF against photoaging, both animal (SKH-1 mouse) and cell models (HaCaT cell line) were used in this study. As a result, administering the CF extract over a period of 10 weeks, which included times of Ultraviolet B (UVB) exposure, significantly reduced erythema and various UVB-induced skin changes, such as wrinkle formation, and the thickening of the epidermis and dermis, as well as alterations in the length and depth of wrinkles. Furthermore, our investigation into CF extract's antiwrinkle properties revealed its efficacy in enhancing skin hydration and collagen content, counteracting the collagen depletion and moisture loss induced by UVB radiation. Also, the fact that the levels of p-ERK, p-p38, and p-JNK proteins went down shows that the CF extract might have a controlling effect on the MAPK signaling pathways. Our findings suggest that CF holds significant potential for preventing photoaging, providing a foundation for the development of functional foods or botanical drugs targeting skin aging and related skin disorders. PRACTICAL APPLICATION: This research proved that Capsosiphon fulvescen, a green alga widely consumed in East Asian countries, provides photoprotective activities against UV-induced skin aging. Therefore, Capsosiphon fulvescen can be utilized as functional foods or botanical drugs targeting skin aging and related skin disorders.
Collapse
Affiliation(s)
- Jiwon Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chanhyeok Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won Jo Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Department of Agricultural Biotechnology and Center for Food and Bio convergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
5
|
Tan G, Duan Z, Xia G, Xin T, Yang L, Liu F, Xie H. Ultrasonic-Assisted Extraction and Gastrointestinal Digestion Characteristics of Polysaccharides Extracted from Mallotus oblongfolius. Foods 2024; 13:1799. [PMID: 38928741 PMCID: PMC11202859 DOI: 10.3390/foods13121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The polysaccharides were extracted from the leaves of Mallotus oblongifolius (MO) using an ultrasonic-assisted extraction method in this study. The main variables affecting the yield of polysaccharides extracted from Mallotus appallatus (MOPS) were identified and optimized while concurrently investigating its antioxidant capacity, hypoglycemic activity, and digestive properties. The results indicated that the optimal ultrasound-assisted extraction of MOPS involved an ultrasound power of 200 W, a liquid-to-solid ratio of 25:1 (mL:g), an extraction temperature of 75 °C, and an ultrasound time of 45 min, leading to an extraction yield of (7.36 ± 0.45)% (m/m). The MOPS extract exhibited significant scavenging activity against DPPH and ABTS radicals with IC50 values of (25.65 ± 0.53) μg/mL and (100.38 ± 0.38) μg/mL, respectively. Furthermore, it effectively inhibited the enzymatic activities of α-glucosidase and α-amylase with IC50 values of (2.27 ± 0.07) mg/mL and (0.57 ± 0.04) mg/mL, respectively. The content of MOPS remained relatively stable in the stomach and small intestine; however, their ability to scavenge DPPH radicals and ABTS radicals and exhibit reducing power was attenuated, and the inhibition of α-amylase and α-glucosidase activity was diminished. In conclusion, the ultrasonic extraction of MOPS showed feasibility and revealed antioxidant and hypoglycemic effects. However, the activities were significantly reduced after gastric and small intestinal digestion despite no significant change in the MOPS content.
Collapse
Affiliation(s)
- Gansheng Tan
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China;
| | - Zhouwei Duan
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Guanghua Xia
- College of Food Science and Technology, Hainan University, Haikou 570228, China;
| | - Tian Xin
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China;
| | - Ling Yang
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Feng Liu
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Hui Xie
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
6
|
Samudra AG, Nugroho AE, Murwanti R. Review of the pharmacological properties of marine macroalgae used in the treatment of diabetes mellitus in Indonesia. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:597-617. [PMID: 38354976 DOI: 10.1016/j.pharma.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Indonesia is the largest archipelagic country in the world, with 70% of its territory covered by oceans that are rich in various types of biological resources. Indonesia's biodiversity has made it possible to develop natural medicine. Marine algae have enormous potential, but the types of marine algae used still need to be more varied. Research on the pharmacology of marine macroalgae has been conducted in Indonesia, but studies on such topic related to diabetes mellitus (DM) still need to be completed. This study provides a comprehensive dataset of pharmacological anti-diabetic potential of marine macroalgae used for managing DM and reports on preclinical trials that provide pharmacological evidence. Data on the Indonesian marine macroalgae used to lower blood glucose were obtained from online sources. The bioactive chemicals of marine macroalgae have been found efficient at blocking several diabetes enzymes in in-vivo and in-vitro studies, and such chemicals have anti-inflammatory, anti-obesity, antioxidant, and other therapeutic benefits. The Google Scholar was used to search for the pharmacological literature with the keywords marine AND macroalgae AND diabetes AND Indonesia. Pharmacological research on the anti-diabetic activity of marine macroalgae has been carried out on five major Indonesian islands, including Sumatra, Kalimantan, Java, Sulawesi, and Papua, which encompassed 12 provinces: Southwest Papua, South Sulawesi, West Kalimantan, Riau Archipelago, Banten, West Java, North Sulawesi, East Java, Yogyakarta, Maluku, Jakarta, and Bengkulu. Articles on preclinical tests (in vitro and in vivo) were also used for the phytochemical problem section. The results briefly describe which class of algae has been widely used in Indonesia as an anti-diabetic. The findings of this research can be utilized to help find DM treatment drugs based on natural resources from marine macroalgae.
Collapse
Affiliation(s)
- Agung Giri Samudra
- Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Bengkulu University, 38371 Bengkulu, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia.
| | - Retno Murwanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
| |
Collapse
|
7
|
Lin KY, Yang HY, Yang SC, Chen YL, Watanabe Y, Chen JR. Caulerpa lentillifera improves ethanol-induced liver injury and modulates the gut microbiota in rats. Curr Res Food Sci 2023; 7:100546. [PMID: 37483276 PMCID: PMC10362798 DOI: 10.1016/j.crfs.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Caulerpa lentillifera (CL), also called sea grape, is a type of edible green alga which was reported to have antioxidative and immunomodulatory potential. This study aimed to investigate the hepatoprotective effects of CL in a rat model of chronic ethanol exposure. Wistar rats were assigned to four groups and supplied with an isocaloric control liquid diet (group C), an ethanol liquid diet (group E), a control liquid diet supplemented with 5% CL (group CC), or an ethanol liquid diet supplemented with 5% CL (group EC) for a 12-week experimental period. Ethanol feeding induced steatosis, inflammation, and changes in the gut microbiota by the end of the study, whereas CL supplementation significantly improved liver injuries and decreased circulatory endotoxin levels. Moreover, we also found that CL reversed ethanol-induced elevation of hepatic toll-like receptor 4 (TLR4), MyD88 protein expression, the phosphorylated-nuclear factor (NF)-κB-to-NF-κB ratio, and proinflammatory cytokine concentrations. Additionally, CL also increased the abundance of Akkermansia and tight junction proteins and diminished the Firmicutes-to-Bacteroidetes ratio. Dietary CL inhibited the progression of alcoholic liver disease, and some of the possible mechanisms may be strengthening the intestinal barrier function, alleviating dysbiosis, and modulating the TLR4 pathway.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Yang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Y. Watanabe
- General Health Medical Center, Yokohama University of Pharmacy, Yokohama, Japan
| | - Jiun-Rong Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Kim HS, Lee D, Seo YH, Ryu SM, Lee AY, Moon BC, Kim WJ, Kang KS, Lee J. Chemical Constituents from the Roots of Angelica reflexa That Improve Glucose-Stimulated Insulin Secretion by Regulating Pancreatic β-Cell Metabolism. Pharmaceutics 2023; 15:pharmaceutics15041239. [PMID: 37111724 PMCID: PMC10146581 DOI: 10.3390/pharmaceutics15041239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to discover bioactive constituents of Angelica reflexa that improve glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. Herein, three new compounds, namely, koseonolin A (1), koseonolin B (2), and isohydroxylomatin (3), along with 28 compounds (4-31) were isolated from the roots of A. reflexa by chromatographic methods. The chemical structures of new compounds (1-3) were elucidated through spectroscopic/spectrometric methods such as NMR and HRESIMS. In particular, the absolute configuration of the new compounds (1 and 3) was performed by electronic circular dichroism (ECD) studies. The effects of the root extract of A. reflexa (KH2E) and isolated compounds (1-31) on GSIS were detected by GSIS assay, ADP/ATP ratio assay, and Western blot assay. We observed that KH2E enhanced GSIS. Among the compounds 1-31, isohydroxylomatin (3), (-)-marmesin (17), and marmesinin (19) increased GSIS. In particular, marmesinin (19) was the most effective; this effect was superior to treatment with gliclazide. GSI values were: 13.21 ± 0.12 and 7.02 ± 0.32 for marmesinin (19) and gliclazide at a same concentration of 10 μM, respectively. Gliclazide is often performed in patients with type 2 diabetes (T2D). KH2E and marmesinin (19) enhanced the protein expressions associated with pancreatic β-cell metabolism such as peroxisome proliferator-activated receptor γ, pancreatic and duodenal homeobox 1, and insulin receptor substrate-2. The effect of marmesinin (19) on GSIS was improved by an L-type Ca2+ channel agonist and K+ channel blocker and was inhibited by an L-type Ca2+ channel blocker and K+ channel activator. Marmesinin (19) may improve hyperglycemia by enhancing GSIS in pancreatic β-cells. Thus, marmesinin (19) may have potential use in developing novel anti-T2D therapy. These findings promote the potential application of marmesinin (19) toward the management of hyperglycemia in T2D.
Collapse
Affiliation(s)
- Hyo-Seon Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Dahae Lee
- Cooperative-Center of Natural Product Central Bank for Biological Evaluation, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Hye Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Seung-Mok Ryu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - A-Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Byeong-Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Wook-Jin Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Ki-Sung Kang
- Cooperative-Center of Natural Product Central Bank for Biological Evaluation, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| |
Collapse
|
9
|
Ulvophyte Green Algae Caulerpa lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties. Molecules 2023; 28:molecules28031365. [PMID: 36771032 PMCID: PMC9919714 DOI: 10.3390/molecules28031365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Marine algae have excellent bioresource properties with potential nutritional and bioactive therapeutic benefits, but studies regarding Caulerpa lentillifera are limited. This study aims to explore the metabolites profile and the antioxidant, anticancer, anti-obesity, and in vitro cytotoxicity properties of fractionated ethanolic extract of C. lentillifera using two maceration and soxhlet extraction methods. Dried simplicia of C. lentillifera was mashed and extracted in ethanol solvent, concentrated and evaporated, then sequentially partitioned with equal volumes of ethyl acetate and n-Hexane. Six samples were used in this study, consisting of ME (Maceration-Ethanol), MEA (Maceration-Ethyl Acetate), MH (Maceration-n-Hexane), SE (Soxhletation-Ethanol), SEA (Soxhletation-Ethyl Acetate), and SH (Soxhletation-n-Hexane). Non-targeted metabolomic profiling was determined using LC-HRMS, while antioxidant, anti-obesity, and anticancer cytotoxicity were determined using DPPH and ABTS, lipase inhibition, and MTT assay, respectively. This study demonstrates that C. lentillifera has several functional metabolites, antioxidant capacity (EC50 MH is very close to EC50 of Trolox), as well as anti-obesity properties (EC50 MH < EC50 orlistat, an inhibitor of lipid hydrolyzing enzymes), which are useful as precursors for new therapeutic approaches in improving obesity-related diseases. More interestingly, ME, MH, and SE are novel bioresource agents for anticancer drugs, especially for hepatoma, breast, colorectal, and leukemia cancers. Finally, C. lentillifera can be a nutraceutical with great therapeutic benefits.
Collapse
|
10
|
Kandemir H, Cavas L. Green synthesis of silver nanoparticles through green caviar Caulerpa lentillifera and its phytotoxicity on Allium ascolanicum. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hacer Kandemir
- Department of Biotechnology, The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Levent Cavas
- Department of Biotechnology, The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, Türkiye
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, İzmir, Türkiye
| |
Collapse
|
11
|
Awanthi MGG, Nagamoto S, Oku H, Kitahara K, Konishi T. Hyaluronidase-inhibiting Polysaccharide from Caulerpa lentillifera. J Appl Glycosci (1999) 2023; 70:1-7. [PMID: 37033116 PMCID: PMC10077112 DOI: 10.5458/jag.jag.jag-2022_0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/28/2022] [Indexed: 04/11/2023] Open
Abstract
Algal sulfated polysaccharides are known to be effective hyaluronidase inhibitors. We evaluated hyaluronidase inhibitory activity of sulfated polysaccharide (SP) from Caulerpa lentillifera. Results showed that SP with IC50 of 163 µg/mL appears to allosterically inhibit the hyaluronidase activity. Main sugar composition and sulfate content of SP was estimated to be Gal, Glc, Xyl, Man, uronic acids, and sulfate in the weight percent of 27.7: 28.9: 14.6: 22.5: 3.4: 21.7. We modified the SP by desulfation and partial hydrolysis with trifluoroacetic acid (TFA) to investigate the effect of sulfate content and molecular weight on inhibition. Hyaluronidase inhibitory activity of desulfated SP, 0.1 M TFA-hydrolyzed SP and 0.5 M TFA-hydrolyzed SP were significantly lower than that of native SP, revealing that sulfate content or molecular weight is important for hyaluronidase inhibition.
Collapse
Affiliation(s)
| | - Saki Nagamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| | - Hirosuke Oku
- The United Graduate School of Agricultural Sciences, Kagoshima University
- Tropical Biosphere Research Center, University of the Ryukyus
| | - Kanefumi Kitahara
- The United Graduate School of Agricultural Sciences, Kagoshima University
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University
| | - Teruko Konishi
- The United Graduate School of Agricultural Sciences, Kagoshima University
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus
- Corresponding author (Tel. +81‒98‒895‒8795; Fax. +81‒98‒895‒8795; E-mail: )
| |
Collapse
|
12
|
Manoppo JIC, Nurkolis F, Pramono A, Ardiaria M, Murbawani EA, Yusuf M, Qhabibi FR, Yusuf VM, Amar N, Karim MRA, Subali AD, Natanael H, Rompies R, Halim RF, Bolang ASL, Joey G, Novianto CA, Permatasari HK. Amelioration of obesity-related metabolic disorders via supplementation of Caulerpa lentillifera in rats fed with a high-fat and high-cholesterol diet. Front Nutr 2022; 9:1010867. [PMID: 36185651 PMCID: PMC9521187 DOI: 10.3389/fnut.2022.1010867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary modification, including functional foods, could reduce comorbidities due to obesity. An increase in serum glucose and lipids is often seen in obesity. Furthermore, obesity is also characterized by a decrease in antioxidant capacity (i.e., decrease in superoxide dismutase/SOD) and downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). It has been well established that PGC-1α is important to regulate mitochondrial biogenesis. Sea grapes (Caulerpa lentillifera) are known as a traditional food in many Asia-Pacific countries. Recent evidence suggests that sea grapes have many beneficial properties as functional foods and may have potential therapeutic functions. We investigated the effect of sea grapes (C. lentillifera) on serum glucose, lipids, PGC-1α, and protein levels of SOD in the liver of Rattus norvegicus, which is induced with a high-fat and high-cholesterol diet. A total of four groups were made, each containing ten male Rattus norvegicus; group A received a standard dry pellet diet as control, group B received cholesterol- and fat-enriched diets (CFED), groups C and D received CFED and 150 and 450 mg/kg body weight (BW) of sea grape extract, respectively, for 4 weeks. Serum glucose and cholesterol were assessed using a blood auto-analyzer. Serum PGC-1α was measured using ELISA. SOD levels were calculated using the superoxide dismutase assay kit by Sigma-Aldrich with blood taken from liver tissue. In this study, sea grape extracts improved total cholesterol levels better than the CFED and normal groups. The efficacy of total cholesterol improvement was similar between the two doses of sea grape extract. Furthermore, sea grape extract increased PCG-1α levels, especially with the dose of 150 mg/kg BW. Blood glucose was also lower in the groups of sea grape extract. Interestingly, the groups treated with sea grapes extract exhibited higher levels of liver SOD compared to the normal and CFED groups. To conclude, sea grapes (C. lentillifera) have promising potential for anti-hyperglycemia and anti-hypercholesterolemia, and for reducing oxidative stress, and providing various health benefits for metabolic disorders.
Collapse
Affiliation(s)
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga, Yogyakarta, Indonesia
| | - Adriyan Pramono
- Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Universitas Diponegoro, Semarang, Indonesia
- *Correspondence: Adriyan Pramono,
| | - Martha Ardiaria
- Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Etisa Adi Murbawani
- Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Yusuf
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Faqrizal Ria Qhabibi
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | | | - Nasim Amar
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | | | | | - Hans Natanael
- Department of Pediatrics, Sam Ratulangi University/Prof.dr.R.D.Kandou Hospital Manado, Manado, North Sulawesi, Indonesia
| | - Ronald Rompies
- Department of Pediatrics, Sam Ratulangi University/Prof.dr.R.D.Kandou Hospital Manado, Manado, North Sulawesi, Indonesia
| | - Rifrita Fransisca Halim
- Department of Pediatrics, Sam Ratulangi University/Prof.dr.R.D.Kandou Hospital Manado, Manado, North Sulawesi, Indonesia
| | | | - Gregory Joey
- Department of Pediatrics, Sam Ratulangi University/Prof.dr.R.D.Kandou Hospital Manado, Manado, North Sulawesi, Indonesia
| | - Christian Agung Novianto
- Food Science and Technology Study Programme, Faculty of Agricultural Engineering, IPB University, Bogor, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| |
Collapse
|
13
|
A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022; 11:foods11182832. [PMID: 36140958 PMCID: PMC9498133 DOI: 10.3390/foods11182832] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Caulerpa lentillifera is a type of green seaweed widely consumed as a fresh vegetable, specifically in Southeast Asia. Interestingly, this green seaweed has recently gained popularity in the food sector. Over the last two decades, many studies have reported that C. lentillifera is rich in polyunsaturated fatty acids, minerals, vitamins, and bioactive compounds that contribute many health benefits. On the other hand, there is currently hardly any article dedicated specifically to C. lentillifera regarding nutritional composition and recent advancements in its potential health benefits. Hence, this study will summarise the findings on the nutritional content of C. lentillifera and compile recently discovered beneficial properties throughout the past decade. From the data compiled in this review paper, it can be concluded that the nutrient and phytochemical profile of C. lentillifera differs from one region to another depending on various external factors. As a result, this paper will offer researchers the groundwork to develop food products based on C. lentillifera. The authors of this paper are hopeful that a more systematic review could be done in the future as currently, existing data is still scarce.
Collapse
|
14
|
Lomartire S, Gonçalves AMM. Novel Technologies for Seaweed Polysaccharides Extraction and Their Use in Food with Therapeutically Applications—A Review. Foods 2022; 11:foods11172654. [PMID: 36076839 PMCID: PMC9455623 DOI: 10.3390/foods11172654] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Abstract
The use of seaweed for therapeutic purposes is ancient, but only in the last decade, with advanced technologies, has it been possible to extract seaweed’s bioactive compounds and test their potential properties. Algal metabolites possess nutritional properties, but they also exhibit antioxidant, antimicrobial, and antiviral activities, which allow them to be involved in several pharmaceutical applications. Seaweeds have been incorporated since ancient times into diets as a whole food. With the isolation of particular seaweed compounds, it would be possible to develop new types of food with therapeutically properties. Polysaccharides make up the majority of seaweed biomass, which has triggered an increase in interest in using seaweed for commercial purposes, particularly in the production of agar, carrageenan, and alginate. The bio-properties of polysaccharides are strictly dependent to their chemical characteristics and structure, which varies depending on the species, their life cycles, and other biotic and abiotic factors. Through this review, techniques for seaweed polysaccharides extraction are reported, with studies addressing the advantages for human health from the incorporation of algal compounds as dietary supplements and food additives.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-239-240-700 (ext. 262-286)
| |
Collapse
|
15
|
Pang M, Huang Z, Lv L, Li X, Jin G. Seasonal succession of bacterial communities in cultured Caulerpa lentillifera detected by high-throughput sequencing. Open Life Sci 2022; 17:10-21. [PMID: 35128065 PMCID: PMC8800382 DOI: 10.1515/biol-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
An increasing number of microorganisms are being identified as pathogens for diseases in macroalgae, but the species composition of bacteria related to Caulerpa lentillifera, fresh edible green macroalgae worldwide, remains largely unclear. The bacterial communities associated with C. lentillifera were investigated by high-throughput 16S rDNA sequencing, and the bacterial diversities in washed and control groups were compared in this study. A total of 4,388 operational taxonomic units were obtained from all the samples, and the predominant prokaryotic phyla were Proteobacteria, Bacteroidetes, Planctomycetes, Cyanobacteria, Actinobacteria, Verrucomicrobia, Chloroflexi, and Acidobacteria in C. lentillifera. The bacterial diversity changed with seasons and showed an increasing trend of diversity with the rising temperature in C. lentillifera. There were slight reductions in the abundance and diversity of bacteria after washing with tap water for 2 h, indicating that only parts of the bacterial groups could be washed out, and hidden dangers in C. lentillifera still exist. Although the reduction in the abundance of some bacteria revealed a positive significance of washing C. lentillifera with tap water on food safety, more effective cleaning methods still need to be explored.
Collapse
Affiliation(s)
- Meixia Pang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zhili Huang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Le Lv
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Xiaodong Li
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Gang Jin
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
16
|
Fajriah S, Rizki IF, Sinurat E. Characterization and analysis of the antidiabetic activities of sulphated polysaccharide extract from Caulerpa lentillifera. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e73158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Caulerpa lentillifera is a type of green seaweed that is cultivated in tropical and subtropical areas. The objectives of this study were to determine the characteristics of the sulfated polysaccharides from C. lentillifera and evaluate its antidiabetic activity. In the initial process of this study, samples were macerated with ethanol (1:10). Then, the maceration residue was extracted with an accumulator at 75 °C for three hours. The crude extract yield was 4.16% based on weight seaweed. Ion chromatography purification with DEAE-Sepharose resin provided a yield of 14.8% of crude extract. The monomer analysis of C. lentillifera from the crude extract and purified extract revealed that galactose monomers were dominant and glucose was a minor component. The total carbohydrate and sulfate contents of purified C. lentillifera were higher than those of crude C. lentillifera. Bioactivity tests revealed that purified polysaccharides had higher antidiabetic activity against α-glucosidase enzyme than crude ones with IC50 values of 134.81± 2.0 µg/mL. Purified sulfated polysaccharides of C. lentillifera could potentially be used as an antidiabetic medication.
Collapse
|
17
|
The Enhancing Immune Response and Anti-Inflammatory Effects of Caulerpa lentillifera Extract in RAW 264.7 Cells. Molecules 2021; 26:molecules26195734. [PMID: 34641278 PMCID: PMC8510275 DOI: 10.3390/molecules26195734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Caulerpa lentillifera (CL) is a green seaweed, and its edible part represents added value as a functional ingredient. CL was dried and extracted for the determination of its active compounds and the evaluation of its biological activities. The major constituents of CL extract (CLE), including tannic acid, catechin, rutin, and isoquercetin, exhibited beneficial effects, such as antioxidant activity, anti-diabetic activity, immunomodulatory effects, and anti-cancer activities in in vitro and in vivo models. Whether CLE has an anti-inflammatory effect and immune response remains unclear. Methods: This study examined the effect of CLE on the inflammatory status and immune response of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the mechanisms involved therein. RAW264.7 cells were treated with different concentrations of CLE (0.1–1000 µg/mL) with or without LPS (1 µg/mL) for 24 h. Expression and production of the inflammatory cytokines, enzymes, and mediators were evaluated. Results: CLE suppressed expression and production of the pro-inflammatory cytokines IL-6 and TNF-α. Moreover, CLE inhibited expression and secretion of the inflammatory enzyme COX-2 and the mediators PGE2 and NO. CLE also reduced DNA damage. Furthermore, CLE stimulated the immune response by modulating the cell cycle regulators p27, p53, cyclin D2, and cyclin E2. Conclusions: CLE inhibits inflammatory responses in LPS-activated macrophages by downregulating inflammatory cytokines and mediators. Furthermore, CLE has an immunomodulatory effect by modulating cell cycle regulators.
Collapse
|
18
|
Kazeem M, Bankole H, Ogunrinola O, Wusu A, Kappo A. Functional foods with dipeptidyl peptidase‐4 inhibitory potential and management of type 2 diabetes: A review. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Mutiu Kazeem
- Department of Biochemistry Lagos State University Ojo Lagos Nigeria
| | - Habeeb Bankole
- Department of Biochemistry Lagos State University Ojo Lagos Nigeria
| | | | - Adedoja Wusu
- Department of Biochemistry Lagos State University Ojo Lagos Nigeria
| | - Abidemi Kappo
- Department of Biochemistry University of Johannesburg Auckland Park Johannesburg South Africa
| |
Collapse
|
19
|
Ulagesan S, Nam TJ, Choi YH. Cytotoxicity against human breast carcinoma cells of silver nanoparticles biosynthesized using Capsosiphon fulvescens extract. Bioprocess Biosyst Eng 2021; 44:901-911. [PMID: 33486577 DOI: 10.1007/s00449-020-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Targeting cancer cells with small nanoparticles is a novel and promising approach to cancer therapy. Breast cancer is the most common cancer afflicting women worldwide. In the present study, silver nanoparticles (AgNPs) were synthesized using the aqueous extract of the marine alga Capsosiphon (C.) fulvescens, and the cytotoxicity and anti-cancer activities of the nanoparticles against MCF-7 breast cancer cells were analyzed. Nanoparticle formation was confirmed by solution color change and UV-Vis spectroscopy. The size and distribution of the C. fulvescens-biosynthesized silver nanoparticles (CfAgNPs) were then examined using various analytical methods; the particle size was around 20-22 nm and spherical in shape with no agglomeration. Cytotoxicity analysis revealed that the inhibitory concentration (IC50) of CfAgNPs was 50 μg/ml. MCF-7 cell viability decreased with increasing concentrations of CfAgNPs. MCF-7 cells were evaluated for morphological changes before and after treatment with the CfAgNPs; cells treated with C. fulvescens aqueous algal extract (without CfAgNPs) showed irregular confluent aggregates with round polygonal cells, similar to the untreated control. Tamoxifen- (TMX) and CfAgNPs-treated cells show significant morphological changes. An apoptosis study was conducted using 4',6-diamidino-2-phenylindole (DAPI) staining, in which CfAgNP-treated MCF-7 cells generated bright blue fluorescence and shortened, disjointed chromatin was evident; control cells displayed less bright fluorescence. Flow cytometry analysis revealed that the percentage of cells in late apoptosis was high following treatment with TMX (77.2%) and CfAgNP (74.6%). A novel anti-cancer agent, developed by generating silver nanoparticles from C. fulvescens extract, showed strong cytotoxic activity against MCF-7 cells.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea.
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea.
- Department of Marine Bio-Materials and Aquaculture, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
20
|
Caulerpa lentillifera Polysaccharides-Rich Extract Reduces Oxidative Stress and Proinflammatory Cytokines Levels Associated with Male Reproductive Functions in Diabetic Mice. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease that is positively correlated with reproductive dysfunction. Caulerpa lentillifera is an edible green alga with antioxidant and anti-diabetic properties. This study aims to evaluate the ameliorative effects of a polysaccharides-rich extract from C. lentillifera on the reproductive dysfunctions of diabetic male BALB/c mice induced by a high-fat diet (HFD) supplemented with intraperitoneal injections of streptozotocin (STZ). C. lentillifera was obtained from hot water and converted into a powder form (C. lentillifera extract (CLE)) by freeze drying. Mice were fed an HFD for 4 weeks before supplementing with STZ (30 mg/kg). The diabetic mice were divided into five groups, including a control group, a diabetic (DM) group, a DM with administration of a low-dose CLE treatment (DM+CLE1, 600 mg/kg), a DM with administration of a high-dose of CLE (DM+CLE2, 1000 mg/kg) and a DM with metformin treatment as a positive control (DM+Met, 200 mg/kg) for 6 weeks. The results showed that the CLE administration improved hyperglycemia and insulin resistance. Proinflammatory cytokines such as interleukin-1β and tumor necrosis factor-α were found to decrease in the CLE-treated groups. Additionally, CLE was shown to improve sperm motility and testis morphology. Based on the results, it was confirmed that the polysaccharides-rich extract from C. lentillifera extract was able to prevent diabetes-induced male reproductive dysfunction.
Collapse
|
21
|
Mollazadeh M, Mohammadi-Khanaposhtani M, Valizadeh Y, Zonouzi A, Faramarzi MA, Hariri P, Biglar M, Larijani B, Hamedifar H, Mahdavi M, Sepehri N. 2,4-Dioxochroman Moiety Linked to 1,2,3-triazole Derivatives as Novel α-glucosidase Inhibitors: Synthesis, In vitro Biological Evaluation, and Docking Study. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200802181634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, a novel series of 2,4-dioxochroman-1,2,3-triazole hybrids 8a-l
was synthesized by click reaction. These compounds were screened against α-glucosidase
through in vitro and in silico evaluations. All the synthesized hybrids exhibited excellent
α-glucosidase inhibition in comparison to standard drug acarbose. Representatively,
3-((((1-(3,4-dichlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)amino)methylene)chroman-2,4-
dione 8h with IC50 = 20.1 ± 1.5 μM against α-glucosidase, was 37-times more potent than
acarbose. Enzyme kinetic study revealed that compound 8h was a competitive inhibitor
against α-glucosidase. In silico docking study on chloro derivatives 8h, 8g, and 8i were
also performed in the active site of α -glucosidase. Evaluations on obtained interaction
modes and binding energies of these compounds confirmed the results obtained through in
vitro α-glucosidase inhibition.
Collapse
Affiliation(s)
- Marjan Mollazadeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yousef Valizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Zonouzi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parsa Hariri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Sepehri
- Nano Alvand Company, Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, 1439955991, Iran
| |
Collapse
|
22
|
Impact of A Cargo-Less Liposomal Formulation on Dietary Obesity-Related Metabolic Disorders in Mice. Int J Mol Sci 2020; 21:ijms21207640. [PMID: 33076522 PMCID: PMC7589567 DOI: 10.3390/ijms21207640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Current therapeutic options for obesity often require pharmacological intervention with dietary restrictions. Obesity is associated with underlying inflammation due to increased tissue macrophage infiltration, and recent evidence shows that inflammation can drive obesity, creating a feed forward mechanism. Therefore, targeting obesity-induced macrophage infiltration may be an effective way of treating obesity. Here, we developed cargo-less liposomes (UTS-001) using 1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC (synthetic phosphatidylcholine) as a single-agent to manage weight gain and related glucose disorders due to high fat diet (HFD) consumption in mice. UTS-001 displayed potent immunomodulatory properties, including reducing resident macrophage number in both fat and liver, downregulating liver markers involved in gluconeogenesis, and increasing marker involved in thermogenesis. As a result, UTS-001 significantly enhanced systemic glucose tolerance in vivo and insulin-stimulated cellular glucose uptake in vitro, as well as reducing fat accumulation upon ad libitum HFD consumption in mice. UTS-001 targets tissue residence macrophages to suppress tissue inflammation during HFD-induced obesity, resulting in improved weight control and glucose metabolism. Thus, UTS-001 represents a promising therapeutic strategy for body weight management and glycaemic control.
Collapse
|
23
|
Chaiklahan R, Srinorasing T, Chirasuwan N, Tamtin M, Bunnag B. The potential of polysaccharide extracts from Caulerpa lentillifera waste. Int J Biol Macromol 2020; 161:1021-1028. [PMID: 32553952 DOI: 10.1016/j.ijbiomac.2020.06.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022]
Abstract
Caulerpa is a marine macroalgae and is rich in polysaccharides, which have the potential for immunostimulatory and anticoagulant activity. The objective of this work was to increase the value of C. lentillifera waste by polysaccharide extraction. A polysaccharide yield of about 25% of dry weight was obtained under the following optimized conditions: two-stage extraction (60 min/stage) using a ratio of 1:15 (w/v) at 90 °C, and 2× precipitation by the final concentration of 75% ethanol. The polysaccharide extracts contained a non-reducing sugar that accounted for 44% of weight extracts as a major sugar and consisted of four neutral sugars: mannose (33.3%), galactose (31.9%,), glucose (27.0%) and xylose (7.6%). In addition, it contained sulfate, which is approximately 8.37% of weight extracts and had a phenolic content of around 1.27 mg GAE/g sample. Moreover, it demonstrated α-glucosidase inhibitory activity with an IC50 value of 13.59 mg/mL. This result suggests that the polysaccharide extracts could potentially be used for preventing diabetes disease. The economic analysis also showed an economic feasibility for producing polysaccharide extracts from C. lentillifera waste. This is an alternative for farmers in order to increase the value of C. lentillifera waste.
Collapse
Affiliation(s)
- Ratana Chaiklahan
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand.
| | - Thanyarat Srinorasing
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand
| | - Nattayaporn Chirasuwan
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand
| | - Montakan Tamtin
- Phetchaburi Coastal Aquaculture Research and Development Center, Laem Pakbia, Baan Laem, Phetchaburi 76100, Thailand
| | - Boosya Bunnag
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand; School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand
| |
Collapse
|
24
|
Low-concentration exposure to organochlorine pesticides (OCPs) in L6 myotubes and RIN-m5F pancreatic beta cells induces disorders of glucose metabolism. Toxicol In Vitro 2020; 65:104767. [DOI: 10.1016/j.tiv.2020.104767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
|
25
|
Caulerpa okamurae extract attenuates inflammatory interaction, regulates glucose metabolism and increases insulin sensitivity in 3T3-L1 adipocytes and RAW 264.7 macrophages. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:253-264. [PMID: 32088151 DOI: 10.1016/j.joim.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To examine whether Caulerpa okamurae ethanolic extract (COE) could inhibit obesity-mediated inflammation, improve glucose metabolism and increase insulin sensitivity, using in vitro cell models of RAW 264.7 macrophages and 3T3-L1 adipocytes. METHODS We cocultured 3T3-L1 adipocytes in direct contact with lipopolysaccharide-stimulated RAW 264.7 macrophages and induced insulin resistance in 3T3-L1 adipocytes with tumor necrosis factor-α (TNF-α) in the presence or absence of 250 µg/mL of COE. We investigated various markers of inflammation, glucose regulation and insulin sensitivity in these models using Griess reagent to measure nitric oxide (NO) production, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose to measure glucose uptake, Western blot analysis to quantify protein expression and reverse transcriptase-polymerase chain reaction to evaluate mRNA expression. RESULTS We found that COE (250 µg/mL) significantly inhibited the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages by downregulating NO production, nitric oxide synthase 2 expression and nuclear translocation of nuclear factor-κB. COE also showed similar anti-inflammatory activity in coculture, along with decreased TNF-α, interleukin-6 and monocyte chemoattractant protein mRNA expression. In addition, COE also improved glucose uptake in coculture by upregulating glucose transporter-4 (GLUT-4) and adiponectin and reducing serine phosphorylation of insulin receptor substrate-1 (IRS1). In the TNF-α-induced insulin resistance model of 3T3-L1 adipocytes, COE significantly improved both basal and insulin-stimulated glucose uptake, accompanied by phosphorylation of IRS1 at tyrosine 632, phospho-5' adenosine monophosphate-activated protein kinase α and glycogen synthase kinase-3β (Ser9) as well as upregulation of GLUT-4. CONCLUSION Together, these findings suggest that COE has potential to treat or prevent obesity-induced metabolic disorders.
Collapse
|
26
|
Zhang M, Zhao M, Qing Y, Luo Y, Xia G, Li Y. Study on immunostimulatory activity and extraction process optimization of polysaccharides from Caulerpa lentillifera. Int J Biol Macromol 2019; 143:677-684. [PMID: 31730975 DOI: 10.1016/j.ijbiomac.2019.10.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
The process of extracting polysaccharides from the green algae Caulerpa lentillifera was studied by single factor experiments and response surface methodology. Additionally, the immunostimulatory activity of Caulerpa lentillifera polysaccharides (CLP) on RAW264.7 mouse macrophage was evaluated by in vitro cell experiments. The results showed that the optimal extraction conditions consisted of ultrasonification for 30 min, extraction time of 9 h, extraction temperature of 100 °C, and a ratio of water to raw material of 40:1. RAW264.7 macrophage exhibited enhanced phagocytosis with no toxic effects after treatment with CLP. In addition, CLP effectively increased the synthesis and secretion of cytokines (IL-6, TNF-α, IL-1β, and NO), whereby the secretion levels of IL-6, TNF-α, and IL-1β were 1,840.32 ± 21.03 pg/mL (50 μg/mL), 197.17 ± 3.13 ng/mL (50 μg/mL), and 1,178.35 ± 78.82 pg/mL (25 μg/mL), respectively. The polysaccharides contained in Caulerpa lentillifera have potential value for further development due to their immunological activity.
Collapse
Affiliation(s)
- Meijian Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
| | - Yudie Qing
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yuanyuan Luo
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Yongcheng Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| |
Collapse
|
27
|
Ganesan AR, Tiwari U, Rajauria G. Seaweed nutraceuticals and their therapeutic role in disease prevention. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Sharma BR, Park CM, Kim HA, Kim HJ, Rhyu DY. Tinospora cordifolia preserves pancreatic beta cells and enhances glucose uptake in adipocytes to regulate glucose metabolism in diabetic rats. Phytother Res 2019; 33:2765-2774. [PMID: 31385371 DOI: 10.1002/ptr.6462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to evaluate the pancreatic beta cell protective and glucose uptake enhancing effect of the water extract of Tinospora cordifolia stem (TCSE) by using rat insulinoma (RIN)-m5F cells and 3 T3-L1 adipocytes. RIN-m5F cells were stimulated with interleukin-1β and interferon-γ, and the effect of TCSE on insulin secretion and cytokine-induced toxicity was measured by ELISA and MTT assay, respectively. The glucose uptake and protein expression were measured by fluorometry and western blotting. Antidiabetic effect of TCSE was measured using streptozotocin-induced diabetic rats. TCSE dose dependently increased cell viability and insulin secretion in RIN-m5F cells. In addition, TCSE increased both the glucose uptake and glucose transporter 4 translocation in 3 T3-L1 adipocytes via PI3K pathway. Finally, TCSE significantly lowered blood glucose and diet intake and increased body weight in streptozotocin-induced diabetic rats. The level of serum insulin and hepatic glycogen was increased, whereas the level of serum triglyceride, total cholesterol, dipeptidyl peptidase-4, and thiobarbituric acid reactive substances was decreased in TCSE-administered rats. TCSE also increased glucose transporter 4 protein expression in the adipose tissue and liver of TCSE-fed diabetic rats. Our results suggested that TCSE preserved RIN-m5F cells from cytokine-induced toxicity and enhanced glucose uptake in 3 T3-L1 adipocytes, which may regulate glucose metabolism in diabetic rats.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Mokpo, Republic of Korea
| | - Chul Min Park
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Mokpo, Republic of Korea
| | - Hyeon-A Kim
- Department of Food and Nutrition, Mokpo National University, Mokpo, Republic of Korea
| | - Hyun Jung Kim
- College of Pharmacy, Mokpo National University, Mokpo, Republic of Korea
| | - Dong Young Rhyu
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Mokpo, Republic of Korea
| |
Collapse
|
29
|
Yengkhom O, Shalini KS, Subramani PA, Michael RD. Stimulation of non-specific immunity, gene expression, and disease resistance in Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), by the methanolic extract of the marine macroalga, Caulerpa scalpelliformis. Vet World 2019; 12:271-276. [PMID: 31040570 PMCID: PMC6460875 DOI: 10.14202/vetworld.2019.271-276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
AIM The objective of the present study was to test the immunostimulating potential of marine macroalga, Caulerpa scalpelliformis, in terms of non-specific immune responses, gene expression, and disease resistance of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). MATERIALS AND METHODS O. niloticus was injected intraperitoneally with three different doses of methanol extract of C. scalpelliformis (CSME) (2 mg/kg, 20 mg/kg, or 200 mg/kg body weight), or MacroGard™ (commercial immunostimulant, positive control, and 20 mg/kg body weight), or distilled water (untreated control). In one set of fish, 5 days post-injection, serum lysozyme, myeloperoxidase, and antiprotease activities were assayed. 24 h after injection, gene expression was analyzed in a separate set of fish. To another set of fish, 1 week post-administration of the products, fish were challenged with lethal dose 50 (LD50) dose of a live virulent pathogen, Aeromonas hydrophila and subsequent resistance to it was noted in terms of cumulative percent mortality. RESULTS CSME increased serum lysozyme, myeloperoxidase, and antiprotease activities. There was an increase in the expression of lysozyme gene in the spleen of treated fish. Mid dose of CSME caused the minimum mortality of 10% (consequent relative percentage survival = 73) which is comparable to that of the positive control. CONCLUSION CSME is considered to have the potential to be developed into an immunostimulant for finfish aquaculture.
Collapse
Affiliation(s)
- Omita Yengkhom
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - Konda Subramanian Shalini
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - P. A. Subramani
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - R. Dinakaran Michael
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
Chen X, Sun Y, Liu H, Liu S, Qin Y, Li P. Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications. PeerJ 2019; 7:e6118. [PMID: 30643691 PMCID: PMC6329336 DOI: 10.7717/peerj.6118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/12/2018] [Indexed: 01/15/2023] Open
Abstract
The edible seaweed Caulerpa lentillifera, a powerful natural food source that is rich in protein, minerals, dietary fibers, vitamins, saturated fatty acids and unsaturated fatty acids, has been mass cultured in some Asian countries and has been the focus of researchers in recent years. Here, the operational conditions of its culture, application in wastewater treatment, and bioactive components are summarized and comparatively analyzed. Based on previous studies, salinity, nutrient concentrations, irradiance and temperature are stress factors for algal growth. Moreover, dried Caulerpa lentillifera seaweed is efficient in the biosorption of heavy metals and cationic dyes in wastewater, and fresh seaweed can be introduced as a biofilter in aquaculture system treatment. In addition, among the rich bioactive compounds in Caulerpa lentillifera, the phenolic compounds show the potential ability for regulating glucose metabolism in vivo. Polysaccharides and oligosaccharides exhibit anticoagulant, immunomodulatory effects and cancer-preventing activity. Siphonaxanthin is a compound with attractive novel functions in cancer-preventing activity and lipogenesis-inhibiting effects. Furthermore, the antioxidant activity of siphonaxanthin extracted from Caulerpa lentillifera could be stronger than that of astaxanthin. This review offers an overview of studies of Caulerpa lentillifera addressing various aspects including cultivation, wastewater treatment and biological active components which may provide valuable information for the cultivation and utilization of this green alga.
Collapse
Affiliation(s)
- Xiaolin Chen
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yuhao Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Qingdao, China
| | - Hong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Qingdao, China
| | - Song Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yukun Qin
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengcheng Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
31
|
Sharma BR, Kim DW, Rhyu DY. Korean Chungtaejeon tea extract attenuates body weight gain in C57BL/6J-Lep ob/ob mice and regulates adipogenesis and lipolysis in 3T3-L1 adipocytes. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 15:56-63. [PMID: 28088260 DOI: 10.1016/s2095-4964(17)60321-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Traditional Korean Chungtaejeon (CTJ) tea is a type of fermented tea, which has received increasing attention in recent years because of its purported health benefits. The present study was designed to investigate the effect and mechanism of CTJ tea extract on body weight gain using C57BL/6J-Lep ob/ob mice and 3T3-L1 adipocytes, respectively. METHODS The effects of CTJ on cell viability, lipid accumulation, and expression of protein and mRNA were measured in 3T3-L1 adipocytes by using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, oil red O staining, Western blotting, and reverse transcriptase-polymerase chain reaction analyses. C57BL6J-Lep ob/ob mice were administered with CTJ (200 or 400 mg/kg body weight) for ten weeks. Then, body weight, food intake, total cholesterol, and triglyceride were measured in ob/ob mice. RESULTS CTJ tea extract treated at 250 μg/mL (CTJ250) significantly suppressed lipid accumulation in the differentiated 3T3-L1 adipocytes. Likewise, CTJ250 significantly decreased the protein expression of peroxisome proliferator-activated receptorγ (PPARγ), CCAAT/enhancer-binding protein α, and adipocyte lipid-binding protein, and regulated the mRNA expression of PPARγ, sterol regulatory element-binding protein-1c gene, fatty acid synthase, adipocyte lipid-binding protein, hormone-sensitive lipase, carnitine palmitoyl transferase 1, cluster of differentiation 36, and acetyl-CoA carboxylase in the differentiated 3T3-L1 adipocytes. Mice administered with CTJ showed dose-dependent decrease in body weight gain, starting from week 4 of the experiment. CTJ tea extract administered at 400 mg/kg body weight significantly decreased fat mass, food efficacy ratio, and levels of plasma triglyceride and total cholesterol. CONCLUSION CTJ attenuated weight gain in ob/ob mice and regulated the activity of the molecules involved in adipogenesis and lipolysis in 3T3-L1 adipocytes. CTJ is a potentially valuable herbal therapy for the prevention of obesity and/or obesity-related disorders.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Dong Wook Kim
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Dong Young Rhyu
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
32
|
Feyzmand S, Shahbazi B, Marami M, Bahrami G, Fattahi A, Shokoohinia Y. Mechanistic In vitro Evaluation of Prosopis farcta Roots Potential as an Antidiabetic Folk Medicinal Plant. Pharmacogn Mag 2018; 13:S852-S859. [PMID: 29491644 PMCID: PMC5822511 DOI: 10.4103/pm.pm_162_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/17/2017] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Prosopis farcta has been used as a traditional herbal medicine for treating Diabetes mellitus. The aim of this study is to investigate the antidiabetic mechanisms of infusion (INF) extract of P. farcta and discovering the active extract for the first time. MATERIALS AND METHODS Six different extracts of P. farcta were prepared using five different solvents (ethanol, n-hexane, acetone, ethanol:water (1:1 v/v), and water). Cytotoxicity and cell proliferation assays were performed on mouse pancreatic β-cells (β-TC3) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium method. The effects of P. farcta on glucose metabolism (in a hepatocellular carcinoma cell line [HepG2]) and glucose diffusion across a dialysis membrane (as a model of cellular glucose absorption) were evaluated. The protective effect of various P. farcta extracts on cytotoxicity, mitochondrial membrane potential (MMP), and streptozotocin (STZ)-induced apoptosis in β-TC3 cells was investigated. RESULTS Cytotoxicity study indicated that extracts were safe on β-TC3 and HepG2 (≤0.5 mg/ml). INF protected β-TC3 cells from apoptosis induced by STZ and improved cell viability for 20% and significantly decrease depolarization of MMP (P < 0.005). The results showed that INF inhabited breaking/streaking the DNA. Proliferation study showed no significant increase in the number of cells either at single or multiple doses. In moderate hyperglycemia (11.1 mmol/l), a significant glucose-lowering effect was observed but glucose diffusion was not the probable mechanism of extracts antidiabetic effect. In conclusion, only INF, the traditionally used extract, has an antidiabetic potential by attenuating the death and apoptosis induced by STZ in β-TC3 cells and increase glucose consumption. CONCLUSION The present study demonstrates that only INF extract have an antidiabetic potential by attenuating the death and apoptosis induced by STZ in β-TC3 cells and increase glucose consumption. SUMMARY Six different extracts from P. farcta were prepared using five different solvents [ethanol, n-hexane, acetone, ethanol: water (1:1 v/v), and water]The protective effect of various P. farcta extracts on cytotoxicity, mitochondrial membrane potential (MMP), and Streptozotocin-induced apoptosis in β-TC3 cells were investigated.Infusion has an antidiabetic potential by attenuating the death and apoptosis induced by STZ in β-TC3 cells and increase glucose consumptionThe effect of infusion extract on glucose consumption in hepatocellular carcinoma cell line cells (a) and effect of infusion extract on glucose consumption in hepatocellular carcinoma cell line cells adjusted by optical density MTT (b). Significance was calculated by analysis of variance (*P ≤ 0.05). MTT: 3 (4,5 dimethylthiazol 2 yl) 2,5 diphenyltetrazolium. Abbreviations used: AC: Acetone extract; ANOVA: Analysis of variance; BSA: Bovine serum albumin; β-TC3: Mouse pancreatic β-cells; DMEM: Dulbecco modified Eagle medium; DMSO: Dimethyl sulfoxide; ETH: Ethyl acetate extract; FBS: Fetal bovine serum; HDETH: Hydroethanolic extract; HepG2: Hepatocellular carcinoma cell line; HEX: Hexane extract; INF: Infusion; KUMS: Kermanshah University of Medical Sciences; MMP: Mitochondrial membrane potential; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium; NaCl: Natrium chloride; OD: Optical density; spp: Species; STZ: Streptozotocin; Tag: T-antigen; USA: United States of America.
Collapse
Affiliation(s)
- Saba Feyzmand
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Shahbazi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Marami
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- National Center for Natural Products Research, University of Mississippi, MS, USA
| |
Collapse
|
33
|
Sharma BR, Kim HJ, Rhyu DY. Caulerpa lentillifera inhibits protein-tyrosine phosphatase 1B and protects pancreatic beta cell via its insulin mimetic effect. Food Sci Biotechnol 2017; 26:495-499. [PMID: 30263570 DOI: 10.1007/s10068-017-0068-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/28/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to determine whether Caulerpa lentillifea extract (CLE) can protect pancreatic beta cells and enhance insulin signaling in adipocytes. We measured the protein tyrosine phosphatase (PTP)-1B inhibitory effect of CLE using an in-vitro enzyme assay. Proteins involved in the pancreatic beta-cell death and insulin signaling were measured by western blotting. Oil-red O staining was used to measure the insulin mimetic effect of CLE. CLE strongly inhibited the PTP1B enzyme. In rat insulinoma (RIN)-m5F cells, CLE decreased the activation of extracellular regulated kinase (ERK)-1/2, P38 mitogen activated protein kinase (P38), c-Jun NH2-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB). Furthermore, CLE showed insulin-mimetic effect and enhanced the activation of insulin-signaling molecules including IRS, AKT, PI3K, and GSK-3β in 3T3-L1 adipocytes. Our results suggested that CLE-inhibited PTP1B, protected the pancreatic beta cells, and enhanced insulin sensitization in the adipocytes.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- 1Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Muan, Jeonnam, 58554 Korea
| | - Hyun Jung Kim
- 2College of Pharmacy, Mokpo National University, Muan, Jeonnam, 58554 Korea
| | - Dong Young Rhyu
- 1Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Muan, Jeonnam, 58554 Korea
| |
Collapse
|
34
|
|
35
|
Ullah N, Hafeez K, Farooq S, Batool A, Aslam N, Hussain M, Ahmad S. Anti-diabetes and anti-obesity: A meta-analysis of different compounds. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61123-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Vuppalapati L, Velayudam R, Nazeer Ahamed K, Cherukuri S, Kesavan BR. The protective effect of dietary flavonoid fraction from Acanthophora spicifera on streptozotocin induced oxidative stress in diabetic rats. FOOD SCIENCE AND HUMAN WELLNESS 2016. [DOI: 10.1016/j.fshw.2016.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Sharma BR, Kim MS, Rhyu DY. Nelumbo Nucifera leaf extract attenuated pancreatic ß-cells toxicity induced by interleukin-1ß and interferon-γ, and increased insulin secrection of pancreatic ß-cells in streptozotocin-induced diabetic rats. J TRADIT CHIN MED 2016; 36:71-7. [DOI: 10.1016/s0254-6272(16)30011-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Anti-diabetic functional foods as sources of insulin secreting, insulin sensitizing and insulin mimetic agents. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
39
|
Sharma BR, Oh J, Kim HA, Kim YJ, Jeong KS, Rhyu DY. Anti-Obesity Effects of the Mixture of Eriobotrya japonica and Nelumbo nucifera in Adipocytes and High-Fat Diet-Induced Obese Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:681-94. [DOI: 10.1142/s0192415x15500421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present study is to evaluate the anti-obesity effects of Eriobotrya japonica (EJ), Nelumbo nucifera (NN), and their mixture (MIX, 1:1 ratio) in 3T3-L1 adipocytes and high-fat diet-induced obese mice. The treatment of EJ, NN, and MIX in 3T3-L1 adipocytes effectively inhibited lipid accumulation, significantly decreased expression of peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element binding protein (SREBP1c), and adipocyte lipid-binding protein (aP2), and significantly increased phosphorylation of AMP-activated protein kinase (AMPK). Moreover, oral treatment of MIX showed stronger effects than individual treatment. C57BL/6J mice (6 week old) were divided into two groups; low fat diet (LFD) containing 10% calories from fat and high fat diet (HFD) containing 60% calories from fat. The HFD groups were further divided into five subgroups; treated with distilled water (HFD), treated with 400 mg/kg EJ (EJ400), treated with 400 mg/kg NN (NN400), treated with 200 mg/kg MIX (MIX200), and treated with 400 mg/kg MIX (MIX400) during 13 weeks. In our results, the administration of EJ, NN, and MIX significantly decreased body weight (BW), fat weight, liver weight, hepatic triglyceride (TG) and total cholesterol (TC), lipid droplets in the liver, food efficacy ratio, and the plasma TG, TC, glucose, insulin, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in a dose-dependent manner, and MIX treatment showed stronger effect than their individual treatments. Similarly, MIX treatment decreased the expression of PPARγ, SREBP-1c, FAS, and ACC more strongly in the adipose tissue than single treatments. In conclusion, the MIX of EJ and NN extract may strongly regulate BW gain than EJ or NN alone, and its anti-obesity effect is associated with the control of lipid metabolism, including adipogenesis and lipogenesis.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jin Oh
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Hyeon-A Kim
- Department of Food & Nutrition, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Yong Jae Kim
- Korea INS Pharm Inc., Jeonnam 519-882, Republic of Korea
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu 1370, Republic of Korea
| | - Dong Young Rhyu
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Jeonnam 534-729, Republic of Korea
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
40
|
Sharma B, Kim H, Rhyu D. Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. J Transl Med 2015; 13:62. [PMID: 25889508 PMCID: PMC4350654 DOI: 10.1186/s12967-015-0412-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022] Open
Abstract
Background Glucose homeostasis is distorted by defects of the PI3K/AKT and AMPK pathways in insulin-sensitive tissues, allowing the accumulation of glucose in the blood. The purpose of this study was to assess the effects and mechanisms by which ethanol extract of Caulerpa lentillifera (CLE) regulates glucose metabolism in C57BL/KsJ-db/db (db/db) mice. Methods Mice were administered CLE (250 or 500 mg/kg BW) or rosiglitazone (RSG, 10 mg/kg BW) for 6 weeks. Then, oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test (IPITT) were performed, and blood glucose was measured in db/db mice. Levels of insulin and insulin resistance factors in plasma, glycogen content in the liver, and IRS, PI3K, AKT, and GLUT4 expressions in skeletal muscles were measured in db/db mice. Glucose uptake and insulin signaling molecules were measured in L6 myocytes, using fluorometry and Western blotting. Results CLE significantly decreased fasting blood glucose, glucose level in OGTT and IPITT, plasma insulin, homeostatic model assessment-insulin resistant (HOMA-IR), TNF-α, IL-6, FFA, TG and TC levels, and hepatic glycogen content in db/db mice. CLE significantly increased the activation of IRS, AKT, PI3K, and GLUT4, which are the key effector molecules of the PI3K/AKT pathway in L6 myocytes and the skeletal muscles of db/db mice. The enhanced glucose uptake by CLE was abolished by treatment with a PI3K inhibitor (LY294002), but not by an AMPK inhibitor (compound C) in L6 myocytes. CLE regulated glucose uptake and homeostasis via the PI3K/AKT pathway in myocytes and db/db mice, respectively. Conclusion Our results suggest that CLE could be a potential candidate for the prevention of diabetes.
Collapse
|