1
|
Augusto SN, Suresh A, Tang WHW. Ceramides as Biomarkers of Cardiovascular Diseases and Heart Failure. Curr Heart Fail Rep 2024; 22:2. [PMID: 39560878 DOI: 10.1007/s11897-024-00689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE OF REVIEW Ceramides are lipid species that play several physiological roles in the body, including stress response, inflammation, and apoptosis, and their involvement in lipid metabolism and energy production makes them crucial in the pathophysiology of heart failure (HF). RECENT FINDINGS Several species of ceramides and ceramide signatures have recently been investigated as possible biomarkers of cardiovascular disease (CVD), and risk scores have demonstrated prognostic value in stratifying patients by risk and possibly predicting adverse cardiac events. With growing interest in targeting metabolic dysfunction, understanding the role of ceramides in CVD also opens the possibility of novel therapeutics that target ceramide metabolism to improve cardiac function and cardiac outcomes in patients. Understanding the role of ceramides in CVD opens the possibility of novel diagnostics and theragnostic targeting ceramide metabolism to improve cardiac function and cardiac outcomes in patients with heart failure.
Collapse
Affiliation(s)
- Silvio N Augusto
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA, 9500 Euclid Avenue, Desk J3-4, 44195
| | - Abhilash Suresh
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - W H Wilson Tang
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA, 9500 Euclid Avenue, Desk J3-4, 44195.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
2
|
Chowdhury RR, Grosso MF, Gadara DC, Spáčil Z, Vidová V, Sovadinová I, Babica P. Cyanotoxin cylindrospermopsin disrupts lipid homeostasis and metabolism in a 3D in vitro model of the human liver. Chem Biol Interact 2024; 397:111046. [PMID: 38735451 DOI: 10.1016/j.cbi.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Riju Roy Chowdhury
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Marina Felipe Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | | | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Veronika Vidová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
3
|
Norris MK, Tippetts TS, Wilkerson JL, Nicholson RJ, Maschek JA, Levade T, Medin JA, Summers SA, Holland WL. Adiponectin overexpression improves metabolic abnormalities caused by acid ceramidase deficiency but does not prolong lifespan in a mouse model of Farber Disease. Mol Genet Metab Rep 2024; 39:101077. [PMID: 38595987 PMCID: PMC11002753 DOI: 10.1016/j.ymgmr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
Farber Disease is a debilitating and lethal childhood disease of ceramide accumulation caused by acid ceramidase deficiency. The potent induction of a ligand-gated neutral ceramidase activity promoted by adiponectin may provide sufficient lowering of ceramides to allow for the treatment of Farber Disease. In vitro, adiponectin or adiponectin receptor agonist treatments lowered total ceramide concentrations in human fibroblasts from a patient with Farber Disease. However, adiponectin overexpression in a Farber Disease mouse model did not improve lifespan or immune infiltration. Intriguingly, mice heterozygous for the Farber Disease mutation were more prone to glucose intolerance and insulin resistance when fed a high-fat diet, and adiponectin overexpression protected from these metabolic perturbations. These studies suggest that adiponectin evokes a ceramidase activity that is not reliant on the functional expression of acid ceramidase, but indicates that additional strategies are required to ameliorate outcomes of Farber Disease.
Collapse
Affiliation(s)
- Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Trevor S. Tippetts
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph L. Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - J. Alan Maschek
- Metabolomics Core Facility, University of Utah, Salt Lake City, UT, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Jeffrey A. Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Gadgil MD, Cheng J, Herrington DM, Kandula NR, Kanaya AM. Adipose tissue-derived metabolite risk scores and risk for type 2 diabetes in South Asians. Int J Obes (Lond) 2024; 48:668-673. [PMID: 38245659 PMCID: PMC11058083 DOI: 10.1038/s41366-023-01457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND South Asians are at higher risk for type 2 diabetes (T2D) than many other race/ethnic groups. Ectopic adiposity, specifically hepatic steatosis and visceral fat may partially explain this. Our objective was to derive metabolite risk scores for ectopic adiposity and assess associations with incident T2D in South Asians. METHODS We examined 550 participants in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) cohort study aged 40-84 years without known cardiovascular disease or T2D and with metabolomic data. Computed tomography scans at baseline assessed hepatic attenuation and visceral fat area, and fasting serum specimens at baseline and after 5 years assessed T2D. LC-MS-based untargeted metabolomic analysis was performed followed by targeted integration and reporting of known signals. Elastic net regularized linear regression analyses was used to derive risk scores for hepatic steatosis and visceral fat using weighted coefficients. Logistic regression models associated metabolite risk score and incident T2D, adjusting for age, gender, study site, BMI, physical activity, diet quality, energy intake and use of cholesterol-lowering medication. RESULTS Average age of participants was 55 years, 36% women with an average body mass index (BMI) of 25 kg/m2 and 6% prevalence of hepatic steatosis, with 47 cases of incident T2D at 5 years. There were 445 metabolites of known identity. Of these, 313 metabolites were included in the MET-Visc score and 267 in the MET-Liver score. In most fully adjusted models, MET-Liver (OR 2.04 [95% CI 1.38, 3.03]) and MET-Visc (OR 2.80 [1.75, 4.46]) were associated with higher odds of T2D. These associations remained significant after adjustment for measured adiposity. CONCLUSIONS Metabolite risk scores for intrahepatic fat and visceral fat were strongly related to incident T2D independent of measured adiposity. Use of these biomarkers to target risk stratification may help capture pre-clinical metabolic abnormalities.
Collapse
Affiliation(s)
- Meghana D Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco School of Medicine, 1545 Divisadero Street, Suite 320, San Francisco, CA, 94143, USA.
| | - Jing Cheng
- Department of Preventive and Restorative Dentistry, University of California, San Francisco School of Dentistry, 707 Parnassus Ave, #1026, San Francisco, CA, 94143, USA
| | - David M Herrington
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine; Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Namratha R Kandula
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, 750 N. Lakeshore Dr. 6h Floor, Chicago, IL, 60611, USA
| | - Alka M Kanaya
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco School of Medicine, 1545 Divisadero Street, Suite 320, San Francisco, CA, 94143, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine, 550 16th Street, Second Floor, San Francisco, CA, 94158, USA
| |
Collapse
|
5
|
Correia CM, Præstholm SM, Havelund JF, Pedersen FB, Siersbæk MS, Ebbesen MF, Gerhart-Hines Z, Heeren J, Brewer J, Larsen S, Blagoev B, Færgeman NJ, Grøntved L. Acute Deletion of the Glucocorticoid Receptor in Hepatocytes Disrupts Postprandial Lipid Metabolism in Male Mice. Endocrinology 2023; 164:bqad128. [PMID: 37610219 DOI: 10.1210/endocr/bqad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, β-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.
Collapse
Affiliation(s)
- Catarina Mendes Correia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Stine Marie Præstholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Felix Boel Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Majken Storm Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Morten Frendø Ebbesen
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Brewer
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Steen Larsen
- Xlab, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
6
|
Castera L, Cusi K. Diabetes and cirrhosis: Current concepts on diagnosis and management. Hepatology 2023; 77:2128-2146. [PMID: 36631005 DOI: 10.1097/hep.0000000000000263] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023]
Abstract
Type 2 diabetes mellitus is often associated with cirrhosis as comorbidities, acute illness, medications, and other conditions profoundly alter glucose metabolism. Both conditions are closely related in NAFLD, the leading cause of chronic liver disease, and given its rising burden worldwide, management of type 2 diabetes mellitus in cirrhosis will be an increasingly common dilemma. Having diabetes increases cirrhosis-related complications, including HCC as well as overall mortality. In the absence of effective treatments for cirrhosis, patients with type 2 diabetes mellitus should be systematically screened as early as possible for NAFLD-related fibrosis/cirrhosis using noninvasive tools, starting with a FIB-4 index followed by transient elastography, if available. In people with cirrhosis, an early diagnosis of diabetes is critical for an optimal management strategy (ie, nutritional goals, and glycemic targets). Diagnosis of diabetes may be missed if based on A1C in patients with cirrhosis and impaired liver function (Child-Pugh B-C) as anemia may turn the test unreliable. Clinicians must also become aware of their high risk of hypoglycemia, especially in decompensated cirrhosis where insulin is the only therapy. Care should be within multidisciplinary teams (nutritionists, obesity management teams, endocrinologists, hepatologists, and others) and take advantage of novel glucose-monitoring devices. Clinicians should become familiar with the safety and efficacy of diabetes medications for patients with advanced fibrosis and compensated cirrhosis. Management is conditioned by whether the patient has either compensated or decompensated cirrhosis. This review gives an update on the complex relationship between cirrhosis and type 2 diabetes mellitus, with a focus on its diagnosis and treatment, and highlights knowledge gaps and future directions.
Collapse
Affiliation(s)
- Laurent Castera
- Departement of Hepatology, Hospital Beaujon, Assistance Publique-Hôpitaux de Paris, INSERM UMR 1149, Université Paris Cité, Clichy, France
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, The University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Gadgil MD, Kanaya AM, Sands C, Chekmeneva E, Lewis MR, Kandula NR, Herrington DM. Diet Patterns Are Associated with Circulating Metabolites and Lipid Profiles of South Asians in the United States. J Nutr 2022; 152:2358-2366. [PMID: 36774102 PMCID: PMC10157813 DOI: 10.1093/jn/nxac191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND South Asians are at higher risk for cardiometabolic disease than many other racial/ethnic minority groups. Diet patterns in US South Asians have unique components associated with cardiometabolic disease. OBJECTIVES We aimed to characterize the metabolites associated with 3 representative diet patterns. METHODS We included 722 participants in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) cohort study aged 40-84 y without known cardiovascular disease. Fasting serum specimens and diet and demographic questionnaires were collected at baseline and diet patterns previously generated through principal components analysis. LC-MS-based untargeted metabolomic and lipidomic analysis was conducted with targeted integration of known metabolite and lipid signals. Linear regression models of diet pattern factor score and log-transformed metabolites adjusted for age, sex, caloric intake, and BMI and adjusted for multiple comparisons were performed, followed by elastic net linear regression of significant metabolites. RESULTS There were 443 metabolites of known identity extracted from the profiling data. The "animal protein" diet pattern was associated with 61 metabolites and lipids, including glycerophospholipids phosphatidylethanolamine PE(O-16:1/20:4) and/or PE(P-16:0/20:4) (β: 0.13; 95% CI: 0.11, 0.14) and N-acyl phosphatidylethanolamines (NAPEs) NAPE(O-18:1/20:4/18:0) and/or NAPE(P-18:0/20:4/18:0) (β: 0.13; 95% CI: 0.11, 0.14), lysophosphatidylinositol (LPI) (22:6/0:0) (β: 0.14; 95% CI: 0.12, 0.17), and fatty acid (FA) (22:6) (β: 0.15; 95% CI: 0.13, 0.17). The "fried snacks, sweets, high-fat dairy" pattern was associated with 12 lipids, including PC(16:0/22:6) (β: -0.08; 95% CI: -0.09, -0.06) and FA (22:6) (β: 0.14; 95% CI: -0.17, -0.10). The "fruits, vegetables, nuts, and legumes" pattern was associated with 5 metabolites including proline betaine (β: 0.17; 95% CI: 0.09, 0.25) (P < 0.0002). CONCLUSIONS Three predominant dietary patterns in US South Asians are associated with circulating metabolites differentiated by lipids including glycerophospholipids and PUFAs and the amino acid proline betaine.
Collapse
Affiliation(s)
- Meghana D Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Alka M Kanaya
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Caroline Sands
- National Phenome Centre, Imperial College London, London, United Kingdom
| | - Elena Chekmeneva
- National Phenome Centre, Imperial College London, London, United Kingdom
| | - Matthew R Lewis
- National Phenome Centre, Imperial College London, London, United Kingdom
| | - Namratha R Kandula
- Division of General Internal Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David M Herrington
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Katajamäki TT, Koivula MK, Hilvo M, Lääperi MTA, Salminen MJ, Viljanen AM, Heikkilä ETM, Löppönen MK, Isoaho RE, Kivelä SL, Jylhä A, Viikari L, Irjala KM, Pulkki KJ, Laaksonen RMH. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clin Chem 2022; 68:1502-1508. [DOI: 10.1093/clinchem/hvac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/09/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Background
The ceramide- and phospholipid-based cardiovascular risk score (CERT2) has been found to predict the risk for cardiovascular disease (CVD) events, especially cardiovascular mortality. In the present study, our aim was to estimate the predictive ability of CERT2 for mortality of CVD, coronary artery disease (CAD), and stroke in the elderly and to compare these results with those of conventional lipids.
Methods
We conducted a prospective study with an 18-year follow-up period that included a total of 1260 participants ages ≥64 years. Ceramides and phosphatidylcholines were analyzed using a LC-MS. Total cholesterol and triglycerides were performed by enzymatic methods and HDL cholesterol was determined by a direct enzymatic method. Concentrations of LDL-cholesterol were calculated according to the Friedewald formula.
Results
A higher score of CERT2 was significantly associated with higher CVD, CAD, and stroke mortality during the 18-year follow-up both in unadjusted and adjusted Cox regression models. The unadjusted hazard ratios (HRs) of CERT2 (95% CI) per SD for CVD, CAD, and stroke were 1.72 (1.52–1.96), 1.76 (1.52–2.04), and 1.63 (1.27–2.10), respectively, and the corresponding adjusted HRs (95% CI) per SD for CERT2 were 1.48 (1.29–1.69), 1.50 (1.28–1.75), and 1.41 (1.09–1.83). For conventional lipids, HRs per SD were lower than for CERT2.
Conclusions
The risk score CERT2 associated strongly with CVD, CAD, and stroke mortality in the elderly, while the association between these events and conventional lipids was weak.
Collapse
Affiliation(s)
- Taina T Katajamäki
- Faculty of Medicine, Department of Clinical Medicine, Unit of Clinical Chemistry, Turku University , Turku , Finland
- Department of Clinical Chemistry, Laboratory Division, Turku University Hospital, Hospital District of Southwest Finland , Turku , Finland
| | - Marja-Kaisa Koivula
- HUS Diagnostic Center, Helsinki University Hospital, Hospital District of Helsinki and Uusimaa , Helsinki , Finland
- Clinical Chemistry and Hematology, Faculty of Medicine, University of Helsinki , Helsinki , Finland
| | | | | | - Marika J Salminen
- Faculty of Medicine, Department of Clinical Medicine, Unit of Family Medicine, University of Turku and Turku University Hospital , Turku , Finland
- Welfare Division, Turku City Hospital , Turku , Finland
| | - Anna M Viljanen
- Municipality of Lieto, Health Care Center , Lieto , Finland
- Faculty of Medicine, Department of Geriatrics, Turku City Hospital, University of Turku , Turku , Finland
| | - Elisa T M Heikkilä
- Faculty of Medicine, Department of Clinical Medicine, Unit of Clinical Chemistry, Turku University , Turku , Finland
- Department of Clinical Chemistry, Laboratory Division, Turku University Hospital, Hospital District of Southwest Finland , Turku , Finland
| | | | - Raimo E Isoaho
- Faculty of Medicine, Department of Clinical Medicine, Unit of Family Medicine, University of Turku and Turku University Hospital , Turku , Finland
- Social and Health Care , Vaasa , Finland
| | - Sirkka-Liisa Kivelä
- Faculty of Medicine, Department of Clinical Medicine, Unit of Family Medicine, University of Turku and Turku University Hospital , Turku , Finland
- Faculty of Pharmacy, Division of Social Pharmacy, University of Helsinki , Helsinki , Finland
| | | | - Laura Viikari
- Faculty of Medicine, Department of Geriatrics, Turku City Hospital, University of Turku , Turku , Finland
- Welfare Division, Turku City Hospital , Turku , Finland
| | - Kerttu M Irjala
- Faculty of Medicine, Department of Clinical Medicine, Unit of Clinical Chemistry, Turku University , Turku , Finland
| | - Kari J Pulkki
- HUS Diagnostic Center, Helsinki University Hospital, Hospital District of Helsinki and Uusimaa , Helsinki , Finland
- Clinical Chemistry and Hematology, Faculty of Medicine, University of Helsinki , Helsinki , Finland
| | - Reijo M H Laaksonen
- Zora Biosciences Oy , Espoo , Finland
- Finnish Cardiovascular Research Center, University of Tampere , Tampere , Finland
| |
Collapse
|
9
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
10
|
Kim KS, Hong S, Ahn HY, Park CY. Triglyceride and glucose index is a simple and easy-to-calculate marker associated with nonalcoholic fatty liver disease. Obesity (Silver Spring) 2022; 30:1279-1288. [PMID: 35674697 DOI: 10.1002/oby.23438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 03/06/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the relationship between the triglyceride and glucose (TyG) index and nonalcoholic fatty liver disease (NAFLD) using a large, population-based cohort study database. METHODS A total of 52,575 participants were enrolled from 2007 to 2013 in the Kangbuk Samsung Health Study cohort. The presence of NAFLD was ascertained by ultrasonography in the absence of other known liver diseases. RESULTS Over a median 5.1 years of follow-up, 7,292 participants (13.87%) were diagnosed with NAFLD. In a multivariate-adjusted model, the hazard ratio for NAFLD of the TyG index was 1.413 (95% CI: 1.349-1.480) in the first 6 months, 1.480 (95% CI: 1.408-1.556) in months 6 to 12, 1.427 (95% CI: 1.370-1.485) in months 12 to 18, and 1.246 (95% CI: 1.159-1.339) in months >18. The hazard ratios of triglycerides, glucose, fatty liver index, and homeostatic model assessment of insulin resistance for NAFLD in months >18 were 1.124 (95% CI: 1.061-1.190), 1.037 (95% CI: 0.970-1.109), 1.508 (95% CI: 1.417-1.605), and 1.177 (95% CI: 1.116-1.242), respectively. The NAFLD-free rate decreased with increasing TyG index quartile (p < 0.001). The TyG index level from which the risk of NAFLD increased appeared to be 8.24. CONCLUSIONS This study found that the TyG index is a simple and easy-to-calculate marker associated with NAFLD.
Collapse
Affiliation(s)
- Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Sangmo Hong
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Hong-Yup Ahn
- Department of Statistics, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Cheol-Young Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Gadgil MD, Sarkar M, Sands C, Lewis MR, Herrington DM, Kanaya AM. Associations of NAFLD with circulating ceramides and impaired glycemia. Diabetes Res Clin Pract 2022; 186:109829. [PMID: 35292328 PMCID: PMC9082931 DOI: 10.1016/j.diabres.2022.109829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/03/2022]
Abstract
AIM Determine the association of circulating ceramides with NAFLD and glycemic impairment. METHODS Sample: 669 participants in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) cohort aged 40-84 years without cardiovascular disease, cirrhosis, or significant alcohol intake. CLINICAL MEASURES Computed tomography scans at baseline for hepatic attenuation. Fasting serum specimens at baseline and after 5 years. Lipidomics: LC-MS-based analysis of 19 known ceramide signals. STATISTICAL ANALYSIS Linear and logistic regression models of log-transformed ceramides, hepatic attenuation and glucose adjusted for age, sex, calories, study site, BMI, exercise, diet quality, alcohol, saturated fat, lipid-lowering medications and fasting glucose. RESULTS Average age was 55 years, 44% were women, mean BMI was 25.9 kg/m2, and 8% had NAFLD. In adjusted models, Cer(d16:1/20:0) and Cer(d18:1/18:0) were associated with lower mean hepatic attenuation (increased liver fat) (β -4.29; 95% CI [-5.98, -2.59]) and (β -3.40; 95% CI [-5.11, -1.70]), and LacCer(d18:1/16:0) with higher attenuation (β 4.44; 95% CI [2.15, 6.73]). All three ceramides partially mediated the relationship between hepatic attenuation and fasting glucose by 16%, 11% and 5%, respectively, after 5-years. CONCLUSIONS Three circulating ceramides were strongly associated with NAFLD and fasting glucose after 5 years, and partially mediated this association.
Collapse
Affiliation(s)
- Meghana D Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, 1545 Divisadero Street, Suite 320, San Francisco, CA 94143-0320, United States.
| | - Monika Sarkar
- Division of Gastroenterology, Department of Medicine, University of California, 513 Parnassus Avenue, MSB, San Francisco, CA 94117, United States
| | - Caroline Sands
- National Phenome Centre, Imperial College London, IRDB Building 5th Floor, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Matthew R Lewis
- National Phenome Centre, Imperial College London, IRDB Building 5th Floor, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - David M Herrington
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Alka M Kanaya
- Division of General Internal Medicine, Department of Medicine, University of California, 1545 Divisadero Street, Suite 320, San Francisco, CA 94143-0320, United States
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Multiple studies have shown a strong association between lipids and diabetes. These are usually described through the effects of cholesterol content of lipid particles and in particular low-density lipoprotein. However, lipoprotein particles contain other components, such as phospholipids and more complex lipid species, such as ceramides and sphingolipids. Ceramides, such as sphingolipids are also produced intracellularly and have signalling actions in regulating cell metabolism including effects on inflammation, and potentially have a mechanistic role in the development of insulin resistance. RECENT FINDINGS Recently, techniques have been developed to analyse detailed molecular profiles of lipid particles - lipidomics. Proteomics has confirmed the different proteins associated with different particles but far less is known about the relationship of individual lipid species with diabetes and cardiovascular risk. A number of studies have now shown that the plasma lipidome, and in particular, ceramides and sphingolipids may predict the development of diabetes. SUMMARY Lipidomics had identified ceramides and sphingolipids as potential mediators of cellular dysfunction in diabetes. Further work is required to ascertain whether they have clinical utility.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Metabolic Medicine/Chemical Pathology Guy's & St Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
13
|
Shalaby YM, Al Aidaros A, Valappil A, Ali BR, Akawi N. Role of Ceramides in the Molecular Pathogenesis and Potential Therapeutic Strategies of Cardiometabolic Diseases: What we Know so Far. Front Cell Dev Biol 2022; 9:816301. [PMID: 35127726 PMCID: PMC8808480 DOI: 10.3389/fcell.2021.816301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Ceramides represent a class of biologically active lipids that are involved in orchestrating vital signal transduction pathways responsible for regulating cellular differentiation and proliferation. However, accumulating clinical evidence have shown that ceramides are playing a detrimental role in the pathogenesis of several diseases including cardiovascular disease, type II diabetes and obesity, collectively referred to as cardiometabolic disease. Therefore, it has become necessary to study in depth the role of ceramides in the pathophysiology of such diseases, aiming to tailor more efficient treatment regimens. Furthermore, understanding the contribution of ceramides to the pathological molecular mechanisms of those interrelated conditions may improve not only the therapeutic but also the diagnostic and preventive approaches of the preceding hazardous events. Hence, the purpose of this article is to review currently available evidence on the role of ceramides as a common factor in the pathological mechanisms of cardiometabolic diseases as well as the mechanism of action of the latest ceramides-targeted therapies.
Collapse
Affiliation(s)
- Youssef M Shalaby
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Anas Al Aidaros
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anjana Valappil
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Menéndez-Pedriza A, Jaumot J, Bedia C. Lipidomic analysis of single and combined effects of polyethylene microplastics and polychlorinated biphenyls on human hepatoma cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126777. [PMID: 34364209 DOI: 10.1016/j.jhazmat.2021.126777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are an emerging environmental issue as a result of their ubiquity, persistence, and intrinsic toxic potential. In addition, their ability to sorb and transport a wide variety of environmental pollutants (i.e. "Trojan Horse" effect) exerts significant adverse impacts upon ecosystems. The toxicological evaluation of the single and combined effects produced by polyethylene microplastics and two polychlorinated biphenyl congeners was performed on the human hepatoma cell line HepG2 by cell viability assessment and an untargeted lipidomic study. The cell lethality evaluation evinced that MPs did not induce relevant cell lethality at any of the concentration range tested, while both PCBs presented a hormetic behavior. The lipidomic analysis suggested that both single PCB exposures induced significant lipidomic changes, especially for glycerophospholipids and glycerolipids. In contrast, for MPs single exposure, the most remarkable change was the substantial enhancement of triglyceride content. Regarding combined exposures, results showed that MPs could induce even more harmful effects than those produced intrinsically as a result of desorbing previously sorbed toxic pollutants. To the best of our knowledge, this is the first study assessing the toxicity of microplastics and their possible "Trojan Horse" effect by applying an untargeted lipidomic methodology.
Collapse
Affiliation(s)
- Albert Menéndez-Pedriza
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carmen Bedia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
15
|
Abstract
The relationship between sphingolipid levels and NAFLD pathology has been recognized for some time. Numerous studies using pharmacological and genetic approaches in vitro and in animal models of NAFLD have demonstrated that modifications to sphingolipid metabolism can attenuate various facets of NAFLD pathology. However, a more precise understanding of the role of sphingolipids and NAFLD pathology is essential to creating therapeutics that target this pathway. This chapter touches on the scale and variety of sphingolipid metabolites at play in NAFLD, which vary widely in their chemical structures and biological functions. With advances in liquid chromatography and tandem mass spectrometry approaches, each of thousands of individual sphingolipid species and sphingolipid metabolites can be identified and precisely quantified. These approaches are beginning to reveal specific sub-classes and species of sphingolipids that change in NAFLD, and as such, enzymes that generate them can be identified and potentially serve as therapeutic targets. Advances in lipidomics technology have been, and will continue to be, critical to these gains in our understanding of NAFLD.
Collapse
Affiliation(s)
- David Montefusco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Johana Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrea Anderson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
16
|
Abstract
Ceramides are a class of sphingolipid that is the backbone structure for all sphingolipids, such as glycosphingolipids and phosphosphingolipids. While being a minor constituent of cellular membranes, ceramides are the major lipid component (along with cholesterol, free fatty acid, and other minor components) of the intercellular spaces of stratum corneum that forms the epidermal permeability barrier. These stratum corneum ceramides consist of unique heterogenous molecular species that have only been identified in terrestrial mammals. Alterations of ceramide molecular profiles are characterized in skin diseases associated with compromised permeability barrier functions, such as atopic dermatitis, psoriasis and xerosis. In addition, hereditary abnormalities of some ichthyoses are associated with an epidermal unique ceramide species, omega-O-acylceramide. Ceramides also serve as lipid modulators to regulate cellular functions, including cell cycle arrest, differentiation, and apoptosis, and it has been demonstrated that changes in ceramide metabolism also cause certain diseases. In addition, ceramide metabolites, sphingoid bases, sphingoid base-1-phosphate and ceramide-1-phosphate are also lipid mediators that regulate cellular functions. In this review article, we describe diverse physiological and pathological roles of ceramides and their metabolites in epidermal permeability barrier function, epidermal cell proliferation and differentiation, immunity, and cutaneous diseases. Finally, we summarize the utilization of ceramides as therapy to treat cutaneous disease.
Collapse
|
17
|
Wali JA, Solon-Biet SM, Freire T, Brandon AE. Macronutrient Determinants of Obesity, Insulin Resistance and Metabolic Health. BIOLOGY 2021; 10:336. [PMID: 33923531 PMCID: PMC8072595 DOI: 10.3390/biology10040336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023]
Abstract
Obesity caused by the overconsumption of calories has increased to epidemic proportions. Insulin resistance is often associated with an increased adiposity and is a precipitating factor in the development of cardiovascular disease, type 2 diabetes, and altered metabolic health. Of the various factors contributing to metabolic impairments, nutrition is the major modifiable factor that can be targeted to counter the rising prevalence of obesity and metabolic diseases. However, the macronutrient composition of a nutritionally balanced "healthy diet" are unclear, and so far, no tested dietary intervention has been successful in achieving long-term compliance and reductions in body weight and associated beneficial health outcomes. In the current review, we briefly describe the role of the three major macronutrients, carbohydrates, fats, and proteins, and their role in metabolic health, and provide mechanistic insights. We also discuss how an integrated multi-dimensional approach to nutritional science could help in reconciling apparently conflicting findings.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Puchałowicz K, Rać ME. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Cells 2020; 9:cells9081877. [PMID: 32796572 PMCID: PMC7465275 DOI: 10.3390/cells9081877] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
CD36 is a multiligand receptor contributing to glucose and lipid metabolism, immune response, inflammation, thrombosis, and fibrosis. A wide range of tissue expression includes cells sensitive to metabolic abnormalities associated with metabolic syndrome and diabetes mellitus (DM), such as monocytes and macrophages, epithelial cells, adipocytes, hepatocytes, skeletal and cardiac myocytes, pancreatic β-cells, kidney glomeruli and tubules cells, pericytes and pigment epithelium cells of the retina, and Schwann cells. These features make CD36 an important component of the pathogenesis of DM and its complications, but also a promising target in the treatment of these disorders. The detrimental effects of CD36 signaling are mediated by the uptake of fatty acids and modified lipoproteins, deposition of lipids and their lipotoxicity, alterations in insulin response and the utilization of energy substrates, oxidative stress, inflammation, apoptosis, and fibrosis leading to the progressive, often irreversible organ dysfunction. This review summarizes the extensive knowledge of the contribution of CD36 to DM and its complications, including nephropathy, retinopathy, peripheral neuropathy, and cardiomyopathy.
Collapse
|
19
|
Poss AM, Summers SA. Too Much of a Good Thing? An Evolutionary Theory to Explain the Role of Ceramides in NAFLD. Front Endocrinol (Lausanne) 2020; 11:505. [PMID: 32849291 PMCID: PMC7411076 DOI: 10.3389/fendo.2020.00505] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which ranges from the relatively benign and reversible fatty liver (NAFL) to the more advanced and deadly steatohepatitis (NASH), affects a remarkably high percentage of adults in the population. Depending upon severity, NAFLD can increase one's risk for diabetes, cardiovascular disease, and hepatocellular carcinoma. Though the dominant histological feature of all forms of the disease is the accumulation of liver triglycerides, these molecules are likely not pathogenic, but rather serve to protect the liver from the damaging consequences of overnutrition. We propose herein that the less abundant ceramides, through evolutionarily-conserved actions intended to help organisms adapt to nutrient excess, drive the cellular events that define NAFL/NASH. In early stages of the disease process, they promote lipid uptake and storage, whilst inhibiting utilization of glucose. In later stages, they stimulate hepatocyte apoptosis and fibrosis. In rodents, blocking ceramide synthesis ameliorates all stages of NAFLD. In humans, serum and liver ceramides correlate with the severity of NAFLD and its comorbidities diabetes and heart disease. These studies identify key roles for ceramides in these hepatic manifestations of the metabolic syndrome.
Collapse
Affiliation(s)
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|