1
|
Rowe CJ, Nwaolu U, Martin L, Huang BJ, Mang J, Salinas D, Schlaff CD, Ghenbot S, Lansford JL, Potter BK, Schobel SA, Gann ER, Davis TA. Systemic inflammation following traumatic injury and its impact on neuroinflammatory gene expression in the rodent brain. J Neuroinflammation 2024; 21:211. [PMID: 39198925 PMCID: PMC11360339 DOI: 10.1186/s12974-024-03205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Trauma can result in systemic inflammation that leads to organ dysfunction, but the impact on the brain, particularly following extracranial insults, has been largely overlooked. METHODS Building upon our prior findings, we aimed to understand the impact of systemic inflammation on neuroinflammatory gene transcripts in eight brain regions in rats exposed to (1) blast overpressure exposure [BOP], (2) cutaneous thermal injury [BU], (3) complex extremity injury, 3 hours (h) of tourniquet-induced ischemia, and hind limb amputation [CEI+tI+HLA], (4) BOP+BU or (5) BOP+CEI and delayed HLA [BOP+CEI+dHLA] at 6, 24, and 168 h post-injury (hpi). RESULTS Globally, the number and magnitude of differentially expressed genes (DEGs) correlated with injury severity, systemic inflammation markers, and end-organ damage, driven by several chemokines/cytokines (Csf3, Cxcr2, Il16, and Tgfb2), neurosteroids/prostaglandins (Cyp19a1, Ptger2, and Ptger3), and markers of neurodegeneration (Gfap, Grin2b, and Homer1). Regional neuroinflammatory activity was least impacted following BOP. Non-blast trauma (in the BU and CEI+tI+HLA groups) contributed to an earlier, robust and diverse neuroinflammatory response across brain regions (up to 2-50-fold greater than that in the BOP group), while combined trauma (in the BOP+CEI+dHLA group) significantly advanced neuroinflammation in all regions except for the cerebellum. In contrast, BOP+BU resulted in differential activity of several critical neuroinflammatory-neurodegenerative markers compared to BU. t-SNE plots of DEGs demonstrated that the onset, extent, and duration of the inflammatory response are brain region dependent. Regardless of injury type, the thalamus and hypothalamus, which are critical for maintaining homeostasis, had the most DEGs. Our results indicate that neuroinflammation in all groups progressively increased or remained at peak levels over the study duration, while markers of end-organ dysfunction decreased or otherwise resolved. CONCLUSIONS Collectively, these findings emphasize the brain's sensitivity to mediators of systemic inflammation and provide an example of immune-brain crosstalk. Follow-on molecular and behavioral investigations are warranted to understand the short- to long-term pathophysiological consequences on the brain, particularly the mechanism of blood-brain barrier breakdown, immune cell penetration-activation, and microglial activation.
Collapse
Affiliation(s)
- Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA.
| | - Uloma Nwaolu
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Laura Martin
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| | - Benjamin J Huang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| | - Josef Mang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| | - Daniela Salinas
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Cody D Schlaff
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
| | - Sennay Ghenbot
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
| | - Jefferson L Lansford
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
| | - Benjamin K Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University, Bethesda, MD, USA
| | - Seth A Schobel
- Surgical Critical Care Initiative (SC2i), Uniformed Services University, Bethesda, MD, USA
| | - Eric R Gann
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University, Bethesda, MD, USA
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| |
Collapse
|
2
|
Host Response of Syrian Hamster to SARS-CoV-2 Infection including Differences with Humans and between Sexes. Viruses 2023; 15:v15020428. [PMID: 36851642 PMCID: PMC9960357 DOI: 10.3390/v15020428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the importance of having proper tools and models to study the pathophysiology of emerging infectious diseases to test therapeutic protocols, assess changes in viral phenotypes, and evaluate the effects of viral evolution. This study provided a comprehensive characterization of the Syrian hamster (Mesocricetus auratus) as an animal model for SARS-CoV-2 infection using different approaches (description of clinical signs, viral load, receptor profiling, and host immune response) and targeting four different organs (lungs, intestine, brain, and PBMCs). Our data showed that both male and female hamsters were susceptible to the infection and developed a disease similar to the one observed in patients with COVID-19 that included moderate to severe pulmonary lesions, inflammation, and recruitment of the immune system in the lungs and at the systemic level. However, all animals recovered within 14 days without developing the severe pathology seen in humans, and none of them died. We found faint evidence for intestinal and neurological tropism associated with the absence of lesions and a minimal host response in intestines and brains, which highlighted another crucial difference with the multiorgan impairment of severe COVID-19. When comparing male and female hamsters, we observed that males sustained higher viral RNA shedding and replication in the lungs, suffered from more severe symptoms and histopathological lesions, and triggered higher pulmonary inflammation. Overall, these data confirmed the Syrian hamster as a suitable model for mild to moderate COVID-19 and reflected sex-related differences in the response against the virus observed in humans.
Collapse
|
3
|
Lee J, Kim J, Kang J, Lee HJ. COVID-19 drugs: potential interaction with ATP-binding cassette transporters P-glycoprotein and breast cancer resistance protein. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:1-22. [PMID: 36320434 PMCID: PMC9607806 DOI: 10.1007/s40005-022-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/30/2022] [Indexed: 01/08/2023]
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in acute respiratory distress, fatal systemic manifestations (extrapulmonary as well as pulmonary), and premature mortality among many patients. Therapy for COVID-19 has focused on the treatment of symptoms and of acute inflammation (cytokine storm) and the prevention of viral infection. Although the mechanism of COVID-19 is not fully understood, potential clinical targets have been identified for pharmacological, immunological, and vaccinal approaches. Area covered Pharmacological approaches including drug repositioning have been a priority for initial COVID-19 therapy due to the time-consuming nature of the vaccine development process. COVID-19 drugs have been shown to manage the antiviral infection cycle (cell entry and replication of proteins and genomic RNA) and anti-inflammation. In this review, we evaluated the interaction of current COVID-19 drugs with two ATP-binding cassette transporters [P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP)] and potential drug-drug interactions (DDIs) among COVID-19 drugs, especially those associated with P-gp and BCRP efflux transporters. Expert opinion Overall, understanding the pharmacodynamic/pharmacokinetic DDIs of COVID-19 drugs can be useful for pharmacological therapy in COVID-19 patients.
Collapse
Affiliation(s)
- Jaeok Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jihye Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jiyeon Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW As of January 8, 2022, a global pandemic caused by infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2, a new RNA virus, has resulted in 304,896,785 cases in over 222 countries and regions, with over 5,500,683 deaths (www.worldometers.info/coronavirus/). Reports of neurological and psychiatric symptoms in the context of coronavirus infectious disease 2019 (COVID-19) range from headache, anosmia, and dysgeusia, to depression, fatigue, psychosis, seizures, delirium, suicide, meningitis, encephalitis, inflammatory demyelination, infarction, and acute hemorrhagic necrotizing encephalopathy. Moreover, 30-50% of COVID-19 survivors develop long-lasting neurologic symptoms, including a dysexecutive syndrome, with inattention and disorientation, and/or poor movement coordination. Detection of SARS-CoV-2 RNA within the central nervous system (CNS) of patients is rare, and mechanisms of neurological damage and ongoing neurologic diseases in COVID-19 patients are unknown. However, studies demonstrating viral glycoprotein effects on coagulation and cerebral vasculature, and hypoxia- and cytokine-mediated coagulopathy and CNS immunopathology suggest both virus-specific and neuroimmune responses may be involved. This review explores potential mechanistic insights that could contribute to COVID-19-related neurologic disease. RECENT FINDINGS While the development of neurologic diseases during acute COVID-19 is rarely associated with evidence of viral neuroinvasion, new evidence suggests SARS-CoV-2 Spike (S) protein exhibits direct inflammatory and pro-coagulation effects. This, in conjunction with immune dysregulation resulting in cytokine release syndrome (CRS) may result in acute cerebrovascular or neuroinflammatory diseases. Additionally, CRS-mediated loss of blood-brain barrier integrity in specific brain regions may contribute to the expression of proinflammatory mediators by neural cells that may impact brain function long after resolution of acute infection. Importantly, host co-morbid diseases that affect vascular, pulmonary, or CNS function may contribute to the type of neurologic disease triggered by SARS-COV-2 infection. SUMMARY Distinct effects of SARS-CoV-2 S protein and CNS compartment- and region-specific responses to CRS may underlie acute and chronic neuroinflammatory diseases associated with COVID-19.
Collapse
Affiliation(s)
- Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Pathology & Immunology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Wang Q, Liu L. On the Critical Role of Human Feces and Public Toilets in the Transmission of COVID-19: Evidence from China. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103350. [PMID: 34540563 PMCID: PMC8433098 DOI: 10.1016/j.scs.2021.103350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
The surprising spread speed of the COVID-19 pandemic creates an urgent need for investigating the transmission chain or transmission pattern of COVID-19 beyond the traditional respiratory channels. This study therefore examines whether human feces and public toilets play a critical role in the transmission of COVID-19. First, it develops a theoretical model that simulates the transmission chain of COVID-19 through public restrooms. Second, it uses stabilized epidemic data from China to empirically examine this theory, conducting an empirical estimation using a two-stage least squares (2SLS) model with appropriate instrumental variables (IVs). This study confirms that the wastewater directly promotes the transmission of COVID-19 within a city. However, the role of garbage in this transmission chain is more indirect in the sense that garbage has a complex relationship with public toilets, and it promotes the transmission of COVID-19 within a city through interaction with public toilets and, hence, human feces. These findings have very strong policy implications in the sense that if we can somehow use the ratio of public toilets as a policy instrument, then we can find a way to minimize the total number of infections in a region. As shown in this study, pushing the ratio of public toilets (against open defecation) to the local population in a city to its optimal level would help to reduce the total infection in a region.
Collapse
Affiliation(s)
- Qiuyun Wang
- School of Economics, Southwestern University of Finance and Economics, P.R China
| | - Lu Liu
- School of Economics, Southwestern University of Finance and Economics, P.R China
| |
Collapse
|
7
|
Abstract
High expression of the transmembrane protein angiotensin I converting enzyme 2 (ACE2), more than 100-times higher as in the lung, and transmembrane serine protease 2 (TMPRSS2) in the gastrointestinal tract leads to infection with SARS-CoV-2. According to meta-analysis data, 9.8–20% of COVID-19 patients experience gastrointestinal symptoms, where diarrhoea is the most frequent, and about 50% shed viruses with high titre through their faeces, where a first faecal transmission was reported. Furthermore, gut inflammation, intestinal damage, and weakening of the gut mucosal integrity that leads to increased permeability has been shown in different studies for COVID-19 patients. This can lead to increased inflammation and bacteraemia. Low mucosal integrity combined with low intestinal damage is a good predictor for disease progression and submission to the intensive care unit (ICU). Several pilot studies have shown that the gut microbiome of COVID-19 patients is changed, microbial richness and diversity were lower, and opportunistic pathogens that can cause bacteraemia were enriched compared to a healthy control group. In a large proportion of these patients, dysbiosis was not resolved at discharge from the hospital and one study showed dysbiosis is still present after 3 months post COVID-19. Consequently, there might be a link between dysbiosis of the gut microbiome in COVID-19 patients and chronic COVID-19 syndrome (CCS). Various clinical trials are investigating the benefit of probiotics for acute COVID-19 patients, the majority of which have not reported results yet. However, two clinical trials have shown that a certain combination of probiotics is beneficial and safe for acute COVID-19 patients. Mortality was 11% for the probiotic treatment group, and 22% for the control group. Furthermore, for the probiotic group, symptoms cleared faster, and an 8-fold decreased risk of developing a respiratory failure was calculated. In conclusion, evidence is arising that inflammation, increased permeability, and microbiome dysbiosis in the gut occur in COVID-19 patients and thus provide new targets for adjuvant treatments of acute and chronic COVID-19. More research in this area is needed.
Collapse
|