1
|
Abe K, Tsumaki N. Regeneration of joint surface defects by transplantation of allogeneic cartilage: application of iPS cell-derived cartilage and immunogenicity. Inflamm Regen 2023; 43:56. [PMID: 37964383 PMCID: PMC10644611 DOI: 10.1186/s41232-023-00307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Because of its poor intrinsic repair capacity, articular cartilage seldom heals when damaged. MAIN BODY Regenerative treatment is expected for the treatment of articular cartilage damage, and allogeneic chondrocytes or cartilage have an advantage over autologous chondrocytes, which are limited in number. However, the presence or absence of an immune response has not been analyzed and remains controversial. Allogeneic-induced pluripotent stem cell (iPSC)-derived cartilage, a new resource for cartilage regeneration, reportedly survived and integrated with native cartilage after transplantation into chondral defects in knee joints without immune rejection in a recent primate model. Here, we review and discuss the immunogenicity of chondrocytes and the efficacy of allogeneic cartilage transplantation, including iPSC-derived cartilage. SHORT CONCLUSION Allogeneic iPSC-derived cartilage transplantation, a new therapeutic option, could be a good indication for chondral defects, and the development of translational medical technology for articular cartilage damage is expected.
Collapse
Affiliation(s)
- Kengo Abe
- Department of Tissue Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Noriyuki Tsumaki
- Department of Tissue Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Tissue Biochemistry, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Chen YW, Shie MY, Chang WC, Shen YF. Approximate Optimization Study of Light Curing Waterborne Polyurethane Materials for the Construction of 3D Printed Cytocompatible Cartilage Scaffolds. MATERIALS 2021; 14:ma14226804. [PMID: 34832205 PMCID: PMC8626041 DOI: 10.3390/ma14226804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
Articular cartilage, which is a white transparent tissue with 1–2 mm thickness, is located in the interface between the two hard bones. The main functions of articular cartilage are stress transmission, absorption, and friction reduction. The cartilage cannot be repaired and regenerated once it has been damaged, and it needs to be replaced by artificial joints. Many approaches, such as artificial joint replacement, hyaluronic acid injection, microfracture surgery and cartilage tissue engineering have been applied in clinical treatment. Basically, some of these approaches are foreign material implantation for joint replacement to reach the goal of pain reduction and mechanism support. This study demonstrated another frontier in the research of cartilage reconstruction by applying regeneration medicine additive manufacturing (3D Printing) and stem cell technology. Light curing materials have been modified and tested to be printable and cytocompatible for stem cells in this research. Design of experiments (DOE) is adapted in this investigation to search for the optimal manufacturing parameter for biocompatible scaffold fabrication and stem cell attachment and growth. Based on the results, an optimal working process of biocompatible and printable scaffolds for cartilage regeneration is reported. We expect this study will facilitate the development of cartilage tissue engineering.
Collapse
Affiliation(s)
- Yi-Wen Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan; (Y.-W.C.); (M.-Y.S.); (W.-C.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 40447, Taiwan
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan; (Y.-W.C.); (M.-Y.S.); (W.-C.C.)
- School of Dentistry, China Medical University, Taichung City 40447, Taiwan
| | - Wen-Ching Chang
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan; (Y.-W.C.); (M.-Y.S.); (W.-C.C.)
| | - Yu-Fang Shen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
- High Performance Materials Institute for xD Printing, Asia University, Taichung City 41354, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Troy E, Tilbury MA, Power AM, Wall JG. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers (Basel) 2021; 13:3321. [PMID: 34641137 PMCID: PMC8513057 DOI: 10.3390/polym13193321] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Natural polymers, based on proteins or polysaccharides, have attracted increasing interest in recent years due to their broad potential uses in biomedicine. The chemical stability, structural versatility, biocompatibility and high availability of these materials lend them to diverse applications in areas such as tissue engineering, drug delivery and wound healing. Biomaterials purified from animal or plant sources have also been engineered to improve their structural properties or promote interactions with surrounding cells and tissues for improved in vivo performance, leading to novel applications as implantable devices, in controlled drug release and as surface coatings. This review describes biomaterials derived from and inspired by natural proteins and polysaccharides and highlights their promise across diverse biomedical fields. We outline current therapeutic applications of these nature-based materials and consider expected future developments in identifying and utilising innovative biomaterials in new biomedical applications.
Collapse
Affiliation(s)
- Eoin Troy
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
| | - Maura A. Tilbury
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| | - Anne Marie Power
- Zoology, School of Natural Sciences, NUI Galway, H91 TK33 Galway, Ireland;
| | - J. Gerard Wall
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
4
|
Yi D, Yu H, Lu K, Ruan C, Ding C, Tong L, Zhao X, Chen D. AMPK Signaling in Energy Control, Cartilage Biology, and Osteoarthritis. Front Cell Dev Biol 2021; 9:696602. [PMID: 34239878 PMCID: PMC8258395 DOI: 10.3389/fcell.2021.696602] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) was initially identified as an enzyme acting as an "energy sensor" in maintaining energy homeostasis via serine/threonine phosphorylation when low cellular adenosine triphosphate (ATP) level was sensed. AMPK participates in catabolic and anabolic processes at the molecular and cellular levels and is involved in appetite-regulating circuit in the hypothalamus. AMPK signaling also modulates energy metabolism in organs such as adipose tissue, brain, muscle, and heart, which are highly dependent on energy consumption via adjusting the AMP/ADP:ATP ratio. In clinics, biguanides and thiazolidinediones are prescribed to patients with metabolic disorders through activating AMPK signaling and inhibiting complex I in the mitochondria, leading to a reduction in mitochondrial respiration and elevated ATP production. The role of AMPK in mediating skeletal development and related diseases remains obscure. In this review, in addition to discuss the emerging advances of AMPK studies in energy control, we will also illustrate current discoveries of AMPK in chondrocyte homeostasis, osteoarthritis (OA) development, and the signaling interaction of AMPK with other pathways, such as mTOR (mechanistic target of rapamycin), Wnt, and NF-κB (nuclear factor κB) under OA condition.
Collapse
Affiliation(s)
- Dan Yi
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huan Yu
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ke Lu
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changshun Ruan
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Liping Tong
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Integrin α2β1 plays an important role in the interaction between human articular cartilage-derived chondrocytes and atelocollagen gel. Sci Rep 2021; 11:1757. [PMID: 33469078 PMCID: PMC7815876 DOI: 10.1038/s41598-021-81378-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Although atelocollagen gel is used as a scaffold for culturing human articular cartilage-derived chondrocytes, little is known about cell-gel interactions. In this study, we investigated the mechanism via which atelocollagen gel affects human articular cartilage-derived chondrocytes. Two types of three-dimensional cultures of human articular cartilage-derived chondrocytes (i.e., with and without atelocollagen gel) were compared. While the amount of atelocollagen gel in culture gradually decreased with time, it promoted the expression of matrix metalloproteinases (MMPs) during the early stages of culture. Genome-wide differential gene expression analysis revealed that cell membrane- and extracellular matrix-related genes were highly ranked among up- and down-regulated groups in cells cultured in the presence of atelocollagen gel. Among the integrin family of genes, the expression of integrin subunit alpha 2 and integrin subunit alpha 10 was significantly increased in the presence of atelocollagen gel. Blocking α2β1 integrin with the specific inhibitor BTT 3033 had a significant effect on cell proliferation, MMP expression, and cell shape, as well as on the response to mechanical stimulation. Taken together, our findings indicate that the α2β1 integrin pathway plays an important role in the interaction of atelocollagen gel with human articular cartilage-derived chondrocytes and may be a potential therapeutic target for articular cartilage disorders.
Collapse
|
6
|
Guo JL, Kim YS, Orchard EA, van den Beucken JJ, Jansen JA, Wong ME, Mikos AG. A Rabbit Femoral Condyle Defect Model for Assessment of Osteochondral Tissue Regeneration. Tissue Eng Part C Methods 2020; 26:554-564. [PMID: 33050806 PMCID: PMC7698983 DOI: 10.1089/ten.tec.2020.0261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Osteochondral tissue repair represents a common clinical need, with multiple approaches in tissue engineering and regenerative medicine being investigated for the repair of defects of articular cartilage and subchondral bone. A full thickness rabbit femoral condyle defect is a clinically relevant model of an articulating and load bearing joint surface for the investigation of osteochondral tissue repair by various cell-, biomolecule-, and biomaterial-based implants. In this protocol, we describe the methodology and 1.5- to 2-h surgical procedure for the generation of a reproducible, full thickness defect for construct implantation in the rabbit medial femoral condyle. Furthermore, we describe a step-by-step procedure for osteochondral tissue collection and the assessment of tissue formation using standardized histological, radiological, mechanical, and biochemical analytical techniques. This protocol illustrates the critical steps for reproducibility and minimally invasive surgery as well as applications to evaluate the efficacy of cartilage and bone tissue engineering implants, with emphasis on the usage of histological and radiological measures of tissue growth. Impact statement Although multiple surgical techniques have been developed for the treatment of osteochondral defects, repairing the tissues to their original state remains an unmet need. Such limitations have thus prompted the development of various constructs for osteochondral tissue regeneration. An in vivo model that is both clinically relevant and economically practical is necessary to evaluate the efficacy of different tissue engineered constructs. In this article, we present a full thickness rabbit femoral condyle defect model and describe the analytical techniques to assess the regeneration of osteochondral tissue.
Collapse
Affiliation(s)
- Jason L. Guo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Mark E. Wong
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
7
|
Murata D, Fujimoto R, Nakayama K. Osteochondral Regeneration Using Adipose Tissue-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21103589. [PMID: 32438742 PMCID: PMC7279226 DOI: 10.3390/ijms21103589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a major joint disease that promotes locomotor deficiency during the middle- to old-age, with the associated disability potentially decreasing quality of life. Recently, surgical strategies to reconstruct both articular cartilage and subchondral bone for OA have been diligently investigated for restoring joint structure and function. Adipose tissue-derived mesenchymal stem cells (AT-MSCs), which maintain pluripotency and self-proliferation ability, have recently received attention as a useful tool to regenerate osteocartilage for OA. In this review, several studies were described related to AT-MSC spheroids, with scaffold and scaffold-free three-dimensional (3D) constructs produced using “mold” or “Kenzan” methods for osteochondral regeneration. First, several examples of articular cartilage regeneration using AT-MSCs were introduced. Second, studies of osteochondral regeneration (not only cartilage but also subchondral bone) using AT-MSCs were described. Third, examples were presented wherein spheroids were produced using AT-MSCs for cartilage regeneration. Fourth, osteochondral regeneration following autologous implantation of AT-MSC scaffold-free 3D constructs, fabricated using the “mold” or “Kenzan” method, was considered. Finally, prospects of osteochondral regeneration by scaffold-free 3D constructs using AT-MSC spheroids were discussed.
Collapse
Affiliation(s)
- Daiki Murata
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
- Correspondence: ; Tel.: +81-952-28-8480
| | - Ryota Fujimoto
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
| |
Collapse
|
8
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Kim DH, Lim MH, Jeun JH, Park SH, Lee W, Park SH, Kwon MY, Hwang SH, Kim SW. Evaluation of Polycaprolactone-Associated Human Nasal Chondrocytes as a Therapeutic Agent for Cartilage Repair. Tissue Eng Regen Med 2019; 16:605-614. [PMID: 31824823 DOI: 10.1007/s13770-019-00210-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Background In this study, we manufactured a complex of human nasal septal cartilage (hNC) with polycaprolactone (PCL) for transplantation into cartilaginous skeletal defects and evaluated their characteristics. Methods Nasal septum tissue was obtained from five patients aged ≥ 20 years who were undergoing septoplasty. hNCs were isolated and subcultured for three passages in vitro. To formulate the cell-PCL complex, we used type I collagen as an adhesive between chondrocyte and PCL. Immunofluorescence staining, cell viability and growth in the hNC-PCL complex, and mycoplasma contamination were assessed. Results hNCs in PCL showed viability ≥ 70% and remained at these levels for 9 h of incubation at 4 °C. Immunostaining of the hNC-PCL complex also showed high expression levels of chondrocyte-specific protein, COL2A1, SOX9, and aggrecan during 24 h of clinically applicable conditions. Conclusion The hNC-PCL complex may be a valuable therapeutic agent for implantation into injured cartilage tissue, and can be used clinically to repair cartilaginous skeletal defects. From a clinical perspective, it is important to set the short duration of the implantation process to achieve effective functional implantation.
Collapse
Affiliation(s)
- Do Hyun Kim
- 1Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Mi Hyun Lim
- 1Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Jung Ho Jeun
- 1Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea.,2Institute of Clinical Medicine Research, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Sun Hwa Park
- 1Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - WeonSun Lee
- 2Institute of Clinical Medicine Research, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Sang Hi Park
- 2Institute of Clinical Medicine Research, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Mi Yeon Kwon
- 2Institute of Clinical Medicine Research, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Se Hwan Hwang
- 3Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-do 14647 Republic of Korea
| | - Sung Won Kim
- 1Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
10
|
Domínguez Pérez JM, Fernández-Sarmiento JA, Aguilar García D, Granados Machuca MDM, Morgaz Rodríguez J, Navarrete Calvo R, Pérez Arévalo J, Carrillo Poveda JM, Alentorn-Geli E, Laiz Boada P, Cugat Bertomeu R. Cartilage regeneration using a novel autologous growth factors-based matrix for full-thickness defects in sheep. Knee Surg Sports Traumatol Arthrosc 2019; 27:950-961. [PMID: 30132050 DOI: 10.1007/s00167-018-5107-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the chondrogenic-regenerative properties of a novel autologous-made matrix composed of hyaline cartilage chips combined with a growth factors-based clot for full-thickness defects in sheep. METHODS A full-thickness, 8-mm diameter cartilage defect was created in the weight-bearing area of the medial femoral condyle in 6 sheep. Treatment consisted of surgical implantation of an autologous-based matrix of hyaline cartilage chips combined with a clot of plasma poor in platelets and intraarticular injection of plasma rich in growth factors. Outcome measures at 1, 3 and 6 months included macroscopic International Cartilage Repair Society (ICRS) score, histological and immunohistochemical analysis for collagen expression, and transmission electron microscopy study. RESULTS The 6-month macroscopic evaluation showed nearly normal (11.1 ± 0.7) cartilage repair assessment. The ICRS score was significantly higher at 6 months compared to 3 months (5.5 ± 1.3; p < 0.0001) and 1 (1.1 ± 0.4; p < 0.0001) month. At 6 months, hyaline cartilage tissue filling the defect was observed with adequate integration of the regenerated cartilage at the surrounding healthy cartilage margin. At 6 months, mature chondrons and cartilage matrix contained collagen fibers with masked fibrillary structure, and the expression of collagen in the newly formed cartilage was similar in intensity and distribution pattern compared to the healthy adjacent cartilage. CONCLUSIONS This novel treatment enhanced chondrogenesis and regenerated hyaline cartilage at 6 months with nearly normal macroscopic ICRS assessment. Histological analysis showed equivalent structure to mature cartilage tissue in the defect and a collagen expression pattern in the newly formed cartilage similar to that found in adjacent healthy articular cartilage. The present technique may have clinical application for chondral injuries in humans because this procedure is cheap (no need for allograft, or expensive instrumentation/biomaterials/techniques), easy and fast-performing through a small arthrotomy, and safe (no rejection possibility because the patients' own tissue, cells, and plasma are used).
Collapse
Affiliation(s)
- Juan Manuel Domínguez Pérez
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain. .,Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.
| | - José Andrés Fernández-Sarmiento
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain.,Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain
| | - Daniel Aguilar García
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - María Del Mar Granados Machuca
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - Juan Morgaz Rodríguez
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - Rocío Navarrete Calvo
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - José Pérez Arévalo
- Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - José María Carrillo Poveda
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Cátedra García Cugat, Universidad CEU Cardenal Herrera, 46115, Valencia, Spain
| | - Eduard Alentorn-Geli
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Artroscopia GC, SL, Hospital Quirón, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Mutualidad Catalana de Futbolistas, Federación Española de Fútbol, Ronda Sant Pere 17-21, 08010, Barcelona, Spain
| | - Patricia Laiz Boada
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Artroscopia GC, SL, Hospital Quirón, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain
| | - Ramón Cugat Bertomeu
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Artroscopia GC, SL, Hospital Quirón, Plaza Alfonso Comín 5-7, 08023, Barcelona, Spain.,Mutualidad Catalana de Futbolistas, Federación Española de Fútbol, Ronda Sant Pere 17-21, 08010, Barcelona, Spain
| |
Collapse
|
11
|
Oshima T, Nakase J, Toratani T, Numata H, Takata Y, Nakayama K, Tsuchiya H. A Scaffold-Free Allogeneic Construct From Adipose-Derived Stem Cells Regenerates an Osteochondral Defect in a Rabbit Model. Arthroscopy 2019; 35:583-593. [PMID: 30612760 DOI: 10.1016/j.arthro.2018.08.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE To determine whether an osteochondral defect could be healed histologically by implanting allogeneic 3-dimensionally formed adipose-derived stem cells (ADSCs) in a rabbit model. METHODS Thirty Japanese white rabbits (aged 15-17 weeks) were assigned to 1 of 2 groups. An osteochondral defect (diameter, 4.8 mm; depth, 3 mm) was created in the trochlear groove of the knee using a drill. The defects were left empty in the control group and were filled with cylindrical plugs of allogeneic ADSCs extracted from adipose tissue in the experimental group. Macroscopic scoring, histologic scoring, and immunohistologic stainability of type II collagen were evaluated at 4, 8, and 12 weeks postoperatively. RESULTS The macroscopic scores of the healing tissue in the experimental group were significantly greater than those in the control group at 12 weeks (P = .031). Histologically, safranin O staining was noted at 4 weeks and increased gradually over time in the experimental group. The modified International Cartilage Repair Society histologic score in the experimental group was significantly higher than that in the controls at 8 and 12 weeks (14 vs 9 at 8 weeks [P = .008], 18 vs 10 at 12 weeks [P = .007]). The implanted tissue was positive for type II collagen, and stainability increased gradually over time. CONCLUSIONS The 3-dimensional scaffold-free allogeneic ADSCs implanted into the osteochondral defect survived, adhered to the defect, increased the stainability of type II collagen gradually over time, and promoted histologic healing in a rabbit model. CLINICAL RELEVANCE ADSC implantation designed to promote osteochondral healing may play an important role in osteochondral healing.
Collapse
Affiliation(s)
- Takeshi Oshima
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Tatsuhiro Toratani
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hitoaki Numata
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yasushi Takata
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Biz C, Crimi A, Fantoni I, Pozzuoli A, Ruggieri P. Muscle stem cells: what's new in orthopedics? ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:8-13. [PMID: 30714993 PMCID: PMC6503412 DOI: 10.23750/abm.v90i1-s.8078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIM OF THE WORK Adult stem cells were studied as a source of potentially useful development for tissue engineering and repair techniques. The aim of this review is to clarify the actual and possible uses of muscle stem cells in orthopedics. METHODS A selection of studies was made to obtain a homogeneous and up to date overview on the muscle stem cells applications. RESULTS In recent years muscle was studied as a good source of adult stem cells that can differentiate into different cell lineages. Muscle stem cells are a heterogeneous population of cells, which demonstrated in vitro a great potential for the regeneration and repair of muscle, bone and cartilage tissue. Among muscle stem cells, satellite stem cells are the most known progenitor cells: they can differentiate in osteoblasts, adipocytes, chondrocytes and myocytes. CONCLUSIONS Although muscle stem cells are a promising field of research, more pre-clinical studies in animal models are still needed to determine the safety and efficiency of the transplant procedures in humans.
Collapse
Affiliation(s)
- Carlo Biz
- Orthopaedic Clinic, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padua, Padova, Italy.
| | | | | | | | | |
Collapse
|
13
|
Bilgen B, Jayasuriya CT, Owens BD. Current Concepts in Meniscus Tissue Engineering and Repair. Adv Healthc Mater 2018; 7:e1701407. [PMID: 29542287 PMCID: PMC6176857 DOI: 10.1002/adhm.201701407] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The meniscus is the most commonly injured structure in the human knee. Meniscus deficiency has been shown to lead to advanced osteoarthritis (OA) due to abnormal mechanical forces, and replacement strategies for this structure have lagged behind other tissue engineering endeavors. The challenges include the complex 3D structure with individualized size parameters, the significant compressive, tensile and shear loads encountered, and the poor blood supply. In this progress report, a review of the current clinical treatments for different types of meniscal injury is provided. The state-of-the-art research in cellular therapies and novel cell sources for these therapies is discussed. The clinically available cell-free biomaterial implants and the current progress on cell-free biomaterial implants are reviewed. Cell-based tissue engineering strategies for the repair and replacement of meniscus are presented, and the current challenges are identified. Tissue-engineered meniscal biocomposite implants may provide an alternative solution for the treatment of meniscal injury to prevent OA in the long run, because of the limitations of the existing therapies.
Collapse
Affiliation(s)
- Bahar Bilgen
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
- Providence VA Medical Center, Providence, RI, 02908, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
| |
Collapse
|
14
|
Pulkkinen H, Tiitu V, Valonen P, Hämäläinen ER, Lammi M, Kiviranta I. Recombinant human type II collagen as a material for cartilage tissue engineering. Int J Artif Organs 2018; 31:960-9. [DOI: 10.1177/039139880803101106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro. Methods Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays. Results Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week. Conclusion Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.
Collapse
Affiliation(s)
- H.J. Pulkkinen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - V. Tiitu
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - P. Valonen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - E.-R. Hämäläinen
- Bioprocess Engineering Laboratory, University of Oulu, Oulu - Finland
| | - M.J. Lammi
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Biosciences, Applied Biotechnology, University of Kuopio, Kuopio - Finland
| | - I. Kiviranta
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki - Finland
| |
Collapse
|
15
|
Moskalewski S, Osiecka-Iwan A, Hyc A. Cartilage Produced after Transplantation of Syngeneic Chondrocytes is Rejected in Rats Presensitized with Allogeneic Chondrocytes. Cell Transplant 2017. [DOI: 10.3727/000000001783986350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Stanislaw Moskalewski
- Department of Histology and Embryology, Medical University of Warsaw, Pl-02004 Warsaw, Poland
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Pl-02004 Warsaw, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Pl-02004 Warsaw, Poland
| |
Collapse
|
16
|
Ratheesh G, Venugopal JR, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. ACS Biomater Sci Eng 2017; 3:1175-1194. [PMID: 33440508 DOI: 10.1021/acsbiomaterials.6b00370] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in bioprinting technology have been used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. Organ printing and biofabrication provides great potential for the freeform fabrication of 3D living organs using cellular spheroids, biocomposite nanofibers, or bioinks as building blocks for regenerative therapy. Vascularization is often identified as a main technological barrier for building 3D organs in tissue engineering. 3D printing of living tissues starts with potential support of biomaterials to maintain structural integrity and degradation of certain time periods after printing of the scaffolds. Biofabrication is the production of complex living and nonliving biological products from raw materials such as cells, molecules, ECM, and biomaterials. Generally, two basic methods are used for the fabrication of scaffolds such as conventional/traditional fabrication processes and advance fabrication processes for engineering organs. A wide range of polymers and biomaterials are used for the fabrication of scaffolds in tissue engineering applications. 3D additive manufacturing is advancing day-by-day; however, there are various critical challenging factors used for fabricating 3D scaffolds. This review is aimed at understanding the various scaffold fabrication techniques, types of polymers and biomaterials used for the fabrication processes, various fields of applications, and different challenges faced in their fabrication of scaffolds in regenerative therapy.
Collapse
Affiliation(s)
- Greeshma Ratheesh
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Amutha Chinappan
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Hariharan Ezhilarasu
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Asif Sadiq
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Hosseini S, Shamekhi MA, Jahangir S, Bagheri F, Eslaminejad MB. The Robust Potential of Mesenchymal Stem Cell-Loaded Constructs for Hard Tissue Regeneration After Cancer Removal. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1084:17-43. [DOI: 10.1007/5584_2017_131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Fekrazad R, Eslaminejad MB, Shayan AM, Kalhori KA, Abbas FM, Taghiyar L, Sepehr Pedram M, Ghuchani MS. Effects of Photobiomodulation and Mesenchymal Stem Cells on Articular Cartilage Defects in a Rabbit Model. Photomed Laser Surg 2016; 34:543-549. [DOI: 10.1089/pho.2015.4028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Reza Fekrazad
- Department of Periodontology, Dental Faculty, AJA University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Arman M. Shayan
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Mashhadi Abbas
- Department of Oral & Maxillofacial Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mir Sepehr Pedram
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mostafa Sadeghi Ghuchani
- Department of Orthodontics, Gorgan Faculty of Dentistry, Golestan University of Medical Sciences, Golestan, Iran
| |
Collapse
|
19
|
Huang C, Liu H, Gong X, Wen B, Chen D, Liu J, Hu F. Analysis of different components in the peritumoral tissue microenvironment of colorectal cancer: A potential prospect in tumorigenesis. Mol Med Rep 2016; 14:2555-65. [PMID: 27484148 PMCID: PMC4991672 DOI: 10.3892/mmr.2016.5584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to observe the varying expression of biomarkers in the microenvironment adjacent to colorectal cancer lesions to provide additional insight into the functions of microenvironment components in carcinogenesis and present a novel or improved indicator for early diagnosis of cancer. A total of 144 human samples from three different locations in 48 patients were collected, these locations were 10, 5 and 2 cm from the colorectal cancer lesion, respectively. The biomarkers analyzed included E‑cadherin, cytokeratin 18 (CK18), hyaluronidase‑1 (Hyal‑1), collagen type I (Col‑I), Crumbs3 (CRB3), vimentin, proteinase activated receptor 3 (PAR‑3), α‑smooth muscle actin (α‑SMA), cyclin D1 (CD1) and cluster of differentiation (CD)133. In addition, crypt architecture was observed. Related functional analysis of proteins was performed using hierarchical index cluster analysis. More severe destroyed crypt architecture closer to the cancer lesions was observed compared with the 10 cm sites, with certain crypts degraded entirely. Expression levels of E‑cadherin, CK18, CRB3 and PAR‑3 were lower in 2 cm sites compared with the 10 cm sites (all P<0.001), while the expression levels of the other biomarkers in the 2 cm sites were increased compared with 10 cm sites (all P<0.0001). Notably, the expression of CK18 in 2 cm sites was higher than in the 5 cm site (P<0.0001), which was different from the expression of E‑cadherin, CRB3 and PAR‑3. The expression levels of Hyal‑1 and Col‑I at the 2 cm sites were lower than that of the 5 cm sites (P>0.05 and P=0.0001, respectively), while the expression of vimentin, α‑SMA, CD1 and CD133 were not. Hyal‑1 and Col‑I may be independently important in cancer initiation in the tumor microenvironment. The results of the present study suggest that the biomarkers in the tissue microenvironment are associated with early tumorigenesis and may contribute to the development of carcinomas. These observations may be useful for early diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Chao Huang
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Hong Liu
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Xiuli Gong
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Bin Wen
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Dan Chen
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Jinyuan Liu
- Pathology Department, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Fengliang Hu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
20
|
Muhonen V, Salonius E, Haaparanta AM, Järvinen E, Paatela T, Meller A, Hannula M, Björkman M, Pyhältö T, Ellä V, Vasara A, Töyräs J, Kellomäki M, Kiviranta I. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study. J Orthop Res 2016; 34:745-53. [PMID: 26573959 DOI: 10.1002/jor.23099] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/03/2015] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to investigate the potential of a novel recombinant human type II collagen/polylactide scaffold (rhCo-PLA) in the repair of full-thickness cartilage lesions with autologous chondrocyte implantation technique (ACI). The forming repair tissue was compared to spontaneous healing (spontaneous) and repair with a commercial porcine type I/III collagen membrane (pCo). Domestic pigs (4-month-old, n = 20) were randomized into three study groups and a circular full-thickness chondral lesion with a diameter of 8 mm was created in the right medial femoral condyle. After 3 weeks, the chondral lesions were repaired with either rhCo-PLA or pCo together with autologous chondrocytes, or the lesion was only debrided and left untreated for spontaneous repair. The repair tissue was evaluated 4 months after the second operation. Hyaline cartilage formed most frequently in the rhCo-PLA treatment group. Biomechanically, there was a trend that both treatment groups resulted in better repair tissue than spontaneous healing. Adverse subchondral bone reactions developed less frequently in the spontaneous group (40%) and the rhCo-PLA treated group (50%) than in the pCo control group (100%). However, no statistically significant differences were found between the groups. The novel rhCo-PLA biomaterial showed promising results in this proof-of-concept study, but further studies will be needed in order to determine its effectiveness in articular cartilage repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:745-753, 2016.
Collapse
Affiliation(s)
- Virpi Muhonen
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| | - Eve Salonius
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| | - Anne-Marie Haaparanta
- Department of Electronics and Communications Engineering, Tampere University of Technology and BioMediTech, Tampere, Finland
| | - Elina Järvinen
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| | - Teemu Paatela
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland.,Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - Anna Meller
- Laboratory Animal Center, University of Helsinki, Helsinki, Finland
| | - Markus Hannula
- Department of Electronics and Communications Engineering, Tampere University of Technology and BioMediTech, Tampere, Finland
| | - Mimmi Björkman
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Pyhältö
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - Ville Ellä
- Department of Electronics and Communications Engineering, Tampere University of Technology and BioMediTech, Tampere, Finland
| | - Anna Vasara
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland.,Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Minna Kellomäki
- Department of Electronics and Communications Engineering, Tampere University of Technology and BioMediTech, Tampere, Finland
| | - Ilkka Kiviranta
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland.,Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
21
|
Hirakata E, Tomita N, Tamada Y, Suguro T, Nakajima M, Kambe Y, Yamada K, Yamamoto K, Kawakami M, Otaka A, Okumura H, Suzuki S. Early tissue formation on whole-area osteochondral defect of rabbit patella by covering with fibroin sponge. J Biomed Mater Res B Appl Biomater 2016; 104:1474-82. [DOI: 10.1002/jbm.b.33656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/07/2016] [Accepted: 02/28/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Eiichi Hirakata
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
- Department of Plastic Surgery; Kyoto University Postgraduate School of Medicine; Kyoto Japan
| | - Naohide Tomita
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Yasushi Tamada
- National Institute of Agrobiological Sciences; Ibaraki Japan
| | - Toru Suguro
- Institute of Medical Science; Tokyo Medical University; Tokyo Japan
| | - Masaaki Nakajima
- Department of Physical Therapy; School of Health Science and Social Welfare, Kibi International University; Okayama Japan
| | - Yusuke Kambe
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Keisuke Yamada
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Koji Yamamoto
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Masahiro Kawakami
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Akihisa Otaka
- Field of Medical Engineering; Division of Mechanical Engineering and Science Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Hideo Okumura
- Department of Orthopaedic Surgery; Rakuyo Hospital; Kyoto Japan
| | - Shigehiko Suzuki
- Department of Plastic Surgery; Kyoto University Postgraduate School of Medicine; Kyoto Japan
| |
Collapse
|
22
|
Lee SU, Lee JY, Joo SY, Lee YS, Jeong C. Transplantation of a Scaffold-Free Cartilage Tissue Analogue for the Treatment of Physeal Cartilage Injury of the Proximal Tibia in Rabbits. Yonsei Med J 2016; 57:441-8. [PMID: 26847298 PMCID: PMC4740538 DOI: 10.3349/ymj.2016.57.2.441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/23/2015] [Accepted: 06/15/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the effects of transplantation of an in vitro-generated, scaffold-free, tissue-engineered cartilage tissue analogue (CTA) using a suspension chondrocyte culture in a rabbit growth-arrest model. MATERIALS AND METHODS We harvested cartilage cells from the articular cartilage of the joints of white rabbits and made a CTA using a suspension culture of 2×10⁷ cells/mL. An animal growth plate defect model was made on the medial side of the proximal tibial growth plate of both tibias of 6-week-old New Zealand white rabbits (n=10). The allogenic CTA was then transplanted onto the right proximal tibial defect. As a control, no implantation was performed on the left-side defect. Plain radiographs and the medial proximal tibial angle were obtained at 1-week intervals for evaluation of bone bridge formation and the degree of angular deformity until postoperative week 6. We performed a histological evaluation using hematoxylin-eosin and Alcian blue staining at postoperative weeks 4 and 6. RESULTS Radiologic study revealed a median medial proximal tibial angle of 59.0° in the control group and 80.0° in the CTA group at 6 weeks. In the control group, statistically significant angular deformities were seen 3 weeks after transplantation (p<0.05). On histological examination, the transplanted CTA was maintained in the CTA group at 4 and 6 weeks postoperative. Bone bridge formation was observed in the control group. CONCLUSION In this study, CTA transplantation minimized deformity in the rabbit growth plate injury model, probably via the attenuation of bone bridge formation.
Collapse
Affiliation(s)
- Sang Uk Lee
- Department of Orthopaedic Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Jae Young Lee
- Department of Orthopaedic Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Sun Young Joo
- Department of Orthopaedic Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Yong Suk Lee
- Department of Orthopaedic Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Changhoon Jeong
- Department of Orthopaedic Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea.
| |
Collapse
|
23
|
Lohan P, Treacy O, Lynch K, Barry F, Murphy M, Griffin MD, Ritter T, Ryan AE. Culture expanded primary chondrocytes have potent immunomodulatory properties and do not induce an allogeneic immune response. Osteoarthritis Cartilage 2016; 24:521-33. [PMID: 26493330 DOI: 10.1016/j.joca.2015.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Allogeneic cell therapies, such as mesenchymal stromal cells (MSC), which have potent regenerative and anti-inflammatory potential are being investigated as a therapy for osteoarthritis (OA) and cartilage injury. Here we describe another potential source of regenerative and anti-inflammatory allogeneic cells, culture expanded primary chondrocytes (CEPC). In direct comparison to allogeneic MSC, we extensively assess the immunological interactions of CEPC in an allogeneic setting. METHODS Chondrocytes were isolated from rat articular cartilage and cultured in normoxic or hypoxic conditions. In vitro co-culture assays with allogeneic lymphocytes and macrophages were used to assess the immunomodulatory capacities of the chondrocytes, followed by immune response analysis by flow cytometry, ELISA and qPCR. RESULTS CEPC showed reduced induction of proliferation, activation and cytotoxic granzyme B expression in allogeneic T cells. Importantly, exposure to pro-inflammatory cytokines did not increase CEPC immunogenicity despite increases in MHC-I. Furthermore, CEPC had a potent ability to suppress allogeneic T cell proliferation, which was dependent on nitric oxide production. This suppression was contact independent in hypoxia cultured CEPC. Finally, chondrocytes were shown to have the capacity to modulate pro-inflammatory macrophage activity by reducing MHC-II expression and TNF-α secretion. CONCLUSION These data indicate the potential use of allogeneic chondrocytes in OA and cartilage defects. The lack of evident immunogenicity, despite exposure to a pro-inflammatory environment, coupled with the immunomodulatory ability indicates that these cells have the potential to evade the host immune system and suppress inflammation, thus potentially facilitating the resolution of OA induced inflammation and cartilage regeneration.
Collapse
Affiliation(s)
- P Lohan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - O Treacy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - K Lynch
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - F Barry
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - M Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - M D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - T Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - A E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland; Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
24
|
Dai Y, Liu G, Ma L, Wang D, Gao C. Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects. J Mater Chem B 2016; 4:4410-4419. [DOI: 10.1039/c6tb00681g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macro-porous fibrin scaffold was fabricated and used to induce cartilage regenerationin situwithout pre-loaded cells or growth factors.
Collapse
Affiliation(s)
- Yuankun Dai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Gang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Dongan Wang
- Division of Bioengineering
- School of Chemical & Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
25
|
Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys 2016; 18:24802-24811. [DOI: 10.1039/c6cp03403a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Collagen is the single most abundant protein in the extracellular matrix in the animal kingdom, with remarkable structural and functional diversity and regarded one of the most useful biomaterials.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry
- King's College London
- UK
- Chemistry Research Laboratory
- University of Oxford
| | | | | |
Collapse
|
26
|
Hapach LA, VanderBurgh JA, Miller JP, Reinhart-King CA. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance. Phys Biol 2015; 12:061002. [PMID: 26689380 DOI: 10.1088/1478-3975/12/6/061002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.
Collapse
|
27
|
Zone-specific integrated cartilage repair using a scaffold-free tissue engineered construct derived from allogenic synovial mesenchymal stem cells: Biomechanical and histological assessments. J Biomech 2015; 48:4101-4108. [PMID: 26549765 DOI: 10.1016/j.jbiomech.2015.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/22/2015] [Accepted: 10/10/2015] [Indexed: 02/08/2023]
Abstract
The purpose of the present study was to investigate the zone-specific integration properties of articular cartilage defects treated in vivo with scaffold-free three-dimensional tissue-engineered constructs (TECs) derived from allogenic synovial mesenchymal stem cells (MSCs) in a porcine model. The TEC derived from the synovial MSCs was implanted into chondral defects in the medial femoral condyle of the knee. The integration boundary of repair tissue with the adjacent host cartilage was morphologically and biomechanically evaluated at 6 months post-implantation. Histological assessments showed that the repair tissue in each zone was well integrated with the adjacent host cartilage, with an apparent secure continuity of the extracellular matrix. There were no significant differences in histological scores between the integration boundary and the center of the repair tissue at every zone. Nonetheless, in all the specimens subjected to mechanical testing, failure occurred at the integration boundary. The average tensile strength of the integration boundary vs normal cartilage was 0.6 vs 4.9, 3.0 vs 12.6, and 5.5 vs 12.8MPa at the superficial, middle, and deep layers, respectively. Thus, these results indicate the most fragile point in the repair tissue remained at the integration boundary in spite of the apparent secure tissue continuity and equivalent histological quality with the center of the repair tissue. Such tissue vulnerability at the surface integration boundary could affect the long-term durability of the tissue repair, and thus, special consideration will be needed in the post-operative rehabilitation programming to enhance the longevity of such repair tissues in response to normal knee loading.
Collapse
|
28
|
Sakata R, Iwakura T, Reddi AH. Regeneration of Articular Cartilage Surface: Morphogens, Cells, and Extracellular Matrix Scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:461-73. [DOI: 10.1089/ten.teb.2014.0661] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ryosuke Sakata
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California, Sacramento, California
| | - Takashi Iwakura
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California, Sacramento, California
| | - A. Hari Reddi
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California, Sacramento, California
| |
Collapse
|
29
|
Gupta A, Bhat S, Chaudhari BP, Gupta KC, Tägil M, Zheng MH, Kumar A, Lidgren L. Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits. J Tissue Eng Regen Med 2015; 11:1689-1700. [PMID: 26177894 DOI: 10.1002/term.2063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/05/2015] [Accepted: 05/19/2015] [Indexed: 12/13/2022]
Abstract
We have explored the potential of cell factory-derived bioactive molecules, isolated from conditioned media of primary goat chondrocytes, for the repair of subchondral cartilage defects. Enzyme-linked immunosorbent assay (ELISA) confirms the presence of transforming growth factor-β1 in an isolated protein fraction (12.56 ± 1.15 ng/mg protein fraction). These bioactive molecules were used alone or with chitosan-agarose-gelatin cryogel scaffolds, with and without chondrocytes, to check whether combined approaches further enhance cartilage repair. To evaluate this, an in vivo study was conducted on New Zealand rabbits in which a subchondral defect (4.5 mm wide × 4.5 mm deep) was surgically created. Starting after the operation, bioactive molecules were injected at the defect site at regular intervals of 14 days. Histopathological analysis showed that rabbits treated with bioactive molecules alone had cartilage regeneration after 4 weeks. However, rabbits treated with bioactive molecules along with scaffolds, with or without cells, showed cartilage formation after 3 weeks; 6 weeks after surgery, the cartilage regenerated in rabbits treated with either bioactive molecules alone or in combinations showed morphological similarities to native cartilage. No systemic cytotoxicity or inflammatory response was induced by any of the treatments. Further, ELISA was done to determine systemic toxicity, which showed no difference in concentration of tumour necrosis factor-α in blood serum, before or after surgery. In conclusion, intra-articular injection with bioactive molecules alone may be used for the repair of subchondral cartilage defects, and bioactive molecules along with chondrocyte-seeded scaffolds further enhance the repair. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ankur Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sumrita Bhat
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | | | - Kailash C Gupta
- CSIR- Indian, Indian Institute of Toxicology Research, Lucknow, India
| | - Magnus Tägil
- Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| | - Ming Hao Zheng
- Centre for Orthopaedic Research, University of Western Australia, Nedlands, Western Australia
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Lars Lidgren
- Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Yoon HJ, Kim SB, Somaiya D, Noh MJ, Choi KB, Lim CL, Lee HY, Lee YJ, Yi Y, Lee KH. Type II collagen and glycosaminoglycan expression induction in primary human chondrocyte by TGF-β1. BMC Musculoskelet Disord 2015; 16:141. [PMID: 26059549 PMCID: PMC4460646 DOI: 10.1186/s12891-015-0599-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/27/2015] [Indexed: 12/13/2022] Open
Abstract
Background A localized non-surgical delivery of allogeneic human chondrocytes (hChonJ) with irradiated genetically modified chondrocytes (hChonJb#7) expressing transforming growth factor-β1 (TGF-β1) showed efficacy in regenerating cartilage tissue in our pre-clinical studies and human Phase I and II clinical trials. These previous observations led us to investigate the molecular mechanisms of the cartilage regeneration. Methods Genetically modified TGF-β1preprotein was evaluated by monitoring cell proliferation inhibition activity. The effect of modified TGF-β1 on chondrocytes was evaluated based on the type II collagen mRNA levels and the amount of glycosaminoclycan (GAG) formed around chondrocytes, which are indicative markers of redifferentiated chondrocytes. Among the cartilage matrix components produced by hChonJb#7 cells, type II collagen and proteoglycan, in addition to TGF-β1, were also tested to see if they could induce hChonJ redifferentiation. The ability of chondrocytes to attach to artificially induced defects in rabbit cartilage was tested using fluorescent markers. Results Throughout these experiments, the TGF-β1 produced from hChonJb#7 was shown to be equally as active as the recombinant human TGF-β1. Type II collagen and GAG production were induced in hChonJ cells by TGF-β1 secreted from the irradiated hChonJb#7 cells when the cells were co-cultured in micro-masses. Both hChonJ and hChonJb#7 cells could attach efficiently to the defect area in the rabbit cartilage. Conclusions This study suggests that the mixture (TG-C) of allogeneic human chondrocytes (hChonJ) and irradiated genetically modified human chondrocytes expressing TGF-β1 (hChonJb#7) attach to the damaged cartilage area to produce type II collagen-GAG matrices by providing a continuous supply of active TGF-β1.
Collapse
Affiliation(s)
- Hyun Joo Yoon
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Suk Bum Kim
- Department of Rehabilitation and Personal training, Konyang University, 158, Gwanjeodong-ro, Daejeon, Seo-gu, Korea.
| | - Dhara Somaiya
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Moon Jong Noh
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Kyoung-Baek Choi
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Chae-Lyul Lim
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Hyeon-Youl Lee
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Yeon-Ju Lee
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Youngsuk Yi
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Kwan Hee Lee
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| |
Collapse
|
31
|
Hunziker EB, Lippuner K, Keel MJB, Shintani N. An educational review of cartilage repair: precepts & practice--myths & misconceptions--progress & prospects. Osteoarthritis Cartilage 2015; 23:334-50. [PMID: 25534362 DOI: 10.1016/j.joca.2014.12.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/29/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The repair of cartilaginous lesions within synovial joints is still an unresolved and weighty clinical problem. Although research activity in this area has been indefatigably sustained, no significant progress has been made during the past decade. The aim of this educational review is to heighten the awareness amongst students and scientists of the basic issues that must be tackled and resolved before we can hope to escape from the whirlpool of stagnation into which we have fallen: cartilage repair redivivus! DESIGN Articular-cartilage lesions may be induced traumatically (e.g., by sports injuries and occupational accidents) or pathologically during the course of a degenerative disease (e.g., osteoarthritis). This review addresses the biological basis of cartilage repair and surveys current trends in treatment strategies, focussing on those that are most widely adopted by orthopaedic surgeons [viz., abrasive chondroplasty, microfracturing/microdrilling, osteochondral grafting and autologous-chondrocyte implantation (ACI)]. Also described are current research activities in the field of cartilage-tissue engineering, which, as a therapeutic principle, holds more promise for success than any other experimental approach. RESULTS AND CONCLUSIONS Tissue engineering aims to reconstitute a tissue both structurally and functionally. This process can be conducted entirely in vitro, initially in vitro and then in vivo (in situ), or entirely in vivo. Three key constituents usually form the building blocks of such an approach: a matrix scaffold, cells, and signalling molecules. Of the proposed approaches, none have yet advanced beyond the phase of experimental development to the level of clinical induction. The hurdles that need to be surmounted for ultimate success are discussed.
Collapse
Affiliation(s)
- E B Hunziker
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.
| | - K Lippuner
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.
| | - M J B Keel
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.
| | - N Shintani
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Muhonen V, Narcisi R, Nystedt J, Korhonen M, van Osch GJVM, Kiviranta I. Recombinant human type II collagen hydrogel provides a xeno-free 3D micro-environment for chondrogenesis of human bone marrow-derived mesenchymal stromal cells. J Tissue Eng Regen Med 2015; 11:843-854. [PMID: 25643647 DOI: 10.1002/term.1983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/02/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022]
Abstract
Recombinant human type II collagen (rhCII) hydrogel was tested as a xeno-free micro-environment for the chondrogenesis of human bone marrow-derived mesenchymal stromal cells (BM-MSCs). The rhCII hydrogels were seeded with BM-MSCs and cultured in a xeno-free chondro-inductive medium for 14, 28 and 84 days. High-density pellet cultures served as controls. The samples were subjected to biochemical, histological and gene expression analyses. Although the cells deposited glycosaminoglycans into the extracellular space significantly more slowly in the rhCII hydrogels compared to the high-density pellets, a similar potential of matrix deposition was reached by the end of the 84-day culture. At day 28 of culture, the gene expression level for cartilage marker genes (i.e. genes encoding for Sox9 transcription factor, Collagen type II and Aggrecan) were considerably lower in the rhCII hydrogels than in the high-density pellets, but at the end of the 84-day culture period, all the cartilage marker genes analysed were expressed at a similar level. Interestingly, the expression of the matrix metallopeptidases (MMP)-13, MMP-14 and MMP-8, i.e. extracellular collagen network-degrading enzymes, were transiently upregulated in the rhCII hydrogel, indicating active matrix reorganization. This study demonstrated that the rhCII hydrogel functions as a xeno-free platform for BM-MSC chondrogenesis, although the process is delayed. The reversible catabolic reaction evoked by the rhCII hydrogel might be beneficial in graft integration in vivo and pinpoints the need to further explore the use of hydrogels containing recombinant extracellular matrix (ECM) proteins to induce the chondrogenesis of MSCs. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Virpi Muhonen
- Department of Surgery, Institute of Clinical Medicine, University of Helsinki, Finland.,Department of Orthopaedics and Traumatology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Roberto Narcisi
- Department of Orthopaedics, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Johanna Nystedt
- Finnish Red Cross Blood Service, Research and Cell Therapy Services, Helsinki, Finland
| | - Matti Korhonen
- Finnish Red Cross Blood Service, Research and Cell Therapy Services, Helsinki, Finland
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.,Department of Otorhinolaryngology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Ilkka Kiviranta
- Department of Surgery, Institute of Clinical Medicine, University of Helsinki, Finland.,Department of Orthopaedics and Traumatology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| |
Collapse
|
33
|
Pilichi S, Rocca S, Pool RR, Dattena M, Masala G, Mara L, Sanna D, Casu S, Manunta ML, Manunta A, Passino ES. Treatment with embryonic stem-like cells into osteochondral defects in sheep femoral condyles. BMC Vet Res 2014; 10:301. [PMID: 25523522 PMCID: PMC4297431 DOI: 10.1186/s12917-014-0301-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023] Open
Abstract
Background Articular cartilage has poor intrinsic capacity for regeneration because of its avascularity and very slow cellular turnover. Defects deriving from trauma or joint disease tend to be repaired with fibrocartilage rather than hyaline cartilage. Consequent degenerative processes are related to the width and depth of the defect. Since mesenchymal stem cells (MSCs) deriving from patients affected by osteoarthritis have a lower proliferative and chondrogenic activity, the systemic or local delivery of heterologous cells may enhance regeneration or inhibit the progressive loss of joint tissue. Embryonic stem cells (ESCs) are very promising, since they can self-renew for prolonged periods without differentiation and can differentiate into tissues from all the 3 germ layers. To date only a few experiments have used ESCs for the study of the cartilage regeneration in animal models and most of them used laboratory animals. Sheep, due to their anatomical, physiological and immunological similarity to humans, represent a valid model for translational studies. This experiment aimed to evaluate if the local delivery of male sheep embryonic stem-like (ES-like) cells into osteochondral defects in the femoral condyles of adult sheep can enhance the regeneration of articular cartilage. Twenty-two ewes were divided into 5 groups (1, 2, 6, 12 and 24 months after surgery). Newly formed tissue was evaluated by macroscopic, histological, immunohistochemical (collagen type II) and fluorescent in situ hybridization (FISH) assays. Results Regenerated tissue was ultimately evaluated on 17 sheep. Samples engrafted with ES-like cells had significantly better histologic evidence of regeneration with respect to empty defects, used as controls, at all time periods. Conclusions Histological assessments demonstrated that the local delivery of ES-like cells into osteochondral defects in sheep femoral condyles enhances the regeneration of the articular hyaline cartilage, without signs of immune rejection or teratoma for 24 months after engraftment. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0301-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanna Pilichi
- Department of Animal Science, Agricultural Research Agency of Sardinia, Olmedo, Sassari, 07040, Italy.
| | - Stefano Rocca
- Department of Veterinary Medicine, via Vienna, Sassari, 07100, Italy.
| | - Roy R Pool
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843-4467, TX, USA.
| | - Maria Dattena
- Department of Animal Science, Agricultural Research Agency of Sardinia, Olmedo, Sassari, 07040, Italy.
| | - Gerolamo Masala
- Department of Veterinary Medicine, via Vienna, Sassari, 07100, Italy.
| | - Laura Mara
- Department of Animal Science, Agricultural Research Agency of Sardinia, Olmedo, Sassari, 07040, Italy.
| | - Daniela Sanna
- Department of Animal Science, Agricultural Research Agency of Sardinia, Olmedo, Sassari, 07040, Italy.
| | - Sara Casu
- Department of Animal Science, Agricultural Research Agency of Sardinia, Olmedo, Sassari, 07040, Italy.
| | - Maria L Manunta
- Department of Veterinary Medicine, via Vienna, Sassari, 07100, Italy.
| | - Andrea Manunta
- Department of Surgery, Microsurgery and Medicine, University of Sassari, viale San Pietro, Sassari, 07100, Italy.
| | | |
Collapse
|
34
|
Ishihara K, Nakayama K, Akieda S, Matsuda S, Iwamoto Y. Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J Orthop Surg Res 2014; 9:98. [PMID: 25312099 PMCID: PMC4200118 DOI: 10.1186/s13018-014-0098-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/07/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In recent years, several methods have been developed for repairing full-thickness cartilage defects by tissue engineering using mesenchymal stem cells. Most of these use scaffolds to achieve sufficient thickness. However, considering the potential influence of scaffolds on the surrounding microenvironment, as well as immunological issues, it is desirable to develop a scaffold-free technique. In this study, we developed a novel technique, a scaffold-free autologous construct derived from bone marrow-derived mesenchymal stem cells (BM-MSCs), and successfully use this technique to regenerate cartilage and subchondral bone to repair an osteochondral defect in rabbit knees. METHODS BM-MSCs were isolated from bone marrow liquid aspirated from the iliac crest of rabbits. After expansion in culture dishes and re-suspension in 96-well plates, the cells spontaneously aggregated into a spheroid-like structure. The spheroids were loaded into a tube-shaped Teflon mold with a 5-mm height and maintained under air-liquid interface conditions. These loaded spheroids fused with each other, resulting in a cylinder-shaped construct made of fused cells that conformed to the inner shape of the mold. The construct was implanted into an osteochondral defect in rabbit knees and histologically analyzed 24 and 52 weeks after implantation using Wakitani's scoring system. RESULTS Both bone and cartilage were regenerated, maintaining a constant thickness of cartilage. The mean histological score was 10 ± 1.7 in the 24-week group and 9.7 ± 0.6 in the 52-week group. There was no significant difference between the 24- and 52-week groups in either parameter of the score, indicating that no deterioration of the repaired tissue occurred during the intervening period. CONCLUSIONS Using our novel technique, which employs a three-dimensional scaffold-free autologous construct derived from BM-MSCs, we successfully achieved simultaneous regeneration of bone and cartilage for up to 1 year in vivo. This method has potential for clinical use as a safe and effective method for repairing bone and cartilage defects.
Collapse
|
35
|
Chen C, Xie J, Deng L, Yang L. Substrate stiffness together with soluble factors affects chondrocyte mechanoresponses. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16106-16116. [PMID: 25162787 DOI: 10.1021/am504135b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tissue cells sense and respond to differences in substrate stiffness. In chondrocytes, it has been shown that substrate stiffness regulates cell spreading, proliferation, chondrogenic gene expression, and TGF-β signaling. But how the substrate stiffness together with soluble factors influences the mechanical properties of chondrocyte is still unclear. In this study, we cultured goat articular chondrocytes on polyacrylamide gels of 1, 11, and 90 kPa (Young's modulus), and measured cellular stiffness, traction force, and response to stretch in the presence of TGF-β1 or IL-1β. We found that TGF-β1 increased cellular stiffness and traction force and enhanced the response to stretch, while IL-1β increased cellular stiffness, but lowered traction force and weakened the response to stretch. Importantly, the effects of TGF-β1 on chondrocyte mechanics were potent in cells cultured on 90 kPa substrates, while the effects of IL-1β were potent on 1 kPa substrates. We also demonstrated that such changes of chondrocyte mechanoresponse were due to not only the changes of actin cytoskeleton and focal adhesion, but also the alteration of chondrocyte extracellular matrix synthesis. Taken together, these results provide insights into how chondrocytes integrate physical and biochemical cues to regulate their biomechanical behavior, and thus have implications for the design of optimized mechanical and biochemical microenvironments for engineered cartilage.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University , Chongqing 400038, China
| | | | | | | |
Collapse
|
36
|
Divakaran AV, Torris AT A, Lele AK, Badiger MV. Porous poly(ethylene glycol)-polyurethane hydrogels as potential biomaterials. POLYM INT 2014. [DOI: 10.1002/pi.4802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anumon V Divakaran
- Polymer Science and Engineering Division; CSIR - National Chemical Laboratory; Dr Homi Bhabha Road Pune 411008 India
| | - Arun Torris AT
- Polymer Science and Engineering Division; CSIR - National Chemical Laboratory; Dr Homi Bhabha Road Pune 411008 India
| | - Ashish K Lele
- Polymer Science and Engineering Division; CSIR - National Chemical Laboratory; Dr Homi Bhabha Road Pune 411008 India
| | - Manohar V Badiger
- Polymer Science and Engineering Division; CSIR - National Chemical Laboratory; Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
37
|
Blends and Nanocomposite Biomaterials for Articular Cartilage Tissue Engineering. MATERIALS 2014; 7:5327-5355. [PMID: 28788131 PMCID: PMC5455822 DOI: 10.3390/ma7075327] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022]
Abstract
This review provides a comprehensive assessment on polymer blends and nanocomposite systems for articular cartilage tissue engineering applications. Classification of various types of blends including natural/natural, synthetic/synthetic systems, their combination and nanocomposite biomaterials are studied. Additionally, an inclusive study on their characteristics, cell responses ability to mimic tissue and regenerate damaged articular cartilage with respect to have functionality and composition needed for native tissue, are also provided.
Collapse
|
38
|
Zhang Y, Pizzute T, Pei M. Anti-inflammatory strategies in cartilage repair. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:655-68. [PMID: 24846478 DOI: 10.1089/ten.teb.2014.0014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cartilage defects are normally concomitant with posttraumatic inflammation and pose a major challenge in cartilage repair. Due to the avascular nature of cartilage and its inability to surmount an inflammatory response, the cartilage is easily attacked by proinflammatory factors and oxidative stress; if left untreated, osteoarthritis may develop. Suppression of inflammation has always been a crux for cartilage repair. Pharmacological drugs have been successfully applied in cartilage repair; however, they cannot optimally work alone. This review article will summarize current pharmacological drugs and their application in cartilage repair. The development of extracellular matrix-based scaffolds and preconditioned tissue-specific stem cells will be emphasized because both of these tissue engineering components could contribute to an enhanced ability not only for cartilage regeneration but also for anti-inflammation. These strategies could be combined to boost cartilage repair under inflammatory conditions.
Collapse
Affiliation(s)
- Ying Zhang
- 1 Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University , Morgantown, West Virginia
| | | | | |
Collapse
|
39
|
Gomoll AH, Kamei G, Ochi M, Shetty AA, Zaslav K. Technical Enhancements and Update on Chondrocyte Implantation. ACTA ACUST UNITED AC 2014. [DOI: 10.1053/j.oto.2014.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Willers C, Partsalis T, Zheng MH. Articular cartilage repair: procedures versus products. Expert Rev Med Devices 2014; 4:373-92. [PMID: 17488231 DOI: 10.1586/17434440.4.3.373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review discusses the current perspectives and practices regarding the treatment of articular cartilage injury. Specifically, the authors have delineated and examined articular cartilage repair techniques as either surgical procedures or manufactured products. Although both methodologies are used to treat articular cartilage injury, there are obvious advantages and disadvantages to the application of both, with the literature providing few recommendations on the most suitable regimen for the patient and surgeon. In recent times, cell-based tissue engineering products, predominantly autologous chondrocyte implantation, have been the subject of much research and have become clinically popular. Herein, we review the most used procedures and products in cartilage repair, compare and contrast their outcomes, and evaluate the issues that must be overcome in order to improve patient efficacy in the future.
Collapse
Affiliation(s)
- Craig Willers
- Department of Orthopaedics, School of Pathology and Surgery, University of Western Australia, 2nd Floor, M-block, QEII Medical Centre, Nedlands, Perth, WA 6009, Australia.
| | | | | |
Collapse
|
41
|
Induced chondrogenic differentiation of parthenogenetic murine embryonic stem cells by insulin-like growth factor 2 treatment in a three-dimensional culture environment. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-1100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
42
|
Vaquero J, Otero L, Bonilla C, Aguayo C, Rico MA, Rodriguez A, Zurita M. Cell therapy with bone marrow stromal cells after intracerebral hemorrhage: impact of platelet-rich plasma scaffolds. Cytotherapy 2013; 15:33-43. [PMID: 23260084 DOI: 10.1016/j.jcyt.2012.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/19/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND AIMS Cell therapy using bone marrow stromal cells (BMSCs) has been considered a promising strategy for neurologic sequelae after intracerebral hemorrhage (ICH). However, after intracerebral administration of BMSCs, most of the cells die, partly because of the absence of extracellular matrix. Intracerebral transplantation of BMSCs, supported in a platelet-rich plasma (PRP) scaffold, optimizes this type of cell therapy. METHODS ICH was induced by stereotactic injection of 0.5 IU of collagenase type IV in the striatum of adult Wistar rats (n = 40). Two months later, the rats were subjected to intracerebral administration of 5 × 10(6) allogeneic BMSCs embedded in a PRP scaffold (n = 10), 5 × 10(6) allogeneic BMSCs in saline (n = 10), PRP-derived scaffold only (n = 10) or saline only (n = 10). Functional improvements in each group over the next 6 months were assessed using Rotarod and Video-Tracking-Box tests. Endogenous neurogenesis and survival of transplanted BMSCs were examined at the end of follow-up. RESULTS Our study demonstrated neurologic improvement after BMSC transplantation and significantly better functional improvement for the group of animals that received BMSCs in the PRP-derived scaffold compared with the group that received BMSCs in saline. Histologic results showed that better functional outcome was associated with strong activation of endogenous neurogenesis. After intracerebral administration of BMSCs, donor cells were integrated in the injured tissue and showed phenotypic expression of glial fibrillary acidic protein and neuronal nucleus. CONCLUSIONS PRP-derived scaffolds increase the viability and biologic activity of BMSCs and optimize functional recovery when this type of cell therapy is applied after ICH.
Collapse
Affiliation(s)
- Jesus Vaquero
- Neuroscience Research Unit, Neuroscience Rafael del Pino Chair, and Neurosurgical Service, Hospital Puerta de Hierro-Majadahonda, Autonomous University, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
43
|
Bermueller C, Schwarz S, Elsaesser AF, Sewing J, Baur N, von Bomhard A, Scheithauer M, Notbohm H, Rotter N. Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 2013; 19:2201-14. [PMID: 23621795 DOI: 10.1089/ten.tea.2012.0650] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autologous grafts are frequently needed for nasal septum reconstruction. Because they are only available in limited amounts, there is a need for new cartilage replacement strategies. Tissue engineering based on the use of autologous chondrocytes and resorbable matrices might be a suitable option. So far, an optimal material for nasal septum reconstruction has not been identified. The aim of our study was to provide the first evaluation of marine collagen for use in nasal cartilage repair. First, we studied the suitability of marine collagen as a cartilage replacement matrix in the context of in vitro three dimensional cultures by analyzing cell migration, cytotoxicity, and extracellular matrix formation using human and rat nasal septal chondrocytes. Second, we worked toward developing a suitable orthotopic animal model for nasal septum repair, while simultaneously evaluating the biocompatibility of marine collagen. Seeded and unseeded scaffolds were transplanted into nasal septum defects in an orthotopic rat model for 1, 4, and 12 weeks. Explanted scaffolds were histologically and immunohistochemically evaluated. Scaffolds did not induce any cytotoxic reactions in vitro. Chondrocytes were able to adhere to marine collagen and produce cartilaginous matrix proteins, such as collagen type II. Treating septal cartilage defects in vivo with seeded and unseeded scaffolds led to a significant reduction in the number of nasal septum perforations compared to no replacement. In summary, we demonstrated that marine collagen matrices provide excellent properties for cartilage tissue engineering. Marine collagen scaffolds are able to prevent septal perforations in an autologous, orthotopic rat model. This newly described experimental surgical procedure is a suitable way to evaluate new scaffold materials for their applicability in the context of nasal cartilage repair.
Collapse
Affiliation(s)
- Christian Bermueller
- Department of Otorhinolaryngology, Ulm University Medical Center, Frauensteige 12, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Masuda T, Takei N, Nakano T, Anada T, Suzuki O, Arai F. A microfabricated platform to form three-dimensional toroidal multicellular aggregate. Biomed Microdevices 2013; 14:1085-93. [PMID: 22996697 DOI: 10.1007/s10544-012-9713-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Techniques that allow cells to self-assemble into three-dimensional (3D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular in fields such as stem cell research, tissue engineering, and cancer biology. Appropriate simulation of the 3D environment in which tissues normally develop and function is crucial for the engineering of in vitro models that can be used for the formation of complex tissues. We have developed a unique multicellular aggregate formation platform that utilizes a maskless gray-scale photolithography. The cellular aggregate formed using this platform has a toroidal-like geometry and includes a micro lumen that facilitates the supply of oxygen and growth factors and the expulsion of waste products. As a result, this platform was capable of rapidly producing hundreds of multicellular aggregates at a time, and of regulating the diameter of aggregates with complex design. These toroidal multicellular aggregates can grow as long-term culture. In addition, the micro lumen can be used as a continuous channel and for the insertion of a vascular system or a nerve system into the assembled tissue. These platform characteristics highlight its potential to be used in a wide variety of applications, e.g. as a bioactuator, as a micro-machine component or in drug screening and tissue engineering.
Collapse
Affiliation(s)
- Taisuke Masuda
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, Zhou S, Yang Y, Zhou Z, Sheng W, Zeng Y. Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury 2013; 44:540-9. [PMID: 23337703 DOI: 10.1016/j.injury.2012.09.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/11/2012] [Accepted: 09/24/2012] [Indexed: 02/02/2023]
Abstract
INTRODUCTION A potent mesenchymal stem cell (MSC) population was recently isolated from the Wharton's jelly of human umbilical cord (UC). The aim of the current experiments was to determine the potential of human UC-derived MSC (UC-MSC) in cartilage healing. MATERIALS AND METHODS Chondrogenic differentiation of collagen hydrogel-embedded cells was induced in standard chondrocyte conditioning medium and further detected by real-time PCR, histochemistry and immunohistochemistry analyses. Cell viability and apoptosis of the MSCs in the collagen I hydrogels were monitored using apoptosis detection kit. RESULTS Cells isolated from UC were positive for MSC biomarkers and negative for haematopoietic lineage and endothelial biomarkers and possess the capacity to differentiate along osteogenic lineage. UC-MSCs embedded in collagen hydrogel can undergo chondrogenesis characterised by significantly increased expressions of collagen II, aggrecan, COMP (cartilage oligomeric matrix protein) and sox9 after exposed cells-embedded hydrogels to chondrogenic factors. The most of cells remained viable throughout the hydrogels after 3 weeks of cultivation in chondrogenic differentiation medium. CONCLUSIONS Collagen hydrogel can provide an appropriate 3-D environment for the chondrogenesis of UC-MSCs. UC-MSCs embedded in biocompatible scaffold may have great potential for cartilage engineering.
Collapse
Affiliation(s)
- Xuebin Chen
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Pulkkinen HJ, Tiitu V, Valonen P, Jurvelin JS, Rieppo L, Töyräs J, Silvast TS, Lammi MJ, Kiviranta I. Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit. Osteoarthritis Cartilage 2013; 21:481-90. [PMID: 23257243 DOI: 10.1016/j.joca.2012.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/22/2012] [Accepted: 12/07/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recombinant human type II collagen (rhCII) gels combined with autologous chondrocytes were tested as a scaffold for cartilage repair in rabbits in vivo. METHOD Autologous chondrocytes were harvested, expanded and combined with rhCII-gel and further pre-cultivated for 2 weeks prior to transplantation into a 4 mm diameter lesion created into the rabbit's femoral trochlea (n = 8). Rabbits with similar untreated lesions (n = 7) served as a control group. RESULTS Six months after the transplantation the repair tissue in both groups filled the lesion site, but in the rhCII-repair the filling was more complete. Both repair groups also had high proteoglycan and type II collagen contents, except in the fibrous superficial layer. However, the integration to the adjacent cartilage was incomplete. The O'Driscoll grading showed no significant differences between the rhCII-repair and spontaneous repair, both representing lower quality than intact cartilage. In the repair tissues the collagen fibers were abnormally organized and oriented. No dramatic changes were detected in the subchondral bone structure. The repair cartilage was mechanically softer than the intact tissue. Spontaneously repaired tissue showed lower values of equilibrium and dynamic modulus than the rhCII-repair. However, the differences in the mechanical properties between all three groups were insignificant. CONCLUSION When rhCII was used to repair cartilage defects, the repair quality was histologically incomplete, but still the rhCII-repairs showed moderate mechanical characteristics and a slight improvement over those in spontaneous repair. Therefore, further studies using rhCII for cartilage repair with emphasis on improving integration and surface protection are required.
Collapse
Affiliation(s)
- H J Pulkkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
In vitro fabrication of tissues and the regeneration of internal organs are no longer regarded as science fiction but as potential remedies for individuals suffering from chronic degenerative diseases. Tissue engineering has generated much interest from researchers in many fields, including cell and molecular biology, biomedical engineering, transplant medicine, and organic chemistry. Attempts to build tissues or organs in vitro have utilized both scaffold and scaffold-free approaches. Despite considerable progress, fabrication of three-dimensional tissue constructs in vitro remains a challenge. In this chapter, we introduce and discus current concepts of tissue engineering with particular focus on future clinical application.
Collapse
|
49
|
Iamaguti L, Brandão C, Mota L, Sereno M, Almeida M, Padovani C. Reparação de defeitos osteocondrais de cães com implante de cultura de condrócitos homólogos e membrana biossintética de celulose: avaliação clínica, ultrassonográfica e macroscópica. ARQ BRAS MED VET ZOO 2012. [DOI: 10.1590/s0102-09352012000600012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Avaliou-se o implante de condrócitos homólogos em lesões osteocondrais, utilizando a membrana biossintética à base de celulose (MBC) como revestimento. Dez cães adultos e clinicamente sadios foram submetidos à artrotomia das articulações fêmoro-tíbio-patelares. Defeitos de quatro milímetros de diâmetro por quatro milímetros de profundidade foram induzidos na tróclea femoral de ambos os membros. A MBC foi aplicada na base e superfície das lesões. Os defeitos do membro direito foram preenchidos com condrócitos homólogos cultivados e formaram o grupo tratado (GT); e os defeitos do membro esquerdo, sem implante celular, formaram o grupo controle (GC). Os animais foram avaliados clínica e ultrassonograficamente aos 30 e 60 dias. A evolução pós-operatória dos cães foi analisada com especial interesse nos processos de reparação da lesão, por meio de macroscopia. Não houve diferença clínica e ultrassonográfica entre os grupos. Entretanto, à macroscopia, ocorreu maior prevalência de formação de tecido cicatricial esbranquiçado no GT. O tecido neoformado apresentou melhor qualidade associado ao implante homólogo de condrócitos, mas não promoveu reparação por cartilagem hialina.
Collapse
|
50
|
Fong EL, Watson BM, Kasper FK, Mikos AG. Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4995-5013. [PMID: 22821772 PMCID: PMC3706713 DOI: 10.1002/adma.201201762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/28/2012] [Indexed: 05/22/2023]
Abstract
Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and the modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery, and gene therapy, especially as related to applications in bone and cartilage tissue engineering.
Collapse
Affiliation(s)
| | | | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| |
Collapse
|