1
|
Cairns CA, Xiao L, Wang JY. Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders. J INVEST SURG 2024; 37:2308809. [PMID: 38323630 PMCID: PMC11027105 DOI: 10.1080/08941939.2024.2308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
The human intestinal epithelium has an impressive ability to respond to insults and its homeostasis is maintained by well-regulated mechanisms under various pathophysiological conditions. Nonetheless, acute injury and inhibited regeneration of the intestinal epithelium occur commonly in critically ill surgical patients, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Effective therapies for the preservation of intestinal epithelial integrity and for the prevention of mucosal hemorrhage and gut barrier dysfunction are limited, primarily because of a poor understanding of the mechanisms underlying mucosal disruption. Noncoding RNAs (ncRNAs), which include microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and small vault RNAs (vtRNAs), modulate a wide array of biological functions and have been identified as orchestrators of intestinal epithelial homeostasis. Here, we feature the roles of many important ncRNAs in controlling intestinal mucosal growth, barrier function, and repair after injury-particularly in the context of postoperative recovery from bowel surgery. We review recent literature surrounding the relationships between lncRNAs, microRNAs, and RNA-binding proteins and how their interactions impact cell survival, proliferation, migration, and cell-to-cell interactions in the intestinal epithelium. With advancing knowledge of ncRNA biology and growing recognition of the importance of ncRNAs in maintaining the intestinal epithelial integrity, ncRNAs provide novel therapeutic targets for treatments to preserve the gut epithelium in individuals suffering from critical surgical disorders.
Collapse
Affiliation(s)
- Cassandra A. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
2
|
Burclaff J. Transcriptional regulation of metabolism in the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2023; 325:G501-G507. [PMID: 37786942 PMCID: PMC10894668 DOI: 10.1152/ajpgi.00147.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Epithelial metabolism in the intestine is increasingly known to be important for stem cell maintenance and activity while also affecting weight gain and diseases. This review compiles studies from recent years which describe major transcription factors controlling metabolic activity across the intestinal epithelium as well as transcriptional and epigenetic networks controlling the factors themselves. Recent studies show that transcriptional regulators serve as the link between signals from the microbiota and diet and epithelial metabolism. Studies have advanced this paradigm to identify druggable targets to block weight gain or disease progression in mice. As such, there is great potential that a better understanding of these regulatory networks will improve our knowledge of intestinal physiology and promote discoveries to benefit human health.
Collapse
Affiliation(s)
- Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States
| |
Collapse
|
3
|
Magkos F, Reeds DN, Mittendorfer B. Evolution of the diagnostic value of "the sugar of the blood": hitting the sweet spot to identify alterations in glucose dynamics. Physiol Rev 2023; 103:7-30. [PMID: 35635320 PMCID: PMC9576168 DOI: 10.1152/physrev.00015.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
In this paper, we provide an overview of the evolution of the definition of hyperglycemia during the past century and the alterations in glucose dynamics that cause fasting and postprandial hyperglycemia. We discuss how extensive mechanistic, physiological research into the factors and pathways that regulate the appearance of glucose in the circulation and its uptake and metabolism by tissues and organs has contributed knowledge that has advanced our understanding of different types of hyperglycemia, namely prediabetes and diabetes and their subtypes (impaired fasting plasma glucose, impaired glucose tolerance, combined impaired fasting plasma glucose, impaired glucose tolerance, type 1 diabetes, type 2 diabetes, gestational diabetes mellitus), their relationships with medical complications, and how to prevent and treat hyperglycemia.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
4
|
Abstract
Purpose of Review Short gut syndrome is life-altering and life-threatening disease resulting most often from massive small bowel resection. Recent advances in understanding of the perturbed physiology in these patients have translated into improved care and outcomes. This paper seeks to review the advances of care in SBS patients. Recent Findings Anatomic considerations still predominate the early care of SBS patients, including aggressive preservation of bowel and documentation of remnant bowel length and quality. Intestinal adaptation is the process by which remnant bowel changes to fit the physiologic needs of the patient. Grossly, the bowel dilates and elongates to increase intestinal weight and protein content. Architectural changes are noted, such as villus lengthening and deepening of crypts. In addition, gene expression changes occur that function to maximize nutrient uptake and fluid preservation. Management is aimed at understanding these physiologic changes and augmenting them whenever possible in an effort to gain enteral autonomy. Complication mitigation is key, including avoidance of catheter complications, bloodstream infections, cholestasis, and nutrient deficiencies. Summary Multidisciplinary teams working together towards intestinal rehabilitation have shown improved outcomes. Today's practioner needs a current understanding of the ever-evolving care of these patients in order to promote enteral autonomy, recognize complications, and counsel patients and families appropriately.
Collapse
Affiliation(s)
- Baddr A Shakhsheer
- Division of Pediatric Surgery, Saint Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Brad W Warner
- Division of Pediatric Surgery, Saint Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
5
|
Sussman W, Stevenson M, Mowdawalla C, Mota S, Ragolia L, Pan X. BMAL1 controls glucose uptake through paired-homeodomain transcription factor 4 in differentiated Caco-2 cells. Am J Physiol Cell Physiol 2019; 317:C492-C501. [PMID: 31216190 PMCID: PMC6766619 DOI: 10.1152/ajpcell.00058.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023]
Abstract
The transcription factor aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1) is an essential regulator of the circadian clock, which controls the 24-h cycle of physiological processes such as nutrient absorption. To examine the role of BMAL1 in small intestinal glucose absorption, we used differentiated human colon adenocarcinoma cells (Caco-2 cells). Here, we show that BMAL1 regulates glucose uptake in differentiated Caco-2 cells and that this process is dependent on the glucose transporter sodium-glucose cotransporter 1 (SGLT1). Mechanistic studies show that BMAL1 regulates glucose uptake by controlling the transcription of SGLT1 involving paired-homeodomain transcription factor 4 (PAX4), a transcriptional repressor. This is supported by the observation that clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated endonuclease Cas9 (Cas9) knockdown of PAX4 increases SGLT1 and glucose uptake. Chromatin immunoprecipitation (ChIP) and ChIP-quantitative PCR assays show that the knockdown or overexpression of BMAL1 decreases or increases the binding of PAX4 to the hepatocyte nuclear factor 1-α binding site of the SGLT1 promoter, respectively. These findings identify BMAL1 as a critical mediator of small intestine carbohydrate absorption and SGLT1.
Collapse
Affiliation(s)
- Whitney Sussman
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Matthew Stevenson
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Cyrus Mowdawalla
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Samantha Mota
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
6
|
Courtney CM, Onufer EJ, Seiler KM, Warner BW. An anatomic approach to understanding mechanisms of intestinal adaptation. Semin Pediatr Surg 2018; 27:229-236. [PMID: 30342597 DOI: 10.1053/j.sempedsurg.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cathleen M Courtney
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Emily J Onufer
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Kristen M Seiler
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Brad W Warner
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|