1
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Gaballa SA, Shimizu T, Ando H, Takata H, Emam SE, Ramadan E, Naguib YW, Mady FM, Khaled KA, Ishida T. Treatment-induced and Pre-existing Anti-peg Antibodies: Prevalence, Clinical Implications, and Future Perspectives. J Pharm Sci 2024; 113:555-578. [PMID: 37931786 DOI: 10.1016/j.xphs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.
Collapse
Affiliation(s)
- Sherif A Gaballa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Eslam Ramadan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
3
|
Fu Y, Tang R, Zhao X. Engineering cytokines for cancer immunotherapy: a systematic review. Front Immunol 2023; 14:1218082. [PMID: 37483629 PMCID: PMC10357296 DOI: 10.3389/fimmu.2023.1218082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Cytokines are pivotal mediators of cell communication in the tumor microenvironment. Multiple cytokines are involved in the host antitumor response, but the production and function of these cytokines are usually dysregulated during malignant tumor progression. Considering their clinical potential and the early successful use of cytokines in cancer immunotherapy, such as interferon alpha-2b (IFNα-2b; IntronA®) and IL-2 (Proleukin®), cytokine-based therapeutics have been extensively evaluated in many follow-up clinical trials. Following these initial breakthroughs, however, clinical translation of these natural messenger molecules has been greatly limited owing to their high-degree pleiotropic features and complex biological properties in many cell types. These characteristics, coupled with poor pharmacokinetics (a short half-life), have hampered the delivery of cytokines via systemic administration, particularly because of severe dose-limiting toxicities. New engineering approaches have been developed to widen the therapeutic window, prolong pharmacokinetic effects, enhance tumor targeting and reduce adverse effects, thereby improving therapeutic efficacy. In this review, we focus on the recent progress and competitive landscape in cytokine engineering strategies and preclinical/clinical therapeutics for cancer. In addition, aiming to promote engineered cytokine-based cancer immunotherapy, we present a profound discussion about the feasibility of recently developed methods in clinical medicine translation.
Collapse
Affiliation(s)
- Yong Fu
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China
| | - Xiaofeng Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| |
Collapse
|
4
|
Sun Q, Yang Z, Qi X. Design and Application of Hybrid Polymer-Protein Systems in Cancer Therapy. Polymers (Basel) 2023; 15:polym15092219. [PMID: 37177365 PMCID: PMC10181109 DOI: 10.3390/polym15092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polymer-protein systems have excellent characteristics, such as non-toxic, non-irritating, good water solubility and biocompatibility, which makes them very appealing as cancer therapeutics agents. Inspiringly, they can achieve sustained release and targeted delivery of drugs, greatly improving the effect of cancer therapy and reducing side effects. However, many challenges, such as reducing the toxicity of materials, protecting the activities of proteins and controlling the release of proteins, still need to be overcome. In this review, the design of hybrid polymer-protein systems, including the selection of polymers and the bonding forms of polymer-protein systems, is presented. Meanwhile, vital considerations, including reaction conditions and the release of proteins in the design process, are addressed. Then, hybrid polymer-protein systems developed in the past decades for cancer therapy, including targeted therapy, gene therapy, phototherapy, immunotherapy and vaccine therapy, are summarized. Furthermore, challenges for the hybrid polymer-protein systems in cancer therapy are exemplified, and the perspectives of the field are covered.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
| | - Zhenzhen Yang
- Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Xianrong Qi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
6
|
Barbosa AM, Gomes-Gonçalves A, Castro AG, Torrado E. Immune System Efficiency in Cancer and the Microbiota Influence. Pathobiology 2021; 88:170-186. [PMID: 33588418 DOI: 10.1159/000512326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
The immune system plays a critical role in preventing cancer development and progression. However, the complex network of cells and soluble factor that form the tumor microenvironment (TME) can dictate the differentiation of tumor-infiltrating leukocytes and shift the antitumor immune response into promoting tumor growth. With the advent of cancer immunotherapy, there has been a reinvigorated interest in defining how the TME shapes the antitumor immune response. This interest brought to light the microbiome as a novel player in shaping cancer immunosurveillance. Indeed, accumulating evidence now suggests that the microbiome may confer susceptibility or resistance to certain cancers and may influence response to therapeutics, particularly immune checkpoint inhibitors. As we move forward into the age of precision medicine, it is vital that we define the factors that influence the interplay between the triad immune system-microbiota-cancer. This knowledge will contribute to improve the therapeutic response to current approaches and will unravel novel targets for immunotherapy.
Collapse
Affiliation(s)
- Ana Margarida Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra Gomes-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal, .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal,
| |
Collapse
|
7
|
Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized Delivery Systems for Therapeutic Proteins: Clinically Validated Technologies and Advanced Development Strategies. Front Bioeng Biotechnol 2020; 8:89. [PMID: 32117952 PMCID: PMC7033645 DOI: 10.3389/fbioe.2020.00089] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The impact of protein therapeutics in healthcare is steadily increasing, due to advancements in the field of biotechnology and a deeper understanding of several pathologies. However, their safety and efficacy are often limited by instability, short half-life and immunogenicity. Nanodelivery systems are currently being investigated for overcoming these limitations and include covalent attachment of biocompatible polymers (PEG and other synthetic or naturally derived macromolecules) as well as protein nanoencapsulation in colloidal systems (liposomes and other lipid or polymeric nanocarriers). Such strategies have the potential to develop next-generation protein therapeutics. Herein, we review recent research progresses on these nanodelivery approaches, as well as future directions and challenges.
Collapse
Affiliation(s)
| | | | - Francesco Cellesi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
8
|
Rothschilds A, Tzeng A, Mehta NK, Moynihan KD, Irvine DJ, Wittrup KD. Order of administration of combination cytokine therapies can decouple toxicity from efficacy in syngeneic mouse tumor models. Oncoimmunology 2019; 8:e1558678. [PMID: 31069130 PMCID: PMC6492973 DOI: 10.1080/2162402x.2018.1558678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
In combination cancer immunotherapies, consideration should be given to designing treatment schedules that harmonize with the immune system's natural timing. An efficacious temporally programmed combination therapy of extended half-life interleukin 2 (eIL2), tumor targeting antibody, and interferon (IFN) α was recently reported; however, tumor-ablative efficacy was associated with significant toxicity. In the current work, altering the order and timing of the three agents is shown to decouple toxicity from efficacy. Delaying the administration of eIL2 to be concurrent with or after IFNα eliminates toxicity without affecting efficacy in multiple syngeneic tumor models and mouse strains. The toxicity resulting from eIL2 administration before IFNα is dependent on multiple systemic inflammatory cytokines including IL6, IL10, IFNγ, and tumor necrosis factor α. Natural killer (NK) cells are the main cellular contributor to toxicity, but are not essential for tumor control in this system. When pre-conditioned with eIL2, splenic NK cells became hyper-activated and upregulate IFNα signaling proteins that cause an excessive, toxic response to subsequent IFNα exposure. This work illustrates an example where accounting for the temporal dynamics of the immune system in combination therapy treatment schedule can favorably decouple efficacy and toxicity.
Collapse
Affiliation(s)
- Adrienne Rothschilds
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alice Tzeng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naveen K. Mehta
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelly D. Moynihan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K. Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Liu X, Sun J, Gao W. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018; 178:413-434. [DOI: 10.1016/j.biomaterials.2018.04.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
|
10
|
The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res 2016; 2016:4273943. [PMID: 28116316 PMCID: PMC5220497 DOI: 10.1155/2016/4273943] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022] Open
Abstract
Interplay among immune activation and cancer pathogenesis provides the framework for a novel subspecialty known as immunooncology. In the rapidly evolving field of immunooncology, understanding the tumor-specific immune response enhances understanding of cancer resistance. This review highlights the fundamentals of incorporating precision medicine to discover new immune biomarkers and predictive signatures. Using a personalized approach may have a significant, positive impact on the use of oncolytics to better guide safer and more effective therapies.
Collapse
|
11
|
Andtbacka RHI, Agarwala SS, Ollila DW, Hallmeyer S, Milhem M, Amatruda T, Nemunaitis JJ, Harrington KJ, Chen L, Shilkrut M, Ross M, Kaufman HL. Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 2016; 38:1752-1758. [PMID: 27407058 PMCID: PMC5129499 DOI: 10.1002/hed.24522] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
Background Cutaneous head and neck melanoma has poor outcomes and limited treatment options. In OPTiM, a phase 3 study in patients with unresectable stage IIIB/IIIC/IV melanoma, intralesional administration of the oncolytic virus talimogene laherparepvec improved durable response rate (DRR; continuous response ≥6 months) compared with subcutaneous granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Methods Retrospective review of OPTiM identified patients with cutaneous head and neck melanoma given talimogene laherparepvec (n = 61) or GM‐CSF (n = 26). Outcomes were compared between talimogene laherparepvec and GM‐CSF treated patients with cutaneous head and neck melanoma. Results DRR was higher for talimogene laherparepvec–treated patients than for GM‐CSF treated patients (36.1% vs 3.8%; p = .001). A total of 29.5% of patients had a complete response with talimogene laherparepvec versus 0% with GM‐CSF. Among talimogene laherparepvec–treated patients with a response, the probability of still being in response after 12 months was 73%. Median overall survival (OS) was 25.2 months for GM‐CSF and had not been reached with talimogene laherparepvec. Conclusion Treatment with talimogene laherparepvec was associated with improved response and survival compared with GM‐CSF in patients with cutaneous head and neck melanoma. © 2016 Wiley Periodicals, Inc. Head Neck38: 1752–1758, 2016
Collapse
Affiliation(s)
| | - Sanjiv S Agarwala
- St. Luke's University Hospital and Temple University, Philadelphia, Pennsylvania
| | - David W Ollila
- University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | | | | | - Lisa Chen
- Amgen, Inc, Thousand Oaks, California
| | | | - Merrick Ross
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
12
|
Charych DH, Hoch U, Langowski JL, Lee SR, Addepalli MK, Kirk PB, Sheng D, Liu X, Sims PW, VanderVeen LA, Ali CF, Chang TK, Konakova M, Pena RL, Kanhere RS, Kirksey YM, Ji C, Wang Y, Huang J, Sweeney TD, Kantak SS, Doberstein SK. NKTR-214, an Engineered Cytokine with Biased IL2 Receptor Binding, Increased Tumor Exposure, and Marked Efficacy in Mouse Tumor Models. Clin Cancer Res 2016; 22:680-90. [PMID: 26832745 DOI: 10.1158/1078-0432.ccr-15-1631] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Aldesleukin, recombinant human IL2, is an effective immunotherapy for metastatic melanoma and renal cancer, with durable responses in approximately 10% of patients; however, severe side effects limit maximal dosing and thus the number of patients able to receive treatment and potential cure. NKTR-214 is a prodrug of conjugated IL2, retaining the same amino acid sequence as aldesleukin. The IL2 core is conjugated to 6 releasable polyethylene glycol (PEG) chains. In vivo, the PEG chains slowly release to generate active IL2 conjugates. EXPERIMENTAL DESIGN We evaluated the bioactivity and receptor binding of NKTR-214 and its active IL2 conjugates in vitro; the tumor immunology, tumor pharmacokinetics, and efficacy of NKTR-214 as a single agent and in combination with anti-CTLA-4 antibody in murine tumor models. Tolerability was evaluated in non-human primates. RESULTS In a murine melanoma tumor model, the ratio of tumor-killing CD8(+) T cells to Foxp3(+) regulatory T cells was greater than 400 for NKTR-214 compared with 18 for aldesleukin, supporting preferential activation of the IL2 receptor beta over IL2 receptor alpha, due to the location of PEG molecules. NKTR-214 provides a 500-fold greater exposure of the tumor to conjugated IL2 compared with aldesleukin. NKTR-214 showed efficacy as a single agent and provided durable immunity that was resistant to tumor rechallenge in combination with anti-CTLA-4 antibody. NKTR-214 was well tolerated in non-human primates. CONCLUSIONS These data support further evaluation of NKTR-214 in humans for a variety of tumor types, adding to the repertoire of potent and potentially curative cancer immunotherapies.
Collapse
Affiliation(s)
| | - Ute Hoch
- Nektar Therapeutics, San Francisco, California
| | | | - Steve R Lee
- Nektar Therapeutics, San Francisco, California
| | | | | | - Dawei Sheng
- Nektar Therapeutics, San Francisco, California
| | | | - Paul W Sims
- Nektar Therapeutics, San Francisco, California
| | | | | | | | | | | | | | | | - Chunmei Ji
- Nektar Therapeutics, San Francisco, California
| | - Yujun Wang
- Nektar Therapeutics, San Francisco, California
| | - Jicai Huang
- Nektar Therapeutics, San Francisco, California
| | | | | | | |
Collapse
|
13
|
De Couck M, Maréchal R, Moorthamers S, Van Laethem JL, Gidron Y. Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiol 2015; 40:47-51. [PMID: 26618335 DOI: 10.1016/j.canep.2015.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/29/2022]
Abstract
Recent research findings suggest neuro-modulation of tumors. Finding new modifiable prognostic factors paves the way for additional treatments, which is crucial in advanced cancer, particularly pancreatic cancer. This study examined the relationship between vagal nerve activity, indexed by heart rate variability (HRV), and overall survival (OS) in patients (N=272) with advanced pancreatic cancer. A "historical prospective" design was employed, where vagal activity and other confounders were retroactively obtained from medical charts at diagnosis, and subsequent OS was examined. HRV was obtained from 10 sec ECGs near diagnosis. Levels of C-reactive protein (CRP) were measured as an inflammatory marker. OS and survival date were obtained from medical charts and the Belgian national registry. Patients with high HRV (>20 msec) survived on average more than double the days (133.5) than those with low HRV (64.0). In a multivariate cox regression, higher initial HRV was significantly correlated with lower risk of death, independent of confounders including age and cancer treatments. This relationship was statistically mediated (accounted for) by CRP levels. Importantly, in patients who lived up to one month from diagnosis only, HRV was unrelated to CRP, while in patients surviving longer, HRV was significantly inversely related to CRP (r=-0.20, p<0.05). These results are in line with possible vagal nerve protection in a fatal cancer, and propose that the mechanism may involve neuroimmuno-modulation. Future studies must test whether vagal nerve activation may help patients with advanced cancers.
Collapse
Affiliation(s)
- Marijke De Couck
- Mental Health and Wellbeing Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 103 Laarbeeklaan, 1090 Brussels, Belgium.
| | - Raphaël Maréchal
- Department of Gastroenterology, GI Cancer Unit Erasme Universitary Hospital Université Libre de Bruxelles, 808, route de Lennik, 1070 Brussels, Belgium
| | - Sofie Moorthamers
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 103 Laarbeeklaan, 1090 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, GI Cancer Unit Erasme Universitary Hospital Université Libre de Bruxelles, 808, route de Lennik, 1070 Brussels, Belgium
| | - Yori Gidron
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 103 Laarbeeklaan, 1090 Brussels, Belgium
| |
Collapse
|