1
|
Li L, Li S, Ma H, Akhtar MF, Tan Y, Wang T, Liu W, Khan A, Khan MZ, Wang C. An Overview of Infectious and Non-Infectious Causes of Pregnancy Losses in Equine. Animals (Basel) 2024; 14:1961. [PMID: 38998073 PMCID: PMC11240482 DOI: 10.3390/ani14131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Equine breeding plays an essential role in the local economic development of many countries, and it has experienced rapid growth in China in recent years. However, the equine industry, particularly large-scale donkey farms, faces a significant challenge with pregnancy losses. Unfortunately, there is a lack of systematic research on abortion during equine breeding. Several causes, both infectious and non-infectious, of pregnancy losses have been documented in equines. The infectious causes are viruses, bacteria, parasites, and fungi. Non-infectious causes may include long transportation, ingestion of mycotoxins, hormonal disturbances, twinning, placentitis, umbilical length and torsion, etc. In current review, we discuss the transmission routes, diagnostic methods, and control measures for these infectious agents. Early detection of the cause and appropriate management are crucial in preventing pregnancy loss in equine practice. This review aims to provide a comprehensive understanding of the potential causes of abortion in equines, including infectious agents and non-infectious factors. It emphasizes the importance of continued research and effective control measures to address this significant challenge in the equine industry.
Collapse
Affiliation(s)
- Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Shuwen Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Haoran Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Muhammad Faheem Akhtar
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Ying Tan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| |
Collapse
|
2
|
Zhong L, Yan Y, Chen L, Sun N, Li H, Wang Y, Liu H, Jia Y, Lu Y, Liu X, Zhang Y, Guo H, Wang X. Nanopore-based metagenomics analysis reveals microbial presence in amniotic fluid: A prospective study. Heliyon 2024; 10:e28163. [PMID: 38545162 PMCID: PMC10966708 DOI: 10.1016/j.heliyon.2024.e28163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Background Current research on amniotic fluid (AF) microbiota yields contradictory data, necessitating an accurate, comprehensive, and scientifically rigorous evaluation. Objective This study aimed to characterise the microbial features of AF and explore the correlation between microbial information and clinical parameters. Methods 76 AF samples were collected in this prospective cohort study. Fourteen samples were utilised to establish the nanopore metagenomic sequencing methodology, whereas the remaining 62 samples underwent a final statistical analysis along with clinical information. Negative controls included the operating room environment (OE), surgical instruments (SI), and laboratory experimental processes (EP) to elucidate the background contamination at each step. Simultaneously, levels of five cytokines (IL-1β, IL-6, IL-8, TNF-α, MMP-8) in AF were assessed. Results Among the 62 AF samples, microbial analysis identified seven without microbes and 55 with low microbial diversity and abundance. No significant clinical differences were observed between AF samples with and without microbes. The correlation between microbes and clinical parameters in AF with normal chromosomal structure revealed noteworthy findings. In particular, the third trimester exhibited richer microbial diversity. Pseudomonas demonstrated higher detection rates and relative abundance in the second trimester and Preterm Birth (PTB) groups. S. yanoikuyae in the PTB group exhibited elevated detection frequencies and relative abundance. Notably, Pseudomonas negatively correlated with activated partial thromboplastin time (APTT) (r = -0.329, P = 0.016), while Staphylococcus showed positive correlations with APTT (r = 0.395, P = 0.003). Furthermore, Staphylococcus negatively correlated with birth weight (r = -0.297, P = 0.034). Conclusion Most AF samples exhibited low microbial diversity and abundance. Certain microbes in AF may correlate with clinical parameters such as gestational age and PTB. However, these associations require further investigation. It is essential to expand the sample size and undertake more comprehensive research to elucidate the clinical implications of microbial presence in AF.
Collapse
Affiliation(s)
- Lihang Zhong
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Yunjun Yan
- Jinan Dian Medical Laboratory CO., LTD, Shandong, China
| | - Long Chen
- Zhejiang Digena Diagnosis Technology CO., LTD, Zhejiang, China
| | - Na Sun
- Jinan Dian Medical Laboratory CO., LTD, Shandong, China
| | - Hongyan Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Yuli Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Huijun Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Yifang Jia
- Prenatal Diagnosis Center of Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
- Clinical Laboratory Department of Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Yurong Lu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Xuling Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, China
| | - Yu Zhang
- Zhejiang Digena Diagnosis Technology CO., LTD, Zhejiang, China
| | - Huimin Guo
- Zhejiang Digena Diagnosis Technology CO., LTD, Zhejiang, China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| |
Collapse
|
3
|
Murga Valderrama NL, Segura Portocarrero GT, Romani Vasquez AC, Frias Torres H, Flores Durand GJ, Cornejo Villanueva VG, Del Solar JC, Costa Polveiro R, da Silva Vieira D, Bardales Escalante W, Zamora-Huamán SJ, Ordinola-Ramirez CM, Maicelo Quintana JL, Lopez Lapa RM. Exploring the microbiome of two uterine sites in cows. Sci Rep 2023; 13:18768. [PMID: 37907617 PMCID: PMC10618249 DOI: 10.1038/s41598-023-46093-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial communities in the mammalian reproductive system can be rich and diverse, differing in structure and quantity depending on location. In addition, its microbiome is associated with the state of health of this tract and reproductive success. This study evaluated the microbiome composition of the uterine body (UB) and uterine horn mucosa (UH) samples using 16S rRNA sequencing of samples extracted from cows in the Amazon region. It was observed that four main phyla were shared between the uterine sites: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Linear discriminant analysis effect size and heat tree analysis showed that members of Lachnospiraceae (NK3A20 group) and Oscillospiraceae were significantly more abundant in the UB than in UH. In addition, there are more unique genera in the UB than in the UH. A higher bacterial load in UB than in UH is expected because of the exposure to external factors of UB. However, comparing the site's communities through beta diversity did not generate well-defined clustering. Thus, it can be attributed to the closeness of the sites, which would make the niches similar ecologically and microbiologically. Therefore, this research provides knowledge to understand biomarkers in the prior reproduction period.
Collapse
Affiliation(s)
- Nilton Luis Murga Valderrama
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Gleni Tatiana Segura Portocarrero
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Ana Cecilia Romani Vasquez
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Hugo Frias Torres
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Gary Jacsel Flores Durand
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Victor Guillermo Cornejo Villanueva
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Jakson Ch Del Solar
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Richard Costa Polveiro
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Dielson da Silva Vieira
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - William Bardales Escalante
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Segundo José Zamora-Huamán
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Carla Maria Ordinola-Ramirez
- Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Jorge Luis Maicelo Quintana
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Rainer Marco Lopez Lapa
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru.
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru.
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru.
| |
Collapse
|
4
|
Ruby RE, Janes JG. Infectious Causes of Equine Placentitis and Abortion. Vet Clin North Am Equine Pract 2023; 39:73-88. [PMID: 36737287 DOI: 10.1016/j.cveq.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A variety of infectious agents including viral, bacterial, and fungal organisms can cause equine abortion and placentitis. Knowledge of normal anatomy and the common pattern distribution of different infectious agents will assist the practitioner in evaluating the fetus and/or placenta, collecting appropriate samples for further testing, and in some cases, forming a presumptive diagnosis. In all cases, it is recommended to confirm the diagnosis with molecular, serologic, or microbiological testing. If a causative agent can be identified, then appropriate biosecurity and vaccination measures can be instituted on the farm.
Collapse
Affiliation(s)
- Rebecca E Ruby
- Department of Veterinary Science, University of Kentucky, Veterinary Diagnostic Laboratory, 1490 Bull Lea Road, Lexington, KY 40511, USA.
| | - Jennifer G Janes
- Department of Veterinary Science, University of Kentucky, Veterinary Diagnostic Laboratory, 1490 Bull Lea Road, Lexington, KY 40511, USA
| |
Collapse
|
5
|
Oliveira LG, Watanabe TT, Boabaid FM, Wouters F, Wouters AT, Bandarra PM, Guerra PR, Driemeier D. Clinical and pathological findings of Rhodococcus equi infection in foals. PESQUISA VETERINARIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-6252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Infection by Rhodococcus equi is considered one of the major health concerns for foals worldwide. In order to better understand the disease’s clinical and pathological features, we studied twenty cases of natural infection by R. equi in foals. These cases are characterized according to their clinical and pathological findings and immunohistochemical aspects. Necropsy, histologic examination, bacterial culture, R. equi and Pneumocystis spp. immunohistochemistry were performed. The foals had a mean age of 60 days and presented respiratory signs (11/20), hyperthermia (10/20), articular swelling (6/20), prostration (4/20), locomotor impairment (3/20) and diarrhea (3/20), among others. The main lesions were of pyogranulomatous pneumonia, seen in 19 foals, accompanied or not by pyogranulomatous lymphadenitis (10/20) and pyogranulomatous and ulcerative enterocolitis (5/20). Pyogranulomatous osteomyelitis was seen in 3 foals, one of which did not have pulmonary involvement. There was lymphoplasmacytic (4/20), lymphoplasmacytic and neutrophilic (1/20) or pyogranulomatous arthritis (1/20), affecting multiple or singular joints. Immunohistochemistry revealed to be a valuable tool for the detection of R. equi, confirming the diagnosis in all cases. Furthermore, pulmonary immunostaining for Pneumocystis spp. demonstrates that a coinfection with R. equi and this fungal agent is a common event in foals, seen in 13 cases.
Collapse
|
6
|
Kilcoyne I, Nieto J, Vaughan B. Tibial osteomyelitis caused by Rhodococcus equiin a mature horse. EQUINE VET EDUC 2014. [DOI: 10.1111/eve.12038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. Kilcoyne
- William R. Pritchard Veterinary Medical Teaching Hospital; California USA
| | - J. Nieto
- Department of Surgical and Radiological Sciences; School of Veterinary Medicine; University of California-Davis; California USA
| | - B. Vaughan
- Department of Surgical and Radiological Sciences; School of Veterinary Medicine; University of California-Davis; California USA
| |
Collapse
|
7
|
Vázquez-Boland JA, Giguère S, Hapeshi A, MacArthur I, Anastasi E, Valero-Rello A. Rhodococcus equi: the many facets of a pathogenic actinomycete. Vet Microbiol 2013; 167:9-33. [PMID: 23993705 DOI: 10.1016/j.vetmic.2013.06.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity.
Collapse
Affiliation(s)
- José A Vázquez-Boland
- Microbial Pathogenesis Unit, School of Biomedical Sciences and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH9 3JT, UK; Grupo de Patogenómica Bacteriana, Facultad de Veterinaria, Universidad de León, 24071 León, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Johns JL, Christopher MM. Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet Pathol 2012; 49:508-23. [PMID: 22262354 DOI: 10.1177/0300985811432344] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Extramedullary hematopoiesis (EMH) is the formation and development of blood cells outside the medullary spaces of the bone marrow. Although widely considered an epiphenomenon, secondary to underlying primary disease and lacking serious clinical or diagnostic implications, the presence of EMH is far from incidental on a molecular basis; rather, it reflects a well-choreographed suite of changes involving stem cells and their microenvironment (the stem cell niche). The goals of this review are to reconsider the molecular basis of EMH based on current knowledge of stem cell niches and to examine its role in the pathophysiologic mechanisms of EMH in animals. The ability of blood cells to home, proliferate, and mature in extramedullary tissues of adult animals reflects embryonic patterns of hematopoiesis and establishment or reactivation of a stem cell niche. This involves pathophysiologic alterations in hematopoietic stem cells, extracellular matrix, stromal cells, and local and systemic chemokines. Four major theories involving changes in stem cells and/or their microenvironment can explain the development of most occurrences of EMH: (1) severe bone marrow failure; (2) myelostimulation; (3) tissue inflammation, injury, and repair; and (4) abnormal chemokine production. EMH has also been reported within many types of neoplasms. Understanding the concepts and factors involved in stem cell niches enhances our understanding of the occurrence of EMH in animals and its relationship to underlying disease. In turn, a better understanding of the prevalence and distribution of EMH in animals and its molecular basis could further inform our understanding of the hematopoietic stem cell niche.
Collapse
Affiliation(s)
- J L Johns
- Department of Comparative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
9
|
Clinical, Bacteriological, and Histopathological Findings of a Testicular Fibrosis in a 6-Year-Old Lusitano Stallion. Case Rep Vet Med 2012. [DOI: 10.1155/2012/989687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 6-year-old Lusitano stallion was referred to our centre due to an enlarged left testicle. Anamnesis indicated that the stallion had a chronic hypertrophy of the left testicle, with no apparent ill effect on work (dressage training) or semen production. Prolonged use of anti-inflammatory drugs (NSAIDs) and antibiotics were probable. Upon examination of the animal, it was found that clinical signs were compatible with chronic testicular degeneration or fibrosis. Ultrasound scanning did not evidence the exuberant macroscopic lesions seen upon hemicastration of the left testicle, but it showed in the left spermatic cord a conspicuous absence of the typical hypoechogenic areas representing the pampiniform plexus. Swabbing of the penis, prepuce, and distal urethra resulted in the isolation ofRhodococcus equiandCorynebacteriumspp. However, histopathological examination did not support infectious orchitis as cause of the lesions and no bacterial growth was obtained from swabbing of the parenchyma in the excised testicle. Histopathological findings were compatible with chronic orchitis with fibrosis and necrosis, probably secondary to ischemia of the testicular parenchyma. After hemi-castration, the stallion resumed semen production at acceptable levels.
Collapse
|
10
|
von Bargen K, Haas A. Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol Rev 2009; 33:870-91. [PMID: 19453748 DOI: 10.1111/j.1574-6976.2009.00181.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The soil actinomycete Rhodococcus equi is a pulmonary pathogen of young horses and AIDS patients. As a facultative intracellular bacterium, R. equi survives and multiplies in macrophages and establishes its specific niche inside the host cell. Recent research into chromosomal virulence factors and into the role of virulence plasmids in infection and host tropism has presented novel aspects of R. equi infection biology and pathogenicity. This review will focus on new findings in R. equi biology, the trafficking of R. equi-containing vacuoles inside host cells, factors involved in virulence and host resistance and on host-pathogen interaction on organismal and cellular levels.
Collapse
|
11
|
Szeredi L, Tenk M, Jánosi S, Pálfi V, Hotzel H, Sachse K, Pospischil A, Bozsó M, Glávits R, Molnár T. A survey of equine abortion and perinatal foal losses in Hungary during a three-year period (1998-2000). Acta Vet Hung 2008; 56:353-67. [PMID: 18828487 DOI: 10.1556/avet.56.2008.3.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cases of equine abortion and perinatal foal losses were investigated in Hungary during a three-year period (1998-2000). Samples from aborted equine fetuses and newborn foals (total n = 96) were examined using bacteriological, virological, pathological, immunohistochemical (IHC), molecular biological and serological methods. The cause of abortion and perinatal foal loss was identified in 67/96 cases (70%); viral infection was found in 22 (23%), viral and bacterial coinfection in 1 (1%), bacterial infection in 23 (24%), protozoan infection in 1 (1%) and fungal infection in 2 cases (2%). Morphological lesions suggestive of infection were recorded in 2 (2%) and non-infectious causes in 16 cases (17%).
Collapse
Affiliation(s)
- Levente Szeredi
- 1 Central Agricultural Office Veterinary Diagnostic Directorate H-1149 Budapest Tábornok u. 2 Hungary
| | - Miklós Tenk
- 1 Central Agricultural Office Veterinary Diagnostic Directorate H-1149 Budapest Tábornok u. 2 Hungary
| | - Szilárd Jánosi
- 1 Central Agricultural Office Veterinary Diagnostic Directorate H-1149 Budapest Tábornok u. 2 Hungary
| | - Vilmos Pálfi
- 1 Central Agricultural Office Veterinary Diagnostic Directorate H-1149 Budapest Tábornok u. 2 Hungary
| | - Helmut Hotzel
- 2 Institute of Bacterial Infections and Zoonoses Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Jena Germany
| | - Konrad Sachse
- 2 Institute of Bacterial Infections and Zoonoses Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Jena Germany
| | - Andreas Pospischil
- 3 University of Zurich Institute of Veterinary Pathology Zurich Switzerland
| | - Miklós Bozsó
- 1 Central Agricultural Office Veterinary Diagnostic Directorate H-1149 Budapest Tábornok u. 2 Hungary
| | - Róbert Glávits
- 1 Central Agricultural Office Veterinary Diagnostic Directorate H-1149 Budapest Tábornok u. 2 Hungary
| | - Tamás Molnár
- 1 Central Agricultural Office Veterinary Diagnostic Directorate H-1149 Budapest Tábornok u. 2 Hungary
| |
Collapse
|
12
|
Szeredi L, Jánosi S, Tenk M. Klebsiella oxytoca as a cause of equine abortion--short communication. Acta Vet Hung 2008; 56:215-20. [PMID: 18669249 DOI: 10.1556/avet.56.2008.2.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Klebsiella (K.) oxytoca infection induced the abortion of a female equine fetus in the 10th month of pregnancy. Bacteria were cultured from the liver, lung and stomach content. They were labelled with an anti-Mycobacterium bovis antibody in the thymus, liver and lungs and were stained with Giemsa and Brown-Brenn staining in the thymus and lung. The diffusely consolidated lungs contained numerous grey-whitish foci 2-4 mm in diameter, which corresponded to severe pyogranulomatous pneumonia characterised by numerous intraalveolar neutrophils and macrophages and multinucleated Langhans' giant cells. K. oxytoca was located in the cytoplasm of these cells, and extracellularly in the lumen of alveoli, bronchioles and bronchi, in the capsule of thymus and in the sinusoids of the liver. The results indicate that K. oxytoca can cause sporadic equine abortion.
Collapse
Affiliation(s)
- Levente Szeredi
- 1 Veterinary Diagnostic Directorate Central Agricultural Office H-1149 Budapest Tábornok u. 2 Hungary
| | - Szilárd Jánosi
- 1 Veterinary Diagnostic Directorate Central Agricultural Office H-1149 Budapest Tábornok u. 2 Hungary
| | - Miklós Tenk
- 1 Veterinary Diagnostic Directorate Central Agricultural Office H-1149 Budapest Tábornok u. 2 Hungary
| |
Collapse
|