1
|
Dienel K, Abu-Shahba A, Kornilov R, Björkstrand R, van Bochove B, Snäll J, Wilkman T, Mesimäki K, Meller A, Lindén J, Lappalainen A, Partanen J, Seppänen-Kaijansinkko R, Seppälä J, Mannerström B. Patient-Specific Bioimplants and Reconstruction Plates for Mandibular Defects: Production Workflow and In Vivo Large Animal Model Study. Macromol Biosci 2022; 22:e2100398. [PMID: 35023297 DOI: 10.1002/mabi.202100398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Indexed: 11/12/2022]
Abstract
A major challenge with extensive craniomaxillofacial bone reconstruction is the limited donor-site availability to reconstruct defects predictably and accurately according to the anatomical shape of the patient. Here, patient-specific composite bioimplants, consisting of cross-linked poly(trimethylene carbonate) (PTMC) networks and β-tricalcium phosphate (β-TCP), were tested in vivo in twelve Göttingen minipigs in a large mandibular continuity defect model. The 25 mm defects were supported by patient-specific titanium reconstruction plates and received either osteoconductive composite bioimplants (PTMC+TCP), neat polymer network bioimplants (PTMC), autologous bone segments (positive control) or were left empty (negative control). Post-operatively, defects treated with bioimplants showed evident ossification at 24 weeks. Histopathologic evaluation revealed that neat PTMC bioimplant surfaces were largely covered with fibrous tissue, while in the PTMC+TCP bioimplants, bone attached directly to the implant surface showing good osteoconduction and histological signs of osteoinductivity. However, PTMC+TCP bioimplants were associated with high incidence of necrosis and infection, possibly due to rapid resorption and/or particle size of the used β-TCP. The study highlights the importance of testing bone regeneration implants in a clinically relevant large animal model and at the in situ reconstruction site, since results on small animal models and studies in non-loadbearing areas do not translate directly. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kasper Dienel
- Polymer Technology, School of Chemical Engineering, Aalto University, Finland
| | - Ahmed Abu-Shahba
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tanta University, Egypt
| | - Roman Kornilov
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Roy Björkstrand
- Department of Mechanical Engineering, Aalto University, Finland
| | - Bas van Bochove
- Polymer Technology, School of Chemical Engineering, Aalto University, Finland
| | - Johanna Snäll
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Tommy Wilkman
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Karri Mesimäki
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Anna Meller
- Laboratory Animal Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jere Lindén
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Finnish Centre for Laboratory Animal Pathology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anu Lappalainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jouni Partanen
- Department of Mechanical Engineering, Aalto University, Finland
| | | | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Finland
| | - Bettina Mannerström
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|
2
|
Bau-Gaudreault L, Arndt T, Provencher A, Brayton CF. Research-Relevant Clinical Pathology Resources: Emphasis on Mice, Rats, Rabbits, Dogs, Minipigs, and Non-Human Primates. ILAR J 2021; 62:203-222. [PMID: 34877602 DOI: 10.1093/ilar/ilab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical pathology testing for investigative or biomedical research and for preclinical toxicity and safety assessment in laboratory animals is a distinct specialty requiring an understanding of species specific and other influential variables on results and interpretation. This review of clinical pathology principles and testing recommendations in laboratory animal species aims to provide a useful resource for researchers, veterinary specialists, toxicologists, and clinical or anatomic pathologists.
Collapse
Affiliation(s)
- Liza Bau-Gaudreault
- Clinical Laboratories, Charles River Laboratories - ULC, Senneville, Quebec, Canada
| | - Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, United States
| | - Anne Provencher
- Clinical Laboratories, Charles River Laboratories - ULC, Sherbrooke, Quebec, Canada
| | - Cory F Brayton
- Molecular and Comparative Pathobiology, John Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Skydsgaard M, Dincer Z, Haschek WM, Helke K, Jacob B, Jacobsen B, Jeppesen G, Kato A, Kawaguchi H, McKeag S, Nelson K, Rittinghausen S, Schaudien D, Vemireddi V, Wojcinski ZW. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Minipig. Toxicol Pathol 2021; 49:110-228. [PMID: 33393872 DOI: 10.1177/0192623320975373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions) Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the minipig used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
| | - Zuhal Dincer
- Pathology Department, Covance Laboratories Limited, Harrogate, United Kingdom
| | - Wanda M Haschek
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | - Kris Helke
- Medical University of South Carolina, Charleston, SC, USA
| | | | - Bjoern Jacobsen
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Gitte Jeppesen
- Charles River Laboratories Copenhagen, Lille Skensved, Denmark
| | - Atsuhiko Kato
- Chugai Pharmaceutical Co, Ltd Research Division, Shizuoka, Japan
| | | | - Sean McKeag
- Pathology Department, Covance Laboratories Limited, Harrogate, United Kingdom
| | | | - Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | | |
Collapse
|
4
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Herman E, Eldridge S. Spontaneously occurring cardiovascular lesions in commonly used laboratory animals. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2019; 5:6. [PMID: 32154013 PMCID: PMC7048038 DOI: 10.1186/s40959-019-0040-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/30/2019] [Indexed: 02/01/2023]
Abstract
The search for new chemical entities which are clinically effective and do not adversely affect the cardiovascular system is an ongoing objective. In vivo studies designed to detect potential drug-induced cardiovascular toxicity typically utilize both rodent and non-rodent species. An important component of such studies includes the microscopic evaluation of tissues for histopathologic changes. A factor which could potentially complicate this type of evaluation relates to the potential for laboratory animals to develop natural or spontaneous pathological cardiovascular lesions. Some types of these naturally occurring alterations are similar to those induced by chemical compounds and thus could confound accurate interpretation. Accurate morphologic analysis becomes contingent upon the ability to distinguish spontaneous cardiovascular changes from actual drug-induced lesions. A summary of some of the more frequently reported spontaneous cardiovascular alterations in commonly-used laboratory animals is presented below. Special emphasis is given to the spectrum of spontaneous background myocardial pathology that might be encountered during preclinical studies conducted to identify potential cardiotoxic actions of anticancer agents.
Collapse
Affiliation(s)
- Eugene Herman
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892 USA
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892 USA
| |
Collapse
|
6
|
Dincer Z, Piccicuto V, Walker UJ, Mahl A, McKeag S. Spontaneous and Drug-induced Arteritis/Polyarteritis in the Göttingen Minipig—Review. Toxicol Pathol 2018; 46:121-130. [DOI: 10.1177/0192623318754791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arteritis/polyarteritis occurs spontaneously in many species used in preclinical toxicology studies. In Göttingen minipigs, arteritis/polyarteritis is an occasionally observed background change. In the minipig, this finding differs in frequency and nature from age-related polyarteritis nodosa in rats or monkeys, and Beagle pain syndrome in dogs. In minipigs, it can be present in a single small- or medium-sized artery of an organ or a few organs and is most commonly recorded in the cardiac and extracardiac blood vessels, vagina, oviduct, rectum, epididymis, spinal cord, pancreas, urinary bladder, kidneys, and stomach. The etiology is unknown although it has been considered in minipigs as well as in rats, dogs, and monkeys to be possibly immune mediated. This background change is important with respect to its nature and distribution in the minipig in order to distinguish it from drug-induced vascular changes, which might occur in similar locations and have similar morphologic features. This review summarizes the morphology, incidence, and predilection sites of arteritis as a spontaneously occurring background change and as a drug-induced vasculopathy in the minipig, and also describes the main aspects to consider when evaluating vascular changes in Göttingen minipig toxicity studies and their human relevance.
Collapse
Affiliation(s)
- Zuhal Dincer
- Pathology Department, Covance Laboratories Limited, Harrogate, United Kingdom
| | - Virginie Piccicuto
- Pathology Department, Covance Laboratories Limited, Harrogate, United Kingdom
| | - Ursula Junker Walker
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Andreas Mahl
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sean McKeag
- Pathology Department, Covance Laboratories Limited, Harrogate, United Kingdom
| |
Collapse
|
7
|
McInnes EF, McKeag S. A Brief Review of Infrequent Spontaneous Findings, Peculiar Anatomical Microscopic Features, and Potential Artifacts in Göttingen Minipigs. Toxicol Pathol 2016; 44:338-45. [DOI: 10.1177/0192623315622423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Minipigs are now used in greater numbers in contract research organizations (CROs) as well as in the pharmaceutical industry. Most CROs or pharmaceutical companies use the Göttingen minipig, which displays a number of important background lesions. This review will discuss some of the more infrequent minipig background changes. Porcine stress syndrome is an autosomal recessive pharmacogenetic disorder in minipigs causing malignant hyperthermia and muscle necrosis. Possible triggers, clinical pathology as well as heart, muscle, liver, lung, and kidney histopathology are discussed. Additional spontaneous changes, background findings, and peculiar anatomical and histological features include thrombocytopenic purpura syndrome, spontaneous glomerulonephritis, osteochondritis, ellipsoids, or Schweigger–Seidel sheaths in the spleen, as well as the presence of a perimesenteric plexus adjacent to mesenteric lymph nodes, squamous epithelial metaplasia of the salivary gland, and cupping of the optic disk in the minipig eye. In order to maximize the data gained from minipig studies, the interpretation of pathology findings requires the input of experienced pathologists who understand the significance of artifacts and spontaneous, background lesions in minipigs and can distinguish these from induced lesions.
Collapse
|
8
|
Helke KL, Nelson KN, Sargeant AM, Jacob B, McKeag S, Haruna J, Vemireddi V, Greeley M, Brocksmith D, Navratil N, Stricker-Krongrad A, Hollinger C. Background Pathological Changes in Minipigs. Toxicol Pathol 2015; 44:325-37. [DOI: 10.1177/0192623315611762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Swine, especially the miniature swine or minipigs, are increasingly being used in preclinical safety assessment of small molecules, biopharmaceutical agents, and medical devices as an alternate nonrodent species. Although swine have been used extensively in biomedical research, there is a paucity of information in the current literature detailing the incidence of background lesions and differences in incidence between commonly used breeds. This article is a collaborative effort between multiple organizations to define and document lesions found in the common breeds of minipigs used for toxicological risk assessment in North America (NA) and the European Union (EU). We retrospectively assessed 10 years of historical control data from several institutions located in NA and EU, covering the period of 2004–2015. Here we report the background lesions with consideration of breed and geographical location. To our knowledge, this is the first report documenting spontaneous background lesions in commonly used breeds of swine in both NA and EU. This report serves as a resource to pathologists and will aid in interpretation of findings and differentiation of background from test article–related changes.
Collapse
Affiliation(s)
- Kristi L. Helke
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | - Binod Jacob
- Charles River Laboratories, Spencerville, Ohio, USA
| | - Sean McKeag
- Covance Laboratories Limited, Harrogate, North Yorkshire, UK
| | | | | | | | - Derek Brocksmith
- Sinclair Research Center and Sinclair Bio Resources, Auxvasse, Missouri, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Swine are used in biomedical research as models for biomedical research and for teaching. This chapter covers normative biology and behavior along with common and emerging swine diseases. Xenotransplantation is discussed along with similarities and differences of swine immunology.
Collapse
Affiliation(s)
- Kristi L. Helke
- Departments of Comparative Medicine and Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Raimon Duran-Struuck
- Columbia Center of Translational Immunology, Department of Surgery; Institute of Comparative Medicine; Columbia University Medical Center, New York, NY, USA
| | - M. Michael Swindle
- Medical University of South Carolina, Department of Comparative Medicine and Department of Surgery, Charleston, SC, USA
| |
Collapse
|
10
|
Vezzali E, Manno RA, Salerno D, Oberto G, Nyska A, Ramot Y. Spontaneous Glomerulonephritis in Göttingen Minipigs. Toxicol Pathol 2011; 39:700-5. [DOI: 10.1177/0192623311406930] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Göttingen minipig is one of the nonrodent species recommended by various regulatory authorities for safety assessment of drugs in preclinical studies. In such studies, knowledge of background pathology is critical in order to evaluate the potential renal toxicity. In the present study, the authors report 4 cases of glomerulonephritis out of 154 microbiologically defined Göttingen minipigs microscopically evaluated in preclinical studies. One animal required early sacrifice because of general poor health, and an additional animal died spontaneously. Histopathological evaluation revealed renal lesions in all 4 animals, exhibiting membranous or membranoproliferative glomerulonephritis at different stages, accompanied by secondary tubulo-interstitial damage. The renal changes observed were considered spontaneous in origin and of unknown etiology. Development of this condition in this strain should be considered in future studies.
Collapse
Affiliation(s)
- Enrico Vezzali
- RTC—Research Toxicology Centre S.p.A., Pomezia, Rome, Italy
| | | | - Dario Salerno
- RTC—Research Toxicology Centre S.p.A., Pomezia, Rome, Italy
| | - Germano Oberto
- RTC—Research Toxicology Centre S.p.A., Pomezia, Rome, Italy
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Yuval Ramot
- Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
Swindle MM, Makin A, Herron AJ, Clubb FJ, Frazier KS. Swine as models in biomedical research and toxicology testing. Vet Pathol 2011; 49:344-56. [PMID: 21441112 DOI: 10.1177/0300985811402846] [Citation(s) in RCA: 904] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Swine are considered to be one of the major animal species used in translational research, surgical models, and procedural training and are increasingly being used as an alternative to the dog or monkey as the choice of nonrodent species in preclinical toxicologic testing of pharmaceuticals. There are unique advantages to the use of swine in this setting given that they share with humans similar anatomic and physiologic characteristics involving the cardiovascular, urinary, integumentary, and digestive systems. However, the investigator needs to be familiar with important anatomic, histopathologic, and clinicopathologic features of the laboratory pig and minipig in order to put background lesions or xenobiotically induced toxicologic changes in their proper perspective and also needs to consider specific anatomic differences when using the pig as a surgical model. Ethical considerations, as well as the existence of significant amounts of background data, from a regulatory perspective, provide further support for the use of this species in experimental or pharmaceutical research studies. It is likely that pigs and minipigs will become an increasingly important animal model for research and pharmaceutical development applications.
Collapse
Affiliation(s)
- M M Swindle
- Medical University of South Carolina, Department of Comparative Medicine, MSC 777, 114 Doughty St, Charleston, SC 29425-7770, USA.
| | | | | | | | | |
Collapse
|
12
|
Cerebral Segmental Polyarteritis of Unknown Aetiology in Sheep. J Comp Pathol 2009; 140:283-7. [DOI: 10.1016/j.jcpa.2009.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/17/2008] [Accepted: 01/23/2009] [Indexed: 11/21/2022]
|
13
|
Breshears MA, Johnson BJ. Systemic reactive angioendotheliomatosis-like syndrome in a steer presumed to be persistently infected with bovine viral diarrhea virus. Vet Pathol 2008; 45:645-9. [PMID: 18725468 DOI: 10.1354/vp.45-5-645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unusual proliferative intravascular lesions were seen in multiple organs of a 2-year-old Corriente steer presumed to be persistently infected with bovine viral diarrhea virus (BVDV), based on widespread immunohistochemical detection of BVDV antigen. Proliferations of spindle cells, which were immunohistochemically positive for von Willebrand factor-related antigen, partially-to-completely occluded vessel lumens and were supported by cells that were immunohistochemically positive for smooth muscle actin. Distribution and character of the intraluminal proliferations are strikingly similar to those described in feline systemic reactive angioendotheliomatosis, a rare entity of unknown cause. The presence of occasional intravascular thrombi suggests that the proliferative vasculopathy was associated with an underlying thrombotic process with immunohistochemical similarities to thrombotic thrombocytopenic purpura of humans. Death of the steer was due to hemorrhage from a castration wound, which may indicate thrombocytopenia or platelet dysfunction. The role of persistent BVDV infection in the formation of the intravascular lesions is unknown.
Collapse
Affiliation(s)
- M A Breshears
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078 (USA).
| | | |
Collapse
|
14
|
Sipos W, Schmoll F, Stumpf I. Minipigs and potbellied pigs as pets in the veterinary practice--a retrospective study. ACTA ACUST UNITED AC 2007; 54:504-11. [PMID: 17931226 DOI: 10.1111/j.1439-0442.2007.00968.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minipigs have become popular pets in recent years. Therefore, an increasing number of veterinarians are being challenged by specific problems of these animals. This retrospective study gives an overview on the diagnoses and therapeutic interventions of the patients submitted to the clinic for swine at the University of Veterinary Medicine Vienna during the last 6 years (n=48). Most frequently, colic symptoms of the gastro-intestinal tract (n=12) and orthopaedic locomotion disorders (n=10), mainly due to accidents or long claws, could be observed, followed by urogenital tract and skin disorders (n=4 each). Therapeutic interventions are discussed with regard to medical aspects as well as statutory provisions.
Collapse
Affiliation(s)
- W Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | | | | |
Collapse
|