1
|
Lambert ZJ, Bian J, Cassmann ED, Greenlee MHW, Greenlee JJ. Scrapie versus Chronic Wasting Disease in White-Tailed Deer. Emerg Infect Dis 2024; 30:1651-1659. [PMID: 39043428 PMCID: PMC11286070 DOI: 10.3201/eid3008.240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
White-tailed deer are susceptible to scrapie (WTD scrapie) after oronasal inoculation with the classical scrapie agent from sheep. Deer affected by WTD scrapie are difficult to differentiate from deer infected with chronic wasting disease (CWD). To assess the transmissibility of the WTD scrapie agent and tissue phenotypes when further passaged in white-tailed deer, we oronasally inoculated wild-type white-tailed deer with WTD scrapie agent. We found that WTD scrapie and CWD agents were generally similar, although some differences were noted. The greatest differences were seen in bioassays of cervidized mice that exhibited significantly longer survival periods when inoculated with WTD scrapie agent than those inoculated with CWD agent. Our findings establish that white-tailed deer are susceptible to WTD scrapie and that the presence of WTD scrapie agent in the lymphoreticular system suggests the handling of suspected cases should be consistent with current CWD guidelines because environmental shedding may occur.
Collapse
|
2
|
Bartz JC, Benavente R, Caughey B, Christensen S, Herbst A, Hoover EA, Mathiason CK, McKenzie D, Morales R, Schwabenlander MD, Walsh DP. Chronic Wasting Disease: State of the Science. Pathogens 2024; 13:138. [PMID: 38392876 PMCID: PMC10892334 DOI: 10.3390/pathogens13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervid species, both free-ranging and captive populations. As the geographic range continues to expand and disease prevalence continues to increase, CWD will have an impact on cervid populations, local economies, and ecosystem health. Mitigation of this "wicked" disease will require input from many different stakeholders including hunters, landowners, research biologists, wildlife managers, and others, working together. The NC1209 (North American interdisciplinary chronic wasting disease research consortium) is composed of scientists from different disciplines involved with investigating and managing CWD. Leveraging this broad breadth of expertise, the Consortium has created a state-of-the-science review of five key aspects of CWD, including current diagnostic capabilities for detecting prions, requirements for validating these diagnostics, the role of environmental transmission in CWD dynamics, and potential zoonotic risks associated with CWD. The goal of this review is to increase stakeholders', managers', and decision-makers' understanding of this disease informed by current scientific knowledge.
Collapse
Affiliation(s)
- Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA;
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Sonja Christensen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA;
| | - Allen Herbst
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA;
| | - Edward A. Hoover
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Candace K. Mathiason
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Debbie McKenzie
- Department of Biological Sciences, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M9, Canada;
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Marc D. Schwabenlander
- Minnesota Center for Prion Research and Outreach, Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
3
|
Susceptibility of Beavers to Chronic Wasting Disease. BIOLOGY 2022; 11:biology11050667. [PMID: 35625395 PMCID: PMC9137852 DOI: 10.3390/biology11050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Chronic wasting disease (CWD) is a contagious, fatal, neurodegenerative prion disease of cervids. The expanding geographical range and rising prevalence of CWD are increasing the risk of pathogen transfer and spillover of CWD to non-cervid sympatric species. As beavers have close contact with environmental and food sources of CWD infectivity, we hypothesized that they may be susceptible to CWD prions. We evaluated the susceptibility of beavers to prion diseases by challenging transgenic mice expressing beaver prion protein (tgBeaver) with five strains of CWD, four isolates of rodent-adapted prions and one strain of Creutzfeldt-Jakob disease. All CWD strains transmitted to the tgBeaver mice, with attack rates highest from moose CWD and the 116AG and H95+ strains of deer CWD. Mouse-, rat-, and especially hamster-adapted prions were also transmitted with complete attack rates and short incubation periods. We conclude that the beaver prion protein is an excellent substrate for sustaining prion replication and that beavers are at risk for CWD pathogen transfer and spillover.
Collapse
|
4
|
Silva CJ. Chronic Wasting Disease (CWD) in Cervids and the Consequences of a Mutable Protein Conformation. ACS OMEGA 2022; 7:12474-12492. [PMID: 35465121 PMCID: PMC9022204 DOI: 10.1021/acsomega.2c00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 05/15/2023]
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids (deer, elk, moose, etc.). It spreads readily from CWD-contaminated environments and among wild cervids. As of 2022, North American CWD has been found in 29 states, four Canadian provinces and South Korea. The Scandinavian form of CWD originated independently. Prions propagate their pathology by inducing a natively expressed prion protein (PrPC) to adopt the prion conformation (PrPSc). PrPC and PrPSc differ solely in their conformation. Like other prion diseases, transmissible CWD prions can arise spontaneously. The CWD prions can respond to selection pressures resulting in the emergence of new strain phenotypes. Annually, 11.5 million Americans hunt and harvest nearly 6 million deer, indicating that CWD is a potential threat to an important American food source. No tested CWD strain has been shown to be zoonotic. However, this may not be true for emerging strains. Should a zoonotic CWD strain emerge, it could adversely impact the hunting economy and game meat consumers.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety & Microbiology
Research Unit, Western Regional Research Center, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States of America
| |
Collapse
|
5
|
Gene-Edited Cell Models to Study Chronic Wasting Disease. Viruses 2022; 14:v14030609. [PMID: 35337016 PMCID: PMC8950194 DOI: 10.3390/v14030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders affecting both humans and animals. They are caused by the misfolded isoform of the cellular prion protein (PrPC), PrPSc, and currently no options exist to prevent or cure prion diseases. Chronic wasting disease (CWD) in deer, elk and other cervids is considered the most contagious prion disease, with extensive shedding of infectivity into the environment. Cell culture models provide a versatile platform for convenient quantification of prions, for studying the molecular and cellular biology of prions, and for performing high-throughput screening of potential therapeutic compounds. Unfortunately, only a very limited number of cell lines are available that facilitate robust and persistent propagation of CWD prions. Gene-editing using programmable nucleases (e.g., CRISPR-Cas9 (CC9)) has proven to be a valuable tool for high precision site-specific gene modification, including gene deletion, insertion, and replacement. CC9-based gene editing was used recently for replacing the PrP gene in mouse and cell culture models, as efficient prion propagation usually requires matching sequence homology between infecting prions and prion protein in the recipient host. As expected, such gene-editing proved to be useful for developing CWD models. Several transgenic mouse models were available that propagate CWD prions effectively, however, mostly fail to reproduce CWD pathogenesis as found in the cervid host, including CWD prion shedding. This is different for the few currently available knock-in mouse models that seem to do so. In this review, we discuss the available in vitro and in vivo models of CWD, and the impact of gene-editing strategies.
Collapse
|
6
|
Moazami-Goudarzi K, Andréoletti O, Vilotte JL, Béringue V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet Res 2021; 52:128. [PMID: 34620247 PMCID: PMC8499490 DOI: 10.1186/s13567-021-00993-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.
Collapse
Affiliation(s)
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225 - IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Jean-Luc Vilotte
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| |
Collapse
|
7
|
Otero A, Velásquez CD, Aiken J, McKenzie D. Chronic wasting disease: a cervid prion infection looming to spillover. Vet Res 2021; 52:115. [PMID: 34488900 PMCID: PMC8420063 DOI: 10.1186/s13567-021-00986-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
The spread of chronic wasting disease (CWD) during the last six decades has resulted in cervid populations of North America where CWD has become enzootic. This insidious disease has also been reported in wild and captive cervids from other continents, threatening ecosystems, livestock and public health. These CWD "hot zones" are particularly complex given the interplay between cervid PRNP genetics, the infection biology, the strain diversity of infectious prions and the long-term environmental persistence of infectivity, which hinder eradication efforts. Here, we review different aspects of CWD including transmission mechanisms, pathogenesis, epidemiology and assessment of interspecies infection. Further understanding of these aspects could help identify "control points" that could help reduce exposure for humans and livestock and decrease CWD spread between cervids.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Cassmann ED, Frese RD, Greenlee JJ. Second passage of chronic wasting disease of mule deer to sheep by intracranial inoculation compared to classical scrapie. J Vet Diagn Invest 2021; 33:711-720. [PMID: 34047228 DOI: 10.1177/10406387211017615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The origin of chronic wasting disease (CWD) in cervids is unclear. One hypothesis suggests that CWD originated from scrapie in sheep. We compared the disease phenotype of sheep-adapted CWD to classical scrapie in sheep. We inoculated sheep intracranially with brain homogenate from first-passage mule deer CWD in sheep (sCWDmd). The attack rate in second-passage sheep was 100% (12 of 12). Sheep had prominent lymphoid accumulations of PrPSc reminiscent of classical scrapie. The pattern and distribution of PrPSc in the brains of sheep with CWDmd was similar to scrapie strain 13-7 but different from scrapie strain x124. The western blot glycoprofiles of sCWDmd were indistinguishable from scrapie strain 13-7; however, independent of sheep genotype, glycoprofiles of sCWDmd were different than x124. When sheep genotypes were evaluated individually, there was considerable overlap in the glycoprofiles that precluded significant discrimination between sheep CWD and scrapie strains. Our data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. Given our results, current detection techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally. It is unknown if sheep are naturally vulnerable to CWD; however, the susceptibility of sheep after intracranial inoculation and lymphoid accumulation indicates that the species barrier is not absolute.
Collapse
Affiliation(s)
- Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Rylie D Frese
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
9
|
CHRONIC WASTING DISEASE MODELING: AN OVERVIEW. J Wildl Dis 2021; 56:741-758. [PMID: 32544029 DOI: 10.7589/2019-08-213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/13/2019] [Indexed: 11/20/2022]
Abstract
Chronic wasting disease (CWD) is an infectious and fatal prion disease occurring in the family Cervidae. To update the research community regarding the status quo of CWD epidemic models, we conducted a meta-analysis on CWD research. We collected data from peer-reviewed articles published since 1980, when CWD was first diagnosed, until December 2018. We explored the analytical methods used historically to understand CWD. We used 14 standardized variables to assess overall analytical approaches of CWD research communities, data used, and the modeling methods used. We found that CWD modeling initiated in the early 2000s and has increased since then. Connectivity of the research community was heavily reliant on a cluster of CWD researchers. Studies focused primarily on regression and compartment-based models, population-level approaches, and host species of game management concern. Similarly, CWD research focused on single populations, species, and locations, neglecting modeling using community ecology and biogeographic approaches. Chronic wasting disease detection relied on classic diagnostic methods with limited sensitivity for most stages of infection. Overall, we found that past modeling efforts generated a solid baseline for understanding CWD in wildlife and increased our knowledge on infectious prion ecology. Future analytical efforts should consider more sensitive diagnostic methods to quantify uncertainty and broader scale studies to elucidate CWD transmission beyond population-level approaches. Considering that infectious prions may not follow biological rules of well-known wildlife pathogens (i.e., viruses, bacteria, fungi), assumptions used when modeling other infectious disease may not apply for CWD. Chronic wasting disease is a new challenge in wildlife epidemiology.
Collapse
|
10
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
11
|
Cullingham CI, Peery RM, Dao A, McKenzie DI, Coltman DW. Predicting the spread-risk potential of chronic wasting disease to sympatric ungulate species. Prion 2020; 14:56-66. [PMID: 32008428 PMCID: PMC7009333 DOI: 10.1080/19336896.2020.1720486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023] Open
Abstract
Wildlife disease incidence is increasing, resulting in negative impacts on the economy, biodiversity, and potentially human health. Chronic wasting disease (CWD) is a fatal, transmissible spongiform encephalopathy of cervids (wild and captive) which continues to spread geographically resulting in exposure to potential new host species. The disease agent (PrPCWD) is a misfolded conformer of the cellular prion protein (PrPC). In Canada, the disease is endemic in Alberta and Saskatchewan, affecting mule and white-tail deer, with lesser impact on elk and moose. As the disease continues to expand, additional wild ungulate species including bison, bighorn sheep, mountain goat, and pronghorn antelope may be exposed. To better understand the species-barrier, we reviewed the current literature on taxa naturally or experimentally exposed to CWD to identify susceptible and resistant species. We created a phylogeny of these taxa using cytochrome B and found that CWD susceptibility followed the species phylogeny. Using this phylogeny we estimated the probability of CWD susceptibility for wild ungulate species. We then compared PrPC amino acid polymorphisms among these species to identify which sites segregated between susceptible and resistant species. We identified sites that were significantly associated with susceptibility, but they were not fully discriminating. Finally, we sequenced Prnp from 578 wild ungulates to further evaluate their potential susceptibility. Together, these data suggest the host-range for CWD will potentially include pronghorn, mountain goat and bighorn sheep, but bison are likely to be more resistant. These findings highlight the need for monitoring potentially susceptible species as CWD continues to expand.
Collapse
Affiliation(s)
- Catherine I. Cullingham
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Rhiannon M. Peery
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Anh Dao
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Debbie I. McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - David W. Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Experimental Study Using Multiple Strains of Prion Disease in Cattle Reveals an Inverse Relationship between Incubation Time and Misfolded Prion Accumulation, Neuroinflammation, and Autophagy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1461-1473. [PMID: 32259521 DOI: 10.1016/j.ajpath.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Proteinopathies result from aberrant folding and accumulation of specific proteins. Currently, there is a lack of knowledge about the factors that influence disease progression, making this a key challenge for the development of therapies for proteinopathies. Because of the similarities between transmissible spongiform encephalopathies (TSEs) and other protein misfolding diseases, TSEs can be used to understand other proteinopathies. Bovine spongiform encephalopathy (BSE) is a TSE that occurs in cattle and can be subdivided into three strains: classic BSE and atypical BSEs (H and L types) that have shorter incubation periods. The NACHT, LRR, and PYD domains-containing protein 3 inflammasome is a critical component of the innate immune system that leads to release of IL-1β. Macroautophagy is an intracellular mechanism that plays an essential role in protein clearance. In this study, the retina was used as a model to investigate the relationship between disease incubation period, prion protein accumulation, neuroinflammation, and changes in macroautophagy. We demonstrate that atypical BSEs present with increased prion protein accumulation, neuroinflammation, and decreased autophagy. This work suggests a relationship between disease time course, neuroinflammation, and the autophagic stress response, and may help identify novel therapeutic biomarkers that can delay or prevent the progression of proteinopathies.
Collapse
|
13
|
Escobar LE, Pritzkow S, Winter SN, Grear DA, Kirchgessner MS, Dominguez-Villegas E, Machado G, Peterson AT, Soto C. The ecology of chronic wasting disease in wildlife. Biol Rev Camb Philos Soc 2020; 95:393-408. [PMID: 31750623 PMCID: PMC7085120 DOI: 10.1111/brv.12568] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
Prions are misfolded infectious proteins responsible for a group of fatal neurodegenerative diseases termed transmissible spongiform encephalopathy or prion diseases. Chronic Wasting Disease (CWD) is the prion disease with the highest spillover potential, affecting at least seven Cervidae (deer) species. The zoonotic potential of CWD is inconclusive and cannot be ruled out. A risk of infection for other domestic and wildlife species is also plausible. Here, we review the current status of the knowledge with respect to CWD ecology in wildlife. Our current understanding of the geographic distribution of CWD lacks spatial and temporal detail, does not consider the biogeography of infectious diseases, and is largely biased by sampling based on hunters' cooperation and funding available for each region. Limitations of the methods used for data collection suggest that the extent and prevalence of CWD in wildlife is underestimated. If the zoonotic potential of CWD is confirmed in the short term, as suggested by recent results obtained in experimental animal models, there will be limited accurate epidemiological data to inform public health. Research gaps in CWD prion ecology include the need to identify specific biological characteristics of potential CWD reservoir species that better explain susceptibility to spillover, landscape and climate configurations that are suitable for CWD transmission, and the magnitude of sampling bias in our current understanding of CWD distribution and risk. Addressing these research gaps will help anticipate novel areas and species where CWD spillover is expected, which will inform control strategies. From an ecological perspective, control strategies could include assessing restoration of natural predators of CWD reservoirs, ultrasensitive CWD detection in biotic and abiotic reservoirs, and deer density and landscape modification to reduce CWD spread and prevalence.
Collapse
Affiliation(s)
- Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, U.S.A
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, TX, 77030, U.S.A
| | - Steven N. Winter
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, U.S.A
| | - Daniel A. Grear
- US Geological Survey National Wildlife Health Center, Madison, WI, 59711, U.S.A
| | | | | | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, U.S.A
| | - A. Townsend Peterson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, 66045, U.S.A
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, TX, 77030, U.S.A
| |
Collapse
|
14
|
Koutsoumanis K, Allende A, Alvarez-Ordoňez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Skandamis P, Suffredini E, Andreoletti O, Benestad SL, Comoy E, Nonno R, da Silva Felicio T, Ortiz-Pelaez A, Simmons MM. Update on chronic wasting disease (CWD) III. EFSA J 2019; 17:e05863. [PMID: 32626163 PMCID: PMC7008890 DOI: 10.2903/j.efsa.2019.5863] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The European Commission asked EFSA for a Scientific Opinion: to revise the state of knowledge about the differences between the chronic wasting disease (CWD) strains found in North America (NA) and Europe and within Europe; to review new scientific evidence on the zoonotic potential of CWD and to provide recommendations to address the potential risks and to identify risk factors for the spread of CWD in the European Union. Full characterisation of European isolates is being pursued, whereas most NA CWD isolates have not been characterised in this way. The differing surveillance programmes in these continents result in biases in the types of cases that can be detected. Preliminary data support the contention that the CWD strains identified in Europe and NA are different and suggest the presence of strain diversity in European cervids. Current data do not allow any conclusion on the implications of strain diversity on transmissibility, pathogenesis or prevalence. Available data do not allow any conclusion on the zoonotic potential of NA or European CWD isolates. The risk of CWD to humans through consumption of meat cannot be directly assessed. At individual level, consumers of meat, meat products and offal derived from CWD-infected cervids will be exposed to the CWD agent(s). Measures to reduce human dietary exposure could be applied, but exclusion from the food chain of whole carcasses of infected animals would be required to eliminate exposure. Based on NA experiences, all the risk factors identified for the spread of CWD may be associated with animals accumulating infectivity in both the peripheral tissues and the central nervous system. A subset of risk factors is relevant for infected animals without involvement of peripheral tissues. All the risk factors should be taken into account due to the potential co-localisation of animals presenting with different disease phenotypes.
Collapse
|
15
|
Moore SJ, Smith JD, Richt JA, Greenlee JJ. Raccoons accumulate PrP Sc after intracranial inoculation of the agents of chronic wasting disease or transmissible mink encephalopathy but not atypical scrapie. J Vet Diagn Invest 2019; 31:200-209. [PMID: 30694116 DOI: 10.1177/1040638718825290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prion diseases are neurodegenerative diseases characterized by the accumulation of misfolded prion protein (PrPSc) in the brain and other tissues. Animal prion diseases include scrapie in sheep, chronic wasting disease (CWD) in cervids, and transmissible mink encephalopathy (TME) in ranch-raised mink. We investigated the susceptibility of raccoons to various prion disease agents and compared the clinicopathologic features of the resulting disease. Raccoon kits were inoculated intracranially with the agents of raccoon-passaged TME (TMERac), bovine-passaged TME (TMEBov), hamster-adapted drowsy (TMEDY) or hyper TME (TMEHY), CWD from white-tailed deer (CWDWtd) or elk (CWDElk), or atypical (Nor98) scrapie. Raccoons were euthanized when they developed clinical signs of prion disease or at study endpoint (<82 mo post-inoculation). Brain was examined for the presence of spongiform change, and disease-associated PrPSc was detected using an enzyme immunoassay, western blot, and immunohistochemistry. All raccoons inoculated with the agents of TMERac and TMEBov developed clinical disease at ~6.6 mo post-inoculation, with widespread PrPSc accumulation in central nervous system tissues. PrPSc was detected in the brain of 1 of 4 raccoons in each of the CWDWtd-, CWDElk-, and TMEHY-inoculated groups. None of the raccoons inoculated with TMEDY or atypical scrapie agents developed clinical disease or detectable PrPSc accumulation. Our results indicate that raccoons are highly susceptible to infection with raccoon- and bovine-passaged TME agents, whereas CWD isolates from white-tailed deer or elk and hamster-adapted TMEHY transmit poorly. Raccoons appear to be resistant to infection with hamster-adapted TMEDY and atypical scrapie agents.
Collapse
Affiliation(s)
- S Jo Moore
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Jodi D Smith
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Jürgen A Richt
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Justin J Greenlee
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| |
Collapse
|
16
|
Benestad SL, Telling GC. Chronic wasting disease: an evolving prion disease of cervids. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:135-151. [PMID: 29887133 DOI: 10.1016/b978-0-444-63945-5.00008-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic wasting disease (CWD) is a relatively new and burgeoning prion epidemic of deer, elk, reindeer, and moose, which are members of the cervid family. While the disease was first described in captive deer, its subsequent discovery in various species of free-ranging animals makes it the only currently recognized prion disorder of both wild and farmed animals. In addition to its expanding range of host species, CWD continues to spread from North America to new geographic areas, including South Korea, and most recently Norway, marking the first time this disease was detected in Europe. Its unparalleled efficiency of contagious transmission, combined with high densities of deer in certain areas, complicates strategies for controlling CWD, raising concerns about its potential for spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, and since prions from cattle with bovine spongiform encephalopathy have been transmitted to humans causing variant Creutzfeldt-Jakob disease, the possibility of zoonotic transmission of CWD is particularly concerning. Here we review the clinical and pathologic features of CWD and its disturbing epidemiology, and discuss features that affect its transmission, including genetic susceptibility, pathogenesis, and agent strain variability. Finally, we discuss evidence that speaks to the potential for zoonotic transmission of this emerging disease.
Collapse
Affiliation(s)
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
17
|
Moreno JA, Telling GC. Molecular Mechanisms of Chronic Wasting Disease Prion Propagation. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024448. [PMID: 28193766 DOI: 10.1101/cshperspect.a024448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prion disease epidemics, which have been unpredictable recurrences, are of significant concern for animal and human health. Examples include kuru, once the leading cause of death among the Fore people in Papua New Guinea and caused by mortuary feasting; bovine spongiform encephalopathy (BSE) and its subsequent transmission to humans in the form of variant Creutzfeldt-Jakob disease (vCJD), and repeated examples of large-scale prion disease epidemics in animals caused by contaminated vaccines. The etiology of chronic wasting disease (CWD), a relatively new and burgeoning prion epidemic in deer, elk, and moose (members of the cervid family), is more enigmatic. The disease was first described in captive and later in wild mule deer and subsequently in free-ranging as well as captive Rocky Mountain elk, white-tailed deer, and most recently moose. It is therefore the only recognized prion disorder of both wild and captive animals. In addition to its expanding range of hosts, CWD continues to spread to new geographical areas, including recent cases in Norway. The unparalleled efficiency of the contagious transmission of the disease combined with high densities of deer in certain areas of North America complicates strategies for controlling CWD and raises concerns about its potential spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, the possibility of zoonotic transmission is particularly concerning. Here, we review the current status of naturally occurring CWD and describe advances in our understanding of its molecular pathogenesis, as shown by studies of CWD prions in novel in vivo and in vitro systems.
Collapse
Affiliation(s)
- Julie A Moreno
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
18
|
CATTLE ( BOS TAURUS) RESIST CHRONIC WASTING DISEASE FOLLOWING ORAL INOCULATION CHALLENGE OR TEN YEARS' NATURAL EXPOSURE IN CONTAMINATED ENVIRONMENTS. J Wildl Dis 2018; 54:460-470. [PMID: 29715064 DOI: 10.7589/2017-12-299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We conducted a 10-yr study to establish whether chronic wasting disease (CWD) was readily transmissible to domestic cattle ( Bos taurus) following oral inoculation or by cohousing cattle with captive cervids in outdoor research facilities where CWD was enzootic. Calves ( n=12) were challenged orally on one occasion using brain homogenate derived from CWD-infected mule deer ( Odocoileus hemionus). Five uninoculated cattle served as unchallenged controls. Two other groups of cattle ( n=10-11/group) were housed outdoors for 10 yr in captive cervid research facilities. The environmentally challenged cattle were exposed to CWD-associated prions through common paddocks, feed, and water and via direct daily contact with known and potentially infected mule deer or wapiti ( Cervus canadensis) throughout the decade-long study period. None of the exposed cattle developed neurologic disease during the study. We euthanized cattle surviving to 10 yr postchallenge and examined all for lesions or disease-associated prion protein (PrPd) by histopathology, immunohistochemistry, and western immunoblot analysis of central nervous system and lymphoid tissue. None had evidence of PrPd accumulation. We conclude that the risks of CWD transmission to cattle following oral inoculation or after prolonged exposure to contaminated environments are low.
Collapse
|
19
|
Hwang S, West Greenlee MH, Balkema-Buschmann A, Groschup MH, Nicholson EM, Greenlee JJ. Real-Time Quaking-Induced Conversion Detection of Bovine Spongiform Encephalopathy Prions in a Subclinical Steer. Front Vet Sci 2018; 4:242. [PMID: 29404344 PMCID: PMC5780402 DOI: 10.3389/fvets.2017.00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) belongs to a group of fatal prion diseases that result from the misfolding of the cellular prion protein (PrPC) into a pathogenic form (PrPSc) that accumulates in the brain. In vitro assays such as serial protein misfolding amplification and real-time quaking-induced conversion (RT-QuIC) allow assessment of the conversion of PrPC to PrPSc. RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. However, there is no such comparison of RT-QuIC data between BSE positive and presymptomatic cattle. Further, the current study assesses prion distribution in multiple brain regions of clinically ill or subclinical animals. Here, we compare RT-QuIC reactions seeded with brain samples collected from experimentally inoculated cattle that were clinically ill or subclinically affected with BSE. The results demonstrate RT-QuIC seeding in various brain regions of an animal with subclinical BSE despite being determined negative by immunohistochemistry. Bioassay of the subclinical animal and RT-QuIC of brainstem from inoculated knockout (PRNP-/-) cattle were used to confirm infectivity in the subclinical animal and determine that RT-QuIC reactions were not the result of residual inoculum, respectively. These results confirm that RT-QuIC is a highly sensitive prion detection assay that can detect prions in a steer prior to the onset of clinical signs of BSE.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Eric M Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - Justin J Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| |
Collapse
|
20
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Telling GC, Tryland M, Latronico F, Ortiz-Pelaez A, Stella P, Simmons M. Scientific opinion on chronic wasting disease (II). EFSA J 2018; 16:e05132. [PMID: 32625679 PMCID: PMC7328883 DOI: 10.2903/j.efsa.2018.5132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
Collapse
|
21
|
Hwang S, Greenlee JJ, Nicholson EM. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy. PLoS One 2017; 12:e0172391. [PMID: 28225797 PMCID: PMC5321280 DOI: 10.1371/journal.pone.0172391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs.
Collapse
Affiliation(s)
- Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Eric M. Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
Prions cause fatal neurodegenerative diseases in humans and animals and can be transmitted zoonotically. Chronic wasting disease (CWD) is a highly transmissible prion disease of wild deer and elk that affects cervids over extensive regions of the United States and Canada. The risk of cross-species CWD transmission has been experimentally evaluated in a wide array of mammals, including non-human primates and mouse models expressing human cellular prion protein. Here we review the determinants of cross-species CWD transmission, and propose a model that may explain a structural barrier for CWD transmission to humans.
Collapse
Affiliation(s)
- Timothy D Kurt
- a Departments of Pathology and Medicine , UC San Diego , La Jolla , CA , USA
| | - Christina J Sigurdson
- a Departments of Pathology and Medicine , UC San Diego , La Jolla , CA , USA.,b Department of Pathology, Immunology, and Microbiology , UC Davis , Davis , CA , USA
| |
Collapse
|
23
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Ru G, Telling GC, Tryland M, Ortiz Pelaez A, Simmons M. Chronic wasting disease (CWD) in cervids. EFSA J 2017; 15:e04667. [PMID: 32625260 PMCID: PMC7010154 DOI: 10.2903/j.efsa.2017.4667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In April and May of 2016, Norway confirmed two cases of chronic wasting disease (CWD) in a wild reindeer and a wild moose, respectively. In the light of this emerging issue, the European Commission requested EFSA to recommend surveillance activities and, if necessary, additional animal health risk-based measures to prevent the introduction of the disease and the spread into/within the EU, specifically Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Poland and Sweden, and considering seven wild, semidomesticated and farmed cervid species (Eurasian tundra reindeer, Finnish (Eurasian) forest reindeer, moose, roe deer, white-tailed deer, red deer and fallow deer). It was also asked to assess any new evidence on possible public health risks related to CWD. A 3-year surveillance system is proposed, differing for farmed and wild or semidomesticated cervids, with a two-stage sampling programme at the farm/geographically based population unit level (random sampling) and individual level (convenience sampling targeting high-risk animals). The current derogations of Commission Implementing Decision (EU) 2016/1918 present a risk of introduction of CWD into the EU. Measures to prevent the spread of CWD within the EU are dependent upon the assumption that the disease is already present; this is currently unknown. The measures listed are intended to contain (limit the geographic extent of a focus) and/or to control (actively stabilise/reduce infection rates in an affected herd or population) the disease where it occurs. With regard to the zoonotic potential, the human species barrier for CWD prions does not appear to be absolute. These prions are present in the skeletal muscle and other edible tissues, so humans may consume infected material in enzootic areas. Epidemiological investigations carried out to date make no association between the occurrence of sporadic Creutzfeldt-Jakob disease in humans and exposure to CWD prions.
Collapse
|
24
|
Abstract
Prion diseases denote a distinct form of infectivity that is based in the misfolding of a self-protein (PrP(C)) into a pathological, infectious conformation (PrP(Sc)). Efforts to develop vaccines for prion diseases have been complicated by the potential dangers that are associated with induction of immune responses against a self-protein. As a consequence, there is considerable appeal for vaccines that specifically target the misfolded prion conformation. Such conformation-specific immunotherapy is made possible through the identification of vaccine targets (epitopes) that are exclusively presented as a consequence of misfolding. An immune response directed against these targets, termed disease-specific epitopes (DSEs), has the potential to spare the function of the native form of the protein while clearing, or neutralizing, the infectious isomer. Although identification of DSEs represents a critical first step in the induction of conformation-specific immune responses, substantial efforts are required to translate these targets into functional vaccines. Due to the poor immunogenicity that is inherent to self-proteins, and that is often associated with short peptides, substantial efforts are required to overcome tolerance-to-self and maximize the resultant immune response following DSE-based immunization. This often includes optimization of target sequences in terms of immunogenicity and development of effective formulation and delivery strategies for the associated peptides. Further, these vaccines must satisfy additional criteria from perspectives of specificity (PrP(C) vs. PrP(Sc)) and safety (antibody-induced template-driven misfolding of PrP(C)). The emphasis of this report is on the steps required to translate DSEs into prion vaccines and subsequent evaluation of the resulting immune responses.
Collapse
|
25
|
Haley NJ, Siepker C, Greenlee JJ, Richt JA. Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle. J Gen Virol 2016; 97:1720-1724. [PMID: 27031704 DOI: 10.1099/jgv.0.000438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease, classified as a prion disease or transmissible spongiform encephalopathy (TSE) similar to bovine spongiform encephalopathy (BSE). Cervids affected by CWD accumulate an abnormal protease-resistant prion protein throughout the central nervous system (CNS), as well as in both lymphatic and excretory tissues - an aspect of prion disease pathogenesis not observed in cattle with BSE. Using seeded amplification through real-time quaking-induced conversion, we investigated whether the bovine host or prion agent was responsible for this aspect of TSE pathogenesis. We blindly examined numerous central and peripheral tissues from cattle inoculated with CWD for prion seeding activity. Seeded amplification was readily detected in the CNS, though rarely observed in peripheral tissues, with a limited distribution similar to that of BSE prions in cattle. This seems to indicate that prion peripheralization in cattle is a host-driven characteristic of TSE infection.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Basic Sciences, Midwestern University, Glendale, AZ, USA.,Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Christopher Siepker
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, USA
| | - Jürgen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
26
|
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal protein-misfolding neurodegenerative diseases. TSEs have been described in several species, including bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME) in mink, and Kuru and Creutzfeldt-Jakob disease (CJD) in humans. These diseases are associated with the accumulation of a protease-resistant, disease-associated isoform of the prion protein (called PrP(Sc)) in the central nervous system and other tissues, depending on the host species. Typically, TSEs are acquired through exposure to infectious material, but inherited and spontaneous TSEs also occur. All TSEs share pathologic features and infectious mechanisms but have distinct differences in transmission and epidemiology due to host factors and strain differences encoded within the structure of the misfolded prion protein. The possibility that BSE can be transmitted to humans as the cause of variant Creutzfeldt-Jakob disease has brought attention to this family of diseases. This review is focused on the TSEs of livestock: bovine spongiform encephalopathy in cattle and scrapie in sheep and goats.
Collapse
Affiliation(s)
- Justin J Greenlee
- Justin J. Greenlee, DVM, PhD, Diplomate ACVP, is a research veterinary medical officer in the Virus and Prion Research Unit of the National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service in Ames, Iowa. M. Heather West Greenlee, PhD, is an associate professor of biomedical sciences at the Iowa State University College of Veterinary Medicine
| | - M Heather West Greenlee
- Justin J. Greenlee, DVM, PhD, Diplomate ACVP, is a research veterinary medical officer in the Virus and Prion Research Unit of the National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service in Ames, Iowa. M. Heather West Greenlee, PhD, is an associate professor of biomedical sciences at the Iowa State University College of Veterinary Medicine
| |
Collapse
|
27
|
Oraby T, Tyshenko MG, Westphal M, Darshan S, Croteau MC, Aspinall W, Elsaadany S, Cashman N, Krewski D. Using expert judgments to improve chronic wasting disease risk management in Canada. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:713-728. [PMID: 27556565 DOI: 10.1080/15287394.2016.1174005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
ABSTARCT Chronic wasting disease (CWD) is a neurodegenerative, protein misfolding disease affecting cervids in North America in epidemic proportions. While the existence of CWD has been known for more than 40 years, risk management efforts to date have not been able to curtail the spread of this condition. An expert elicitation exercise was carried out in May 2011 to obtain the views of international experts on both the etiology of CWD and possible CWD risk management strategies. This study presents the results of the following three components of the elicitation exercise: (1) expert views of the most likely scenarios for the evolution of the CWD among cervid populations in Canada, (2) ranking analyses of the importance of direct and indirect transmission routes, and (3) rating analyses of CWD control measures in farmed and wild cervids. The implications of these findings for the development of CWD risk management strategies are described in a Canadian context.
Collapse
Affiliation(s)
- Tamer Oraby
- a Department of Mathematics , University of Texas Rio Grande Valley , Edinburg , Texas , USA
| | - Michael G Tyshenko
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Margit Westphal
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Shalu Darshan
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Maxine C Croteau
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Willy Aspinall
- c Aspinall and Associates , Tisbury , United Kingdom
- h Risk Sciences International , Ottawa , Ontario , Canada
| | - Susie Elsaadany
- d School of Earth Sciences and Cabot Institute , University of Bristol , Bristol , United Kingdom
| | - Neil Cashman
- e Blood Safety Surveillance and Health Care Acquired Infections Division , Centre for Infectious Disease Prevention and Control, Public Health Agency of Canada , Ottawa , Ontario , Canada
| | - Daniel Krewski
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
- f Brain Research Centre , University of British Columbia , Vancouver , British Columbia , Canada
- g Department of Epidemiology and Community Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
28
|
Insights into Chronic Wasting Disease and Bovine Spongiform Encephalopathy Species Barriers by Use of Real-Time Conversion. J Virol 2015; 89:9524-31. [PMID: 26157118 PMCID: PMC4542379 DOI: 10.1128/jvi.01439-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The propensity for transspecies prion transmission is related to the structural characteristics of the enciphering and new host PrP, although the exact mechanism remains incompletely understood. The effects of variability in prion protein on cross-species prion transmission have been studied with animal bioassays, but the influence of prion protein structure versus that of host cofactors (e.g., cellular constituents, trafficking, and innate immune interactions) remains difficult to dissect. To isolate the effects of protein-protein interactions on transspecies conversion, we used recombinant PrP(C) and real-time quaking-induced conversion (RT-QuIC) and compared chronic wasting disease (CWD) and classical bovine spongiform encephalopathy (cBSE) prions. To assess the impact of transmission to a new species, we studied feline CWD (fCWD) and feline BSE (i.e., feline spongiform encephalopathy [FSE]). We cross-seeded fCWD and FSE into each species' full-length, recombinant PrP(C) and measured the time required for conversion to the amyloid (PrP(Res)) form, which we describe here as the rate of amyloid conversion. These studies revealed the following: (i) CWD and BSE seeded their homologous species' PrP best; (ii) fCWD was a more efficient seed for feline rPrP than for white-tailed deer rPrP; (iii) conversely, FSE more efficiently converted bovine than feline rPrP; (iv) and CWD, fCWD, BSE, and FSE all converted human rPrP, although not as efficiently as homologous sCJD prions. These results suggest that (i) at the level of protein-protein interactions, CWD adapts to a new species more readily than does BSE and (ii) the barrier preventing transmission of CWD to humans may be less robust than estimated. IMPORTANCE We demonstrate that bovine spongiform encephalopathy prions maintain their transspecies conversion characteristics upon passage to cats but that chronic wasting disease prions adapt to the cat and are distinguishable from the original prion. Additionally, we showed that chronic wasting disease prions are effective at seeding the conversion of normal human prion protein to an amyloid conformation, perhaps the first step in crossing the species barrier.
Collapse
|
29
|
Transmission of scrapie prions to primate after an extended silent incubation period. Sci Rep 2015; 5:11573. [PMID: 26123044 PMCID: PMC4485159 DOI: 10.1038/srep11573] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/28/2015] [Indexed: 11/27/2022] Open
Abstract
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.
Collapse
|
30
|
Detection of the disease-associated form of the prion protein in biological samples. Bioanalysis 2015; 7:253-61. [PMID: 25587841 DOI: 10.4155/bio.14.301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases that occur in a variety of mammals. In TSEs, a chromosomally encoded protein (PrPC) undergoes a conformational change to the disease-associated form (PrPd). PrPd is capable of inducing a change in additional molecules of PrPC to the PrPd conformation. TSEs are inevitably fatal and cross-species transmission is known to occur, and there is potential for transmission via blood transfusion and organ transplantation in humans. Thus, there is interest in high-quality diagnostics for both humans and animals. This review summarizes methods of TSE detection currently in use in diagnostic settings and discusses recent advances in PrPd detection that afford substantial enhancements in sensitivity over currently approved methods for use in clinical settings.
Collapse
|
31
|
Abstract
A naturally occurring transmissible spongiform encephalopathy (TSE) of mule deer was first reported in Colorado and Wyoming in 1967 and has since spread to other members of the cervid family in 22 states, 2 Canadian provinces, and the Republic of Korea. Chronic wasting disease (CWD), caused by exposure to an abnormally folded isoform of the cellular prion protein, is characterized by progressive neurological disease in susceptible natural and experimental hosts and is ultimately fatal. CWD is thought to be transmitted horizontally in excreta and through contaminated environments, features common to scrapie of sheep, though rare among TSEs. Evolving detection methods have revealed multiple strains of CWD and with continued development may lead to an effective antemortem test. Managing the spread of CWD, through the development of a vaccine or environmental cleanup strategies, is an active area of interest. As such, CWD represents a unique challenge in the study of prion diseases.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas 66506;
| | | |
Collapse
|
32
|
Vrentas CE, Greenlee JJ, Baron T, Caramelli M, Czub S, Nicholson EM. Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay. BMC Vet Res 2013; 9:167. [PMID: 23945217 PMCID: PMC3751458 DOI: 10.1186/1746-6148-9-167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/12/2013] [Indexed: 12/01/2022] Open
Abstract
Background Transmissible Spongiform Encephalopathies (TSEs), including scrapie in sheep, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME), and bovine spongiform encephalopathy (BSE), are fatal diseases of the nervous system associated with accumulation of misfolded prion protein (PrPSc). Different strains of TSEs exist, associated with different PrPSc conformations that can be probed by the stability assay, in which PrPSc is treated with increasing concentrations of the denaturant guanidine hydrochloride (GdnHCl). Results Here, we provide the first comprehensive application of a rapid, protease-free version of the GdnHCl stability assay to brain tissue from cattle experimentally infected with various TSE isolates. Consistent with previous findings from a single Japanese isolate, the L-type isolates of BSE are not distinguishable from classical BSE in this assay. In contrast, H-type isolates of BSE, including our unique isolate of E211K BSE, exhibit higher stability than classical BSE, suggesting that its increased protection against protease digestion at the BSE N-terminus is associated with a higher stability in GdnHCl. While the difference in stability in our version of the assay is likely not large enough for effective use in a diagnostic laboratory setting, the use of alternative experimental conditions may enhance this effect. TSEs from other natural host species that have been passaged in cattle, including CWD and TME, were not distinguishable from classical BSE, while isolates of cattle passaged scrapie exhibited a slight increase in stability as compared to classical BSE. Conclusions These results suggest that the core of PrPSc, as probed in this assay, has similar stability properties among cattle-passaged TSE isolates and that the conformational differences that lead to changes in the proteinase K cleavage site do not cause large changes in the stability of PrPSc from TSE-affected cattle. However, the stability differences observed here will provide a basis of comparison for new isolates of atypical BSE observed in the future and in other geographic locations, especially in the case of H-type BSE.
Collapse
Affiliation(s)
- Catherine E Vrentas
- Virus and Prion Disease Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA
| | | | | | | | | | | |
Collapse
|
33
|
Greenlee JJ, Nicholson EM, Smith JD, Kunkle RA, Hamir AN. Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation. J Vet Diagn Invest 2012; 24:1087-93. [DOI: 10.1177/1040638712461249] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cattle could be exposed to the agent of chronic wasting disease (CWD) through contact with infected farmed or free-ranging cervids or exposure to contaminated premises. The purpose of the current study was to assess the potential for CWD derived from elk to transmit to cattle after intracranial inoculation. Calves ( n = 14) were inoculated with brain homogenate derived from elk with CWD to determine the potential for transmission and to define the clinicopathologic features of disease. Cattle were necropsied if clinical signs occurred or at the end of the study (49 months postinoculation; MPI). Clinical signs of poor appetite, weight loss, circling, and bruxism occurred in 2 cattle (14%) at 16 and 17 MPI, respectively. Accumulation of abnormal prion protein (PrPSc) occurred in only the 2 clinically affected cattle and was confined to the central nervous system, with the most prominent immunoreactivity in midbrain, brainstem, and hippocampus with lesser immunoreactivity in the cervical spinal cord. The rate of transmission was lower than in cattle inoculated with CWD derived from mule deer (38%) or white-tailed deer (86%). Additional studies are required to fully assess the potential for cattle to develop CWD through a more natural route of exposure, but a low rate of transmission after intracranial inoculation suggests that risk of transmission through other routes is low. A critical finding is that if CWD did transmit to exposed cattle, currently used diagnostic techniques would detect and differentiate it from other prion diseases in cattle based on absence of spongiform change, distinct pattern of PrPSc deposition, and unique molecular profile.
Collapse
Affiliation(s)
- Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA
| | - Eric M. Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA
| | - Jodi D. Smith
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA
| | - Robert A. Kunkle
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA
| | - Amir N. Hamir
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA
| |
Collapse
|
34
|
Robinson SJ, Samuel MD, Johnson CJ, Adams M, McKenzie DI. Emerging prion disease drives host selection in a wildlife population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:1050-9. [PMID: 22645831 DOI: 10.1890/11-0907.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an evolutionarily short time frame. Our work provides a rare example of a quantifiable disease-driven selection process in a wildlife population, demonstrating the potential for infectious diseases to alter host populations. This will have direct bearing on the epidemiology, dynamics, and future trends in CWD transmission and spread. Understanding genotype-specific epidemiology will improve predictive models and inform management strategies for CWD-affected cervid populations.
Collapse
Affiliation(s)
- Stacie J Robinson
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Room 208 Russell Labs, 1630 Linden Drive, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
35
|
Robinson SJ, Samuel MD, O'Rourke KI, Johnson CJ. The role of genetics in chronic wasting disease of North American cervids. Prion 2012; 6:153-62. [PMID: 22460693 DOI: 10.4161/pri.19640] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic wasting disease (CWD) is a major concern for the management of North American cervid populations. This fatal prion disease has led to declines in populations which have high CWD prevalence and areas with both high and low infection rates have experienced economic losses in wildlife recreation and fears of potential spill-over into livestock or humans. Research from human and veterinary medicine has established that the prion protein gene (Prnp) encodes the protein responsible for transmissible spongiform encephalopathies (TSEs). Polymorphisms in the Prnp gene can lead to different prion forms that moderate individual susceptibility to and progression of TSE infection. Prnp genes have been sequenced in a number of cervid species including those currently infected by CWD (elk, mule deer, white-tailed deer, moose) and those for which susceptibility is not yet determined (caribou, fallow deer, sika deer). Over thousands of sequences examined, the Prnp gene is remarkably conserved within the family Cervidae; only 16 amino acid polymorphisms have been reported within the 256 amino acid open reading frame in the third exon of the Prnp gene. Some of these polymorphisms have been associated with lower rates of CWD infection and slower progression of clinical CWD. Here we review the body of research on Prnp genetics of North American cervids. Specifically, we focus on known polymorphisms in the Prnp gene, observed genotypic differences in CWD infection rates and clinical progression, mechanisms for genetic TSE resistance related to both the cervid host and the prion agent and potential for natural selection for CWD-resistance. We also identify gaps in our knowledge that require future research.
Collapse
Affiliation(s)
- Stacie J Robinson
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA.
| | | | | | | |
Collapse
|
36
|
Hamir AN, Kehrli ME, Kunkle RA, Greenlee JJ, Nicholson EM, Richt JA, Miller JM, Cutlip RC. Experimental interspecies transmission studies of the transmissible spongiform encephalopathies to cattle: comparison to bovine spongiform encephalopathy in cattle. J Vet Diagn Invest 2012; 23:407-20. [PMID: 21908269 DOI: 10.1177/1040638711403404] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) of animals include scrapie of sheep and goats; transmissible mink encephalopathy (TME); chronic wasting disease (CWD) of deer, elk and moose; and bovine spongiform encephalopathy (BSE) of cattle. The emergence of BSE and its spread to human beings in the form of variant Creutzfeldt-Jakob disease (vCJD) resulted in interest in susceptibility of cattle to CWD, TME and scrapie. Experimental cross-species transmission of TSE agents provides valuable information for potential host ranges of known TSEs. Some interspecies transmission studies have been conducted by inoculating disease-causing prions intracerebrally (IC) rather than orally; the latter is generally effective in intraspecies transmission studies and is considered a natural route by which animals acquire TSEs. The "species barrier" concept for TSEs resulted from unsuccessful interspecies oral transmission attempts. Oral inoculation of prions mimics the natural disease pathogenesis route whereas IC inoculation is rather artificial; however, it is very efficient since it requires smaller dosage of inoculum, and typically results in higher attack rates and reduces incubation time compared to oral transmission. A species resistant to a TSE by IC inoculation would have negligible potential for successful oral transmission. To date, results indicate that cattle are susceptible to IC inoculation of scrapie, TME, and CWD but it is only when inoculated with TME do they develop spongiform lesions or clinical disease similar to BSE. Importantly, cattle are resistant to oral transmission of scrapie or CWD; susceptibility of cattle to oral transmission of TME is not yet determined.
Collapse
Affiliation(s)
- Amir N Hamir
- Virus and Prion Research Unit, National Animal Disease Center-USDA-Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Blasche T, Schenck EV, Balachandran A, Miller MW, Langenberg J, Frölich K, Steinbach F. Rapid detection of CWD PrP: comparison of tests designed for the detection of BSE or scrapie. Transbound Emerg Dis 2011; 59:405-15. [PMID: 22212828 DOI: 10.1111/j.1865-1682.2011.01294.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) mainly affecting cervids in North America. The accumulation of an abnormal form of host-encoded prion protein (PrP(CWD) ) in the CNS and lymphoid tissues is characteristic of the disease and known to be caused by pathogenic prion proteins (PrP(res) ), which are thought to be transmitted mainly by contact with body fluids, such like saliva. Species known to be naturally infected by CWD include Rocky Mountain elk (Cervus elaphus nelsoni), white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus). Recently, large-scale disease eradication or control programs have been attempted to curtail the spread of disease. But reports of diseased free-ranging and farmed cervids in many locations in the USA and Canada are still continuing. The goal of this study was to find sensitive rapid test systems that are reliably able to detect CWD-associated PrP(CWD) in cervids, thereby reviewing an important control tool in case the disease spreads further and reaches Europe. Seven tests, originally developed for the detection of other TSE diseases such as Scrapie and bovine spongiform encephalopathy, including two Western blots, four enzyme-linked immunosorbent assays (ELISAs), and one lateral flow device, were included in this study. All seven tests evaluated were able to detect pathogenic prion proteins (PrP(CWD) ) in Northern American infected animals and distinguish physiologic prion protein (PrP(c) ) in brainstem (obex region) and lymph node samples from North American and European cervids, respectively. However, the specificity and sensitivity of the tests differed significantly. Highly sensitive tests for the detection of prion proteins are an important tool both for the design of effective disease surveillance and control strategies and the safety of the food chain. Thus, this study contributes to the emergency preparedness against CWD.
Collapse
Affiliation(s)
- T Blasche
- Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str., Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Alteration of the chronic wasting disease species barrier by in vitro prion amplification. J Virol 2011; 85:8528-37. [PMID: 21697475 DOI: 10.1128/jvi.00809-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids now detected in 19 states of the United States, three Canadian provinces, and South Korea. Whether noncervid species can be infected by CWD and thereby serve as reservoirs for the infection is not known. To investigate this issue, we previously used serial protein misfolding cyclic amplification (sPMCA) to demonstrate that CWD prions can amplify in brain homogenates from several species sympatric with cervids, including prairie voles (Microtus ochrogaster) and field mice (Peromyscus spp.). Here, we show that prairie voles are susceptible to mule deer CWD prions in vivo and that sPMCA amplification of CWD prions in vole brain enhances the infectivity of CWD for this species. Prairie voles inoculated with sPMCA products developed clinical signs of TSE disease approximately 300 days prior to, and more consistently than, those inoculated with CWD prions from deer brain. Moreover, the deposition patterns and biochemical properties of protease-resistant form of PrP (PrP(RES)) in the brains of affected voles differed from those in cervidized transgenic (CerPrP) mice infected with CWD. In addition, voles inoculated orally with sPMCA products developed clinical signs of TSE and were positive for PrP(RES) deposition, whereas those inoculated orally with deer-origin CWD prions did not. These results demonstrate that transspecies sPMCA of CWD prions can enhance the infectivity and adapt the host range of CWD prions and thereby may be useful to assess determinants of prion species barriers.
Collapse
|
39
|
Rogers KG, Robinson SJ, Samuel MD, Grear DA. Diversity and distribution of white-tailed deer mtDNA lineages in chronic wasting disease (CWD) outbreak areas in southern Wisconsin, USA. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1521-1535. [PMID: 22043912 DOI: 10.1080/15287394.2011.618980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting North American cervids. Because it is uniformly fatal, the disease is a major concern in the management of white-tailed deer populations. Management programs to control CWD require improved knowledge of deer interaction, movement, and population connectivity that could influence disease transmission and spread. Genetic methods were employed to evaluate connectivity among populations in the CWD management zone of southern Wisconsin. A 576-base-pair region of the mitochondrial DNA of 359 white-tailed deer from 12 sample populations was analyzed. Fifty-eight variable sites were detected within the sequence, defining 43 haplotypes. While most sample populations displayed similar levels of haplotype diversity, individual haplotypes were clustered on the landscape. Spatial clusters of different haplotypes were apparent in distinct ecoregions surrounding CWD outbreak areas. The spatial distribution of mtDNA haplotypes suggests that clustering of the deer matrilineal groups and population connectivity are associated with broad-scale geographic landscape features. These landscape characteristics may also influence the contact rates between groups and therefore the potential spread of CWD; this may be especially true of local disease spread between female social groups. Our results suggest that optimal CWD management needs to be tailored to fit gender-specific dispersal behaviors and regional differences in deer population connectivity. This information will help wildlife managers design surveillance and monitoring efforts based on population interactions and potential deer movement among CWD-affected and unaffected areas.
Collapse
Affiliation(s)
- Kip G Rogers
- Department of Forest & Wildlife Ecology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
40
|
Gilch S, Chitoor N, Taguchi Y, Stuart M, Jewell JE, Schätzl HM. Chronic wasting disease. Top Curr Chem (Cham) 2011; 305:51-77. [PMID: 21598099 DOI: 10.1007/128_2011_159] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic wasting disease (CWD) is a prion disease of free-ranging and farmed ungulates (deer, elk, and moose) in North America and South Korea. First described by the late E.S. Williams and colleagues in northern Colorado and southern Wyoming in the 1970s, CWD has increased tremendously both in numerical and geographical distribution, reaching prevalence rates as high as 50% in free-ranging and >90% in captive deer herds in certain areas of USA and Canada. CWD is certainly the most contagious prion infection, with significant horizontal transmission of infectious prions by, e.g., urine, feces, and saliva. Dissemination and persistence of infectivity in the environment combined with the appearance in wild-living and migrating animals make CWD presently uncontrollable, and pose extreme challenges to wild-life disease management. Whereas CWD is extremely transmissible among cervids, its trans-species transmission seems to be restricted, although the possible involvement of rodent and carnivore species in environmental transmission has not been fully evaluated. Whether or not CWD has zoonotic potential as had Bovine spongiform encephalopathy (BSE) has yet to be answered. Of note, variant Creutzfeldt-Jakob disease (vCJD) was only detected because clinical presentation and age of patients were significantly different from classical CJD. Along with further understanding of the molecular biology and pathology of CWD, its transmissibility and species restrictions and development of methods for preclinical diagnosis and intervention will be crucial for effective containment of this highly contagious prion disease.
Collapse
Affiliation(s)
- Sabine Gilch
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | | | | | | | | | | |
Collapse
|
41
|
Li L, Napper S, Cashman NR. Immunotherapy for prion diseases: opportunities and obstacles. Immunotherapy 2010; 2:269-82. [PMID: 20635933 DOI: 10.2217/imt.10.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) represent a unique form of infectious disease based on the misfolding of a self-protein into a pathological conformation. While other human diseases are also attributed to protein misfolding, the TSEs are unique in their zoonotic potential and iatrogenic infectivity. These characteristics are of particular importance in the aftermath of the UK bovine spongiform encephalopathy (BSE) outbreak due to the dual concerns that a subpopulation of individuals exposed to the infectious agent may be serving as asymptomatic carriers, and that TSEs of other food animals may also threaten human health. These potentials, in addition to the ongoing baseline of familial and sporadic human prion diseases, necessitate development of effective treatment options. While TSEs represent a novel paradigm of infection, there is nevertheless the opportunity to apply traditional approaches of medicine for disease treatment and prevention, including vaccines for immunotherapy and immunoprophylaxis. However, vaccine development for TSEs is complicated by the challenges and potential dangers associated with induction of immune responses to a self-epitope, as well as the obstacles to treatment of a chronic infection through immunotherapy. The ongoing threat of TSEs to human health, together with the opportunity to apply information emerging from these investigations to other protein misfolding disorders, justifies the efforts required to overcome these obstacles.
Collapse
Affiliation(s)
- Li Li
- University of British Columbia & Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
42
|
Sigurdson CJ, Nilsson KPR, Hornemann S, Manco G, Fernández-Borges N, Schwarz P, Castilla J, Wüthrich K, Aguzzi A. A molecular switch controls interspecies prion disease transmission in mice. J Clin Invest 2010; 120:2590-9. [PMID: 20551516 DOI: 10.1172/jci42051] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/28/2010] [Indexed: 11/17/2022] Open
Abstract
Transmissible spongiform encephalopathies are lethal neurodegenerative disorders that present with aggregated forms of the cellular prion protein (PrPC), which are known as PrPSc. Prions from different species vary considerably in their transmissibility to xenogeneic hosts. The variable transmission barriers depend on sequence differences between incoming PrPSc and host PrPC and additionally, on strain-dependent conformational properties of PrPSc. The beta2-alpha2 loop region within PrPC varies substantially between species, with its structure being influenced by the residue types in the 2 amino acid sequence positions 170 (most commonly S or N) and 174 (N or T). In this study, we inoculated prions from 5 different species into transgenic mice expressing either disordered-loop or rigid-loop PrPC variants. Similar beta2-alpha2 loop structures correlated with efficient transmission, whereas dissimilar loops correlated with strong transmission barriers. We then classified literature data on cross-species transmission according to the 170S/N polymorphism. Transmission barriers were generally low between species with the same amino acid residue in position 170 and high between those with different residues. These findings point to a triggering role of the local beta2-alpha2 loop structure for prion transmissibility between different species.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Department of Pathology and Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hedlin PD, Cashman NR, Li L, Gupta J, Babiuk LA, Potter AA, Griebel P, Napper S. Design and delivery of a cryptic PrP(C) epitope for induction of PrP(Sc)-specific antibody responses. Vaccine 2009; 28:981-8. [PMID: 19925901 DOI: 10.1016/j.vaccine.2009.10.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 11/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) depend on misfolding of a normal cellular protein (PrP(C)) to an infectious conformation (PrP(Sc)). Targeting PrP(Sc) may represent an effective strategy for immunotherapy while avoiding consequences associated with immune responses to self-proteins. A weakly immunogenic epitope of PrP(C) (YYR), which induces PrP(Sc)-specific antibodies, is used as a starting point for vaccine development. Through optimization of epitope, as well as formulation/delivery, we enhance immunogenicity while retaining PrP(Sc) specificity. In particular, QVYYRPVDQYSNQN, presented by a leukotoxin carrier protein, emerges as a strong vaccine candidate. A vaccine representing this construct induces consistent and sustained serum PrP(Sc)-specific IgG antibody responses following two vaccinations. Antigen specific antibodies are also present within cerebral spinal fluid and mucosal secretions. These characteristics provide a foundation for development of a TSE vaccine.
Collapse
Affiliation(s)
- Peter D Hedlin
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatchewan, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tamgüney G, Miller MW, Giles K, Lemus A, Glidden DV, DeArmond SJ, Prusiner SB. Transmission of scrapie and sheep-passaged bovine spongiform encephalopathy prions to transgenic mice expressing elk prion protein. J Gen Virol 2009; 90:1035-1047. [PMID: 19264659 DOI: 10.1099/vir.0.007500-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible, fatal prion disease of cervids and is largely confined to North America. The origin of CWD continues to pose a conundrum: does the disease arise spontaneously or result from some other naturally occurring reservoir? To address whether prions from sheep might be able to cause disease in cervids, we inoculated mice expressing the elk prion protein (PrP) transgene [Tg(ElkPrP) mice] with two scrapie prion isolates. The SSBP/1 scrapie isolate transmitted disease to Tg(ElkPrP) mice with a median incubation time of 270 days, but a second isolate failed to produce neurological dysfunction in these mice. Although prions from cattle with bovine spongiform encephalopathy (BSE) did not transmit to the Tg(ElkPrP) mice, they did transmit after being passaged through sheep. In Tg(ElkPrP) mice, the sheep-passaged BSE prions exhibited an incubation time of approximately 300 days. SSBP/1 prions produced abundant deposits of the disease-causing PrP isoform, denoted PrP(Sc), in the cerebellum and pons of Tg(ElkPrP) mice, whereas PrP(Sc) accumulation in Tg mice inoculated with sheep-passaged BSE prions was confined to the deep cerebellar nuclei, habenula and the brainstem. The susceptibility of 'cervidized' mice to 'ovinized' prions raises the question about why CWD has not been reported in other parts of the world where cervids and scrapie-infected sheep coexist.
Collapse
Affiliation(s)
- Gültekin Tamgüney
- Department of Neurology, University of California, San Francisco, CA, USA.,Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143-0518, USA
| | - Michael W Miller
- Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, CO, USA
| | - Kurt Giles
- Department of Neurology, University of California, San Francisco, CA, USA.,Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143-0518, USA
| | - Azucena Lemus
- Department of Pathology, University of California, San Francisco, CA, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Stephen J DeArmond
- Department of Pathology, University of California, San Francisco, CA, USA.,Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143-0518, USA
| | - Stanley B Prusiner
- Department of Neurology, University of California, San Francisco, CA, USA.,Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143-0518, USA
| |
Collapse
|
45
|
Abstract
Bovine spongiform encephalopathy is an infectious disease of cattle that is transmitted through the consumption of meat-and-bone meal from infected cattle. The etiologic agent is an aberrant isoform of the native cellular prion protein that is a normal component of neurologic tissue. There currently are no approved tests that can detect BSE in live cattle.
Collapse
Affiliation(s)
- Jane L Harman
- Food Safety and Inspection Service, Office of Public Health Science, USDA, 1400 Independence Ave SW, Washington, DC 20250, USA
| | | |
Collapse
|
46
|
Sejvar JJ, Schonberger LB, Belay ED. Transmissible spongiform encephalopathies. J Am Vet Med Assoc 2008; 233:1705-12. [PMID: 19046027 DOI: 10.2460/javma.233.11.1705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- James J Sejvar
- Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vectorborne, and Enteric Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
47
|
Hamir AN, Richt JA, Miller JM, Kunkle RA, Hall SM, Nicholson EM, O'Rourke KI, Greenlee JJ, Williams ES. Experimental transmission of chronic wasting disease (CWD) of elk (Cervus elaphus nelsoni), white-tailed deer (Odocoileus virginianus), and mule deer (Odocoileus hemionus hemionus) to white-tailed deer by intracerebral route. Vet Pathol 2008; 45:297-306. [PMID: 18487485 DOI: 10.1354/vp.45-3-297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To compare clinical and pathologic findings of chronic wasting disease (CWD) in a natural host, 3 groups (n = 5) of white-tailed deer (WTD) fawns were intracerebrally inoculated with a CWD prion of WTD, mule deer, or elk origin. Three other uninoculated fawns served as controls. Approximately 10 months postinoculation (MPI), 1 deer from each of the 3 inoculated groups was necropsied and their tissues were examined for lesions of spongiform encephalopathy (SE) and for the presence of abnormal prion protein (PrP(d)) by immunohistochemistry (IHC) and Western blot (WB). The remaining deer were allowed to live until they developed clinical signs of the disease which began approximately 18 MPI. By 26 MPI, all deer were euthanatized on humane grounds. Obvious differences in clinical signs or the incubation periods were not observed between the 3 groups of deer given CWD. In 1 of 3 nonclinical deer euthanatized at 10 MPI, minimal microscopic lesions of SE were seen in the central nervous system (CNS) tissues, and PrP(d) was observed by IHC in tissues of all 3 deer. In the clinical deer, CNS lesions of SE and PrP(d) accumulations were more severe and extensive. It is concluded that the 3 sources of CWD prion did not induce significant differences in time to clinical disease or qualitative differences in signs or lesions in WTD. However, this observation does not imply that these CWD agents would necessarily behave similarly in other recipient species.
Collapse
Affiliation(s)
- A N Hamir
- National Animal Disease Center, ARS, USDA, 2300 Dayton Avenue, PO Box 70, Ames, IA 50010, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Conner MM, Ebinger MR, Blanchong JA, Cross PC. Infectious Disease in Cervids of North America. Ann N Y Acad Sci 2008; 1134:146-72. [DOI: 10.1196/annals.1439.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Sigurdson CJ. A prion disease of cervids: chronic wasting disease. Vet Res 2008; 39:41. [PMID: 18381058 DOI: 10.1051/vetres:2008018] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 03/31/2008] [Indexed: 11/15/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease of deer, elk, and moose, initially recognized in Colorado mule deer. The discovery of CWD beyond the borders of Colorado and Wyoming, in Canada and as far east as New York, has led to its emergence as a prion disease of international importance. Epidemiological studies indicate that CWD is horizontally transmitted among free-ranging animals, potentially indirectly by prion-containing secreta or excreta contaminating the environment. Experimental CWD transmission attempts to other wild and domestic mammals and to transgenic mice expressing the prion protein of cattle, sheep, and humans have shed light on CWD species barriers. Transgenic mice expressing the cervid prion protein have proven useful for assessing the genetic influences of Prnp polymorphisms on CWD susceptibility. Accumulating evidence of CWD pathogenesis indicates that the misfolded prion protein or prion infectivity seems to be widely disseminated in many nonneural organs and in blood. This review highlights contemporary research findings in this prion disease of free-ranging wildlife.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093-0612, USA.
| |
Collapse
|
50
|
Hamir AN, Kunkle RA, Nicholson EM, Miller JM, Hall SM, Schoenenbruecher H, Brunelle BW, Richt JA. Preliminary observations on the experimental transmission of chronic wasting disease (CWD) from elk and white-tailed deer to fallow deer. J Comp Pathol 2008; 138:121-30. [PMID: 18336829 DOI: 10.1016/j.jcpa.2007.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
To determine the transmissibility of chronic wasting disease (CWD) to fallow deer (Dama dama) and to provide information about clinical course, lesions and suitability of currently used diagnostic procedures for detection of CWD in this species, 13 fawns were inoculated intracerebrally with CWD brain suspension from elk (n=6) or white-tailed deer (n=7). Three other fawns were kept as uninfected controls. Three CWD-inoculated deer were killed 7.6 months post-inoculation (mpi). None had abnormal prion protein (PrPd) in their tissues. One sick deer died at 24 mpi and one deer without clinical signs was killed at 26 mpi. Both animals had a small focal accumulation of PrPd in the midbrain. Between 29 and 37 mpi, three other deer became sick and were killed. All had shown gradual decrease in appetite and some loss of body weight. Microscopical lesions of spongiform encephalopathy were not observed, but PrPd was detected in tissues of the central nervous system (CNS) by immunohistochemistry, western blot and by two commercially available rapid diagnostic tests. This study demonstrates that intracerebrally inoculated fallow deer amplified CWD PrPd from white-tailed deer and elk in the absence of lesions of spongiform encephalopathy. Four years after CWD inoculation, the remaining five inoculated and two control deer are alive and apparently healthy.
Collapse
Affiliation(s)
- A N Hamir
- National Animal Disease Center, ARS, USDA, 2300 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| | | | | | | | | | | | | | | |
Collapse
|