1
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024:10.1007/s00223-024-01266-5. [PMID: 39127989 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Makareeva E, Sousa M, Kent T, de Castro LF, Collins MT, Leikin S. RNA-based bone histomorphometry: method and its application to explaining postpubertal bone gain in a G610C mouse model of osteogenesis imperfecta. J Bone Miner Res 2024; 39:177-189. [PMID: 38477760 PMCID: PMC11207954 DOI: 10.1093/jbmr/zjad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 03/14/2024]
Abstract
Bone histomorphometry is a well-established approach to assessing skeletal pathology, providing a standard evaluation of the cellular components, architecture, mineralization, and growth of bone tissue. However, it depends in part on the subjective interpretation of cellular morphology by an expert, which introduces bias. In addition, diseases like osteogenesis imperfecta (OI) and fibrous dysplasia are accompanied by changes in the morphology and function of skeletal tissue and cells, hindering consistent evaluation of some morphometric parameters and interpretation of the results. For instance, traditional histomorphometry combined with collagen turnover markers suggested that reduced bone formation in classical OI is accompanied by increased bone resorption. In contrast, the well-documented postpubertal reduction in fractures would be easier to explain by reduced bone resorption after puberty, highlighting the need for less ambiguous measurements. Here we propose an approach to histomorphometry based on in situ mRNA hybridization, which uses Col1a1 as osteoblast and Ctsk as osteoclast markers. This approach can be fully automated and eliminates subjective identification of bone surface cells. We validate these markers based on the expression of Bglap, Ibsp, and Acp5. Comparison with traditional histological and tartrate-resistant acid phosphatase staining of the same sections suggests that mRNA-based analysis is more reliable. Unlike inconclusive traditional histomorphometry of mice with α2(I)-Gly610 to Cys substitution in the collagen triple helix, mRNA-based measurements reveal reduced osteoclastogenesis in 11-wk-old animals consistent with the postpubertal catch-up osteogenesis observed by microCT. We optimize the technique for cryosections of mineralized bone and sections of paraffin-embedded decalcified tissue, simplifying and broadening its applications. We illustrate the application of the mRNA-based approach to human samples using the example of a McCune-Albright syndrome patient. By eliminating confounding effects of altered cellular morphology and the need for subjective morphological evaluation, this approach may provide a more reproducible and accessible evaluation of bone pathology.
Collapse
Affiliation(s)
- Elena Makareeva
- Eunice Kennedy Shriver National institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Megan Sousa
- Eunice Kennedy Shriver National institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tristan Kent
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Luis F de Castro
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Michael T Collins
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sergey Leikin
- Eunice Kennedy Shriver National institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
3
|
Sung HH, Spresser WJ, Hoffmann JP, Dai Z, Van der Kraan PM, Caird MS, Davidson EB, Kozloff KM. Collagen mutation and age contribute to differential craniofacial phenotypes in mouse models of osteogenesis imperfecta. JBMR Plus 2024; 8:ziad004. [PMID: 38690127 PMCID: PMC11059998 DOI: 10.1093/jbmrpl/ziad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 05/02/2024] Open
Abstract
Craniofacial and dentoalveolar abnormalities are present in all types of osteogenesis imperfecta (OI). Mouse models of the disorder are critical to understand these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder. The Brtl/+ and G610c/+ are moderately severe and mild-type IV OI, respectively. Little is known about the aging effects on the craniofacial bones of these models and their homology to human OI. This study aimed to analyze the Brtl/+ and G610c/+ craniofacial morphometries during aging to establish suitability for further OI craniofacial bone intervention studies. We performed morphological measurements on the micro-CT-scanned heads of 3-wk-old, 3-mo-old, and 6-mo-old female Brtl/+ and G610c/+ mice. We observed that Brtl/+ skulls are shorter in length than WT (P < .05), whereas G610c/+ skulls are similar in length to their WT counterparts. The Brtl/+ mice exhibit alveolar bone with a porotic-like appearance that is not observed in G610c/+. As they age, Brtl/+ mice show severe bone resorption in both the maxilla and mandible (P < .05). By contrast, G610c/+ mice experience mandibular resorption consistently across all ages, but maxillary resorption is only evident at 6 mo (P < .05). Western blot shows high osteoclastic activities in the Brtl/+ maxilla. Both models exhibit delayed pre-functional eruptions of the third molars (P < .05), which are similar to those observed in some bisphosphonate-treated OI subjects. Our study shows that the Brtl/+ and G610c/+ mice display clear features found in type IV OI patients; both show age-related changes in the craniofacial growth phenotype. Therefore, understanding the craniofacial features of these models and how they age will allow us to select the most accurate mouse model, mouse age, and bone structure for the specific craniofacial bone treatment of differing OI groups.
Collapse
Affiliation(s)
- Hsiao H Sung
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Wyatt J Spresser
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Joseph P Hoffmann
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Peter M Van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Esmeralda Blaney Davidson
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
4
|
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. Int J Mol Sci 2022; 24:ijms24010184. [PMID: 36613624 PMCID: PMC9820162 DOI: 10.3390/ijms24010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.
Collapse
Affiliation(s)
- Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
5
|
Lv F, Cai X, Ji L. An Update on Animal Models of Osteogenesis Imperfecta. Calcif Tissue Int 2022; 111:345-366. [PMID: 35767009 DOI: 10.1007/s00223-022-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous disorder characterized by bone fragility, multiple fractures, bone deformity, and short stature. In recent years, the application of next generation sequencing has triggered the discovery of many new genetic causes for OI. Until now, more than 25 genetic causes of OI and closely related disorders have been identified. However, the mechanisms of many genes on skeletal fragility in OI are not entirely clear. Animal models of OI could help to understand the cellular, signaling, and metabolic mechanisms contributing to the disease, and how targeting these pathways can provide therapeutic targets. To date, a lot of animal models, mainly mice and zebrafish, have been described with defects in 19 OI-associated genes. In this review, we summarize the known genetic causes and animal models that recapitulate OI with a main focus on engineered mouse and zebrafish models. Additionally, we briefly discuss domestic animals with naturally occurring OI phenotypes. Knowledge of the specific molecular basis of OI will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| |
Collapse
|
6
|
Hedjazi G, Guterman-Ram G, Blouin S, Schemenz V, Wagermaier W, Fratzl P, Hartmann MA, Zwerina J, Fratzl-Zelman N, Marini JC. Alterations of bone material properties in growing Ifitm5/BRIL p.S42 knock-in mice, a new model for atypical type VI osteogenesis imperfecta. Bone 2022; 162:116451. [PMID: 35654352 PMCID: PMC11162744 DOI: 10.1016/j.bone.2022.116451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a heterogenous group of heritable connective tissue disorders characterized by high bone fragility due to low bone mass and impaired bone material properties. Atypical type VI OI is an extremely rare and severe form of bone dysplasia resulting from a loss-of-function mutation (p.S40L) in IFITM5/BRIL,the causative gene of OI type V and decreased osteoblast secretion of pigment epithelium-derived factor (PEDF), as in OI type VI. It is not yet known which alterations at the material level might lead to such a severe phenotype. We therefore characterized bone tissue at the micrometer level in a novel heterozygous Ifitm5/BRIL p.S42L knock-in murine model at 4 and 8 weeks of age. METHODS We evaluated in female mice, total body size, femoral and lumbar bone mineral density (BMD) by dual-energy X-ray absorptiometry. In the femoral bone we examined osteoid deposition by light microscopy, assessed bone histomorphometry and mineralization density distribution by quantitative backscattered electron imaging (qBEI). Osteocyte lacunae were examined by qBEI and the osteocyte lacuno-canalicular network by confocal laser scanning microscopy. Vasculature was examined indirectly by qBEI as 2D porosity in cortex, and as 3D porosity by micro-CT in third trochanter. Collagen orientation was examined by second harmonic generation microscopy. Two-way ANOVA was used to discriminate the effect of age and genotype. RESULTS Ifitm5/BRIL p.S42L female mice are viable, do not differ in body size, fat and lean mass from wild type (WT) littermates but have lower whole-body, lumbar and femoral BMD and multiple fractures. The average and most frequent calcium concentration, CaMean and CaPeak, increased with age in metaphyseal and cortical bone in both genotypes and were always higher in Ifitm5/BRIL p.S42L than in WT, except CaMean in metaphysis at 4 weeks of age. The fraction of highly mineralized bone area, CaHigh, was also increased in Ifitm5/BRIL p.S42L metaphyseal bone at 8 weeks of age and at both ages in cortical bone. The fraction of lowly mineralized bone area, CaLow, decreased with age and was not higher in Ifitm5/BRIL p.S42L, consistent with lack of hyperosteoidosis on histological sections by visual exam. Osteocyte lacunae density was higher in Ifitm5/BRIL p.S42L than WT, whereas canalicular density was decreased. Indirect measurements of vascularity revealed a higher pore density at 4 weeks in cortical bone of Ifitm5/BRIL p.S42L than in WT and at both ages in the third trochanter. Importantly, the proportion of bone area with disordered collagen fibrils was highly increased in Ifitm5/BRIL p.S42L at both ages. CONCLUSIONS Despite normal skeletal growth and the lack of a collagen gene mutation, the Ifitm5/BRIL p.S42L mouse shows major OI-related bone tissue alterations such as hypermineralization of the matrix and elevated osteocyte porosity. Together with the disordered lacuno-canalicular network and the disordered collagen fibril orientation, these abnormalities likely contribute to overall bone fragility.
Collapse
Affiliation(s)
- Ghazal Hedjazi
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, USA
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Victoria Schemenz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, USA.
| |
Collapse
|
7
|
Garibaldi N, Besio R, Dalgleish R, Villani S, Barnes AM, Marini JC, Forlino A. Dissecting the phenotypic variability of osteogenesis imperfecta. Dis Model Mech 2022; 15:275408. [PMID: 35575034 PMCID: PMC9150118 DOI: 10.1242/dmm.049398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous family of collagen type I-related diseases characterized by bone fragility. OI is most commonly caused by single-nucleotide substitutions that replace glycine residues or exon splicing defects in the COL1A1 and COL1A2 genes that encode the α1(I) and α2(I) collagen chains. Mutant collagen is partially retained intracellularly, impairing cell homeostasis. Upon secretion, it assembles in disorganized fibrils, altering mineralization. OI is characterized by a wide range of clinical outcomes, even in the presence of identical sequence variants. Given the heterotrimeric nature of collagen I, its amino acid composition and the peculiarity of its folding, several causes may underlie the phenotypic variability of OI. A deep analysis of entries regarding glycine and splice site collagen substitution of the largest publicly available patient database reveals a higher risk of lethal phenotype for carriers of variants in α1(I) than in α2(I) chain. However, splice site variants are predominantly associated with lethal phenotype when they occur in COL1A2. In addition, lethality is increased when mutations occur in regions of importance for extracellular matrix interactions. Both extracellular and intracellular determinants of OI clinical severity are discussed in light of the findings from in vitro and in vivo OI models. Combined with meticulous tracking of clinical cases via a publicly available database, the available OI animal models have proven to be a unique tool to shed light on new modulators of phenotype determination for this rare heterogeneous disease.
Collapse
Affiliation(s)
- Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Raymond Dalgleish
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100 Pavia, Italy
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, 20892 Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, 20892 Bethesda, MD, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
8
|
Fosca M, Basoli V, Della Bella E, Russo F, Vadala G, Alini M, Rau JV, Verrier S. Raman spectroscopy in skeletal tissue disorders and tissue engineering: present and prospective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:949-965. [PMID: 34579558 DOI: 10.1089/ten.teb.2021.0139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Musculoskeletal disorders are the most common reason of chronic pain and disability representing worldwide an enormous socio-economic burden. In this review, new biomedical application fields for Raman spectroscopy (RS) technique related to skeletal tissues are discussed showing that it can provide a comprehensive profile of tissue composition in situ, in a rapid, label-free, and non-destructive manner. RS can be used as a tool to study tissue alterations associated to aging, pathologies, and disease treatments. The main advantage with respect to currently applied methods in clinics is its ability to provide specific information on molecular composition, which goes beyond other diagnostic tools. Being compatible with water, RS can be performed without pre-treatment on unfixed, hydrated tissue samples, without any labelling and chemical fixation used in histochemical methods. This review provides first the description of basic principles of RS as a biotechnology tool and introduces into the field of currently available RS based techniques, developed to enhance Raman signal. The main spectral processing statistical tools, fingerprint identification and available databases are mentioned. The recent literature has been analysed for such applications of RS as tendon and ligaments, cartilage, bone, and tissue engineered constructs for regenerative medicine. Several cases of proof-of-concept preclinical studies have been described. Finally, advantages, limitations, future perspectives, and challenges for translation of RS into clinical practice have been also discussed.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche, 204549, Roma, Lazio, Italy;
| | - Valentina Basoli
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| | - Elena Della Bella
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| | - Fabrizio Russo
- Campus Bio-Medico University Hospital, 220431, Roma, Lazio, Italy;
| | - Gianluca Vadala
- Campus Bio-Medico University Hospital, 220431, Roma, Lazio, Italy;
| | - Mauro Alini
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| | - Julietta V Rau
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche, 204549, Roma, Lazio, Italy.,I M Sechenov First Moscow State Medical University, 68477, Moskva, Moskva, Russian Federation;
| | - Sophie Verrier
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| |
Collapse
|
9
|
Kohler R, Tastad CA, Creecy A, Wallace JM. Morphological and mechanical characterization of bone phenotypes in the Amish G610C murine model of osteogenesis imperfecta. PLoS One 2021; 16:e0255315. [PMID: 34449800 PMCID: PMC8396767 DOI: 10.1371/journal.pone.0255315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary bone disease where gene mutations affect Type I collagen formation resulting in osteopenia and increased fracture risk. There are several established mouse models of OI, but some are severe and result in spontaneous fractures or early animal death. The Amish Col1a2G610C/+ (G610C) mouse model is a newer, moderate OI model that is currently being used in a variety of intervention studies, with differing background strains, sexes, ages, and bone endpoints. This study is a comprehensive mechanical and architectural characterization of bone in G610C mice bred on a C57BL/6 inbred strain and will provide a baseline for future treatment studies. Male and female wild-type (WT) and G610C mice were euthanized at 10 and 16 weeks (n = 13-16). Harvested tibiae, femora, and L4 vertebrae were scanned via micro-computed tomography and analyzed for cortical and trabecular architectural properties. Femora and tibiae were then mechanically tested to failure. G610C mice had less bone but more highly mineralized cortical and trabecular tissue than their sex- and age-matched WT counterparts, with cortical cross-sectional area, thickness, and mineral density, and trabecular bone volume, mineral density, spacing, and number all differing significantly as a function of genotype (2 Way ANOVA with main effects of sex and genotype at each age). In addition, mechanical yield force, ultimate force, displacement, strain, and toughness were all significantly lower in G610C vs. WT, highlighting a brittle phenotype. This characterization demonstrates that despite being a moderate OI model, the Amish G610C mouse model maintains a distinctly brittle phenotype and is well-suited for use in future intervention studies.
Collapse
Affiliation(s)
- Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Carli A. Tastad
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
10
|
Garibaldi N, Contento BM, Babini G, Morini J, Siciliani S, Biggiogera M, Raspanti M, Marini JC, Rossi A, Forlino A, Besio R. Targeting cellular stress in vitro improves osteoblast homeostasis, matrix collagen content and mineralization in two murine models of osteogenesis imperfecta. Matrix Biol 2021; 98:1-20. [PMID: 33798677 PMCID: PMC11162743 DOI: 10.1016/j.matbio.2021.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Most cases of dominantly inherited osteogenesis imperfecta (OI) are caused by glycine substitutions in the triple helical domain of type I collagen α chains, which delay collagen folding, and cause the synthesis of collagen triple helical molecules with abnormal structure and post-translational modification. A variable extent of mutant collagen ER retention and other secondary mutation effects perturb osteoblast homeostasis and impair bone matrix quality. Amelioration of OI osteoblast homeostasis could be beneficial both to osteoblast anabolic activity and to the content of the extracellular matrix they deposit. Therefore, the effect of the chemical chaperone 4-phenylbutyrate (4-PBA) on cell homeostasis, collagen trafficking, matrix production and mineralization was investigated in primary osteoblasts from two murine models of moderate OI, Col1a1+/G349C and Col1a2+/G610C. At the cellular level, 4-PBA prevented intracellular accumulation of collagen and increased protein secretion, reducing aggregates within the mutant cells and normalizing ER morphology. At the extracellular level, increased collagen incorporation into matrix, associated with more mature collagen fibrils, was observed in osteoblasts from both models. 4-PBA also promoted OI osteoblast mineral deposition by increasing alkaline phosphatase expression and activity. Targeting osteoblast stress with 4-PBA improved both cellular and matrix abnormalities in culture, supporting further in vivo studies of its effect on bone tissue composition, strength and mineralization as a potential treatment for classical OI.
Collapse
Affiliation(s)
- Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy; Istituto Universitario di Studi Superiori - IUSS, Pavia, Italy.
| | - Barbara M Contento
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | | | - Jacopo Morini
- Department of Physics, University of Pavia, Pavia, Italy.
| | - Stella Siciliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA.
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Varga P, Willie BM, Stephan C, Kozloff KM, Zysset PK. Finite element analysis of bone strength in osteogenesis imperfecta. Bone 2020; 133:115250. [PMID: 31981754 PMCID: PMC7383936 DOI: 10.1016/j.bone.2020.115250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
As a dedicated experimentalist, John Currey praised the high potential of finite element (FE) analysis but also recognized its critical limitations. The application of the FE methodology to bone tissue is reviewed in the light of his enthusiastic and colorful statements. In the past decades, FE analysis contributed substantially to the understanding of structure-function properties in the hierarchical organization of bone and to the simulation of bone adaptation. The systematic experimental validation of FE analysis of bone strength in anatomical locations at risk of fracture led to its application in clinical studies to evaluate efficacy of antiresorptive or anabolic treatment of bone fragility. Beyond the successful analyses of healthy or osteoporotic bone, FE analysis becomes increasingly involved in the investigation of other fragility-related bone diseases. The case of osteogenesis imperfecta (OI) is exposed, the multiscale alterations of the bone tissue and the effect of treatment summarized. A few FE analyses attempting to answer open questions in OI are then reported. An original study is finally presented that explored the structural properties of the Brtl/+ murine model of OI type IV subjected to sclerostin neutralizing antibody treatment using microFE analysis. The use of identical material properties in the four-point bending FE simulations of the femora reproduced not only the experimental values but also the statistical comparisons examining the effect of disease and treatment. Further efforts are needed to build upon the extraordinary legacy of John Currey and clarify the impact of different bone diseases on the hierarchical mechanical properties of bone.
Collapse
Affiliation(s)
- Peter Varga
- AO Research Institute Davos, Davos, Switzerland.
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Chris Stephan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Cabral WA, Fratzl-Zelman N, Weis M, Perosky JE, Alimasa A, Harris R, Kang H, Makareeva E, Barnes AM, Roschger P, Leikin S, Klaushofer K, Forlino A, Backlund PS, Eyre DR, Kozloff KM, Marini JC. Substitution of murine type I collagen A1 3-hydroxylation site alters matrix structure but does not recapitulate osteogenesis imperfecta bone dysplasia. Matrix Biol 2020; 90:20-39. [PMID: 32112888 DOI: 10.1016/j.matbio.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Null mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated. Mutant mice have normal survival, growth, femoral breaking strength and mean bone mineralization. However, the bone collagen HP/LP crosslink ratio is nearly doubled in mutant mice, while collagen fibril diameter and bone yield energy are decreased. Thus, 3-hydroxylation of the A1 site α1(I)P986 affects collagen crosslinking and structural organization, but its absence does not directly cause recessive bone dysplasia. Our study suggests that the functions of the modification complex as a collagen chaperone are thus distinct from its role as prolyl 3-hydroxylase.
Collapse
Affiliation(s)
- Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - MaryAnn Weis
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Joseph E Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Adrienne Alimasa
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Harris
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Elena Makareeva
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Sergey Leikin
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Peter S Backlund
- Biomedical Mass Spectrometry Facility, NICHD, NIH, Bethesda, MD, USA
| | - David R Eyre
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA.
| |
Collapse
|
13
|
Scheiber AL, Barton DK, Khoury BM, Marini JC, Swiderski DL, Caird MS, Kozloff KM. Sclerostin Antibody-Induced Changes in Bone Mass Are Site Specific in Developing Crania. J Bone Miner Res 2019; 34:2301-2310. [PMID: 31441963 PMCID: PMC7458133 DOI: 10.1002/jbmr.3858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 01/01/2023]
Abstract
Sclerostin antibody (Scl-Ab) is an anabolic bone agent that has been shown to increase bone mass in clinical trials of adult diseases of low bone mass, such as osteoporosis and osteogenesis imperfecta (OI). Its use to decrease bone fragility in pediatric OI has shown efficacy in several growing mouse models, suggesting translational potential to pediatric disorders of low bone mass. However, the effects of pharmacologic inhibition of sclerostin during periods of rapid growth and development have not yet been described with respect to the cranium, where lifelong deficiency of functioning sclerostin leads to patterns of excessive bone growth, cranial compression, and facial palsy. In the present study, we undertook dimensional and volumetric measurements in the skulls of growing Brtl/+ OI mice treated with Scl-Ab to examine whether therapy-induced phenotypic changes were similar to those observed clinically in patients with sclerosteosis or Van Buchem disorder. Mice treated between 3 and 14 weeks of age with high doses of Scl-Ab show significant calvarial thickening capable of rescuing OI-induced deficiencies in skull thickness. Other changes in cranial morphology, such as lengths and distances between anatomic landmarks, intracranial volume, and suture interdigitation, showed minimal effects of Scl-Ab when compared with growth-induced differences over the treatment duration. Treatment-induced narrowing of foramina was limited to sites of vascular but not neural passage, suggesting patterns of local regulation. Together, these findings reveal a site specificity of Scl-Ab action in the calvaria with no measurable cranial nerve impingement or brainstem compression. This differentiation from the observed outcomes of lifelong sclerostin deficiency complements reports of Scl-Ab treatment efficacy at other skeletal sites with the prospect of minimal cranial secondary complications. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Amanda L Scheiber
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David K Barton
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Basma M Khoury
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Disorders, NIH, Bethesda, MD, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Olvera D, Stolzenfeld R, Fisher E, Nolan B, Caird MS, Kozloff KM. Pamidronate Administration During Pregnancy and Lactation Induces Temporal Preservation of Maternal Bone Mass in a Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2019; 34:2061-2074. [PMID: 31310351 PMCID: PMC6854294 DOI: 10.1002/jbmr.3831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 01/25/2023]
Abstract
During pregnancy and lactation, the maternal skeleton undergoes significant bone loss through increased resorption to provide the necessary calcium supply to the developing fetus and suckling neonate. This period of skeletal vulnerability has not been clearly associated with increased maternal fracture risk, but these physiological conditions can exacerbate an underlying metabolic bone condition like osteogenesis imperfecta. Although bisphosphonates (BPs) are commonly used in postmenopausal women, there are cases where premenopausal women taking BPs become pregnant. Given BPs' long half-life, there is a need to establish how BPs affect the maternal skeleton during periods of demanding metabolic bone changes that are critical for the skeletal development of their offspring. In the present study, pamidronate- (PAM-) amplified pregnancy-induced bone mass gains and lactation-induced bone loss were prevented. This preservation of bone mass was less robust when PAM was administered at late stages of lactation compared with early pregnancy and first day of lactation. Pregnancy-induced osteocyte osteolysis was also observed and was unaffected with PAM treatment. No negative skeletal effects were observed in offspring from PAM-treated dams despite lactation-induced bone loss prevention. These findings provide important insight into (1) a treatment window for when PAM is most effective in preserving maternal bone mass, and (2) the maternal changes in bone metabolism that maintain calcium homeostasis crucial for fetal and neonatal bone development. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Diana Olvera
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Stolzenfeld
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Emily Fisher
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bonnie Nolan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Mitxitorena I, Infante A, Gener B, Rodríguez CI. Suitability and limitations of mesenchymal stem cells to elucidate human bone illness. World J Stem Cells 2019; 11:578-593. [PMID: 31616536 PMCID: PMC6789184 DOI: 10.4252/wjsc.v11.i9.578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/31/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Functional impairment of mesenchymal stem cells (MSCs), osteoblast progenitor cells, has been proposed to be a pathological mechanism contributing to bone disorders, such as osteoporosis (the most common bone disease) and other rare inherited skeletal dysplasias. Pathological bone loss can be caused not only by an enhanced bone resorption activity but also by hampered osteogenic differentiation of MSCs. The majority of the current treatment options counteract bone loss, and therefore bone fragility by blocking bone resorption. These so-called antiresorptive treatments, in spite of being effective at reducing fracture risk, cannot be administered for extended periods due to security concerns. Therefore, there is a real need to develop osteoanabolic therapies to promote bone formation. Human MSCs emerge as a suitable tool to study the etiology of bone disorders at the cellular level as well as to be used for cell therapy purposes for bone diseases. This review will focus on the most relevant findings using human MSCs as an in vitro cell model to unravel pathological bone mechanisms and the application and outcomes of human MSCs in cell therapy clinical trials for bone disease.
Collapse
Affiliation(s)
- Izaskun Mitxitorena
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
| | - Blanca Gener
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
- Service of Genetics, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
- Centre for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid 28005, Spain
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
| |
Collapse
|
16
|
Blouin S, Fratzl-Zelman N, Roschger A, Cabral WA, Klaushofer K, Marini JC, Fratzl P, Roschger P. Cortical bone properties in the Brtl/+ mouse model of Osteogenesis imperfecta as evidenced by acoustic transmission microscopy. J Mech Behav Biomed Mater 2018; 90:125-132. [PMID: 30366302 DOI: 10.1016/j.jmbbm.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Higher skeletal fragility has been established for the Brtl/+ mouse model of osteogenesis imperfecta at the whole bone level, but previous investigations of mechanical properties at the bone material level were inconclusive. Bone material was analyzed separately at endosteal (ER) and periosteal regions (PR) on transverse femoral midshaft sections for 2-month old mice (wild-type n = 6; Brtl/+ n = 6). Quantitative backscattered electron imaging revealed that the mass density computed from mineral density maps was higher in PR than in ER for both wild-type (+2.1%, p < 0.05) and Brtl/+ mice (+1.8%, p < 0.05). Electron induced X-ray fluorescence analysis indicated significantly lower atomic Ca/P ratios and higher Na/Ca, Mg/Ca and K/Ca ratios in PR bone compared to ER independently of genotype. Second harmonic generation microscopy indicated that the occurrence of periodically alternating collagen orientation in ER of Brtl/+ mice was strongly reduced compared to wild-type mice. Scanning acoustic microscopy in time of flight mode revealed that the sound velocity and Young's modulus (estimated based on sound velocity and mass density maps) were significantly greater in PR (respectively +6% and +15%) compared to ER in wild-type mice but not in Brtl/+ mice. ER sound velocity and Young's modulus were significantly increased in Brtl/+ mice (+9.4% and +22%, respectively) compared to wild-type mice. These data demonstrate that the Col1a1 G349C mutation in Brtl/+ mice affects the mechanical behavior of bone material predominantly in the endosteal region by altering the collagen orientation.
Collapse
Affiliation(s)
- S Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.
| | - N Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - A Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Postdam, Germany
| | - W A Cabral
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - J C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Postdam, Germany
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| |
Collapse
|
17
|
Fiedler IAK, Schmidt FN, Wölfel EM, Plumeyer C, Milovanovic P, Gioia R, Tonelli F, Bale HA, Jähn K, Besio R, Forlino A, Busse B. Severely Impaired Bone Material Quality in Chihuahua Zebrafish Resembles Classical Dominant Human Osteogenesis Imperfecta. J Bone Miner Res 2018; 33:1489-1499. [PMID: 29665086 DOI: 10.1002/jbmr.3445] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/02/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Because the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how OI manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/+) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as a suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns, and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier-transform infrared spectroscopy, nanoindentation, and X-ray microscopy. At the skeletal level, the Chi/+ displays smaller body size, deformities, and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness, and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to wild-type zebrafish. The alterations in the cellular, compositional, and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/+. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant OI. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Plumeyer
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roberta Gioia
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Katharina Jähn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci 2018; 1410:93-106. [PMID: 29265417 DOI: 10.1111/nyas.13572] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons.
Collapse
Affiliation(s)
- Adele L Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York.,Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Laurianne Imbert
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York
| |
Collapse
|
19
|
Gioia R, Tonelli F, Ceppi I, Biggiogera M, Leikin S, Fisher S, Tenedini E, Yorgan TA, Schinke T, Tian K, Schwartz JM, Forte F, Wagener R, Villani S, Rossi A, Forlino A. The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta. Hum Mol Genet 2018; 26:2897-2911. [PMID: 28475764 PMCID: PMC5886106 DOI: 10.1093/hmg/ddx171] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Classical osteogenesis imperfecta (OI) is a bone disease caused by type I collagen mutations and characterized by bone fragility, frequent fractures in absence of trauma and growth deficiency. No definitive cure is available for OI and to develop novel drug therapies, taking advantage of a repositioning strategy, the small teleost zebrafish (Danio rerio) is a particularly appealing model. Its small size, high proliferative rate, embryo transparency and small amount of drug required make zebrafish the model of choice for drug screening studies, when a valid disease model is available. We performed a deep characterization of the zebrafish mutant Chihuahua, that carries a G574D (p.G736D) substitution in the α1 chain of type I collagen. We successfully validated it as a model for classical OI. Growth of mutants was delayed compared with WT. X-ray, µCT, alizarin red/alcian blue and calcein staining revealed severe skeletal deformity, presence of fractures and delayed mineralization. Type I collagen extracted from different tissues showed abnormal electrophoretic migration and low melting temperature. The presence of endoplasmic reticulum (ER) enlargement due to mutant collagen retention in osteoblasts and fibroblasts of mutant fish was shown by electron and confocal microscopy. Two chemical chaperones, 4PBA and TUDCA, were used to ameliorate the cellular stress and indeed 4PBA ameliorated bone mineralization in larvae and skeletal deformities in adult, mainly acting on reducing ER cisternae size and favoring collagen secretion. In conclusion, our data demonstrated that ER stress is a novel target to ameliorate OI phenotype; chemical chaperones such as 4PBA may be, alone or in combination, a new class of molecules to be further investigated for OI treatment.
Collapse
Affiliation(s)
- Roberta Gioia
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Ilaria Ceppi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, USA
| | - Shannon Fisher
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Elena Tenedini
- Center for Genome Research, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Timur A Yorgan
- Institute of Osteology and Biomechanic, Center for Experimental Medicine, University of Hamburg, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanic, Center for Experimental Medicine, University of Hamburg, Hamburg, Germany
| | - Kun Tian
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabiana Forte
- Medical Faculty, Center for Biochemistry, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Raimund Wagener
- Medical Faculty, Center for Biochemistry, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Makowski AJ, Granke M, Ayala OD, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone. APPLIED SPECTROSCOPY 2017; 71:2385-2394. [PMID: 28708001 PMCID: PMC5561524 DOI: 10.1177/0003702817718149] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A decline in the inherent quality of bone tissue is a † Equal contributors contributor to the age-related increase in fracture risk. Although this is well-known, the important biochemical factors of bone quality have yet to be identified using Raman spectroscopy (RS), a nondestructive, inelastic light-scattering technique. To identify potential RS predictors of fracture risk, we applied principal component analysis (PCA) to 558 Raman spectra (370-1720 cm-1) of human cortical bone acquired from 62 female and male donors (nine spectra each) spanning adulthood (age range = 21-101 years). Spectra were analyzed prior to R-curve, nonlinear fracture mechanics that delineate crack initiation (Kinit) from crack growth toughness (Kgrow). The traditional ν1phosphate peak per amide I peak (mineral-to-matrix ratio) weakly correlated with Kinit (r = 0.341, p = 0.0067) and overall crack growth toughness (J-int: r = 0.331, p = 0.0086). Sub-peak ratios of the amide I band that are related to the secondary structure of type 1 collagen did not correlate with the fracture toughness properties. In the full spectrum analysis, one principal component (PC5) correlated with all of the mechanical properties (Kinit: r = - 0.467, Kgrow: r = - 0.375, and J-int: r = - 0.428; p < 0.0067). More importantly, when known predictors of fracture toughness, namely age and/or volumetric bone mineral density (vBMD), were included in general linear models as covariates, several PCs helped explain 45.0% (PC5) to 48.5% (PC7), 31.4% (PC6), and 25.8% (PC7) of the variance in Kinit, Kgrow, and J-int, respectively. Deriving spectral features from full spectrum analysis may improve the ability of RS, a clinically viable technology, to assess fracture risk.
Collapse
Affiliation(s)
- Alexander J. Makowski
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| | - Mathilde Granke
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| | - Oscar D. Ayala
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
21
|
Boraschi-Diaz I, Tauer JT, El-Rifai O, Guillemette D, Lefebvre G, Rauch F, Ferron M, Komarova SV. Metabolic phenotype in the mouse model of osteogenesis imperfecta. J Endocrinol 2017; 234:279-289. [PMID: 28716975 DOI: 10.1530/joe-17-0335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023]
Abstract
Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O2 consumption and CO2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin.
Collapse
Affiliation(s)
- Iris Boraschi-Diaz
- Shriners Hospital for Children-CanadaMontreal, Quebec, Canada
- Faculty of DentistryMcGill University, Montreal, Quebec, Canada
| | | | - Omar El-Rifai
- Unité de Recherche en Physiologie Intégrative et MoléculaireInstitut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Delphine Guillemette
- Shriners Hospital for Children-CanadaMontreal, Quebec, Canada
- Département de MathématiquesUniversité du Québec à Montréal, Montréal, Québec, Canada
| | - Geneviève Lefebvre
- Département de MathématiquesUniversité du Québec à Montréal, Montréal, Québec, Canada
| | - Frank Rauch
- Shriners Hospital for Children-CanadaMontreal, Quebec, Canada
| | - Mathieu Ferron
- Unité de Recherche en Physiologie Intégrative et MoléculaireInstitut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Départements de Médecine et de Biochimie et Médecine MoléculaireUniversité de Montréal, Montréal, Québec, Canada
| | - Svetlana V Komarova
- Shriners Hospital for Children-CanadaMontreal, Quebec, Canada
- Faculty of DentistryMcGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Lim J, Grafe I, Alexander S, Lee B. Genetic causes and mechanisms of Osteogenesis Imperfecta. Bone 2017; 102:40-49. [PMID: 28232077 PMCID: PMC5607741 DOI: 10.1016/j.bone.2017.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/07/2017] [Accepted: 02/11/2017] [Indexed: 12/25/2022]
Abstract
Osteogenesis Imperfecta (OI) is a genetic disorder characterized by various clinical features including bone deformities, low bone mass, brittle bones, and connective tissue manifestations. The predominant cause of OI is due to mutations in the two genes that encode type I collagen. However, recent advances in sequencing technology has led to the discovery of novel genes that are implicated in recessive and dominant OI. These include genes that regulate the post-translational modification, secretion and processing of type I collagen as well as those required for osteoblast differentiation and bone mineralization. As such, OI has become a spectrum of genetic disorders informing about the determinants of both bone quantity and quality. Here we summarize the known genetic causes of OI, animal models that recapitulate the human disease and mechanisms that underlie disease pathogenesis. Additionally, we discuss the effects of disrupted collagen networks on extracellular matrix signaling and its impact on disease progression.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefanie Alexander
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Abstract
Skeletal deformity and bone fragility are the hallmarks of the brittle bone dysplasia osteogenesis imperfecta. The diagnosis of osteogenesis imperfecta usually depends on family history and clinical presentation characterized by a fracture (or fractures) during the prenatal period, at birth or in early childhood; genetic tests can confirm diagnosis. Osteogenesis imperfecta is caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2) in about 85% of individuals, affecting collagen quantity or structure. In the past decade, (mostly) recessive, dominant and X-linked defects in a wide variety of genes encoding proteins involved in type I collagen synthesis, processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells have been shown to cause osteogenesis imperfecta. The large number of causative genes has complicated the classic classification of the disease, and although a new genetic classification system is widely used, it is still debated. Phenotypic manifestations in many organs, in addition to bone, are reported, such as abnormalities in the cardiovascular and pulmonary systems, skin fragility, muscle weakness, hearing loss and dentinogenesis imperfecta. Management involves surgical and medical treatment of skeletal abnormalities, and treatment of other complications. More innovative approaches based on gene and cell therapy, and signalling pathway alterations, are under investigation.
Collapse
|
24
|
Feng G, Ochoa M, Maher JR, Awad HA, Berger AJ. Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue. JOURNAL OF BIOPHOTONICS 2017; 10:990-996. [PMID: 28464501 PMCID: PMC5971662 DOI: 10.1002/jbio.201600317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 05/04/2023]
Abstract
The development of spatially offset Raman spectroscopy (SORS) has enabled deep, non-invasive chemical characterization of turbid media. Here, we use SORS to measure subcortical bone tissue and depth-resolved biochemical variability in intact, exposed murine bones. We also apply the technique to study a mouse model of the genetic bone disorder osteogenesis imperfecta. The results suggest that SORS is more sensitive to disease-related biochemical differences in subcortical trabecular bone and marrow than conventional Raman measurements.
Collapse
Affiliation(s)
- Guanping Feng
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627
| | - Marien Ochoa
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627
- University of Rochester, Department of Biomedical Engineering, 207 Robert B. Goergen Hall, Rochester, New York 14627
| | - Jason R. Maher
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627
| | - Hani A. Awad
- University of Rochester, Department of Biomedical Engineering, 207 Robert B. Goergen Hall, Rochester, New York 14627
- University of Rochester Medical Center, The Center for Musculoskeletal Research, 601 Elmwood Avenue, Rochester, New York 14642
| | - Andrew J. Berger
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627
- University of Rochester, Department of Biomedical Engineering, 207 Robert B. Goergen Hall, Rochester, New York 14627
| |
Collapse
|
25
|
Bi X, Grafe I, Ding H, Flores R, Munivez E, Jiang MM, Dawson B, Lee B, Ambrose CG. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment. J Bone Miner Res 2017; 32:347-359. [PMID: 27649409 PMCID: PMC7894383 DOI: 10.1002/jbmr.2997] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap-/- ) and dominant (Col1a2+/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2+/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaohong Bi
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hao Ding
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rene Flores
- Academic and Research Affairs, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ming Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine G Ambrose
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
26
|
Perosky JE, Khoury BM, Jenks TN, Ward FS, Cortright K, Meyer B, Barton DK, Sinder BP, Marini JC, Caird MS, Kozloff KM. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model. Bone 2016; 93:79-85. [PMID: 27641475 PMCID: PMC5077648 DOI: 10.1016/j.bone.2016.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023]
Abstract
Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation.
Collapse
Affiliation(s)
- Joseph E Perosky
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States
| | - Basma M Khoury
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States
| | - Terese N Jenks
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Ferrous S Ward
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Kai Cortright
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Bethany Meyer
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - David K Barton
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Benjamin P Sinder
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Disorders, NIH, Bethesda, MD, United States
| | - Michelle S Caird
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States
| | - Kenneth M Kozloff
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States.
| |
Collapse
|
27
|
Kłosowski MM, Carzaniga R, Abellan P, Ramasse Q, McComb DW, Porter AE, Shefelbine SJ. Electron Microscopy Reveals Structural and Chemical Changes at the Nanometer Scale in the Osteogenesis Imperfecta Murine Pathology. ACS Biomater Sci Eng 2016; 3:2788-2797. [DOI: 10.1021/acsbiomaterials.6b00300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Michał M. Kłosowski
- Department
of Materials and Engineering, Royal School of Mines, South Kensington
Campus, Imperial College London, London SW7 2AZ, U.K
| | - Raffaella Carzaniga
- Cancer
Research U.K., Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, U.K
| | - Patricia Abellan
- SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury, Warrington WA4 4AD, U.K
| | - Quentin Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury, Warrington WA4 4AD, U.K
| | - David W. McComb
- Department
of Materials Science and Engineering, Center for Electron Microscopy
and Analysis, The Ohio State University, 1305 Kinnear Road, Columbus, Ohio 43212, United States
| | - Alexandra E. Porter
- Department
of Materials and Engineering, Royal School of Mines, South Kensington
Campus, Imperial College London, London SW7 2AZ, U.K
| | - Sandra J. Shefelbine
- Department
of Mechanical and Industrial Engineering, Northeastern University, 334 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Enderli TA, Burtch SR, Templet JN, Carriero A. Animal models of osteogenesis imperfecta: applications in clinical research. Orthop Res Rev 2016; 8:41-55. [PMID: 30774469 PMCID: PMC6209373 DOI: 10.2147/orr.s85198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteogenesis imperfecta (OI), commonly known as brittle bone disease, is a genetic disease characterized by extreme bone fragility and consequent skeletal deformities. This connective tissue disorder is caused by mutations in the quality and quantity of the collagen that in turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. Animal models of the disease have played a critical role in the understanding of the pathology and causes of OI and in the investigation of a broad range of clinical therapies for the disease. Currently, at least 20 animal models have been officially recognized to represent the phenotype and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. Here, we describe each of the animal models and the type of OI they represent, and present their application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates and sclerostin) and mechanical (ie, vibrational) loading. In the future, different dosages and lengths of treatment need to be further investigated on different animal models of OI using potentially promising treatments, such as cellular and chaperone therapies. A combination of therapies may also offer a viable treatment regime to improve bone quality and reduce fragility in animals before being introduced into clinical trials for OI patients.
Collapse
Affiliation(s)
- Tanya A Enderli
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Stephanie R Burtch
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Jara N Templet
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Alessandra Carriero
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| |
Collapse
|
29
|
Masci M, Wang M, Imbert L, Barnes AM, Spevak L, Lukashova L, Huang Y, Ma Y, Marini JC, Jacobsen CM, Warman ML, Boskey AL. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta. Bone 2016; 87:120-9. [PMID: 27083399 PMCID: PMC4862917 DOI: 10.1016/j.bone.2016.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/04/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution was noted in 10-day-old trabecular bone in vertebrae (31%) and in 2-month old trabecular bone in both tibia (31%) and vertebrae (4%). There was also a 16% lower carbonate-to-phosphate ratio in vertebral trabeculae and a correspondingly higher (22%) carbonate-to-phosphate ratio in 2month-old vertebral cortices. At age 3-months-of-age, male femurs with both a Col1a2(+/G610C) allele and a Lrp5 high bone mass allele (Lrp5+/A214V) showed an improvement in bone composition, presenting higher trabecular carbonate-to-phosphate ratio (18%) and lower trabecular and cortical acid-phosphate substitutions (8% and 18%, respectively). Together, these results indicate that mutant collagen α2(I) chain affects both bone quantity and composition, and the usefulness of this model for studies of potential OI therapies such as anti-sclerostin treatments.
Collapse
Affiliation(s)
- Marco Masci
- Weill Cornell Medical College, New York, NY, United States.
| | - Min Wang
- Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| | - Laurianne Imbert
- Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| | - Aileen M Barnes
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| | - Lyudmila Spevak
- Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| | - Lyudmila Lukashova
- Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| | - Yihe Huang
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States.
| | - Yan Ma
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States.
| | - Joan C Marini
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| | - Christina M Jacobsen
- Division of Endocrinology and Genetics, Children's Hospital Boston, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, United States.
| | - Adele L Boskey
- Weill Cornell Medical College, New York, NY, United States; Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| |
Collapse
|
30
|
Paschalis EP, Gamsjaeger S, Fratzl-Zelman N, Roschger P, Masic A, Brozek W, Hassler N, Glorieux FH, Rauch F, Klaushofer K, Fratzl P. Evidence for a Role for Nanoporosity and Pyridinoline Content in Human Mild Osteogenesis Imperfecta. J Bone Miner Res 2016; 31:1050-9. [PMID: 26748579 DOI: 10.1002/jbmr.2780] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/21/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility that arises from decreased bone mass and abnormalities in bone material quality. OI type I represents the milder form of the disease and according to the original Sillence classification is characterized by minimal skeletal deformities and near-normal stature. Raman microspectroscopy is a vibrational spectroscopic technique that allows the determination of bone material properties in bone biopsy blocks with a spatial resolution of ∼1 µm, as a function of tissue age. In the present study, we used Raman microspectroscopy to evaluate bone material quality in transiliac bone biopsies from children with a mild form of OI, either attributable to collagen haploinsufficiency OI type I (OI-Quant; n = 11) or aberrant collagen structure (OI-Qual; n = 5), as a function of tissue age, and compared it against the previously published values established in a cohort of biopsies from healthy children (n = 54, ages 1 to 23 years). The results indicated significant differences in bone material compositional characteristics between OI-Quant patients and healthy controls, whereas fewer were evident in the OI-Qual patients. Differences in both subgroups of OI compared with healthy children were evident for nanoporosity, mineral maturity/crystallinity as determined by maxima of the v1 PO4 Raman band, and pyridinoline (albeit in different direction) content. These alterations in bone material compositional properties most likely contribute to the bone fragility characterizing this disease. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Admir Masic
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Wolfgang Brozek
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Francis H Glorieux
- Genetics Unit, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Frank Rauch
- Genetics Unit, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
31
|
Mertz EL, Makareeva E, Mirigian LS, Koon KY, Perosky JE, Kozloff KM, Leikin S. Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model. Matrix Biol 2016; 52-54:29-42. [PMID: 27039252 DOI: 10.1016/j.matbio.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 12/19/2022]
Abstract
Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions.
Collapse
Affiliation(s)
- E L Mertz
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - E Makareeva
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - L S Mirigian
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - K Y Koon
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - J E Perosky
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - K M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - S Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Sinder BP, Lloyd WR, Salemi JD, Marini JC, Caird MS, Morris MD, Kozloff KM. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age. Bone 2016; 84:222-229. [PMID: 26769006 PMCID: PMC4757447 DOI: 10.1016/j.bone.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/17/2015] [Accepted: 01/03/2016] [Indexed: 01/17/2023]
Abstract
Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality.
Collapse
Affiliation(s)
- Benjamin P Sinder
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA
| | - William R Lloyd
- Department of Chemistry, University of Michigan Ann Arbor, MI, USA
| | - Joseph D Salemi
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor, MI, USA
| | - Michael D Morris
- Department of Chemistry, University of Michigan Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Scheller EL, Khoury B, Moller KL, Wee NKY, Khandaker S, Kozloff KM, Abrishami SH, Zamarron BF, Singer K. Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss. Front Endocrinol (Lausanne) 2016; 7:102. [PMID: 27512386 PMCID: PMC4961699 DOI: 10.3389/fendo.2016.00102] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity has continued to rise over the past three decades leading to significant increases in obesity-related medical care costs from metabolic and non-metabolic sequelae. It is now clear that expansion of body fat leads to an increase in inflammation with systemic effects on metabolism. In mouse models of diet-induced obesity, there is also an expansion of bone marrow adipocytes. However, the persistence of these changes after weight loss has not been well described. The objective of this study was to investigate the impact of high-fat diet (HFD) and subsequent weight loss on skeletal parameters in C57Bl6/J mice. Male mice were given a normal chow diet (ND) or 60% HFD at 6 weeks of age for 12, 16, or 20 weeks. A third group of mice was put on HFD for 12 weeks and then on ND for 8 weeks to mimic weight loss. After these dietary challenges, the tibia and femur were removed and analyzed by micro computed-tomography for bone morphology. Decalcification followed by osmium staining was used to assess bone marrow adiposity, and mechanical testing was performed to assess bone strength. After 12, 16, or 20 weeks of HFD, mice had significant weight gain relative to controls. Body mass returned to normal after weight loss. Marrow adipose tissue (MAT) volume in the tibia increased after 16 weeks of HFD and persisted in the 20-week HFD group. Weight loss prevented HFD-induced MAT expansion. Trabecular bone volume fraction, mineral content, and number were decreased after 12, 16, or 20 weeks of HFD, relative to ND controls, with only partial recovery after weight loss. Mechanical testing demonstrated decreased fracture resistance after 20 weeks of HFD. Loss of mechanical integrity did not recover after weight loss. Our study demonstrates that HFD causes long-term, persistent changes in bone quality, despite prevention of marrow adipose tissue accumulation, as demonstrated through changes in bone morphology and mechanical strength in a mouse model of diet-induced obesity and weight loss.
Collapse
Affiliation(s)
- Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- *Correspondence: Erica L. Scheller,
| | - Basma Khoury
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kayla L. Moller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Natalie K. Y. Wee
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Shaima Khandaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M. Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Simin H. Abrishami
- Division of Pediatric Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian F. Zamarron
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Kanakadurga Singer
- Division of Pediatric Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Berman AG, Wallace JM, Bart ZR, Allen MR. Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta. Matrix Biol 2015; 52-54:19-28. [PMID: 26707242 DOI: 10.1016/j.matbio.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic disease of Type I collagen and collagen-associated pathways that results in brittle bone behavior characterized by fracture and reduced mechanical properties. Based on previous work in our laboratory showing that raloxifene (RAL) can significantly improve bone mechanical properties through non-cellular mechanisms, we hypothesized that raloxifene would improve the mechanical properties of OI bone. In experiment 1, tibiae from female wild type (WT) and homozygous oim mice were subjected to in vitro soaking in RAL followed by mechanical tests. RAL soaking resulted in significantly higher post-yield displacement (+75% in WT, +472% in oim; p<0.004), with no effect on ultimate load or stiffness, in both WT and oim animals. In experiment 2, eight-week old WT and oim male mice were treated for eight weeks with saline vehicle (VEH) or RAL. Endpoint measures included assessment of in vivo skeletal fractures, bone density/geometry and mechanical properties. In vivo skeletal fractures of the femora, assessed by micro CT imaging, were significantly lower in oim-RAL (20%) compared to oim-VEH (48%, p=0.047). RAL led to significantly higher DXA-based BMD (p<0.01) and CT-based trabecular BV/TV in both WT and oim animals compared to those treated with VEH. Fracture toughness of the femora was lower in oim mice compared to WT and improved with RAL in both genotypes. These results suggest that raloxifene reduces the incidence of fracture in this mouse model of oim. Furthermore, they suggest that raloxifene's effects may be the result of both cellular (increased bone mass) and non-cellular (presumably changes in hydration) mechanisms, raising the possibility of using raloxifene, or related compounds, as a new approach for treating bone fragility associated with OI.
Collapse
Affiliation(s)
- Alycia G Berman
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary R Bart
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
35
|
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic bone disease associated with brittle bones and fractures in children and adults. Although OI is most commonly associated with mutations of the genes for type I collagen, many other genes (some associated with type I collagen processing) have now been identified. The genetics of OI and advances in our understanding of the biomechanical properties of OI bone are reviewed in this article. Treatment includes physiotherapy, fall prevention, and sometimes orthopedic procedures. In this brief review, we will also discuss current understanding of pharmacologic therapies for treatment of OI.
Collapse
Affiliation(s)
- Joseph L Shaker
- Endocrinology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carolyne Albert
- Orthopaedic and Rehabilitation Engineering Center, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA ; Shriners Hospitals for Children, Chicago, IL, USA
| | - Jessica Fritz
- Orthopaedic and Rehabilitation Engineering Center, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gerald Harris
- Orthopaedic and Rehabilitation Engineering Center, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA ; Shriners Hospitals for Children, Chicago, IL, USA
| |
Collapse
|
36
|
Intini G, Nyman JS. Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity. Bone 2015; 75:151-60. [PMID: 25603465 PMCID: PMC4387090 DOI: 10.1016/j.bone.2015.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/09/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022]
Abstract
Bone fractures remain a serious health burden and prevention and enhanced healing of fractures have been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1(+/-)) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2(c/c);Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1(+/-) mice were crossed with Bmp2(c/c);Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy.
Collapse
Affiliation(s)
- Giuseppe Intini
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA.
| | - Jeffry S Nyman
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
37
|
Gong B, Morris MD. Raman spectroscopy monitors adverse bone sequelae of cancer radiotherapy. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2014.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Sinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone 2015; 71:115-23. [PMID: 25445450 PMCID: PMC4274252 DOI: 10.1016/j.bone.2014.10.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/24/2014] [Accepted: 10/17/2014] [Indexed: 11/15/2022]
Abstract
Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown that bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical Wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly→Cys substitution on col1a1, for 5weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI.
Collapse
Affiliation(s)
- Benjamin P Sinder
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Joseph D Salemi
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Michael S Ominsky
- Department of Metabolic Disorders, Amgen, Inc., Thousand Oaks, CA, United States
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, United States
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
39
|
Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. BONEKEY REPORTS 2015; 4:620. [PMID: 25628882 DOI: 10.1038/bonekey.2014.115] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023]
Abstract
Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.
Collapse
Affiliation(s)
- Gurjit S Mandair
- Department of Chemistry, University of Michigan , Ann Arbor, MI, USA
| | - Michael D Morris
- Department of Chemistry, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
40
|
Abstract
The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility.
Collapse
Affiliation(s)
- Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, Room S-1155, San Francisco, CA, 94143-0514, USA,
| |
Collapse
|
41
|
Sinder BP, White LE, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int 2014; 25:2097-107. [PMID: 24803333 PMCID: PMC4415164 DOI: 10.1007/s00198-014-2737-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Treatments to reduce fracture rates in adults with osteogenesis imperfecta are limited. Sclerostin antibody, developed for treating osteoporosis, has not been explored in adults with OI. This study demonstrates that treatment of adult OI mice respond favorably to sclerostin antibody therapy despite retention of the OI-causing defect. INTRODUCTION Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Antiresorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 month old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly > Cys substitution on Col1a1. METHODS Six-month-old WT and Brtl/+ mice were treated with Scl-Ab (25 mg/kg, 2×/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. RESULTS Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. CONCLUSION Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI.
Collapse
Affiliation(s)
- Benjamin P. Sinder
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor MI
- Department of Biomedical Engineering, University of Michigan Ann Arbor MI
| | - Logan E. White
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor MI
| | - Joseph D. Salemi
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor MI
- Department of Biomedical Engineering, University of Michigan Ann Arbor MI
| | | | - Michelle S. Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor MI
| | - Joan C. Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Kenneth M. Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor MI
- Department of Biomedical Engineering, University of Michigan Ann Arbor MI
| |
Collapse
|
42
|
Chen F, Guo R, Itoh S, Moreno L, Rosenthal E, Zappitelli T, Zirngibl RA, Flenniken A, Cole W, Grynpas M, Osborne LR, Vogel W, Adamson L, Rossant J, Aubin JE. First mouse model for combined osteogenesis imperfecta and Ehlers-Danlos syndrome. J Bone Miner Res 2014; 29:1412-23. [PMID: 24443344 DOI: 10.1002/jbmr.2177] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/11/2014] [Accepted: 01/17/2014] [Indexed: 11/08/2022]
Abstract
By using a genome-wide N-ethyl-N-nitrosourea (ENU)-induced dominant mutagenesis screen in mice, a founder with low bone mineral density (BMD) was identified. Mapping and sequencing revealed a T to C transition in a splice donor of the collagen alpha1 type I (Col1a1) gene, resulting in the skipping of exon 9 and a predicted 18-amino acid deletion within the N-terminal region of the triple helical domain of Col1a1. Col1a1(Jrt) /+ mice were smaller in size, had lower BMD associated with decreased bone volume/tissue volume (BV/TV) and reduced trabecular number, and furthermore exhibited mechanically weak, brittle, fracture-prone bones, a hallmark of osteogenesis imperfecta (OI). Several markers of osteoblast differentiation were upregulated in mutant bone, and histomorphometry showed that the proportion of trabecular bone surfaces covered by activated osteoblasts (Ob.S/BS and N.Ob/BS) was elevated, but bone surfaces undergoing resorption (Oc.S/BS and N.Oc/BS) were not. The number of bone marrow stromal osteoprogenitors (CFU-ALP) was unaffected, but mineralization was decreased in cultures from young Col1a1(Jrt) /+ versus +/+ mice. Total collagen and type I collagen content of matrices deposited by Col1a1(Jrt) /+ dermal fibroblasts in culture was ∼40% and 30%, respectively, that of +/+ cells, suggesting that mutant collagen chains exerted a dominant negative effect on type I collagen biosynthesis. Mutant collagen fibrils were also markedly smaller in diameter than +/+ fibrils in bone, tendon, and extracellular matrices deposited by dermal fibroblasts in vitro. Col1a1(Jrt) /+ mice also exhibited traits associated with Ehlers-Danlos syndrome (EDS): Their skin had reduced tensile properties, tail tendon appeared more frayed, and a third of the young adult mice had noticeable curvature of the spine. Col1a1(Jrt) /+ is the first reported model of combined OI/EDS and will be useful for exploring aspects of OI and EDS pathophysiology and treatment.
Collapse
Affiliation(s)
- Frieda Chen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Titorencu I, Pruna V, Jinga VV, Simionescu M. Osteoblast ontogeny and implications for bone pathology: an overview. Cell Tissue Res 2013; 355:23-33. [PMID: 24292720 DOI: 10.1007/s00441-013-1750-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/04/2013] [Indexed: 01/06/2023]
Abstract
Osteoblasts are specialized mesenchyme-derived cells accountable for bone synthesis, remodelling and healing. Differentiation of osteoblasts from mesenchymal stem cells (MSC) towards osteocytes is a multi-step process strictly controlled by various genes, transcription factors and signalling proteins. The aim of this review is to provide an update on the nature of bone-forming osteoblastic cells, highlighting recent data on MSC-osteoblast-osteocyte transformation from a molecular perspective and to discuss osteoblast malfunctions in various bone diseases. We present here the consecutive stages occurring in the differentiation of osteoblasts from MSC, the transcription factors involved and the role of miRNAs in the process. Recent data concerning the pathogenic mechanisms underlying the loss of bone mass and architecture caused by malfunctions in the synthetic activity and metabolism of osteoblasts in osteoporosis, osteogenesis imperfecta, osteoarthritis and rheumatoid arthritis are discussed. The newly acquired knowledge of the ontogeny of osteoblasts will assist in unravelling the abnormalities taking place during their differentiation and will facilitate the prevention and/or treatment of bone diseases by therapy directed against altered molecules and mechanisms.
Collapse
Affiliation(s)
- Irina Titorencu
- Regenerative Medicine Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
44
|
Bonnet N, Gineyts E, Ammann P, Conway SJ, Garnero P, Ferrari S. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice. PLoS One 2013; 8:e78347. [PMID: 24167618 PMCID: PMC3805534 DOI: 10.1371/journal.pone.0078347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/16/2013] [Indexed: 01/09/2023] Open
Abstract
Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn) is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn(-/-) and Postn(+/+) mice after fatigue stimulus by axial compression of their tibia. In Postn(+/+) mice, cracks number and surface (CsNb, CsS) increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn(+/+) mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn(-/-) mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn(+/+). Fatigue significantly increased CsNb and CsS in Postn(-/-), but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn(-/-), and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn(-/-) mice. Contrary to Postn(+/+), which osteocytic lacunae showed a change in the degree of anisotropy (DA) after fatigue, Postn(-/-) showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, Geneva, Switzerland
- * E-mail :
| | - Evelyne Gineyts
- INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Patrick Ammann
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, Geneva, Switzerland
| | - Simon J. Conway
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Patrick Garnero
- INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Serge Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
45
|
Meganck JA, Begun DL, McElderry JD, Swick A, Kozloff KM, Goldstein SA, Morris MD, Marini JC, Caird MS. Fracture healing with alendronate treatment in the Brtl/+ mouse model of osteogenesis imperfecta. Bone 2013; 56:204-12. [PMID: 23774443 PMCID: PMC3999166 DOI: 10.1016/j.bone.2013.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 11/26/2022]
Abstract
Osteogenesis imperfecta (OI) is a heritable bone dysplasia characterized by increased skeletal fragility. Patients are often treated with bisphosphonates to attempt to reduce fracture risk. However, bisphosphonates reside in the skeleton for many years and long-term administration may impact bone material quality. Acutely, there is concern about risk of non-union of fractures that occur near the time of bisphosphonate administration. This study investigated the effect of alendronate, a potent aminobisphosphonate, on fracture healing. Using the Brtl/+ murine model of type IV OI, tibial fractures were generated in 8-week-old mice that were untreated, treated with alendronate before fracture, or treated before and after fracture. After 2, 3, or 5 weeks of healing, tibiae were assessed using microcomputed tomography (μCT), torsion testing, quantitative histomorphometry, and Raman microspectroscopy. There were no morphologic, biomechanical or histomorphometric differences in callus between untreated mice and mice that received alendronate before fracture. Alendronate treatment before fracture did not cause a significant increase in cartilage retention in fracture callus. Both Brtl/+ and WT mice that received alendronate before and after fracture had increases in the callus volume, bone volume fraction and torque at failure after 5 weeks of healing. Raman microspectroscopy results did not show any effects of alendronate in wild-type mice, but calluses from Brtl/+ mice treated with alendronate during healing had a decreased mineral-to-matrix ratio, decreased crystallinity and an increased carbonate-to-phosphate ratio. Treatment with alendronate altered the dynamics of healing by preventing callus volume decreases later in the healing process. Fracture healing in Brtl/+ untreated animals was not significantly different from animals in which alendronate was halted at the time of fracture.
Collapse
Affiliation(s)
- J A Meganck
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Maher JR, Inzana JA, Awad HA, Berger AJ. Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:077001. [PMID: 23817761 PMCID: PMC3697032 DOI: 10.1117/1.jbo.18.7.077001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clinical diagnoses of bone health and fracture risk typically rely on measurements of bone density or structure, but the strength of a bone is also dependent on its chemical composition. Raman spectroscopy has been used extensively in ex vivo studies to measure the chemical composition of bone. Recently, spatially offset Raman spectroscopy (SORS) has been utilized to measure bone transcutaneously. Although the results are promising, further advancements are necessary to make noninvasive, in vivo measurements of bone with SORS that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based on fitting with spectral libraries. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both bone and soft tissue. The algorithm was utilized to transcutaneously detect biochemical differences in the tibiae of wild-type mice between 1 and 7 months of age and between the tibiae of wild-type mice and a mouse model of osteogenesis imperfecta. These results represent the first diagnostically sensitive, transcutaneous measurements of bone using SORS.
Collapse
Affiliation(s)
- Jason R Maher
- The Institute of Optics, University of Rochester, 275 Hutchison Road, Rochester, New York 14627, USA
| | | | | | | |
Collapse
|
47
|
Mineral and matrix changes in Brtl/+ teeth provide insights into mineralization mechanisms. BIOMED RESEARCH INTERNATIONAL 2013; 2013:295812. [PMID: 23802117 PMCID: PMC3681234 DOI: 10.1155/2013/295812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/27/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022]
Abstract
The Brtl/+ mouse is a knock-in model for osteogenesis imperfecta type IV in which a Gly349Cys substitution was introduced into one COL1A1 allele. To gain insight into the changes in dentin structure and mineral composition in these transgenic mice, the objective of this study was to use microcomputed tomography (micro-CT), scanning electron microscopy (SEM), and Fourier transform infrared imaging (FTIRI) to analyze these structures at 2 and 6 months of age. Results, consistent with the dental phenotype in humans with type IV OI, showed decreased molar volume and reduced mineralized tissue volume in the teeth without changes in enamel properties. Increased acid phosphate content was noted at 2 and 6 months by FTIRI, and a trend towards altered collagen structure was noted at 2 but not 6 months in the Brtl/+ teeth. The increase in acid phosphate content suggests a delay in the mineralization process, most likely associated with the defect in the collagen structure. It appears that in the Brtl/+ teeth slow maturation of the mineralized structures allows correction of altered mineral content and acid phosphate distribution.
Collapse
|
48
|
Femoral geometric parameters and BMD measurements by DXA in adult patients with different types of osteogenesis imperfecta. Skeletal Radiol 2013; 42:187-94. [PMID: 22955449 DOI: 10.1007/s00256-012-1512-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/14/2012] [Accepted: 08/19/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Osteogenesis imperfecta (OI) is an inherited disorder characterized by increased bone fragility with recurrent fractures that leads to skeletal deformities in severe cases. Consequently, in most OI patients, the hip is the only reliable measuring site for estimating future fracture risk. The aim of the study was to assess the applicability of hip structure analysis (HSA) by DXA in adult patients with osteogenesis imperfecta. MATERIALS AND METHODS We evaluated bone mineral density (BMD) and hip structure analysis (HSA) by DXA, including cross-sectional area (CSA), cross-sectional moment of inertia (CSMI) and femoral strength index (FSI) in 30 adult patients with different types of OI and 30 age-matched healthy controls (CO). The OI total group (OI-tot) was divided into two subgroups: the mild OI I group (OI-I) and the more severe OI III and IV group (OI-III-IV). RESULTS The mean neck BMD of OI-I and OI-III-IV were significantly lower compared to CO (-15.9 %, p < 0.005 and -37.5 %, p < 0.001 respectively). Similar results were observed at trochanter and total hip. CSA and the CSMI value were significantly lower for OI-I (-23.2 %, p < 0.001) and OI-III-IV (-45.9 %, p < 0.001) in comparison to CO. In addition, significant differences were found between the mild OI-I and the severe OI-III-IV group (-29.6 %, p < 0.05). FSI was significantly decreased in the OI-III-IV (25.7 %, p < 0.05) in comparison to the CO. Furthermore, significant correlations between BMD and HSA and between HSA and height and weight were found in osteogenesis imperfecta and controls. CONCLUSION BMD measurement in osteogenesis imperfecta patients is very critical. The combination of BMD and geometric structural measurements at the hip in osteogenesis imperfecta patients may represent an additional helpful means in estimating bone strength and fracture risk.
Collapse
|
49
|
Sinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res 2013; 28:73-80. [PMID: 22836659 PMCID: PMC3524379 DOI: 10.1002/jbmr.1717] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 11/07/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by osteopenia and easy susceptibility to fracture. Symptoms are most prominent during childhood. Although antiresorptive bisphosphonates have been widely used to treat pediatric OI, controlled trials show improved vertebral parameters but equivocal effects on long-bone fracture rates. New treatments for OI are needed to increase bone mass throughout the skeleton. Sclerostin antibody (Scl-Ab) therapy is potently anabolic in the skeleton by stimulating osteoblasts via the canonical wnt signaling pathway, and may be beneficial for treating OI. In this study, Scl-Ab therapy was investigated in mice heterozygous for a typical OI-causing Gly→Cys substitution in col1a1. Two weeks of Scl-Ab successfully stimulated osteoblast bone formation in a knock-in model for moderately severe OI (Brtl/+) and in WT mice, leading to improved bone mass and reduced long-bone fragility. Image-guided nanoindentation revealed no alteration in local tissue mineralization dynamics with Scl-Ab. These results contrast with previous findings of antiresorptive efficacy in OI both in mechanism and potency of effects on fragility. In conclusion, short-term Scl-Ab was successfully anabolic in osteoblasts harboring a typical OI-causing collagen mutation and represents a potential new therapy to improve bone mass and reduce fractures in pediatric OI.
Collapse
Affiliation(s)
- Benjamin P. Sinder
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor MI
- Department of Biomedical Engineering, University of Michigan Ann Arbor MI
| | - Mary M. Eddy
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor MI
| | | | - Michelle S. Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor MI
| | - Joan C. Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Kenneth M. Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Ann Arbor MI
- Department of Biomedical Engineering, University of Michigan Ann Arbor MI
| |
Collapse
|
50
|
Kemp AD, Harding CC, Cabral WA, Marini JC, Wallace JM. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol 2012; 180:428-38. [PMID: 23041293 PMCID: PMC3685442 DOI: 10.1016/j.jsb.2012.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/10/2012] [Accepted: 09/25/2012] [Indexed: 11/25/2022]
Abstract
Type I collagen is the most abundant protein in mammals, and is a vital part of the extracellular matrix for numerous tissues. Despite collagen's importance, little is known about its nanoscale morphology in tissues and how morphology relates to mechanical function. This study probes nanoscale structure and mechanical properties of collagen as a function of disease in native hydrated tendons. Wild type tendon and tendon from the Brtl/+ mouse model of Osteogenesis Imperfecta were investigated. An atomic force microscope (AFM) was used to image and indent minimally-processed collagen fibrils in hydrated and dehydrated conditions. AFM was used because of the ability to keep biological tissues as close to their native in situ conditions as possible. The study demonstrated phenotypic difference in Brtl/+ fibril morphology and mechanics in hydrated tendon which became more compelling upon dehydration. Dried tendons had a significant downward shift in fibril D-periodic spacing versus a shift up in wet tendons. Nanoscale changes in morphology in dry samples were accompanied by significant increases in modulus and adhesion force and decreased indentation depth. A minimal mechanical phenotype existed in hydrated samples, possibly due to water masking structural defects within the diseased fibrils. This study demonstrates that collagen nanoscale morphology and mechanics are impacted in Brtl/+ tendons, and that the phenotype can be modulated by the presence or absence of water. Dehydration causes artifacts in biological samples which require water and this factor must be considered for studies at any length scale in collagen-based tissues, especially when characterizing disease-induced differences.
Collapse
Affiliation(s)
- Arika D. Kemp
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Chad C. Harding
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Wayne A. Cabral
- Bone and Extracellular Matrix Branch, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Joan C. Marini
- Bone and Extracellular Matrix Branch, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|