1
|
Zhang Y, Zhao X, Zhao N, Meng H, Zhang Z, Song Y, Shan L, Zhang X, Zhang W, Sang Z. Chronic Excess Iodine Intake Inhibits Bone Reconstruction Leading to Osteoporosis in Rats. J Nutr 2024; 154:1209-1218. [PMID: 38342405 DOI: 10.1016/j.tjnut.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Although iodine modulates bone metabolism in the treatment of thyroid disease, the effect of iodine intake on bone metabolism remains less known. OBJECTIVE This study evaluated the effect of excess iodine intake in rats on bone reconstruction in the 6th and 12th month of intervention. METHOD Rats were treated with different doses of iodinated water: the normal group (NI, 6.15 μg/d), 5-fold high iodine group (5HI, 30.75 μg/d), 10-fold high iodine group (10HI, 61.5 μg/d), 50-fold high iodine group (50HI, 307.5 μg/d), and 100-fold high iodine group (100HI, 615 μg/d). Thyroid hormone concentrations were determined by a chemiluminescent immunoassay. Morphometry and microstructure of bone trabecula were observed by hematoxylin and eosin staining and microcomputed tomography, respectively. Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate the activity of osteoblasts and osteoclasts, respectively. RESULTS The 24-h urine iodine concentration increased with iodine intake. The rats in the HI groups had higher serum thyroid-stimulating hormone and decreased serum free thyroxine concentrations in the 12th month than the NI group (all P < 0.05). The percentage of the trabecular bone area and osteoblast perimeter in the 100HI group were significantly lower than those in the NI group (P < 0.05). Increased structure model index was observed in the 50HI and 100HI groups compared with the NI group in the 6th month and increased trabecular separation in the 12th month (all P < 0.05). ALP and TRAP staining revealed osteoblastic bone formation was reduced, and the number of TRAP+ multinucleated cells decreased with increasing iodine intake. CONCLUSIONS Excess iodine intake may increase the risk of hypothyroidism in rats. Chronic excess iodine intake can lead to abnormal changes in skeletal structure, resulting in reduced activity of osteoblasts and osteoclasts, which inhibits the process of bone reconstruction and may lead to osteoporosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Xin Zhao
- Department of Hand Microsurgery, Tianjin Hospital, Tianjin, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haohao Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Zixuan Zhang
- Department of Preventive Medicine Specialty, School of Public Health, Jilin University, Changchun City, China
| | - Yan Song
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Le Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Xinbao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Wanqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Zhongna Sang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Thyroid hormone receptor Thra and Thrb knockout differentially affects osteoblast biology and thyroid hormone responsiveness in vitro. J Cell Biochem 2023; 124:1948-1960. [PMID: 37992217 DOI: 10.1002/jcb.30500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Thyroid hormones (TH) are important modulators of bone remodeling and thus, thyroid diseases, in particular hyperthyroidism, are able to compromise bone quality and fracture resistance. TH actions on bone are mediated by the thyroid hormone receptors (TR) TRα1 and TRβ1, encoded by Thra and Thrb, respectively. Skeletal phenotypes of mice lacking Thra (Thra0/0 ) and Thrb (Thrb-/- ) are well-described and suggest that TRα1 is the predominant mediator of TH actions in bone. Considering that bone cells might be affected by systemic TH changes seen in these mutant mice, here we investigated the effects of TR knockout on osteoblasts exclusively at the cellular level. Primary osteoblasts obtained from Thra0/0 , Thrb-/- , and respective wildtype (WT) mice were analyzed regarding their differentiation potential, activity and TH responsiveness in vitro. Thra, but not Thrb knockout promoted differentiation and activity of early, mature and late osteoblasts as compared to respective WT cells. Interestingly, while mineralization capacity and expression of osteoblast marker genes and TH target gene Klf9 was increased by TH in WT and Thra-deficient osteoblasts, Thrb knockout mitigated the responsiveness of osteoblasts to short (48 h) and long term (10 d) TH treatment. Further, we found a low ratio of Rankl, a potent osteoclast stimulator, over osteoprotegerin, an osteoclast inhibitor, in Thrb-deficient osteoblasts and in line, supernatants obtained from Thrb-/- osteoblasts reduced numbers of primary osteoclasts in vitro. In accordance to the increased Rankl/Opg ratio in TH-treated WT osteoblasts only, supernatants from these cells, but not from TH-treated Thrb-/- osteoblasts increased the expression of Trap and Ctsk in osteoclasts, suggesting that osteoclasts are indirectly stimulated by TH via TRβ1 in osteoblasts. In conclusion, our study shows that both Thra and Thrb differentially affect activity, differentiation and TH response of osteoblasts in vitro and emphasizes the importance of TRβ1 to mediate TH actions in bone.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
3
|
Abstract
The present review traces the road leading to discovery of L-thyroxine, thyroid hormone (3,5,3´-triiodo-L-thyronine, T3) and its cognate nuclear receptors. Thyroid hormone is a pleio-tropic regulator of growth, differentiation, and tissue homeostasis in higher organisms. The major site of the thyroid hormone action is predominantly a cell nucleus. T3 specific binding sites in the cell nuclei have opened a new era in the field of the thyroid hormone receptors (TRs) discovery. T3 actions are mediated by high affinity nuclear TRs, TRalpha and TRbeta, which function as T3-activated transcription factors playing an essential role as transcription-modulating proteins affecting the transcriptional responses in target genes. Discovery and characterization of nuclear retinoid X receptors (RXRs), which form with TRs a heterodimer RXR/TR, positioned RXRs at the epicenter of molecular endocrinology. Transcriptional control via nuclear RXR/TR heterodimer represents a direct action of thyroid hormone. T3 plays a crucial role in the development of brain, it exerts significant effects on the cardiovascular system, skeletal muscle contractile function, bone development and growth, both female and male reproductive systems, and skin. It plays an important role in maintaining the hepatic, kidney and intestine homeostasis and in pancreas, it stimulates the beta-cell proliferation and survival. The TRs cross-talk with other signaling pathways intensifies the T3 action at cellular level. The role of thyroid hormone in human cancers, acting via its cognate nuclear receptors, has not been fully elucidated yet. This review is aimed to describe the history of T3 receptors, starting from discovery of T3 binding sites in the cell nuclei to revelation of T3 receptors as T3-inducible transcription factors in relation to T3 action at cellular level. It also focuses on milestones of investigation, comprising RXR/TR dimerization, cross-talk between T3 receptors, and other regulatory pathways within the cell and mainly on genomic action of T3. This review also focuses on novel directions of investigation on relationships between T3 receptors and cancer. Based on the update of available literature and the author's experimental experience, it is devoted to clinicians and medical students.
Collapse
|
4
|
Brankovič J, Jan J, Fazarinc G, Vrecl M. Bone tissue morphology of rat offspring lactationally exposed to polychlorinated biphenyl 169 and 155. Sci Rep 2020; 10:19016. [PMID: 33149271 PMCID: PMC7642367 DOI: 10.1038/s41598-020-76057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous, persistent, organic pollutants also considered endocrine-disrupting chemicals. Our study examined the effects of lactational exposure to nondioxin-like PCB-155 and/or dioxin-like PCB-169 on longitudinal femur growth at the distal epiphyseal growth plate (EGP) in young rats at three different ages [postnatal days (PNDs) 9, 22, and 42]. After delivery, lactating rats were divided into four groups (PCB-169, PCB-155, PCB-155 + 169, and control) and administered PCBs intraperitoneally. The femurs of offspring were used to estimate growth rate (µm/day), and histomorphometric analysis on the distal femur included the thickness of the EGP and zones of proliferation and hypertrophy with calcification. Stereometry was used to determine trabecular bone volume density. In the PCB-169 and PCB-155 + 169 groups, PCB-169 affected longitudinal bone growth in the early postnatal period by interfering with chondrocytes in the EGP zone of proliferation and, to a lesser extent, the zone of hypertrophy. Morphometric alterations in EGP structure diminished until puberty. A slow growth rate persisted in the PCB-169 group until PND 42, while in the PCB-155 group, a fast growth rate between PNDs 9 to 22 was significantly reduced between PNDs 22 to 42. Sterometric assessment showed decreased trabecular bone volume in the PCB-155 + 169 group compared with that in the control on PND 9 and increased in the PCB-169 group compared with that in the PCB-155 group on PND 42. To summarize, studied PCB congeners exerted congener- and age-dependent effects on femur growth rate and its histomorphometric characteristics.
Collapse
Affiliation(s)
- Jana Brankovič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia.
| | - Janja Jan
- Department of Dental Diseases and Normal Dental Morphology, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, Slovenia
| | - Gregor Fazarinc
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| |
Collapse
|
5
|
Preconditioning Can Improve Osteogenic Potential of Mesenchymal Stem Cells in Hypothyroidism. ACTA ACUST UNITED AC 2019. [DOI: 10.5812/gct.95441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zaitune CR, Fonseca TL, Capelo LP, Freitas FR, Beber EH, Dora JM, Wang CC, Miranda-Rodrigues M, Nonaka KO, Maia AL, Gouveia CHA. Abnormal Thyroid Hormone Status Differentially Affects Bone Mass Accrual and Bone Strength in C3H/HeJ Mice: A Mouse Model of Type I Deiodinase Deficiency. Front Endocrinol (Lausanne) 2019; 10:300. [PMID: 31156551 PMCID: PMC6530334 DOI: 10.3389/fendo.2019.00300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
C3H/HeJ (C3H) mice are deficient of type I deiodinase (D1), an enzyme that activates thyroid hormone (TH), converting thyroxine (T4) to triiodothyronine (T3). Nevertheless, C3H mice present normal serum T3 and a gross euthyroid phenotype. To investigate if a global D1 deficiency interferes in the TH effects on bone, we compared bone growth, bone mass accrual and bone strength of C3H and C57BL/6J (B6) mice under abnormal TH status. Four-week-old female mice of both strains were grouped as Euthyroid, Hypothyroid (pharmacologically-induced), 1xT4 and 10xT4 (hypothyroid animals receiving 1- or 10-fold the physiological dose of T4 /day/16 weeks). Hypothyroidism and TH excess similarly impaired body weight (BW) gain and body growth in both mice strains. In contrast, whereas hypothyroidism only slightly impaired bone mineral density (BMD) accrual in B6 mice, it severely impaired BMD accrual in C3H mice. No differences were observed in serum and bone concentrations of T3 between hypothyroid animals of both strains. Interestingly, treatment with 10xT4 was less deleterious to BMD accrual in C3H than in B6 mice and resulted in less elevated T3 serum levels in B6 than in C3H mice, which is probably explained by the lower D1 activity in C3H mice. In addition, hypothyroidism decreased bone strength only in C3H but not in B6 mice, while TH excess decreased this parameter in both strains. These findings indicate that D1 deficiency contributes to the TH excess-induced differences in bone mass accrual in C3H vs. B6 mice and suggest that deiodinase-unrelated genetic factors might account for the different skeleton responses to hypothyroidism between strains.
Collapse
Affiliation(s)
- Clarissa R. Zaitune
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institute of Healthy Sciences, Paulista University, São Paulo, Brazil
| | - Tatiana L. Fonseca
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chigago, IL, United States
| | - Luciane P. Capelo
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institute of Science and Technology, Federal University of São Paulo, São Paulo, Brazil
| | - Fatima R. Freitas
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Heart Institute (InCor) of Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Eduardo H. Beber
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - José M. Dora
- Endocrine Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Charles C. Wang
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Manuela Miranda-Rodrigues
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Keico O. Nonaka
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Ana L. Maia
- Endocrine Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Cecilia H. A. Gouveia
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Cecilia H. A. Gouveia
| |
Collapse
|
7
|
Sefati N, Abbaszadeh HA, Fadaei Fathabady F, Abdollahifar MA, Khoramgah MS, Darabi S, Amini A, Tahmasebinia F, Norouzian M. The Combined Effects of Mesenchymal Stem Cell Conditioned Media and Low-Level Laser on Stereological and Biomechanical Parameter in Hypothyroidism Rat Model. J Lasers Med Sci 2018; 9:243-248. [PMID: 31119018 DOI: 10.15171/jlms.2018.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Many studies have shown the positive effect of laser radiation and application of the mesenchymal stem cells (MSCs) and their secretion in stimulating bone regeneration. The aim of this study was determining effects of MSC conditioned media (CM) and low-level laser (LLL) on healing bone defects in the hypothyroid male rat. Methods: We assigned 30 male Wistar rats randomly to 3 groups: control, hypothyroidism, CM+LLL. Four weeks after surgery, the right tibia was removed. Biomechanical examination and histological examinations were performed immediately. Results: Our results showed significant increase in bending stiffness (116.09±18.49), maximum force (65.41±8.16), stress high load (23.30±7.14), energy absorption (34.57±4.10), trabecular bone volume (1.34±0.38) and the number of osteocyte, osteoblast, and osteoclast (12.77±0.54, 6.19±0.80, 1.12±0.16 respectively) in osteotomy site in the LLL+CM group compared to the hypothyroidism group (P<0.05). Conclusion: The results indicated that using the LLL + CM may improve fracture regeneration and it may hasten bone healing in the hypothyroid rat.
Collapse
Affiliation(s)
- Niloofar Sefati
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam-Sadat Khoramgah
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Science, QazviCellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Irann, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foozhan Tahmasebinia
- Department of Biological Sciences,Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohsen Norouzian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti-Papi B. Thyroid Hormone and Skeletal Development. VITAMINS AND HORMONES 2018; 106:383-472. [PMID: 29407443 DOI: 10.1016/bs.vh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is essential for skeletal development from the late fetal life to the onset of puberty. During this large window of actions, TH has key roles in endochondral and intramembranous ossifications and in the longitudinal bone growth. There is evidence that TH acts directly in skeletal cells but also indirectly, specially via the growth hormone/insulin-like growth factor-1 axis, to control the linear skeletal growth and maturation. The presence of receptors, plasma membrane transporters, and activating and inactivating enzymes of TH in skeletal cells suggests that direct actions of TH in these cells are crucial for skeletal development, which has been confirmed by several in vitro and in vivo studies, including mouse genetic studies, and clinical studies in patients with resistance to thyroid hormone due to dominant-negative mutations in TH receptors. This review examines progress made on understanding the mechanisms by which TH regulates the skeletal development.
Collapse
Affiliation(s)
- Cecilia H A Gouveia
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gisele M Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil; Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bianca Neofiti-Papi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Ribeiro L, Silva J, Ocarino N, Melo E, Serakides R. Excesso de tiroxina materna associado ao hipertireoidismo pós-natal reduz o crescimento ósseo e o perfil proliferativo e angiogênico das cartilagens de crescimento de ratos. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-9175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Foram estudados os efeitos do excesso da tiroxina materna associado ao hipertireoidismo pós-natal sobre o crescimento ósseo e o perfil proliferativo e angiogênico das cartilagens. Dezesseis ratas Wistar adultas foram distribuídas nos grupos tratados com L-tiroxina e controle. A prole do grupo tratado recebeu L-tiroxina do desmame até 40 dias de idade. Ao desmame, foi realizada dosagem plasmática de T4 livre nas mães. Na prole, foram realizados: dosagem plasmática de T3 total e T4 livre, morfometria das tireoides, mensuração do comprimento e largura do fêmur. Nas cartilagens, foi avaliada a expressão imuno-histoquímica e gênica de CDC-47, VEGF, Flk-1, Ang1, Ang2 e Tie2. As médias entre grupos foram comparadas pelo teste T de Student. As concentrações de T4 livre das mães tratadas e de T3 total e T4 livre da prole foram significativamente mais elevadas. A largura do fêmur foi menor nos animais tratados. Houve também redução da imunoexpressão de CDC-47 e de VEGF e dos transcritos gênicos para VEGF e Ang1 nas cartilagens. Conclui-se que o excesso de tiroxina materna associado ao hipertireoidismo pós-natal reduz a largura da diáfise femoral, a proliferação celular e a expressão de VEGF e de Ang1 nas cartilagens de crescimento de ratos.
Collapse
Affiliation(s)
| | - J.F. Silva
- Universidade Federal de Minas Gerais, Brazil
| | | | - E.G. Melo
- Universidade Federal de Minas Gerais, Brazil
| | | |
Collapse
|
10
|
Adipose Derived Stem Cells Conditioned Media in Combination with Bioceramic-Collagen Scaffolds Improved Calvarial Bone Healing in Hypothyroid Rats. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017. [DOI: 10.5812/ircmj.45516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Liu C, Zhang Y, Fu T, Liu Y, Wei S, Yang Y, Zhao D, Zhao W, Song M, Tang X, Wu H. Effects of electromagnetic fields on bone loss in hyperthyroidism rat model. Bioelectromagnetics 2016; 38:137-150. [PMID: 27973686 DOI: 10.1002/bem.22022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/22/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Chaoxu Liu
- Department of Orthopaedics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yingchi Zhang
- Department of Orthopaedics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Tao Fu
- Department of Orthopaedics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yang Liu
- Department of Orthopaedics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Sheng Wei
- Department of Orthopaedics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yong Yang
- Department of Orthopaedics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Dongming Zhao
- Department of Orthopaedics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | | | - Mingyu Song
- Department of Gynaecology and Obstetrics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiangyu Tang
- Department of Radiology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Hua Wu
- Department of Orthopaedics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
12
|
Xing W, Aghajanian P, Goodluck H, Kesavan C, Cheng S, Pourteymoor S, Watt H, Alarcon C, Mohan S. Thyroid hormone receptor-β1 signaling is critically involved in regulating secondary ossification via promoting transcription of the Ihh gene in the epiphysis. Am J Physiol Endocrinol Metab 2016; 310:E846-54. [PMID: 27026086 PMCID: PMC4895449 DOI: 10.1152/ajpendo.00541.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) action is mediated through two nuclear TH receptors, THRα and THRβ. Although the role of THRα is well established in bone, less is known about the relevance of THRβ-mediated signaling in bone development. On ther basis of our recent finding that TH signaling is essential for initiation and formation of secondary ossification center, we evaluated the role of THRs in mediating TH effects on epiphysial bone formation. Two-day treatment of TH-deficient Tshr(-/-) mice with TH increased THRβ1 mRNA level 3.4-fold at day 7 but had no effect on THRα1 mRNA level at the proximal tibia epiphysis. Treatment of serum-free cultures of tibias from 3-day-old mice with T3 increased THRβ1 expression 2.1- and 13-fold, respectively, at 24 and 72 h. Ten-day treatment of Tshr(-/-) newborns (days 5-14) with THRβ1 agonist GC1 at 0.2 or 2.0 μg/day increased BV/TV at day 21 by 225 and 263%, respectively, compared with vehicle treatment. Two-day treatment with GC1 (0.2 μg/day) increased expression levels of Indian hedgehog (Ihh) 100-fold, osterix 15-fold, and osteocalcin 59-fold compared with vehicle at day 7 in the proximal tibia epiphysis. Gel mobility shift assay demonstrated that a putative TH response element in the distal promoter of mouse Ihh gene interacted with THRβ1. GC1 treatment (1 nM) increased Ihh distal promoter activity 20-fold after 48 h in chondroctyes. Our data suggest a novel role for THRβ1 in secondary ossification at the epiphysis that involves transcriptional upregulation of Ihh gene.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Helen Goodluck
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Heather Watt
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Catrina Alarcon
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California; Department of Orthopedics, Loma Linda University, Loma Linda, California; and Department of Biochemistry, Loma Linda University, Loma Linda, California
| |
Collapse
|
13
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
14
|
Gonçalves A, Tolentino CC, Souza FRD, Huss JCDC, Zinato KDL, Lopes LTP, Furlanetto Júnior R, Neves FDAR. The thyroid hormone receptor β-selective agonist GC-1 does not affect tolerance to exercise in hypothyroid rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:141-7. [DOI: 10.1590/2359-3997000000027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/20/2014] [Indexed: 11/22/2022]
|
15
|
Bassett JHD, Boyde A, Zikmund T, Evans H, Croucher PI, Zhu X, Park JW, Cheng SY, Williams GR. Thyroid hormone receptor α mutation causes a severe and thyroxine-resistant skeletal dysplasia in female mice. Endocrinology 2014; 155:3699-712. [PMID: 24914936 PMCID: PMC4138578 DOI: 10.1210/en.2013-2156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/11/2014] [Indexed: 02/03/2023]
Abstract
A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1(PV/+) mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1(PV/+) mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1(PV/+) mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Department of Medicine (J.H.D.B., G.R.W.), Imperial College London, London W12 0NN, United Kingdom; Dental Physical Sciences, Oral Growth and Development (A.B.), Queen Mary University of London, London E1 4NS, United Kingdom; Laboratory of X-Ray Micro-Computed Tomography and Nano-Computed Tomography (T.Z.), Central European Institute of Technology, Brno University of Technology CZ-61600 Brno, Czech Republic; Sheffield Myeloma Research Team (H.E.), University of Sheffield, Sheffield S10 2RX, United Kingdom; Bone Biology Program (P.I.C.), Garvan Institute of Medical Research, Sydney NSW 2010, Australia; and Laboratory of Molecular Biology (X.Z., J.W.P., S-y.C.), National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Picou F, Fauquier T, Chatonnet F, Richard S, Flamant F. Deciphering direct and indirect influence of thyroid hormone with mouse genetics. Mol Endocrinol 2014; 28:429-41. [PMID: 24617548 DOI: 10.1210/me.2013-1414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
T3, the active form of thyroid hormone, binds nuclear receptors that regulate the transcription of a large number of genes in many cell types. Unraveling the direct and indirect effect of this hormonal stimulation, and establishing links between these molecular events and the developmental and physiological functions of the hormone, is a major challenge. New mouse genetics tools, notably those based on Cre/loxP technology, are suitable to perform a multiscale analysis of T3 signaling and achieve this task.
Collapse
Affiliation(s)
- Frédéric Picou
- Université de Lyon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon 1, École Normale, Supérieure de Lyon, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | | | | | | | | |
Collapse
|
17
|
Huang YY, Gusdon AM, Qu S. Cross-talk between the thyroid and liver: A new target for nonalcoholic fatty liver disease treatment. World J Gastroenterol 2013; 19:8238-8246. [PMID: 24363514 PMCID: PMC3857446 DOI: 10.3748/wjg.v19.i45.8238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/04/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been recognized as the most common liver metabolic disease, and it is also a burgeoning health problem that affects one-third of adults and is associated with obesity and insulin resistance now. Thyroid hormone (TH) and its receptors play a fundamental role in lipid metabolism and lipid accumulation in the liver. It is found that thyroid receptor and its isoforms exhibit tissue-specific expression with a variety of functions. TRβ1 is predominantly expressed in the brain and adipose tissue and TRβ2 is the major isoform in the liver, kidney and fat. They have different functions and play important roles in lipid metabolism. Recently, there are many studies on the treatment of NAFLD with TH and its analogues. We review here that thyroid hormone and TR are a potential target for pharmacologic treatments. Lipid metabolism and lipid accumulation can be regulated and reversed by TH and its analogues.
Collapse
|
18
|
Abstract
Thyroid hormones (THs) are important in the development and maintenance of lipid and energy homeostasis. THs act through two closely related TH receptors (TRs α and β), which are conditional transcription factors. Recently, TH analogues or thyromimetics with varying degrees of TR subtype and liver uptake selectivity have been developed. These compounds exert beneficial effects of TH excess states without many undesirable TR-dependent side effects. Several selective TR modulators (STRMs) showed exceptionally promising results in lowering serum cholesterol in preclinical animal models and human clinical studies. Moreover, some first generation STRMs elicit other potentially beneficial effects on obesity, glucose metabolism, and nonalcoholic fatty liver disease (NAFLD). While it was initially thought that STRMs would be an effective long-term therapy to combat elevated cholesterol, possibly in conjunction with another cholesterol-lowering therapy, the statins, three major first generation STRMs failed to progress beyond early phase III human trials. The aim of this review is to discuss how STRMs work, their actions in preclinical animal models and human clinical trials, why they did not progress beyond clinical trials as cholesterol-lowering therapeutics, whether selective TR modulation continues to hold promise for dyslipidemias, and whether members of this drug class could be applied to the treatment of other aspects of metabolic syndrome and human genetic disease.
Collapse
Affiliation(s)
- Sunitha Meruvu
- Center for Genomic Medicine, Houston Methodist Research Institute , Houston, Texas
| | | | | | | |
Collapse
|
19
|
Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta Gen Subj 2012; 1830:3908-16. [PMID: 22484490 DOI: 10.1016/j.bbagen.2012.03.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/01/2012] [Accepted: 03/20/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tissue homeostasis depends on the balance between cell proliferation and differentiation. Thyroid hormones (THs), through binding to their nuclear receptors, can regulate the expression of many genes involved in cell cycle control and cellular differentiation. This can occur by direct transcriptional regulation or by modulation of the activity of different signaling pathways. SCOPE OF REVIEW In this review we will summarize the role of the different receptor isoforms in growth and maturation of selected tissues and organs. We will focus on mammalian tissues, and therefore we will not address the fundamental role of the THs during amphibian metamorphosis. MAJOR CONCLUSIONS The actions of THs are highly pleiotropic, affecting many tissues at different developmental stages. As a consequence, their effects on proliferation and differentiation are highly heterogeneous depending on the cell type, the cellular context, and the developmental or transformation status. Both during development and in the adult, stem cells are essential for proper organ formation, maintenance and regeneration. Recent evidence suggests that some of the actions of the thyroid hormone receptors could be secondary to regulation of stem/progenitor cell function. Here we will also include the latest knowledge on the role of these receptors in proliferation and differentiation of embryonic and adult stem cells. GENERAL SIGNIFICANCE The thyroid hormone receptors are potent regulators of proliferation and differentiation of many cell types. This can explain the important role of the thyroid hormones and their receptors in key processes such as growth, development, tissue homeostasis or cancer. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
|
20
|
Sainsbury A, Zhang L. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 2012; 13:234-57. [PMID: 22070225 DOI: 10.1111/j.1467-789x.2011.00948.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Energy deficit in lean or obese animals or humans stimulates appetite, reduces energy expenditure and possibly also decreases physical activity, thereby contributing to weight regain. Often overlooked in weight loss trials for obesity, however, is the effect of energy restriction on neuroendocrine status. Negative energy balance in lean animals and humans consistently inhibits activity of the hypothalamo-pituitary-thyroid, -gonadotropic and -somatotropic axes (or reduces circulating insulin-like growth factor-1 levels), while concomitantly activating the hypothalamo-pituitary-adrenal axis, with emerging evidence of similar changes in overweight and obese people during lifestyle interventions for weight loss. These neuroendocrine changes, which animal studies show may result in part from hypothalamic actions of orexigenic (e.g. neuropeptide Y, agouti-related peptide) and anorexigenic peptides (e.g. alpha-melanocyte-stimulating hormone, and cocaine and amphetamine-related transcript), can adversely affect body composition by promoting the accumulation of adipose tissue (particularly central adiposity) and stimulating the loss of lean body mass and bone. As such, current efforts to maximize loss of excess body fat in obese people may inadvertently be promoting long-term complications such as central obesity and associated health risks, as well as sarcopenia and osteoporosis. Future weight loss trials would benefit from assessment of the effects on body composition and key hormonal regulators of body composition using sensitive techniques.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
21
|
Monfoulet LE, Rabier B, Dacquin R, Anginot A, Photsavang J, Jurdic P, Vico L, Malaval L, Chassande O. Thyroid hormone receptor β mediates thyroid hormone effects on bone remodeling and bone mass. J Bone Miner Res 2011; 26:2036-44. [PMID: 21594896 DOI: 10.1002/jbmr.432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Excess thyroid hormone (TH) in adults causes osteoporosis and increases fracture risk. However, the mechanisms by which TH affects bone turnover are not elucidated. In particular, the roles of thyroid hormone receptor (TR) isotypes in the mediation of TH effects on osteoblast-mediated bone formation and osteoclast-mediated bone resorption are not established. In this study we have induced experimental hypothyroidism or hyperthyroidism in adult wild-type, TRα- or TRβ-deficient mice and analyzed the effects of TH status on the structure and remodeling parameters of trabecular bone. In wild-type mice, excess TH decreased bone volume and mineralization. High TH concentrations were associated with a high bone-resorption activity, assessed by increased osteoclast surfaces and elevated concentrations of serum bone-resorption markers. Serum markers of bone formation also were higher in TH-treated mice. TRα deficiency did not prevent TH action on bone volume, bone mineralization, bone formation, or bone resorption. In contrast, TRβ deficiency blocked all the early effects of excess TH observed in wild-type mice. However, prolonged exposure to low or high TH concentrations of TRβ-deficient mice induced mild modifications of bone structure and remodeling parameters. Together our data suggest that TRβ receptors mediate the acute effects produced by transient changes of TH concentrations on bone remodeling, whereas TRα receptors mediate long-term effects of chronic alterations of TH metabolism. These data shed new light on the respective roles of TRs in the control of bone metabolism by TH.
Collapse
|
22
|
Lanham SA, Fowden AL, Roberts C, Cooper C, Oreffo ROC, Forhead AJ. Effects of hypothyroidism on the structure and mechanical properties of bone in the ovine fetus. J Endocrinol 2011; 210:189-98. [PMID: 21642376 DOI: 10.1530/joe-11-0138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid hormones are important for normal bone growth and development in postnatal life. However, little is known about the role of thyroid hormones in the control of bone development in the fetus. Using computed tomography and mechanical testing, the structure and strength of metatarsal bones were measured in sheep fetuses in which thyroid hormone levels were altered by thyroidectomy or adrenalectomy. In intact fetuses, plasma concentrations of total calcium and the degradation products of C-terminal telopeptides of type I collagen increased between 100 and 144 days of gestation (term 145±2 days), in association with various indices of bone growth and development. Thyroid hormone deficiency induced by thyroidectomy at 105-110 days of gestation caused growth retardation of the fetus and significant changes in metatarsal bone structure and strength when analyzed at both 130 and 144 days of gestation. In hypothyroid fetuses, trabecular bone was stronger with thicker, more closely spaced trabeculae, despite lower bone mineral density. Plasma osteocalcin was reduced by fetal thyroidectomy. Removal of the fetal adrenal gland at 115-120 days of gestation, and prevention of the prepartum rises in cortisol and triiodothyronine, had no effect on bodyweight, limb lengths, metatarsal bone structure or strength, or circulating markers of bone metabolism in the fetuses studied near term. This study demonstrates that hypothyroidism in utero has significant effects on the structure and strength of bone, with different consequences for cortical and trabecular bone.
Collapse
Affiliation(s)
- S A Lanham
- Bone and Joint Research Group, Institute of Developmental Sciences, University of Southampton School of Medicine, Tremona Road, Southampton SO16 6YD, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Mariúba MV, Goulart-Silva F, Bordin S, Nunes MT. Effect of triiodothyronine on the maxilla and masseter muscles of the rat stomatognathic system. Braz J Med Biol Res 2011; 44:694-9. [PMID: 21584440 DOI: 10.1590/s0100-879x2011007500063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 04/27/2011] [Indexed: 11/22/2022] Open
Abstract
The maxilla and masseter muscles are components of the stomatognathic system involved in chewing, which is frequently affected by physical forces such as gravity, and by dental, orthodontic and orthopedic procedures. Thyroid hormones (TH) are known to regulate the expression of genes that control bone mass and the oxidative properties of muscles; however, little is known about the effects of TH on the stomatognathic system. This study investigated this issue by evaluating: i) osteoprotegerin (OPG) and osteopontine (OPN) mRNA expression in the maxilla and ii) myoglobin (Mb) mRNA and protein expression, as well as fiber composition of the masseter. Male Wistar rats (~250 g) were divided into thyroidectomized (Tx) and sham-operated (SO) groups (N = 24/group) treated with T3 or saline (0.9%) for 15 days. Thyroidectomy increased OPG (~40%) and OPN (~75%) mRNA expression, while T3 treatment reduced OPG (~40%) and OPN (~75%) in Tx, and both (~50%) in SO rats. Masseter Mb mRNA expression and fiber type composition remained unchanged, despite the induction of hypo- and hyperthyroidism. However, Mb content was decreased in Tx rats even after T3 treatment. Since OPG and OPN are key proteins involved in the osteoclastogenesis inhibition and bone mineralization, respectively, and that Mb functions as a muscle store of O2 allowing muscles to be more resistant to fatigue, the present data indicate that TH also interfere with maxilla remodeling and the oxidative properties of the masseter, influencing the function of the stomatognathic system, which may require attention during dental, orthodontic and orthopedic procedures in patients with thyroid diseases.
Collapse
Affiliation(s)
- M V Mariúba
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brasil
| | | | | | | |
Collapse
|
24
|
Abstract
Selective thyromimetics are synthetic analogs of thyroid hormones with tissue-specific thyroid hormone actions. Tissue selectivity is partly mediated by selectivity for the thyroid hormone receptor-β isoform, but is also enhanced by tissue-selective uptake. Several preclinical animal models and recent human clinical trials have provided sound evidence that thyromimetics can serve as pharmacological tools to improve serum lipids without affecting heart rate. Thyromimetics consistently and efficiently lowered low-density lipoprotein cholesterol and lipoprotein (a) plasma levels without positive chronotropic effects. Most importantly, thyromimetics had a synergistic action when used in addition to 3-hydroxy-3-methylglutaryl CoA reductase inhibitors. Animal data have further suggested that thyromimetics might be useful in the treatment of obesity, hepatic steatosis and atherosclerosis. However, only long-term phase III clinical trials will tell if the observed lipid lowering effects of thyromimetics will improve cardiovascular outcome in humans, too. At the moment, the treatment of dyslipidemia seems to be the major indication for the therapeutic use of thyromimetics, which are now rapidly moving from bench to bed-side.
Collapse
Affiliation(s)
- Ivan Tancevski
- Department of Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|
25
|
Thyroid and bone. Arch Biochem Biophys 2010; 503:129-36. [DOI: 10.1016/j.abb.2010.06.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/15/2010] [Accepted: 06/18/2010] [Indexed: 11/20/2022]
|
26
|
El‐bakry A, El‐Gareib A, Ahmed R. Comparative study of the effects of experimentally induced hypothyroidism and hyperthyroidism in some brain regions in albino rats. Int J Dev Neurosci 2010; 28:371-89. [DOI: 10.1016/j.ijdevneu.2010.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022] Open
Affiliation(s)
- A.M. El‐bakry
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| | - A.W. El‐Gareib
- Zoology Department, Faculty of ScienceCairo UniversityEgypt
| | - R.G. Ahmed
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| |
Collapse
|
27
|
Adams AC, Astapova I, Fisher FM, Badman MK, Kurgansky KE, Flier JS, Hollenberg AN, Maratos-Flier E. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARalpha-dependent manner. J Biol Chem 2010; 285:14078-82. [PMID: 20236931 DOI: 10.1074/jbc.c110.107375] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thyroid hormone has profound and diverse effects on liver metabolism. Here we show that tri-iodothyronine (T3) treatment in mice acutely and specifically induces hepatic expression of the metabolic regulator fibroblast growth factor 21 (FGF21). Mice treated with T3 showed a dose-dependent increase in hepatic FGF21 expression with significant induction at doses as low as 100 microg/kg. Time course studies determined that induction is seen as early as 4 h after treatment with a further increase in expression at 6 h after injection. As FGF21 expression is downstream of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha), we treated PPARalpha knock-out mice with T3 and found no increase in expression, indicating that hepatic regulation of FGF21 by T3 in liver is via a PPARalpha-dependent mechanism. In contrast, in white adipose tissue, FGF21 expression was suppressed by T3 treatment, with other T3 targets unaffected. In cell culture studies with an FGF21 reporter construct, we determined that three transcription factors are required for induction of FGF21 expression: thyroid hormone receptor beta (TRbeta), retinoid X receptor (RXR), and PPARalpha. These findings indicate a novel regulatory pathway whereby T3 positively regulates hepatic FGF21 expression, presenting a novel therapeutic target for diseases such as non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Andrew C Adams
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Asai S, Cao X, Yamauchi M, Funahashi K, Ishiguro N, Kambe F. Thyroid hormone non-genomically suppresses Src thereby stimulating osteocalcin expression in primary mouse calvarial osteoblasts. Biochem Biophys Res Commun 2009; 387:92-6. [PMID: 19563782 DOI: 10.1016/j.bbrc.2009.06.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
To provide further insights into non-genomic action of thyroid hormone (T3), we investigated whether Src is under control of T3 in primary calvarial osteoblasts prepared from neonatal mice. Treatment of the cells with T3 rapidly decreased Src Y416 autophosphorylation, followed by the decrease of phosphorylated extracellular signal-regulated kinases, suggesting that T3 non-genomically suppresses Src activity. Furthermore, this T3 effect was rapid and persistent, and was associated with the increased expression of osteocalcin (OC). To confirm the contribution of Src to the effect of T3 on OC expression, a constitutively active Src (Y527F) was overexpressed in osteoblasts. In such cells, Y416 phosphorylation was markedly increased even in the presence of T3, and T3-dependent expression of OC was markedly attenuated. The present study demonstrates a novel, non-genomic action of T3 in primary mouse osteoblasts, by which T3 suppresses Src thereby stimulating OC expression.
Collapse
Affiliation(s)
- Shuji Asai
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat Rev Drug Discov 2009; 8:308-20. [PMID: 19337272 DOI: 10.1038/nrd2830] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thyroid hormones influence heart rate, serum lipids, metabolic rate, body weight and multiple aspects of lipid, carbohydrate, protein and mineral metabolism. Although increased thyroid hormone levels can improve serum lipid profiles and reduce fat, these positive effects are counterbalanced by harmful effects on the heart, muscle and bone. Thus, attempts to use thyroid hormones for cholesterol-lowering and weight loss purposes have so far been limited. However, over the past decade, thyroid hormone analogues that are capable of uncoupling beneficial effects from deleterious effects have been developed. Such drugs could serve as powerful new tools to address two of the largest medical problems in developed countries--atherosclerosis and obesity.
Collapse
|
30
|
Beber EH, Capelo LP, Fonseca TL, Costa CC, Lotfi CF, Scanlan TS, Gouveia CHA. The thyroid hormone receptor (TR) beta-selective agonist GC-1 inhibits proliferation but induces differentiation and TR beta mRNA expression in mouse and rat osteoblast-like cells. Calcif Tissue Int 2009; 84:324-33. [PMID: 19280098 DOI: 10.1007/s00223-009-9230-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 01/30/2009] [Indexed: 11/30/2022]
Abstract
Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta1 over TRalpha1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TRalpha1 than TRbeta1 mRNA in rat (approximately 20-90%) and mouse (approximately 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TRalpha1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TRbeta1 mRNA expression increases (approximately 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TRbeta1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TRbeta1 mRNA expression to a similar extent in both cell lineages (approximately 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TRbeta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.
Collapse
Affiliation(s)
- Eduardo H Beber
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 2415, Sao Paulo, SP, 05508-000, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Josseaume C, Lorcy Y. [Thyroid hormone analogs: an important biological supply and new therapeutic possibilities]. ANNALES D'ENDOCRINOLOGIE 2009; 69 Suppl 1:S33-6. [PMID: 18954857 DOI: 10.1016/s0003-4266(08)73966-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thyroid hormones [predominantly 3, 5, 3 -I- iodothyronine (T3)] regulate cholesterol and lipoprotein metabolism but cardiac effects restrict their use as hypolipidemic drugs. New molecules have been developped which target specifically the thyroid hormone receptor ss, predominant isoform in liver. The first thyroid hormone agonist, called GC1, has selective actions compared to T3. In animals, GC1 reduced serum cholesterol and serum triglycerides, probably by stimulation important steps in reverse cholesterol transport. Other selective thyromimetic, KB- 2115 and KB - 141 have similar effects. Another class of thyroid hormone analogs, the thyronamines have emerged recently but the basic biology of this new class of endogenous thyroid hormone remains to better understood. Therefore, these molecules may be a potentially treatment for obesity and reduction cholesterol, triglycerides and lipoprotein (a). To date the studies in human are preliminary. Tolerance and efficacy of these drugs are still under investigation.
Collapse
Affiliation(s)
- C Josseaume
- Service d'Endocrinologie, Diabète, Maladie de la nutrition, Médecine Interne, CHU Rennes, Hôpital Sud, 16, boulevard de Bulgarie, 35000 Rennes.
| | | |
Collapse
|
32
|
Scanlan TS. Sobetirome: a case history of bench-to-clinic drug discovery and development. Heart Fail Rev 2008; 15:177-82. [DOI: 10.1007/s10741-008-9122-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
33
|
Capelo LP, Beber EH, Huang SA, Zorn TM, Bianco AC, Gouveia CH. Deiodinase-mediated thyroid hormone inactivation minimizes thyroid hormone signaling in the early development of fetal skeleton. Bone 2008; 43:921-30. [PMID: 18682303 PMCID: PMC4683160 DOI: 10.1016/j.bone.2008.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/24/2008] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
Abstract
Thyroid hormone (TH) plays a key role on post-natal bone development and metabolism, while its relevance during fetal bone development is uncertain. To study this, pregnant mice were made hypothyroid and fetuses harvested at embryonic days (E) 12.5, 14.5, 16.5 and 18.5. Despite a marked reduction in fetal tissue concentration of both T4 and T3, bone development, as assessed at the distal epiphyseal growth plate of the femur and vertebra, was largely preserved up to E16.5. Only at E18.5, the hypothyroid fetuses exhibited a reduction in femoral type I and type X collagen and osteocalcin mRNA levels, in the length and area of the proliferative and hypertrophic zones, in the number of chondrocytes per proliferative column, and in the number of hypertrophic chondrocytes, in addition to a slight delay in endochondral and intramembranous ossification. This suggests that up to E16.5, thyroid hormone signaling in bone is kept to a minimum. In fact, measuring the expression level of the activating and inactivating iodothyronine deiodinases (D2 and D3) helped understand how this is achieved. D3 mRNA was readily detected as early as E14.5 and its expression decreased markedly ( approximately 10-fold) at E18.5, and even more at 14 days after birth (P14). In contrast, D2 mRNA expression increased significantly by E18.5 and markedly ( approximately 2.5-fold) by P14. The reciprocal expression levels of D2 and D3 genes during early bone development along with the absence of a hypothyroidism-induced bone phenotype at this time suggest that coordinated reciprocal deiodinase expression keeps thyroid hormone signaling in bone to very low levels at this early stage of bone development.
Collapse
Affiliation(s)
- Luciane P. Capelo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Eduardo H. Beber
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Stephen A. Huang
- Division of Endocrinology, Children’s Hospital Boston, Boston, Massachusetts 02115, USA
| | - Telma M.T. Zorn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Antonio C. Bianco
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Cecília H.A. Gouveia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
34
|
Scanlan T. Thyroid hormone analogues: Useful biological probes and potential therapeutic agents. ANNALES D'ENDOCRINOLOGIE 2008; 69:157-9. [DOI: 10.1016/j.ando.2008.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Nourbakhsh A, Ahmed HA, McAuliffe TB, Garges KJ. Case report: bilateral slipped capital femoral epiphyses and hormone replacement. Clin Orthop Relat Res 2008; 466:743-8. [PMID: 18264862 PMCID: PMC2505232 DOI: 10.1007/s11999-007-0099-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 01/31/2023]
Abstract
A 24-year-old woman presented with an 11-year history of bilateral hip pain. Radiographs of the hips revealed severe bilateral slipped upper femoral epiphyses; the left side was more severely slipped than the right. While moving the hips under fluoroscopy we observed motion at the physes and reproduced the patient's pain; the motion confirmed the diagnosis of chronic slipped capital femoral epiphysis. Endocrinology tests showed hypothyroidism. After 1 year of thyroxin therapy, the patient's pain subsided and radiographs of the hips showed fusion of the physes. This case emphasizes the importance of screening for an endocrine disorder in patients with slipped capital femoral epiphysis particularly in adults and shows fusion can occur once the underlying endocrine abnormality is treated.
Collapse
Affiliation(s)
- Ali Nourbakhsh
- Division of Spine Surgery, Department of Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0165 USA
| | - Hasan A. Ahmed
- Department of Orthopaedic Surgery, Whipps Cross University Hospital, London, UK
| | - Thomas B. McAuliffe
- Department of Orthopaedic Surgery, Whipps Cross University Hospital, London, UK
| | - Kim J. Garges
- Division of Spine Surgery, Department of Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0165 USA
| |
Collapse
|
36
|
Bleicher L, Aparicio R, Nunes FM, Martinez L, Gomes Dias SM, Figueira ACM, Santos MAM, Venturelli WH, da Silva R, Donate PM, Neves FA, Simeoni LA, Baxter JD, Webb P, Skaf MS, Polikarpov I. Structural basis of GC-1 selectivity for thyroid hormone receptor isoforms. BMC STRUCTURAL BIOLOGY 2008; 8:8. [PMID: 18237438 PMCID: PMC2275733 DOI: 10.1186/1472-6807-8-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 01/31/2008] [Indexed: 12/14/2022]
Abstract
Background Thyroid receptors, TRα and TRβ, are involved in important physiological functions such as metabolism, cholesterol level and heart activities. Whereas metabolism increase and cholesterol level lowering could be achieved by TRβ isoform activation, TRα activation affects heart rates. Therefore, β-selective thyromimetics have been developed as promising drug-candidates for treatment of obesity and elevated cholesterol level. GC-1 [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)-phenoxy acetic acid] has ability to lower LDL cholesterol with 600- to 1400-fold more potency and approximately two- to threefold more efficacy than atorvastatin (Lipitor©) in studies in rats, mice and monkeys. Results To investigate GC-1 specificity, we solved crystal structures and performed molecular dynamics simulations of both isoforms complexed with GC-1. Crystal structures reveal that, in TRα Arg228 is observed in multiple conformations, an effect triggered by the differences in the interactions between GC-1 and Ser277 or the corresponding asparagine (Asn331) of TRβ. The corresponding Arg282 of TRβ is observed in only one single stable conformation, interacting effectively with the ligand. Molecular dynamics support this model: our simulations show that the multiple conformations can be observed for the Arg228 in TRα, in which the ligand interacts either strongly with the ligand or with the Ser277 residue. In contrast, a single stable Arg282 conformation is observed for TRβ, in which it strongly interacts with both GC-1 and the Asn331. Conclusion Our analysis suggests that the key factors for GC-1 selectivity are the presence of an oxyacetic acid ester oxygen and the absence of the amino group relative to T3. These results shed light into the β-selectivity of GC-1 and may assist the development of new compounds with potential as drug candidates to the treatment of hypercholesterolemia and obesity.
Collapse
Affiliation(s)
- Lucas Bleicher
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense, 400 CEP 13560-970 São Carlos, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Thyroid hormone was first identified as a potent regulator of skeletal maturation at the growth plate more than forty years ago. Since that time, many in vitro and in vivo studies have confirmed that thyroid hormone regulates the critical transition between cell proliferation and terminal differentiation in the growth plate, specifically the maturation of growth plate chondrocytes into hypertrophic cells. However these studies have neither identified the molecular mechanisms involved in the regulation of skeletal maturation by thyroid hormone, nor demonstrated how the systemic actions of thyroid hormone interface with the local regulatory milieu of the growth plate. This article will review our current understanding of the role of thyroid hormone in regulating the process of endochondral ossification at the growth plate, as well as what is currently known about the molecular mechanisms involved in this regulation.
Collapse
Affiliation(s)
- Yvonne Y Shao
- Orthopaedic Research Center, Department of Orthopaedic Surgery, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | |
Collapse
|
38
|
Bassett JHD, Swinhoe R, Chassande O, Samarut J, Williams GR. Thyroid hormone regulates heparan sulfate proteoglycan expression in the growth plate. Endocrinology 2006; 147:295-305. [PMID: 16223867 DOI: 10.1210/en.2005-0485] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone is essential for normal skeletal development. Hypothyroidism is associated with growth arrest, failure of chondrocyte differentiation, and abnormal matrix synthesis. Thyroid hormone modulates the Indian hedgehog/PTHrP feedback loop and regulates fibroblast growth factor (FGF)/FGF receptor signaling. Because heparan sulfate (HS) proteoglycans (Prgs) (HSPGs) are absolutely required by these signaling pathways, we have investigated whether thyroid status affects HSPG expression within the growth plate. Tibial growth plate sections were obtained from 12-wk-old rats rendered euthyroid, thyrotoxic, or hypothyroid at 6 wk of age, 14-d-old congenitally hypothyroid Pax8-null mice, and TRalpha/TRbeta double-null mice lacking all thyroid hormone receptors. HS and chondroitin sulfate Prg expression was determined by immunohistochemistry using three monoclonal antibodies. There was increased HS staining in growth plates from hypothyroid animals predominantly within the extracellular matrix of reserve and proliferative zones. Cellular HS staining was also increased particularly in prehypertrophic chondrocytes. T3 regulation of HSPG core protein and HS synthetic and modification enzyme expression was studied in ATDC5 cells using semiquantitative RT-PCR. Thyroid hormone negatively regulated expression of the core protein Gpc6, the polymerase Ext1, and the modification enzyme Hs6st2. These studies demonstrate that the expression and distribution of growth plate Prgs are regulated by thyroid hormone, and the regulation of HSPG expression provides an important additional link between FGF and Indian hedgehog signaling and T3. These novel observations suggest that the cartilage matrix and especially HSPGs are critical mediators of the skeletal response to thyroid hormone.
Collapse
Affiliation(s)
- J H D Bassett
- Molecular Endocrinology Group, Division of Medicine and Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
The major thyroid hormone (TH) secreted by the thyroid gland is thyroxine (T(4)). Triiodothyronine (T(3)), formed chiefly by deiodination of T(4), is the active hormone at the nuclear receptor, and it is generally accepted that deiodination is the major pathway regulating T(3) bioavailability in mammalian tissues. The alternate pathways, sulfation and glucuronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form iodothyroacetic acids, and ether link cleavage provide additional mechanisms for regulating the supply of active hormone. Sulfation may play a general role in regulation of iodothyronine metabolism, since sulfation of T(4) and T(3) markedly accelerates deiodination to the inactive metabolites, reverse triiodothyronine (rT(3)) and T(2). Sulfoconjugation is prominent during intrauterine development, particularly in the precocial species in the last trimester including humans and sheep, where it may serve both to regulate the supply of T(3), via sulfation followed by deiodination, and to facilitate maternal-fetal exchange of sulfated iodothyronines (e.g., 3,3'-diiodothyronine sulfate [T(2)S]). The resulting low serum T(3) may be important for normal fetal development in the late gestation. The possibility that T(2)S or its derivative, transferred from the fetus and appearing in maternal serum or urine, can serve as a marker of fetal thyroid function is being studied. Glucuronidation of TH often precedes biliary-fecal excretion of hormone. In rats, stimulation of glucuronidation by various drugs and toxins may lead to lower T(4) and T(3) levels, provocation of thyrotropin (TSH) secretion, and goiter. In man, drug induced stimulation of glucuronidation is limited to T(4), and does not usually compromise normal thyroid function. However, in hypothyroid subjects, higher doses of TH may be required to maintain euthyroidism when these drugs are given. In addition, glucuronidates and sulfated iodothyronines can be hydrolyzed to their precursors in gastrointestinal tract and various tissues. Thus, these conjugates can serve as a reservoir for biologically active iodothyronines (e.g., T(4), T(3), or T(2)). The acetic acid derivatives of T(4), tetrac and triac, are minor products in normal thyroid physiology. However, triac has a different pattern of receptor affinity than T(3), binding preferentially to the beta receptor. This makes it useful in the treatment of the syndrome of resistance to thyroid hormone action, where the typical mutation affects only the beta receptor. Thus, adequate binding to certain mutated beta receptors can be achieved without excessive stimulation of alpha receptors, which predominate in the heart. Ether link cleavage of TH is also a minor pathway in normal subjects. However, this pathway may become important during infections, when augmented TH breakdown by ether-link cleavage (ELC) may assist in bactericidal activity. There is a recent claim that decarboxylated derivates of thyronines, that is, monoiodothyronamine (T(1)am) and thyronamine (T(0)am), may be biologically important and have actions different from those of TH. Further information on these interesting derivatives is awaited.
Collapse
Affiliation(s)
- Sing-Yung Wu
- Nuclear Medicine and Medical Services, University of California, Irvine and Department of Veterans' Affairs Healthcare System, Long Beach, California 90822, USA.
| | | | | | | | | |
Collapse
|