1
|
Zhang H, Hao J, Hong H, Gu W, Li Z, Sun J, Zhan H, Wei X, Zhou L. Redox signaling regulates the skeletal tissue development and regeneration. Biotechnol Genet Eng Rev 2024; 40:2308-2331. [PMID: 37043672 DOI: 10.1080/02648725.2023.2199244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Skeletal tissue development and regeneration in mammals are intricate, multistep, and highly regulated processes. Various signaling pathways have been implicated in the regulation of these processes, including redox. Redox signaling is the signal transduction by electron transfer reactions involving free radicals or related species. Redox homeostasis is essential to cell metabolic states, as the ROS not only regulates cell biological processes but also mediates physiological processes. Following a bone fracture, redox signaling is also triggered to regulate bone healing and regeneration by targeting resident stromal cells, osteoblasts, osteoclasts and endothelial cells. This review will focus on how the redox signaling impact the bone development and bone regeneration.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Jin Hao
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - HaiPing Hong
- FangTa Hospital of Traditional Chinese Medicine, Songjiang Branch, Shanghai, East China, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | | | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Hongsheng Zhan
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| |
Collapse
|
2
|
Hao Y, Zhang L, Meng Q, Jia Q, Ma J, Zhang X. Development and validation of an enzyme-linked immunosorbent assay for the quantification of a recombinant humanized anti-IL-4Rα monoclonal antibody CM310 in serum and its application to pharmacokinetic study in Sprague-Dawley Rats. Anal Biochem 2024; 694:115623. [PMID: 39059567 DOI: 10.1016/j.ab.2024.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
CM310 is a recombinant humanized monoclonal antibody targeting Interleukin (IL)-4 receptor alpha (IL-4Rα). IL-4Rα blockade prevents IL-4 and IL-13 from binding to their receptor, thereby inhibiting downstream signaling pathways that drive Type 2 helper T-cell (Th2) inflammation. CM310 holds potential for treating Th2-related inflammatory diseases, such as asthma, atopic dermatitis and chronic sinusitis with nasal polyposis. In this study, a direct enzyme-linked immunosorbent assay (ELISA) was developed to measure the concentrations of CM310 in rat serum. Seven calibration standards (ranging from 25 to 1600 ng/mL) and three quality controls (70, 500 and 1250 ng/mL) were defined. The limit of detection (LOD), lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) were 13, 25 and 1600 ng/mL, respectively. The method exhibited excellent precision and accuracy and successfully applied to in vitro serum stability and pharmacokinetic (PK) studies. In conclusion, we have developed and validated a highly sensitive and selective method for measuring CM310 in Sprague-Dawley rats. The development and validation ELISA method met the acceptable criteria, which suggested that these can be applied to quantify CM310, as well as in PK studies.
Collapse
Affiliation(s)
- Yimeng Hao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Libo Zhang
- Keymed Biosciences Inc., Chengdu, Sichuan Province, China
| | - Qinghe Meng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Qian Jia
- Keymed Biosciences Inc., Chengdu, Sichuan Province, China
| | - Jing Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Liu YF, Tian Y, Chen XF, Zhang C, Huang L. Role of osteokines in atherosclerosis. Cell Biochem Funct 2024; 42:e4107. [PMID: 39154288 DOI: 10.1002/cbf.4107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Despite their diverse physiologies and roles, the heart, skeletal muscles, and smooth muscles all derive from a common embryonic source as bones. Moreover, bone tissue, skeletal and smooth muscles, and the heart share conserved signaling pathways. The maintenance of skeletal health is precisely regulated by osteocytes, osteoblasts, and osteoclasts through coordinated secretion of bone-derived factors known as osteokines. Increasing evidence suggests the involvement of osteokines in regulating atherosclerotic vascular disease. Therefore, this review aims to examine the evidence for the role of osteokines in atherosclerosis development and progression comprehensively. Specifically discussed are extensively studied osteokines in atherosclerosis such as osteocalcin, osteopontin, osteoprotegerin, and fibroblast growth factor 23. Additionally, we highlighted the effects of exercise on modulating these key regulators derived from bone tissue metabolism. We believe that gaining an enhanced understanding of how osteocalcin contributes to the process of atherosclerosis will enable us to develop targeted and comprehensive therapeutic strategies against diseases associated with its progression.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Xiao-Fang Chen
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liang Huang
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Abdollahi F, Saghatchi M, Paryab A, Malek Khachatourian A, Stephens ED, Toprak MS, Badv M. Angiogenesis in bone tissue engineering via ceramic scaffolds: A review of concepts and recent advancements. BIOMATERIALS ADVANCES 2024; 159:213828. [PMID: 38479240 DOI: 10.1016/j.bioadv.2024.213828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Due to organ donor shortages, long transplant waitlists, and the complications/limitations associated with auto and allotransplantation, biomaterials and tissue-engineered models are gaining attention as feasible alternatives for replacing and reconstructing damaged organs and tissues. Among various tissue engineering applications, bone tissue engineering has become a promising strategy to replace or repair damaged bone. We aimed to provide an overview of bioactive ceramic scaffolds in bone tissue engineering, focusing on angiogenesis and the effect of different biofunctionalization strategies. Different routes to angiogenesis, including chemical induction through signaling molecules immobilized covalently or non-covalently, in situ secretion of angiogenic growth factors, and the degradation of inorganic scaffolds, are described. Physical induction mechanisms are also discussed, followed by a review of methods for fabricating bioactive ceramic scaffolds via microfabrication methods, such as photolithography and 3D printing. Finally, the strengths and weaknesses of the commonly used methodologies and future directions are discussed.
Collapse
Affiliation(s)
- Farnoosh Abdollahi
- Department of Dentistry, Kashan University of Medical Science, Kashan, Iran
| | - Mahshid Saghatchi
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Emma D Stephens
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Muhammet S Toprak
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden
| | - Maryam Badv
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
5
|
Liao P, Chen L, Zhou H, Mei J, Chen Z, Wang B, Feng JQ, Li G, Tong S, Zhou J, Zhu S, Qian Y, Zong Y, Zou W, Li H, Zhang W, Yao M, Ma Y, Ding P, Pang Y, Gao C, Mei J, Zhang S, Zhang C, Liu D, Zheng M, Gao J. Osteocyte mitochondria regulate angiogenesis of transcortical vessels. Nat Commun 2024; 15:2529. [PMID: 38514612 PMCID: PMC10957947 DOI: 10.1038/s41467-024-46095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Transcortical vessels (TCVs) provide effective communication between bone marrow vascular system and external circulation. Although osteocytes are in close contact with them, it is not clear whether osteocytes regulate the homeostasis of TCVs. Here, we show that osteocytes maintain the normal network of TCVs by transferring mitochondria to the endothelial cells of TCV. Partial ablation of osteocytes causes TCV regression. Inhibition of mitochondrial transfer by conditional knockout of Rhot1 in osteocytes also leads to regression of the TCV network. By contrast, acquisition of osteocyte mitochondria by endothelial cells efficiently restores endothelial dysfunction. Administration of osteocyte mitochondria resultes in acceleration of the angiogenesis and healing of the cortical bone defect. Our results provide new insights into osteocyte-TCV interactions and inspire the potential application of mitochondrial therapy for bone-related diseases.
Collapse
Affiliation(s)
- Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziming Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jerry Q Feng
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Guangyi Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Zhu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qian
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Weiguo Zou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenkan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senyao Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Tettero JM, Heidinga ME, Mocking TR, Fransen G, Kelder A, Scholten WJ, Snel AN, Ngai LL, Bachas C, van de Loosdrecht AA, Ossenkoppele GJ, de Leeuw DC, Cloos J, Janssen JJWM. Impact of hemodilution on flow cytometry based measurable residual disease assessment in acute myeloid leukemia. Leukemia 2024; 38:630-639. [PMID: 38272991 PMCID: PMC10912027 DOI: 10.1038/s41375-024-02158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Measurable residual disease (MRD) measured in the bone marrow (BM) of acute myeloid leukemia (AML) patients after induction chemotherapy is an established prognostic factor. Hemodilution, stemming from peripheral blood (PB) mixing within BM during aspiration, can yield false-negative MRD results. We prospectively examined hemodilution by measuring MRD in BM aspirates obtained from three consecutive 2 mL pulls, along with PB samples. Our results demonstrated a significant decrease in MRD percentages between the first and second pulls (P = 0.025) and between the second and third pulls (P = 0.025), highlighting the impact of hemodilution. Initially, 39% of MRD levels (18/46 leukemia-associated immunophenotypes) exceeded the 0.1% cut-off, decreasing to 30% (14/46) in the third pull. Additionally, we assessed the performance of six published methods and parameters for distinguishing BM from PB samples, addressing or compensating for hemodilution. The most promising results relied on the percentages of CD16dim granulocytic population (scarce in BM) and CD117high mast cells (exclusive to BM). Our findings highlight the importance of estimating hemodilution in MRD assessment to qualify MRD results, particularly near the common 0.1% cut-off. To avoid false-negative results by hemodilution, it is essential to collect high-quality BM aspirations and preferably utilizing the initial pull for MRD testing.
Collapse
Affiliation(s)
- Jesse M Tettero
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Maaike E Heidinga
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Tim R Mocking
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Glenn Fransen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angèle Kelder
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Willemijn J Scholten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Alexander N Snel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Lok Lam Ngai
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Costa Bachas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - David C de Leeuw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| | - Jeroen J W M Janssen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Tan J, Li S, Sun C, Bao G, Liu M, Jing Z, Fu H, Sun Y, Yang Q, Zheng Y, Wang X, Yang H. A Dose-Dependent Spatiotemporal Response of Angiogenesis Elicited by Zn Biodegradation during the Initial Stage of Bone Regeneration. Adv Healthc Mater 2024; 13:e2302305. [PMID: 37843190 DOI: 10.1002/adhm.202302305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Zinc (Zn) plays a crucial role in bone metabolism and imbues biodegradable Zn-based materials with the ability to promote bone regeneration in bone trauma. However, the impact of Zn biodegradation on bone repair, particularly its influence on angiogenesis, remains unexplored. This study reveals that Zn biodegradation induces a consistent dose-dependent spatiotemporal response in angiogenesis,both in vivo and in vitro. In a critical bone defect model, an increase in Zn release intensity from day 3 to 10 post-surgery is observed. By day 10, the CD31-positive area around the Zn implant significantly surpasses that of the Ti implant, indicating enhanced angiogenesis. Furthermore,angiogenesis exhibits a distance-dependent pattern closely mirroring the distribution of Zn signals from the implant. In vitro experiments demonstrate that Zn extraction fosters the proliferation and migration of human umbilical vein endothelial cells and upregulates the key genes associated with tube formation, such as HIF-1α and VEGF-A, peaking at a concentration of 22.5 µM. Additionally, Zn concentrations within the range of 11.25-45 µM promote the polarization of M0-type macrophages toward the M2-type, while inhibiting polarization toward the M1-type. These findings provide essential insights into the biological effects of Zn on bone repair, shedding light on its potential applications.
Collapse
Affiliation(s)
- Junlong Tan
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Shuang Li
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Chaoyang Sun
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Guo Bao
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Meijing Liu
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Zehao Jing
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Hanwei Fu
- School of Materials Science and Engineering, Beihang University, 37 Xueyuan Rd, Beijing, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., Jinan, 250100, China
| | - Qingmin Yang
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., Jinan, 250100, China
| | - Yufeng Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaogang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Hongtao Yang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| |
Collapse
|
8
|
Xu J, He S, Xia T, Shan Y, Wang L. Targeting type H vessels in bone-related diseases. J Cell Mol Med 2024; 28:e18123. [PMID: 38353470 PMCID: PMC10865918 DOI: 10.1111/jcmm.18123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Blood vessels are essential for bone development and metabolism. Type H vessels in bone, named after their high expression of CD31 and Endomucin (Emcn), have recently been reported to locate mainly in the metaphysis, exhibit different molecular properties and couple osteogenesis and angiogenesis. A strong correlation between type H vessels and bone metabolism is now well-recognized. The crosstalk between type H vessels and osteoprogenitor cells is also involved in bone metabolism-related diseases such as osteoporosis, osteoarthritis, fracture healing and bone defects. Targeting the type H vessel formation may become a new approach for managing a variety of bone diseases. This review highlighted the roles of type H vessels in bone-related diseases and summarized the research attempts to develop targeted intervention, which will help us gain a better understanding of their potential value in clinical application.
Collapse
Affiliation(s)
- Juan Xu
- Outpatient DepartmentChildren's Hospital of Soochow UniversitySuzhouChina
| | - Shuang‐jian He
- Department of OrthopaedicsSuzhou Hospital, Affiliated Hospital of Medical School, Nanjing UniversitySuzhouChina
| | - Ting‐ting Xia
- Clinical Research InstituteSuzhou Hospital, Affiliated Hospital of Medical School, Nanjing UniversitySuzhouChina
| | - Yu Shan
- Department of OrthopeadicsSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Liang Wang
- Department of OrthopaedicsSuzhou Hospital, Affiliated Hospital of Medical School, Nanjing UniversitySuzhouChina
- Department of OrthopeadicsThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
9
|
Takito J, Nonaka N. Osteoclasts at Bone Remodeling: Order from Order. Results Probl Cell Differ 2024; 71:227-256. [PMID: 37996681 DOI: 10.1007/978-3-031-37936-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Osteoclasts are multinucleated bone-resorbing cells derived from the monocyte/macrophage lineage. The macrophage colony-stimulating factor/receptor activator of nuclear factor κB ligand (M-CSF/RANKL) signaling network governs the differentiation of precursor cells into fusion-competent mononucleated cells. Repetitive fusion of fusion-competent cells produces multinucleated osteoclasts. Osteoclasts are believed to die via apoptosis after bone resorption. However, recent studies have found that osteoclastogenesis in vivo proceeds by replacing the old nucleus of existing osteoclasts with a single newly differentiated mononucleated cell. Thus, the formation of new osteoclasts is minimal. Furthermore, the sizes of osteoclasts can change via cell fusion and fission in response to external conditions. On the other hand, osteoclastogenesis in vitro involves various levels of heterogeneity, including osteoclast precursors, mode of fusion, and properties of the differentiated osteoclasts. To better understand the origin of these heterogeneities and the plasticity of osteoclasts, we examine several processes of osteoclastogenesis in this review. Candidate mechanisms that create heterogeneity involve asymmetric cell division, osteoclast niche, self-organization, and mode of fusion and fission. Elucidation of the plasticity or fluctuation of the M-CSF/RANKL network should be an important topic for future researches.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan.
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
10
|
Yu Z, Wang H, Ying B, Mei X, Zeng D, Liu S, Qu W, Pan X, Pu S, Li R, Qin Y. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater Today Bio 2023; 23:100834. [PMID: 38024841 PMCID: PMC10643361 DOI: 10.1016/j.mtbio.2023.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving precision treatment in bone tissue engineering (BTE) remains a challenge. Photothermal therapy (PTT), as a form of precision therapy, has been extensively investigated for its safety and efficacy. It has demonstrated significant potential in the treatment of orthopedic diseases such as bone tumors, postoperative infections and osteoarthritis. However, the high temperatures associated with PTT can lead to certain limitations and drawbacks. In recent years, researchers have explored the use of biomaterials for mild photothermal therapy (MPT), which offers a promising approach for addressing these limitations. This review provides a comprehensive overview of the mechanisms underlying MPT and presents a compilation of photothermal agents and their utilization strategies for bone tissue repair. Additionally, the paper discusses the future prospects of MPT-assisted bone tissue regeneration, aiming to provide insights and recommendations for optimizing material design in this field.
Collapse
Affiliation(s)
- Zehao Yu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Hao Wang
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiaohan Mei
- National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Dapeng Zeng
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Shibo Liu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Wenrui Qu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiangjun Pan
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Si Pu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Ruiyan Li
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Yanguo Qin
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| |
Collapse
|
11
|
Tong X, Chen J, Wang R, Hou D, Wu G, Liu C, Pathak JL. The Paracrine Effect of Hyaluronic Acid-Treated Endothelial Cells Promotes BMP-2-Mediated Osteogenesis. Bioengineering (Basel) 2023; 10:1227. [PMID: 37892957 PMCID: PMC10604672 DOI: 10.3390/bioengineering10101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The combination of hyaluronic acid (HA) and BMP-2 has been reported to promote bone regeneration. However, the interaction of endothelial cells and bone marrow mesenchymal stem cells (BMSCs) during HA + BMP-2 treatment is not fully understood. This study aimed to analyze the direct effect of HA, as well as the paracrine effect of HA-treated endothelial cells, on the BMP-2-mediated osteogenic differentiation of BMSCs. The angiogenic differentiation potential of HA at different molecular weights and different concentrations was tested. The direct effect of HA, as well as the indirect effect of HA-treated human umbilical cord endothelial cells (HUVECs, i.e., conditioned medium (CM)-based co-culture) on the BMP-2-mediated osteogenic differentiation of BMSCs was analyzed using alkaline phosphatase (ALP) staining and activity, alizarin red S (ARS) staining, and RT-qPCR of osteogenic markers. Angiogenic differentiation markers were also analyzed in HUVECs after treatment with HA + BMP-2. The bone regeneration potential of BMP-2 and HA + BMP-2 was analyzed in a rat ectopic model. We found that 1600 kDa HA at 300 µg/mL promoted tube formation by HUVECs in vitro and upregulated the mRNA expression of the angiogenic markers CD31, VEGF, and bFGF. HA inhibited, but conditioned medium from HA-treated HUVECs promoted, the BMP-2-mediated osteogenic differentiation of BMSCs, as indicated by the results of ALP staining and activity, ARS staining, and the mRNA expression of the osteogenic markers RUNX-2, ALP, COLI, and OPN. HA + BMP-2 (50 ng/mL) upregulated the expression of the angiogenesis-related genes VEGF and bFGF in HUVECs and bone regeneration in vivo compared to BMP-2 treatment. In conclusion, the paracrine effect of hyaluronic acid-treated endothelial cells promotes BMP-2-mediated osteogenesis, suggesting the application potential of HA + BMP-2 in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaojie Tong
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Jin Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Renqin Wang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Dan Hou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands;
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Chang Liu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| |
Collapse
|
12
|
Jin L, Long Y, Zhang Q, Long J. MiRNAs regulate cell communication in osteogenesis-angiogenesis coupling during bone regeneration. Mol Biol Rep 2023; 50:8715-8728. [PMID: 37642761 DOI: 10.1007/s11033-023-08709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Bone regeneration is a complex process that requires not only the participation of multiple cell types, but also signal communication between cells. The two basic processes of osteogenesis and angiogenesis are closely related to bone regeneration and bone homeostasis. H-type vessels are a subtype of bone vessels characterized by high expression of CD31 and EMCN. These vessels play a key role in the regulation of bone regeneration and are important mediators of coupling between osteogenesis and angiogenesis. Molecular regulation between different cell types is important for coordination of osteogenesis and angiogenesis that promotes bone regeneration. MiRNAs are small non-coding RNAs that predominantly regulate gene expression at the post-transcriptional level and are closely related to cell communication. Specifically, miRNAs transduce external stimuli through various cell signaling pathways and cause a series of physiological and pathological effects. They are also deeply involved in the bone repair process. This review focuses on three signaling pathways related to osteogenesis-angiogenesis coupling, as well as the miRNAs involved in these pathways. Elucidation of the molecular mechanisms governing osteogenesis and angiogenesis is of great significance for bone regeneration.
Collapse
Affiliation(s)
- Liangyu Jin
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Yifei Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Qiuling Zhang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China.
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
13
|
Löffler MT, Wu PH, Kazakia GJ. MR-based techniques for intracortical vessel visualization and characterization: understanding the impact of microvascular disease on skeletal health. Curr Opin Endocrinol Diabetes Obes 2023; 30:192-199. [PMID: 37335282 PMCID: PMC10461604 DOI: 10.1097/med.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW The relationships between bone vasculature and bone microstructure and strength remain incompletely understood. Addressing this gap will require in vivo imaging capabilities. We describe the relevant vascular anatomy of compact bone, review current magnetic resonance imaging (MRI)-based techniques that allow in vivo assessment of intracortical vasculature, and finally present preliminary studies that apply these techniques to investigate changes in intracortical vessels in aging and disease. RECENT FINDINGS Ultra-short echo time MRI (UTE MRI), dynamic contrast-enhanced MRI (DCE-MRI), and susceptibility-weighted MRI techniques are able to probe intracortical vasculature. Applied to patients with type 2 diabetes, DCE-MRI was able to find significantly larger intracortical vessels compared to nondiabetic controls. Using the same technique, a significantly larger number of smaller vessels was observed in patients with microvascular disease compared to those without. Preliminary data on perfusion MRI showed decreased cortical perfusion with age. SUMMARY Development of in vivo techniques for intracortical vessel visualization and characterization will enable the exploration of interactions between the vascular and skeletal systems, and further our understanding of drivers of cortical pore expansion. As we investigate potential pathways of cortical pore expansion, appropriate treatment and prevention strategies will be clarified.
Collapse
Affiliation(s)
- Maximilian T. Löffler
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; 185 Berry St, Suite 350, San Francisco, CA 94107, Tel: (415) 514-9655
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Po-Hung Wu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; 185 Berry St, Suite 350, San Francisco, CA 94107, Tel: (415) 514-9655
| | - Galateia J. Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; 185 Berry St, Suite 350, San Francisco, CA 94107, Tel: (415) 514-9655
| |
Collapse
|
14
|
Hedge ET, Vico L, Hughson RL, Mastrandrea CJ. Effects of Posture and Walking on Tibial Vascular Hemodynamics Before and After 14 Days of Head-Down Bed Rest. JBMR Plus 2023; 7:e10756. [PMID: 37457881 PMCID: PMC10339089 DOI: 10.1002/jbm4.10756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/17/2023] [Indexed: 07/18/2023] Open
Abstract
Human skeletal hemodynamics remain understudied. Neither assessments in weight-bearing bones during walking nor following periods of immobility exist, despite knowledge of altered nutrient-artery characteristics after short-duration unloading in rodents. We studied 12 older adults (8 females, aged 59 ± 3 years) who participated in ambulatory near-infrared spectroscopy (NIRS) assessments of tibial hemodynamics before (PRE) and after (POST) 14 days of head-down bed rest (HDBR), with most performing daily resistance and aerobic exercise countermeasures during HDBR. Continual simultaneous NIRS recordings were acquired over the proximal anteromedial tibial prominence of the right lower leg and ipsilateral lateral head of the gastrocnemius muscle during supine rest, walking, and standing. During 10 minutes of walking, desaturation kinetics in the tibia were slower (time to 95% nadir values 125.4 ± 56.8 s versus 55.0 ± 30.1 s, p = 0.0014). Tibial tissue saturation index (TSI) immediately fell (-9.9 ± 4.55) and did not completely recover by the end of 10 minutes of walking (-7.4 ± 6.7%, p = 0.027). Upon standing, total hemoglobin (tHb) kinetics were faster in the tibia (p < 0.0001), whereas HDBR resulted in faster oxygenated hemoglogin (O2Hb) kinetics in both tissues (p = 0.039). After the walk-to-stand transition, changes in O2Hb (p = 0.0022) and tHb (p = 0.0047) were attenuated in the tibia alone after bed rest. Comparisons of NIRS-derived variables during ambulation and changes in posture revealed potentially deleterious adaptations of feed vessels after HDBR. We identify important and novel tibial hemodynamics in humans during ambulation before and after bed rest, necessitating further investigation. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eric T Hedge
- Schlegel‐UW Research Institute for AgingWaterlooCanada
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooCanada
| | - Laurence Vico
- U1059 INSERM—SAINBIOSE (Santé Ingéniérie Biologie St‐Etienne) Campus Santé InnovationUniversité Jean MonnetSaint‐Priest‐en‐JarezFrance
| | | | | |
Collapse
|
15
|
Hu L, Cheng Z, Wu L, Luo L, Pan P, Li S, Jia Q, Yang N, Xu B. Histone methyltransferase SETDB1 promotes osteogenic differentiation in osteoporosis by activating OTX2-mediated BMP-Smad and Wnt/β-catenin pathways. Hum Cell 2023:10.1007/s13577-023-00902-w. [PMID: 37074626 DOI: 10.1007/s13577-023-00902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Osteogenic differentiation plays important roles in the pathogenesis of osteoporosis. In this study, we explored the regulatory mechanism of histone methyltransferase SET domain bifurcated 1 (SETDB1) underlying the osteogenic differentiation in osteoporosis. The common osteoporosis-related genes were retrieved from the GeneCards, CTD, and Phenolyzer databases. The enrichment analysis was conducted on the candidate osteoporosis-related genes using the PANTHER software, and the binding site between transcription factors and target genes predicted by hTFtarget. The bioinformatics analyses suggested 6 osteoporosis-related chromatin/chromatin binding protein or regulatory proteins (HDAC4, SIRT1, SETDB1, MECP2, CHD7, and DKC1). Normal and osteoporosis tissues were collected from osteoporosis patients to examine the expression of SETDB1. It was found that SETDB1 was poorly expressed in osteoporotic femoral tissues, indicating that SETDB1 might be involved in the development of osteoporosis. We induced SETDB1 overexpression/knockdown, orthodenticle homeobox 2 (OTX2) overexpression, activation of Wnt/β-catenin or BMP-Smad pathways alone or in combination in osteoblasts or ovariectomized mice. The data indicated that SETDB1 methylation regulated H3K9me3 in the OTX2 promoter region and inhibited the expression of OTX2. Besides, the BMP-Smad and Wnt/β-catenin pathways were inhibited by OTX2, thereby resulting in inhibited osteogenic differentiation. Animal experiments showed that overexpressed SETDB1 could promote the increase of calcium level and differentiation of femoral tissues. In conclusion, upregulation of SETDB1 promotes osteogenic differentiation by inhibiting OTX2 and activating the BMP-Smad and Wnt/β-catenin pathways in osteoporosis.
Collapse
Affiliation(s)
- Lianying Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Zhen Cheng
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Lunan Wu
- Department of Anesthesiology and Perioperative Medicine, The Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, The Second Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Liangliang Luo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Ping Pan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Shujin Li
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Qiyu Jia
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Ning Yang
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
16
|
Miao Y, Chen Y, Luo J, Liu X, Yang Q, Shi X, Wang Y. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration. Bioact Mater 2023; 21:97-109. [PMID: 36093326 PMCID: PMC9417961 DOI: 10.1016/j.bioactmat.2022.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The classical 3D-printed scaffolds have attracted enormous interests in bone regeneration due to the customized structural and mechanical adaptability to bone defects. However, the pristine scaffolds still suffer from the absence of dynamic and bioactive microenvironment that is analogous to natural extracellular matrix (ECM) to regulate cell behaviour and promote tissue regeneration. To address this challenge, we develop a black phosphorus nanosheets-enabled dynamic DNA hydrogel to integrate with 3D-printed scaffold to build a bioactive gel-scaffold construct to achieve enhanced angiogenesis and bone regeneration. The black phosphorus nanosheets reinforce the mechanical strength of dynamic self-healable hydrogel and endow the gel-scaffold construct with preserved protein binding to achieve sustainable delivery of growth factor. We further explore the effects of this activated construct on both human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs) as well as in a critical-sized rat cranial defect model. The results confirm that the gel-scaffold construct is able to promote the growth of mature blood vessels as well as induce osteogenesis to promote new bone formation, indicating that the strategy of nano-enabled dynamic hydrogel integrated with 3D-printed scaffold holds great promise for bone tissue engineering. Therapeutic VEGF-engineered black phosphorus nanosheets are incorporated into DNA hydrogels. Nano-enabled DNA hydrogel integrating with 3D-printed scaffold builds gel-scaffold construct. Gel-scaffold construct upregulates the expression of genes and proteins related to angiogenesis and osteogenesis. Gel-scaffold construct accelerates the formation of early vascular network and new bone tissue.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Jinshui Luo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiao Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Qian Yang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
17
|
Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab 2022; 34:1914-1931. [PMID: 36257317 PMCID: PMC9742337 DOI: 10.1016/j.cmet.2022.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023]
Abstract
Accumulating evidence indicates that interoception maintains proper physiological status and orchestrates metabolic homeostasis by regulating feeding behaviors, glucose balance, and lipid metabolism. Continuous skeletal remodeling consumes a tremendous amount of energy to provide skeletal scaffolding, support muscle movement, store vital minerals, and maintain a niche for hematopoiesis, which are processes that also contribute to overall metabolic balance. Although skeletal innervation has been described for centuries, recent work has shown that skeletal metabolism is tightly regulated by the nervous system and that skeletal interoception regulates bone homeostasis. Here, we provide a general discussion of interoception and its effects on the skeleton and whole-body metabolism. We also discuss skeletal interoception-mediated regulation in the context of pathological conditions and skeletal pain as well as future challenges to our understanding of these process and how they can be leveraged for more effective therapy.
Collapse
Affiliation(s)
- Xiao Lv
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Gao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xu Cao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
McKenzie JA, Galbreath IM, Coello AF, Hixon KR, Silva MJ. VEGFA from osteoblasts is not required for lamellar bone formation following tibial loading. Bone 2022; 163:116502. [PMID: 35872107 PMCID: PMC9624127 DOI: 10.1016/j.bone.2022.116502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
The relationship between osteogenesis and angiogenesis is complex. Normal bone development requires angiogenesis, mediated by vascular endothelial growth factor A (VEGFA). Studies have demonstrated through systemic inhibition or genetic modification that VEGFA is indispensable for several types of bone repair, presumably via its role in supporting angiogenesis. But a direct role for VEGFA within osteoblasts, in the absence of angiogenesis, has also been suggested. To address the question of whether VEGFA from osteoblasts supports bone formation directly, we applied anabolic loading to induce lamellar bone formation in mice, a process shown to be independent of angiogenesis. We hypothesized that VEGFA from osteoblasts is required for lamellar bone formation. To test this hypothesis, we applied axial tibial compression to inducible Cre/LoxP mice from three lines. Vegfafl/fl mice were crossed with Ubiquitin C (UBC), Osterix (Osx) and Dentin-Matrix Protein 1 (DMP1) Cre-ERT2 mice to target all cells, (pre)osteoblast-lineage cells, and mature osteoblasts and osteocytes, respectively. Genotype effects were determined by comparing control (Vegfafl/fl) and Cre+ (VegfaΔ) mice for each line. At 5 months of age tamoxifen was injected for 5 days followed by a 3-week clearance prior to loading. Female and male mice (N = 100) were loaded for 5 days to peak forces to engender -3100 με peak compressive strain and processed for dynamic histomorphometry (day 12). Percent MS/BS increased 20-70 % as a result of loading, with no effect of genotype in Osx or Dmp1 lines. In contrast, the UBC groups had a significant decrease in relative periosteal BFR/BS in VegfaΔ vs. Vegfafl/fl mice. The UBC line did not have any cortical bone phenotype in non-loaded femurs. In summary, dynamic histomorphometry data confirmed that tibial loading induces lamellar bone formation. Contrary to our hypothesis, there was no decrease in loading-induced bone formation in the Osx or Dmp1 lines in the absence of VEGFA. There was a decrease in bone formation in the UBC line where all cells were targeted. This result indicates that VEGFA from a non-osteoblast cell source supports loading-induced lamellar bone formation, although osteoblast/osteocyte VEGFA is dispensable. These findings support a paracrine model whereby non-osteoblast VEGFA supports lamellar bone formation, independent of angiogenesis.
Collapse
Affiliation(s)
- Jennifer A McKenzie
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Ian M Galbreath
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; St. Louis University, St. Louis, MO, United States of America
| | - Andre F Coello
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Katherine R Hixon
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; Dartmouth Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America.
| |
Collapse
|
19
|
Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res 2022; 10:58. [PMID: 36031625 PMCID: PMC9420732 DOI: 10.1038/s41413-022-00229-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that coordinate the shift from joint homeostasis to osteoarthritis (OA) remain unknown. No pharmacological intervention can currently prevent the progression of osteoarthritis. Accumulating evidence has shown that subchondral bone deterioration is a primary trigger for overlying cartilage degeneration. We previously found that H-type vessels modulate aberrant subchondral bone formation during the pathogenesis of OA. However, the mechanism responsible for the elevation of H-type vessels in OA is still unclear. Here, we found that PDGFR-β expression, predominantly in the CD31hiEmcnhi endothelium, was substantially elevated in subchondral bones from OA patients and rodent OA models. A mouse model of OA with deletion of PDGFR-β in endothelial cells (ECs) exhibited fewer H-type vessels, ameliorated subchondral bone deterioration and alleviated overlying cartilage degeneration. Endothelial PDGFR-β promotes angiogenesis through the formation of the PDGFR-β/talin1/FAK complex. Notably, endothelium-specific inhibition of PDGFR-β by local injection of AAV9 in subchondral bone effectively attenuated the pathogenesis of OA compared with that of the vehicle-treated controls. Based on the results from this study, targeting PDGFR-β is a novel and promising approach for the prevention or early treatment of OA.
Collapse
|
20
|
Shen Z, Dong W, Chen Z, Chen G, Zhang Y, Li Z, Lin H, Chen H, Huang M, Guo Y, Jiang Z. Total flavonoids of Rhizoma Drynariae enhances CD31 hiEmcn hi vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis. Int J Mol Med 2022; 50:112. [PMID: 35795995 PMCID: PMC9330352 DOI: 10.3892/ijmm.2022.5167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/19/2020] [Indexed: 11/06/2022] Open
Abstract
Total flavonoids of Rhizoma Drynariae (TFRD), extracted from the kidney-tonifying Traditional Chinese medicine Rhizoma Drynariae, can be effective in treating osteoporosis, bone fractures and defects. However, the pharmacological effects of TFRD on the specific vessel subtype CD31hiEmcnhi during distraction osteogenesis (DO) remains unclear. The present study aimed to investigate the effects of TFRD on CD31hiEmcnhi vessels in a rat model of DO. In the present study, tibial DO models were established using 60 rats with a distraction rate of 0.2 mm per day for 20 days. Co-immunofluorescence staining of CD31 and endomucin (Emcn) was conducted to determine CD31hiEmcnhi vessels. Radiographic, angiographic and histological analyses were performed to assess bone and vessel formation. Tube formation, alkaline phosphatase (ALP) and Von Kossa staining assays were performed to test angiogenesis of endothelial precursor cells (EPCs) and osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). Additionally, expression levels of platelet-derived growth factor (PDGF)-BB, VEGF, runt-related transcription factor 2 (RUNX2) and Osterix (OSX) were determined by western blotting and reverse transcription-quantitative PCR. The in vivo assays demonstrated that TFRD markedly promoted CD31hiEmcnhi vessel formation during DO, whereas PDGF-BB neutralizing antibody suppressed vessel formation. Furthermore, the ALP, Von Kossa staining and tube formation assays indicated that TFRD notably elevated the angiogenic capacity of EPCs and osteogenic capacity of BMSCs under stress conditions, which was significantly suppressed by blocking PDGF-BB. The protein and mRNA levels of PDGF-BB, VEGF, RUNX2 and OSX were upregulated by TFRD, but downregulated by blocking PDGF-BB. Thus, TFRD could facilitate CD31hiEmcnhi vessel formation and subsequently enhance angiogenic-osteogenic coupling to regenerate bone defects during DO via the PDGF-BB/VEGF/RUNX2/OSX signaling axis, which indicated that CD31hiEmcnhi vessels could be a potential novel therapeutic target for DO, and TFRD may represent a promising drug for promoting bone regeneration in DO by increasing CD31hiEmcnhi vessels.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan 650599, P.R. China
| | - Wei Dong
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan 650599, P.R. China
| | - Zehua Chen
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan 650599, P.R. China
| | - Guoqian Chen
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yan Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Zige Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Haixiong Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Huamei Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Minling Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Ying Guo
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan 650599, P.R. China
| | - Ziwei Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| |
Collapse
|
21
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
22
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
23
|
Computer vision-aided bioprinting for bone research. Bone Res 2022; 10:21. [PMID: 35217642 PMCID: PMC8881598 DOI: 10.1038/s41413-022-00192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Bioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting, especially for bone design with high-resolution requirements. During the last five years, the use of computer vision for process control has been widely practiced in the manufacturing field. Computer vision can improve the performance of bioprinting for bone research with respect to various aspects, including accuracy, resolution, and cell survival rate. Hence, computer vision plays a substantial role in addressing the current defect problem in bioprinting for bone research. In this review, recent advances in the application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on different defect types: bone scaffold process control, deep learning, and cell viability models. The collection of printing parameters, data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed. We envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for bone research.
Collapse
|
24
|
Liao C, Lu M, Hong Y, Mao C, Chen J, Ren C, Lin M, Chen W. Osteogenic and angiogenic profiles of the palatal process of the maxilla and the palatal process of the palatine bone. J Anat 2022; 240:385-397. [PMID: 34569061 PMCID: PMC8742962 DOI: 10.1111/joa.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Hard palate consists anteriorly of the palatal process of the maxilla (ppmx) and posteriorly of the palatal process of the palatine (ppp). Currently, palatal osteogenesis is receiving increasing attention. This is the first study to provide an overview of the osteogenesis process of the mouse hard palate. We found that the period in which avascular mesenchymal condensation becomes a vascularized bone structure corresponds to embryonic day (E) 14.5 to E16.5 in the hard palate. The ppmx and ppp differ remarkably in morphology and molecular respects during osteogenesis. Osteoclasts in the ppmx and ppp are heterogeneous. There was a multinucleated giant osteoclast on the bone surface at the lateral-nasal side of the ppmx, while osteoclasts in the ppp were more abundant and adjacent to blood vessels but were smaller and had fewer nuclei. In addition, bone remodeling in the hard palate was asymmetric and exclusively occurred on the nasal side of the hard palate at E18.5. During angiogenesis, CD31-positive endothelial cells were initially localized in the surrounding of palatal mesenchymal condensation and then invaded the condensation in a sprouting fashion. At the transcriptome level, we found 78 differentially expressed genes related to osteogenesis and angiogenesis between the ppmx and ppp. Fifty-five related genes were up/downregulated from E14.5 to E16.5. Here, we described the morphogenesis and the heterogeneity in the osteogenic and angiogenic genes profiles of the ppmx and ppp, which are significant for subsequent studies of normal and abnormal subjects.
Collapse
Affiliation(s)
- Caiyu Liao
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Meng Lu
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Yuhang Hong
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Chuanqing Mao
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Jiangping Chen
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Chengyan Ren
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Minkui Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Weihui Chen
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
25
|
Huang C, Wen Z, Niu J, Lin S, Wang W. Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:777697. [PMID: 34917616 PMCID: PMC8670327 DOI: 10.3389/fcell.2021.777697] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by the collapse of the femoral head. SONFH occurs due to the overuse of glucocorticoids (GCs) in patients with immune-related diseases. Among various pathogenesis proposed, the mechanism related to impaired blood vessels is gradually becoming the most convincing hypothesis. Bone endothelial cells including bone microvascular endothelial cells (BMECs) and endothelial progenitor cells (EPCs) play a crucial role in the maintenance of vascular homeostasis. Therefore, bone endothelial cells are key regulators in the occurrence and progression of SONFH. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunctions of bone endothelial cells are considered to be the pathogenesis of SONFH. In addition, even with high disability rates, SONFH lacks effective therapeutic approach. Icariin (ICA, a flavonoid extracted from Epimedii Herba), pravastatin, and VO-OHpic (a potent inhibitor of PTEN) are candidate reagents to prevent and treat SONFH through improving above pathological processes. However, these reagents are still in the preclinical stage and will not be widely used temporarily. In this case, bone tissue engineering represented by co-transplantation of bone endothelial cells and bone marrow mesenchymal stem cells (BMSCs) may be another feasible therapeutic strategy.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Niu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiguo Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
26
|
Hüfner M, Rauch N, Schwarz-Herzke B, Knorr IJ, Sager M, Drescher D, Becker K. Micro-angiogenic patterns around orthodontic implants migrating in bone: A micro-CT study in the rat tail model. J Clin Periodontol 2021; 49:188-197. [PMID: 34818684 DOI: 10.1111/jcpe.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022]
Abstract
AIM Recent studies revealed that implants can migrate in bone when subjected to continuous loading. Since this process is suspected to be accompanied by bone remodelling, which requires blood vessel formation, the present work aimed at assessing the micro-angiogenic patterns around migrating implants. MATERIALS AND METHODS In 16 rats, two customized implants were placed in a single tail vertebra and connected with contraction springs (forces: 0 N, 0.5 N, 1.0 N, 1.5 N). After 2 or 8 weeks of loading, the animals were scanned by micro-CT before and after vasculature perfusion with a silicone rubber. Vessels were segmented by subtraction of the two micro-CT scans. Vessel thickness (V.Th), vessel volume per total volume (VV/TV), and vascular spacing (V.Sp) were assessed in a peri-implant volume of interest (VOI) around each implant. RESULTS At 2 weeks of loading, force magnitude was significantly associated with VV/TV and V.Th values (χ2 = 10.942, p < .001 and χ2 = 6.028, p = .010, respectively). No significant differences were observed after 8 weeks of loading. CONCLUSIONS Within the limitations of an animal study, peri-implant vessel thickness and density were associated with force magnitude in the early loading phase, whereas effects diminished after 8 weeks of loading.
Collapse
Affiliation(s)
- Mira Hüfner
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Nicole Rauch
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | - Ivonne Jeanette Knorr
- Central Unit for Animal Research and Scientific Animal Welfare Affairs, University of Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Scientific Animal Welfare Affairs, University of Düsseldorf, Düsseldorf, Germany
| | - Dieter Drescher
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Kathrin Becker
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Wang J, Sun Y, Tian X. The Inhibitory Effect of Icariin Nanoparticles on Angiogenesis in Pulmonary Fibrosis. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5429-5435. [PMID: 33980352 DOI: 10.1166/jnn.2021.19316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated icariin (ICA) nanoparticles on angiogenesis in rats with pulmonary fibrosis and its mechanism. First, icariin solid nanoliposomes (ICA-SLN) were prepared. The in vitrorelease of icariin nanoparticles was determined using a UV-Vis spectrophotometer, after which the plasma concentration of icariin nanoparticles in rats was determined. The bioavailability of icariin nanoparticles was investigated, and the effect of icariin on angiogenesis of pulmonary fibrosis rats was re-observed. The results showed that the bioavailability of icariin in vivo was enhanced after nanomodification, which indicated that icariin solid nanoliposome was a good choice for oral sustained-release nanocarrier materials. in vivo experiments showed that icariin could significantly inhibit angiogenesis in rats with pulmonary fibrosis, and the inhibitory effect was related to the dose and time of action. Most importantly, this study provides the possibility of icariin as a targeted agent for future-targeted therapy.
Collapse
Affiliation(s)
- Jiahao Wang
- Linyi Traditional Chinese Medicine Hospital, Liny 276000, Shandong, PR China
| | - Yuying Sun
- Linyi Agriculture and Rural Affairs Bureau, Linyi 276000, Shandong, PR China
| | - Xiangtong Tian
- Linyi Traditional Chinese Medicine Hospital, Liny! 276000, Shandong, PR China
| |
Collapse
|
28
|
Thurner GC, Haybaeck J, Debbage P. Targeting Drug Delivery in the Elderly: Are Nanoparticles an Option for Treating Osteoporosis? Int J Mol Sci 2021; 22:8932. [PMID: 34445639 PMCID: PMC8396227 DOI: 10.3390/ijms22168932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles bearing specific targeting groups can, in principle, accumulate exclusively at lesion sites bearing target molecules, and release therapeutic agents there. However, practical application of targeted nanoparticles in the living organism presents challenges. In particular, intravasally applied nanoparticles encounter physical and physiological barriers located in blood vessel walls, blocking passage from the blood into tissue compartments. Whereas small molecules can pass out of the blood, nanoparticles are too large and need to utilize physiological carriers enabling passage across endothelial walls. The issues associated with crossing blood-tissue barriers have limited the usefulness of nanoparticles in clinical applications. However, nanoparticles do not encounter blood-tissue barriers if their targets are directly accessible from the blood. This review focuses on osteoporosis, a disabling and common disease for which therapeutic strategies are limited. The target sites for therapeutic agents in osteoporosis are located in bone resorption pits, and these are in immediate contact with the blood. There are specific targetable biomarkers within bone resorption pits. These present nanomedicine with the opportunity to treat a major disease by use of simple nanoparticles loaded with any of several available effective therapeutics that, at present, cannot be used due to their associated side effects.
Collapse
Affiliation(s)
- Gudrun C. Thurner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstraße 59, 6020 Innsbruck, Austria
| |
Collapse
|
29
|
Wazzani R, Pallu S, Bourzac C, Ahmaïdi S, Portier H, Jaffré C. Physical Activity and Bone Vascularization: A Way to Explore in Bone Repair Context? Life (Basel) 2021; 11:life11080783. [PMID: 34440527 PMCID: PMC8399402 DOI: 10.3390/life11080783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 01/15/2023] Open
Abstract
Physical activity is widely recognized as a biotherapy by WHO in the fight and prevention of bone diseases such as osteoporosis. It reduces the risk of disabling fractures associated with many comorbidities, and whose repair is a major public health and economic issue. Bone tissue is a dynamic supportive tissue that reshapes itself according to the mechanical stresses to which it is exposed. Physical exercise is recognized as a key factor for bone health. However, the effects of exercise on bone quality depend on exercise protocols, duration, intensity, and frequency. Today, the effects of different exercise modalities on capillary bone vascularization, bone blood flow, and bone angiogenesis remain poorly understood and unclear. As vascularization is an integral part of bone repair process, the analysis of the preventive and/or curative effects of physical exercise is currently very undeveloped. Angiogenesis–osteogenesis coupling may constitute a new way for understanding the role of physical activity, especially in fracturing or in the integration of bone biomaterials. Thus, this review aimed to clarify the link between physical activities, vascularization, and bone repair.
Collapse
Affiliation(s)
- Rkia Wazzani
- Laboratoire APERE, Université de Picardie Jules Verne, CEDEX, F-80000 Amiens, France; (R.W.); (S.A.)
| | - Stéphane Pallu
- Laboratoire B3OA, Université de Paris, CEDEX, F-75010 Paris, France; (S.P.); (C.B.); (H.P.)
- UFR Science & Technique, Université d’Orléans, CEDEX, F-45100 Orléans, France
| | - Céline Bourzac
- Laboratoire B3OA, Université de Paris, CEDEX, F-75010 Paris, France; (S.P.); (C.B.); (H.P.)
| | - Saïd Ahmaïdi
- Laboratoire APERE, Université de Picardie Jules Verne, CEDEX, F-80000 Amiens, France; (R.W.); (S.A.)
| | - Hugues Portier
- Laboratoire B3OA, Université de Paris, CEDEX, F-75010 Paris, France; (S.P.); (C.B.); (H.P.)
- UFR Science & Technique, Université d’Orléans, CEDEX, F-45100 Orléans, France
| | - Christelle Jaffré
- Laboratoire APERE, Université de Picardie Jules Verne, CEDEX, F-80000 Amiens, France; (R.W.); (S.A.)
- Laboratoire B3OA, Université de Paris, CEDEX, F-75010 Paris, France; (S.P.); (C.B.); (H.P.)
- Correspondence:
| |
Collapse
|
30
|
A Chemotactic Functional Scaffold with VEGF-Releasing Peptide Amphiphiles Facilitates Bone Regeneration by BMP-2 in a Large-Scale Rodent Cranial Defect Model. Plast Reconstr Surg 2021; 147:386-397. [PMID: 33235044 DOI: 10.1097/prs.0000000000007551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Current common techniques for repairing calvarial defects by autologous bone grafting and alloplastic implants have significant limitations. In this study, the authors investigated a novel alternative approach to bone repair based on peptide amphiphile nanofiber gels that are engineered to control the release of vascular endothelial growth factor (VEGF) to recruit circulating stem cells to a site of bone regeneration and facilitate bone healing by bone morphogenetic protein-2 (BMP-2). METHODS VEGF release kinetics from peptide amphiphile gels were evaluated. Chemotactic functional scaffolds were fabricated by combining collagen sponges with peptide amphiphile gels containing VEGF. The in vitro and in vivo chemotactic activities of the scaffolds were evaluated by measuring mesenchymal stem cell migration, and angiogenic capability of the scaffolds was also evaluated. Large-scale rodent cranial bone defects were created to evaluate bone regeneration after implanting the scaffolds and other control materials. RESULTS VEGF was released from peptide amphiphile in a controlled-release manner. In vitro migration of mesenchymal stem cells was significantly greater when exposed to chemotactic functional scaffolds compared to control scaffolds. In vivo chemotaxis was evidenced by migration of tracer-labeled mesenchymal stem cells to the chemotactic functional scaffolds. Chemotactic functional scaffolds showed significantly increased angiogenesis in vivo. Successful bone regeneration was noted in the defects treated with chemotactic functional scaffolds and BMP-2. CONCLUSIONS The authors' observations suggest that this bioengineered construct successfully acts as a chemoattractant for circulating mesenchymal stem cells because of controlled release of VEGF from the peptide amphiphile gels. The chemotactic functional scaffolds may play a role in the future design of clinically relevant bone graft substitutes for large-scale bone defects.
Collapse
|
31
|
Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, Chai Y, Xu J, Zheng X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther 2021; 12:415. [PMID: 34294121 PMCID: PMC8296592 DOI: 10.1186/s13287-021-02487-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis is tightly coupled with angiogenesis during bone repair and regeneration. However, the underlying mechanisms linking these processes remain largely undefined. The present study aimed to test the hypothesis that epidermal growth factor-like domain-containing protein 6 (EGFL6), an angiogenic factor, also functions in bone marrow mesenchymal stem cells (BMSCs), playing a key role in the interaction between osteogenesis and angiogenesis. Methods We evaluated how EGFL6 affects angiogenic activity of human umbilical cord vein endothelial cells (HUVECs) via proliferation, transwell migration, wound healing, and tube-formation assays. Alkaline phosphatase (ALP) and Alizarin Red S (AR-S) were used to assay the osteogenic potential of BMSCs. qRT-PCR, western blotting, and immunocytochemistry were used to evaluate angio- and osteo-specific markers and pathway-related genes and proteins. In order to determine how EGFL6 affects angiogenesis and osteogenesis in vivo, EGFL6 was injected into fracture gaps in a rat tibia distraction osteogenesis (DO) model. Radiography, histology, and histomorphometry were used to quantitatively evaluate angiogenesis and osteogenesis. Results EGFL6 stimulated both angiogenesis and osteogenic differentiation through Wnt/β-catenin signaling in vitro. Administration of EGFL6 in the rat DO model promoted CD31hiEMCNhi type H-positive capillary formation associated with enhanced bone formation. Type H vessels were the referred subtype involved during DO stimulated by EGFL6. Conclusion EGFL6 enhanced the osteogenic differentiation potential of BMSCs and accelerated bone regeneration by stimulating angiogenesis. Thus, increasing EGFL6 secretion appeared to underpin the therapeutic benefit by promoting angiogenesis-coupled bone formation. These results imply that boosting local concentrations of EGFL6 may represent a new strategy for the treatment of compromised fracture healing and bone defect restoration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02487-3.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
32
|
da Silva Sasso GR, Florencio-Silva R, Sasso-Cerri E, Gil CD, de Jesus Simões M, Cerri PS. Spatio-temporal immunolocalization of VEGF-A, Runx2, and osterix during the early steps of intramembranous ossification of the alveolar process in rat embryos. Dev Biol 2021; 478:133-143. [PMID: 34245724 DOI: 10.1016/j.ydbio.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/10/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factor A (VEGF-A) is expressed by several cell types and is a crucial factor for angiogenic-osteogenic coupling. However, the immunolocalization of VEGF-A during the early stages of the alveolar process formation remains underexplored. Thus, we analyzed the spatio-temporal immunolocalization of VEGF-A and its relationship with Runt-related transcription factor 2 (Runx2) and osterix (Osx) during the early steps of intramembranous ossification of the alveolar process in rat embryos. Embryo heads (E) of 16, 18 and 20-day-old rats were processed for paraffin embedding. Histomorphometry and immunohistochemistry to detect VEGF-A, Runx2, and Osx (osteoblast differentiation markers) were performed. The volume density of bone tissue including bone cells and blood vessels increased significantly in E18 and E20. Cells showing high VEGF-A immunoreactivity were initially observed within a perivascular niche in the ectomesenchyme; afterwards, these cells were diffusely located near bone formation sites. Runx2-and Osx-immunopositive cells were observed in corresponded regions of cells showing strong VEGF-A immunoreactivity. Although these immunostained cells were observed in all specimens, this immunolocalization pattern was more evident in E16 specimens and gradually decreased in E18 and E20 specimens. Double immunofluorescence labelling showed intracellular co-localization of Osx and VEGF-A in cells surrounding the developing alveolar process, indicating a crucial role of VEGF-A in osteoblast differentiation. Our results showed VEGF-A immunoexpression in osteoblasts and its precursors during the maxillary alveolar process formation of rat embryos. Moreover, the VEGF-A-positive cells located within a perivascular niche at the early stages of the alveolar process development suggest a crosstalk between endothelium and ectomesenchymal cells, reinforcing the angiogenic-osteogenic coupling in this process.
Collapse
Affiliation(s)
- Gisela Rodrigues da Silva Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil
| | - Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Cristiane Damas Gil
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil.
| |
Collapse
|
33
|
Zhang X, Jiang X, Jiang S, Cai X, Yu S, Pei G. Schwann cells promote prevascularization and osteogenesis of tissue-engineered bone via bone marrow mesenchymal stem cell-derived endothelial cells. Stem Cell Res Ther 2021; 12:382. [PMID: 34233721 PMCID: PMC8261922 DOI: 10.1186/s13287-021-02433-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Tissue-engineered bone grafts (TEBGs) that undergo vascularization and neurotization evolve into functioning bone tissue. Previously, we verified that implanting sensory nerve tracts into TEBGs promoted osteogenesis. However, the precise mechanisms and interaction between seed cells were not explored. In this study, we hypothesized that neurotization may influence the osteogenesis of TEBGs through vascularization. Methods We cultured rat Schwann cells (SCs), aortic endothelial cells (AECs), and bone marrow-derived mesenchymal stem cells (BM-MSCs) and then obtained BM-MSC-derived induced endothelial cells (IECs) and induced osteoblasts (IOBs). IECs and AECs were cultured in an SC-conditioned medium (SC-CM) to assess proliferation, migration, capillary-like tube formation, and angiogenesis, and the vascular endothelial growth factor (VEGF) levels in the supernatants were detected. We established an indirect coculture model to detect the expression of nestin and VEGF receptors in IECs and tissue inhibitor of metalloproteinase (TIMP)-2 in SCs. Then, SCs, IECs, and IOBs were labeled and loaded into a β-tricalcium phosphate scaffold to induce prevascularization, and the scaffold was implanted into a 6-mm-long defect of rat femurs. Three groups were set up according to the loaded cells: I, SCs, and IECs (coculture for 3 days) plus IOBs; II, IECs (culture for 3 days) plus IOBs; III, IOBs. Nestin and TIMP-2 expression and osteogenesis of TEBGs were evaluated at 12 weeks post-implantation through histological and radiological assessments. Results We found that SC-CM promoted IEC proliferation, migration, capillary-like tube formation, and angiogenesis, but no similar effects were observed for AECs. IECs expressed nestin extensively, while AECs barely expressed nestin, and SC-CM promoted the VEGF secretion of IECs. In the coculture model, SCs promoted nestin and VEGF receptor expression in IECs, and IECs inhibited TIMP-2 expression in SCs. The promotion of prevascularized TEBGs by SCs and IECs in group I augmented new bone formation at 6 and 12 weeks. Nestin expression was higher in group I than in the other groups, while TIMP-2 expression was lower at 12 weeks. Conclusions This study demonstrated that SCs can promote TEBG osteogenesis via IECs and further revealed the related specific characteristics of IECs, providing preliminary cytological evidence for neurotization of TEBGs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02433-3.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Xiaorui Jiang
- Department of Hand and Foot Orthopaedics, Yantai Yuhuangding Hospital, Qingdao University Medical College, Yantai, Shandong, China
| | - Shan Jiang
- Department of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiyu Cai
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Shengji Yu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.
| | - Guoxian Pei
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
34
|
Zhong L, Yao L, Seale P, Qin L. Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Pract Res Clin Endocrinol Metab 2021; 35:101518. [PMID: 33812853 PMCID: PMC8440665 DOI: 10.1016/j.beem.2021.101518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone marrow mesenchymal stromal cells are a highly heterogenic cell population containing mesenchymal stem cells as well as other cell types. With the advance of single cell transcriptome analysis, several recent reports identified a prominent subpopulation of mesenchymal stromal cells that specifically express adipocyte markers but do not contain lipid droplets. We name this cell type marrow adipogenic lineage precursor, MALP, and consider it as a major cellular component of marrow adipose tissue. Here, we review the discovery of MALPs and summarize their unique features and regulatory roles in bone. We further discuss how these findings advance our understanding of bone remodeling, mesenchymal niche regulation of hematopoiesis, and marrow vasculature maintenance.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
The Effect of Space Travel on Bone Metabolism: Considerations on Today's Major Challenges and Advances in Pharmacology. Int J Mol Sci 2021; 22:ijms22094585. [PMID: 33925533 PMCID: PMC8123809 DOI: 10.3390/ijms22094585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Microgravity-induced bone loss is currently a significant and unresolved health risk for space travelers, as it raises the likelihood for irreversible changes that weaken skeletal integrity and the incremental onset of fracture injuries and renal stone formation. Another issue related to bone tissue homeostasis in microgravity is its capacity to regenerate following fractures due to weakening of the tissue and accidental events during the accomplishment of particularly dangerous tasks. Today, several pharmacological and non-pharmacological countermeasures to this problem have been proposed, including physical exercise, diet supplements and administration of antiresorptive or anabolic drugs. However, each class of pharmacological agents presents several limitations as their prolonged and repeated employment is not exempt from the onset of serious side effects, which limit their use within a well-defined range of time. In this review, we will focus on the various countermeasures currently in place or proposed to address bone loss in conditions of microgravity, analyzing in detail the advantages and disadvantages of each option from a pharmacological point of view. Finally, we take stock of the situation in the currently available literature concerning bone loss and fracture healing processes. We try to understand which are the critical points and challenges that need to be addressed to reach innovative and targeted therapies to be used both in space missions and on Earth.
Collapse
|
36
|
Novais A, Chatzopoulou E, Chaussain C, Gorin C. The Potential of FGF-2 in Craniofacial Bone Tissue Engineering: A Review. Cells 2021; 10:932. [PMID: 33920587 PMCID: PMC8073160 DOI: 10.3390/cells10040932] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Bone is a hard-vascularized tissue, which renews itself continuously to adapt to the mechanical and metabolic demands of the body. The craniofacial area is prone to trauma and pathologies that often result in large bone damage, these leading to both aesthetic and functional complications for patients. The "gold standard" for treating these large defects is autologous bone grafting, which has some drawbacks including the requirement for a second surgical site with quantity of bone limitations, pain and other surgical complications. Indeed, tissue engineering combining a biomaterial with the appropriate cells and molecules of interest would allow a new therapeutic approach to treat large bone defects while avoiding complications associated with a second surgical site. This review first outlines the current knowledge of bone remodeling and the different signaling pathways involved seeking to improve our understanding of the roles of each to be able to stimulate or inhibit them. Secondly, it highlights the interesting characteristics of one growth factor in particular, FGF-2, and its role in bone homeostasis, before then analyzing its potential usefulness in craniofacial bone tissue engineering because of its proliferative, pro-angiogenic and pro-osteogenic effects depending on its spatial-temporal use, dose and mode of administration.
Collapse
Affiliation(s)
- Anita Novais
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Eirini Chatzopoulou
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
- Département de Parodontologie, Université de Paris, UFR Odontologie-Garancière, 75006 Paris, France
| | - Catherine Chaussain
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Caroline Gorin
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| |
Collapse
|
37
|
Zhang J, Wehrle E, Rubert M, Müller R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int J Mol Sci 2021; 22:ijms22083971. [PMID: 33921417 PMCID: PMC8069718 DOI: 10.3390/ijms22083971] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The field of tissue engineering has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes for regenerative medicine and pharmaceutical research. Conventional scaffold-based approaches are limited in their capacity to produce constructs with the functionality and complexity of native tissue. Three-dimensional (3D) bioprinting offers exciting prospects for scaffolds fabrication, as it allows precise placement of cells, biochemical factors, and biomaterials in a layer-by-layer process. Compared with traditional scaffold fabrication approaches, 3D bioprinting is better to mimic the complex microstructures of biological tissues and accurately control the distribution of cells. Here, we describe recent technological advances in bio-fabrication focusing on 3D bioprinting processes for tissue engineering from data processing to bioprinting, mainly inkjet, laser, and extrusion-based technique. We then review the associated bioink formulation for 3D bioprinting of human tissues, including biomaterials, cells, and growth factors selection. The key bioink properties for successful bioprinting of human tissue were summarized. After bioprinting, the cells are generally devoid of any exposure to fluid mechanical cues, such as fluid shear stress, tension, and compression, which are crucial for tissue development and function in health and disease. The bioreactor can serve as a simulator to aid in the development of engineering human tissues from in vitro maturation of 3D cell-laden scaffolds. We then describe some of the most common bioreactors found in the engineering of several functional tissues, such as bone, cartilage, and cardiovascular applications. In the end, we conclude with a brief insight into present limitations and future developments on the application of 3D bioprinting and bioreactor systems for engineering human tissue.
Collapse
|
38
|
Wang F, Xiao Y, Neupane S, Ptak SH, Römer R, Xiong J, Ohmes J, Seekamp A, Fretté X, Alban S, Fuchs S. Influence of Fucoidan Extracts from Different Fucus Species on Adult Stem Cells and Molecular Mediators in In Vitro Models for Bone Formation and Vascularization. Mar Drugs 2021; 19:194. [PMID: 33805470 PMCID: PMC8066524 DOI: 10.3390/md19040194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
Fucoidans, sulfated polysaccharides extracted from brown algae, are marine products with the potential to modulate bone formation and vascularization processes. The bioactivity and safety of fucoidans are highly associated with their chemical structure, which may vary with algae species and extraction method. Thus, in depth evaluation of fucoidan extracts in terms of endotoxin content, cytotoxicity, and their detailed molecular biological impact on the individual cell types in bone is needed. In this study, we characterized fucoidan extracts from three different Fucus species including Fucus vesiculosus (Fv), Fucus serratus (Fs), and Fucus distichus subsp. evanescens (Fe) for their chemical features, endotoxin content, cytotoxicity, and bioactive effects on human outgrowth endothelial cells (OEC) and human mesenchymal stem cells (MSC) as in vitro models for bone function and vascularization. Extracts contained mainly high molecular weight (HMW) fucoidans and were free of endotoxins that may cause inflammation or influence vascularization. OEC tolerated fucoidan concentrations up to 200 µg/mL, and no indication of cytotoxicity was observed. The inflammatory response, however, investigated by real-time PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) and endothelial barrier assessed by impedance measurement differed for the individual extracts. MSC in comparison with endothelial cells were more sensitive to fucoidans and showed partly reduced metabolic activity and proliferation at higher doses of fucoidans. Further results for MSC indicated impaired osteogenic functions in alkaline phosphatase and calcification assays. All tested extracts consistently lowered important molecular mediators involved in angiogenesis, such a VEGF (vascular endothelial growth factor), ANG-1 (angiopoietin 1), and ANG-2 (angiopoietin 2), as indicated by RT-PCR and ELISA. This was associated with antiangiogenic effects at the functional level using selected extracts in co-culture models to mimic bone vascularization processes during bone regeneration or osteosarcoma.
Collapse
Affiliation(s)
- Fanlu Wang
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Yuejun Xiao
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Sandesh Neupane
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Kiel University, 24148 Kiel, Germany; (S.N.); (S.A.)
| | - Signe Helle Ptak
- SDU Chemical Engineering, University of Southern Denmark, 5230 Odense, Denmark; (S.H.P.); (X.F.)
| | - Ramona Römer
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Junyu Xiong
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Julia Ohmes
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Xavier Fretté
- SDU Chemical Engineering, University of Southern Denmark, 5230 Odense, Denmark; (S.H.P.); (X.F.)
| | - Susanne Alban
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Kiel University, 24148 Kiel, Germany; (S.N.); (S.A.)
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| |
Collapse
|
39
|
Abstract
Bone is a highly vascularized tissue. However, despite the importance of appropriate circulation for bone health, regulation of bone blood flow remains poorly understood. Invasive animal studies suggest that sympathetic activity plays an important role in bone flow control. However, it remains unknown if bone vasculature evidences robust vasoconstriction in response to sympathoexcitatory stimuli. Here, we characterized bone blood flow in young healthy individuals [n = 13, (four females)] in response to isometric handgrip exercise (IHE) and cold pressor test (CPT). These provide a strong stimulus for active vasoconstriction in the inactive muscle, and perhaps also in the bone. During sustained IHE to fatigue and CPT, we measured blood pressure, whole leg blood flow, and tibial perfusion using near-infrared spectroscopy. Tibia perfusion was determined as oxy- and deoxyhemoglobin. For both stimuli, tibial metabolism remained constant (i.e., no change in deoxyhemoglobin) and thus tibial arterial perfusion was represented by oxyhemoglobin. During IHE, oxyhemoglobin declined (beginning -0.20 ± 1.04 μM; end -1.13 ± 3.71 μM, both P < 0.01) slower than whole leg blood flow (beginning -0.85 ± 1.02 cm/s; end -2.72 ± 1.64 cm/s, both P < 0.01). However, during CPT, both oxyhemoglobin (beginning -0.46 ± 1.43 μM; end -0.60 ± 1.59 μM, both P < 0.01) and whole leg blood flow (beginning -1.52 ± 1.63 cm/s; end -0.69 ± 1.51 cm/s, both P < 0.01) declined with a similar timecourse, even though the magnitudes of decline were smaller than during IHE. These responses are likely due to the different timecourses of sympathetically mediated vasoconstriction in bone and muscle. These results indicate that sympathetic innervation of the bone vasculature serves a functional role in the control of flow in young healthy individuals.NEW & NOTEWORTHY The current study is the first one to noninvasively investigate control of bone blood perfusion in vivo in humans, on a moment-by-moment basis. Our results indicate that tibial bone vasculature demonstrates active vasoconstriction in response to sympathoexcitatory stimuli in young healthy individuals. Compared with whole leg vasculature, bone vasoconstrictor response seems to be smaller, delayed, and more variable.
Collapse
Affiliation(s)
- Adina E Draghici
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts.,Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, Massachusetts
| | - J Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts.,Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, Massachusetts
| |
Collapse
|
40
|
Kim J, Lee G, Chang WS, Ki SH, Park JC. Comparison and Contrast of Bone and Dentin in Genetic Disorder, Morphology and Regeneration: A Review. J Bone Metab 2021; 28:1-10. [PMID: 33730779 PMCID: PMC7973397 DOI: 10.11005/jbm.2021.28.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
The bone and dentin have distinct healing processes. The healing process of bones is regenerative, as newly formed tissues are morphologically and functionally similar to the original bone structures. In contrast, the healing process of dentin is reparative due to its failure to replicate some of its key morphological features. In this review, we compare and contrast the healing processes of bone and dentin. We describe how distinct morphological and physiological structures of the 2 tissues translate into different signaling molecules, growth factors, and matrix protein secretion.
Collapse
Affiliation(s)
- Jaehyun Kim
- College of Dental Medicine, Columbia University, New York, USA
| | - Gayeong Lee
- College of Dental Medicine, Columbia University, New York, USA
| | - Woo Sung Chang
- College of Dental Medicine, Columbia University, New York, USA
| | - Si Hyoung Ki
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
41
|
Mansoorifar A, Gordon R, Bergan R, Bertassoni LE. Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006796. [PMID: 35422682 PMCID: PMC9007546 DOI: 10.1002/adfm.202006796] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 05/07/2023]
Abstract
Bone is an active organ that continuously undergoes an orchestrated process of remodeling throughout life. Bone tissue is uniquely capable of adapting to loading, hormonal, and other changes happening in the body, as well as repairing bone that becomes damaged to maintain tissue integrity. On the other hand, diseases such as osteoporosis and metastatic cancers disrupt normal bone homeostasis leading to compromised function. Historically, our ability to investigate processes related to either physiologic or diseased bone tissue has been limited by traditional models that fail to emulate the complexity of native bone. Organ-on-a-chip models are based on technological advances in tissue engineering and microfluidics, enabling the reproduction of key features specific to tissue microenvironments within a microfabricated device. Compared to conventional in-vitro and in-vivo bone models, microfluidic models, and especially organs-on-a-chip platforms, provide more biomimetic tissue culture conditions, with increased predictive power for clinical assays. In this review, we will report microfluidic and organ-on-a-chip technologies designed for understanding the biology of bone as well as bone-related diseases and treatments. Finally, we discuss the limitations of the current models and point toward future directions for microfluidics and organ-on-a-chip technologies in bone research.
Collapse
Affiliation(s)
- Amin Mansoorifar
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luiz E. Bertassoni
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
42
|
Paolino S, Gotelli E, Goegan F, Casabella A, Ferrari G, Patane M, Albertelli M, Gatto F, Pizzorni C, Cattelan F, Sulli A, Smith V, Cutolo M. Body composition and bone status in relation to microvascular damage in systemic sclerosis patients. J Endocrinol Invest 2021; 44:255-264. [PMID: 32449094 DOI: 10.1007/s40618-020-01234-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
AIM To evaluate, in Systemic sclerosis (SSc) patients, the body composition and the bone status according to the peripheral microcirculatory condition, assessed and scored by nailfold videocapillaroscopy (NVC, "Early", "Active", "Late" patterns). METHODS Body composition and bone mineral density (BMD) were assessed by Dual X-ray absorptiometry and dedicated software (GE Lunar USA) in 37 female SSc patients classified according to the 2013 EULAR/ACR criteria and 40 sex-matched healthy subjects. Clinical, laboratory, body composition and bone parameters were analyzed according to the different NVC patterns. Means were compared by the Student's t test or one-way analysis of variance; medians were compared by the Kruskal-Wallis test; and frequencies by the chi-square test. RESULTS Higher prevalence of vertebral (21% vs 7%) and femoral (35% vs 7%) osteoporosis (OP) was found in SSc. Particularly SSc patients with "Late" NVC pattern showed a significantly higher prevalence of vertebral (p = 0.018) and femoral OP (p = 0.016). Regional assessment of bone mass (BM) in seven different body areas showed a significantly lower BMD only at the total spine (p = 0.008) and femoral neck (p = 0.027) in advanced microvascular damage. Patients with "Late" NVC pattern showed a lower whole-body lean mass (LM) compared to "Early" and "Active" NVC patterns, particularly at upper limbs. To note, in all body sites, BMD correlates with LM and BMC according to NVC pattern severity. CONCLUSIONS SSc patients with most severe microvascular damage show a significantly altered body composition and bone status suggesting a strong link between microvascular failure and associated muscle/bone sufferance.
Collapse
Affiliation(s)
- S Paolino
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy.
| | - E Gotelli
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy
| | - F Goegan
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy
| | - A Casabella
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy
| | - G Ferrari
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy
| | - M Patane
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy
| | - M Albertelli
- Endocrinology Unit, IRCCS Policlinico San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialities (DIMI), Centre of Excellence for Biomedical Research (CEBR), Endocrinology Unit, University of Genoa, IRCCS Policlinico San Martino, Genoa, Italy
| | - F Gatto
- Endocrinology Unit, IRCCS Policlinico San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialities (DIMI), Centre of Excellence for Biomedical Research (CEBR), Endocrinology Unit, University of Genoa, IRCCS Policlinico San Martino, Genoa, Italy
| | - C Pizzorni
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy
| | - F Cattelan
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy
| | - A Sulli
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy
| | - V Smith
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
- Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Ghent, Belgium
| | - M Cutolo
- Department of Internal Medicine DiMI, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy
| |
Collapse
|
43
|
Kuroyanagi G, Sakai G, Otsuka T, Yamamoto N, Fujita K, Kawabata T, Matsushima-Nishiwaki R, Kozawa O, Tokuda H. HSP22 (HSPB8) positively regulates PGF2α-induced synthesis of interleukin-6 and vascular endothelial growth factor in osteoblasts. J Orthop Surg Res 2021; 16:72. [PMID: 33478532 PMCID: PMC7819160 DOI: 10.1186/s13018-021-02209-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background Heat shock protein 22 (HSP22) belongs to class I of the small HSP family that displays ubiquitous expression in osteoblasts. We previously demonstrated that prostaglandin F2α (PGF2α), a potent bone remodeling factor, induces the synthesis of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether HSP22 is implicated in the PGF2α-induced synthesis of IL-6 and VEGF and the mechanism of MC3T3-E1 cells. Methods MC3T3-E1 cells were transfected with HSP22-siRNA. IL-6 and VEGF release was assessed by ELISA. Phosphorylation of p44/p42 MAP kinase and p38 MAP kinase was detected by Western blotting. Results The PGF2α-induced release of IL-6 in HSP22 knockdown cells was significantly suppressed compared with that in the control cells. HSP22 knockdown also reduced the VEGF release by PGF2α. Phosphorylation of p44/p42 MAP kinase and p38 MAP kinase was attenuated by HSP22 downregulation. Conclusions Our results strongly suggest that HSP22 acts as a positive regulator in the PGF2α-induced synthesis of IL-6 and VEGF in osteoblasts.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Micuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan. .,Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan. .,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| | - Go Sakai
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Micuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Komaki City Hospital, Komaki, 485-8520, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Micuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Naohiro Yamamoto
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Micuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Micuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Tetsu Kawabata
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Micuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | | | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| |
Collapse
|
44
|
Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral Bone Remodeling: A Therapeutic Target for Osteoarthritis. Front Cell Dev Biol 2021; 8:607764. [PMID: 33553146 PMCID: PMC7859330 DOI: 10.3389/fcell.2020.607764] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
There is emerging awareness that subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). This review presents recent investigations on the cellular and molecular mechanism of subchondral bone remodeling, and summarizes the current interventions and potential therapeutic targets related to OA subchondral bone remodeling. The first part of this review covers key cells and molecular mediators involved in subchondral bone remodeling (osteoclasts, osteoblasts, osteocytes, bone extracellular matrix, vascularization, nerve innervation, and related signaling pathways). The second part of this review describes candidate treatments for OA subchondral bone remodeling, including the use of bone-acting reagents and the application of regenerative therapies. Currently available clinical OA therapies and known responses in subchondral bone remodeling are summarized as a basis for the investigation of potential therapeutic mediators.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yau Tsz Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick S H Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Insights into the mechanism of vascular endothelial cells on bone biology. Biosci Rep 2021; 41:227494. [PMID: 33403387 PMCID: PMC7816070 DOI: 10.1042/bsr20203258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In the skeletal system, blood vessels not only function as a conduit system for transporting gases, nutrients, metabolic waste, or cells but also provide multifunctional signal molecules regulating bone development, regeneration, and remodeling. Endothelial cells (ECs) in bone tissues, unlike in other organ tissues, are in direct contact with the pericytes of blood vessels, resulting in a closer connection with peripheral connective tissues. Close-contact ECs contribute to osteogenesis and osteoclastogenesis by secreting various cytokines in the paracrine or juxtacrine pathways. An increasing number of studies have revealed that extracellular vesicles (EVs) derived from ECs can directly regulate maturation process of osteoblasts and osteoclasts. The different pathways focus on targets at different distances, forming the basis of the intimate spatial and temporal link between bone tissue and blood vessels. Here, we provide a systematic review to elaborate on the function of ECs in bone biology and its underlying mechanisms based on three aspects: paracrine, EVs, and juxtacrine. This review proposes the possibility of a therapeutic strategy targeting blood vessels, as an adjuvant treatment for bone disorders.
Collapse
|
46
|
Osteoclast-derived apoptotic bodies couple bone resorption and formation in bone remodeling. Bone Res 2021; 9:5. [PMID: 33431863 PMCID: PMC7801485 DOI: 10.1038/s41413-020-00121-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Bone remodeling is precisely coordinated by bone resorption and formation. Apoptotic osteoclasts generate large amounts of apoptotic bodies (ABs) marking the end of the bone resorption phase, whereas the functions of osteoclast-derived ABs remain largely unknown. Here, we identified the molecular profile of ABs derived from osteoclasts at distinct differentiation stages and investigated their corresponding functions. ABs were isolated from apoptotic bone marrow macrophages, preosteoclasts, and mature osteoclasts induced by staurosporine. Proteomic signature analysis with liquid chromatography-tandem mass spectrometry suggested marked protein cargo differences among the different ABs. Further bioinformatic analysis showed that the proteomic signatures of the ABs were highly similar to those of their parental cells. Functionally, pOC-ABs induced endothelial progenitor cell differentiation and increased CD31hiEmcnhi endothelial cell formation in a murine bone defect model via their PDGF-BB cargo. mOC-ABs induced osteogenic differentiation of mesenchymal stem cells and facilitated osteogenesis via RANKL reverse signaling. In summary, we mapped the detailed proteomic landscapes of ABs derived from osteoclasts and showed that their potential biological roles are important in coupling bone formation with resorption during bone remodeling.
Collapse
|
47
|
Kong L, Wang Y, Wang H, Pan Q, Zuo R, Bai S, Zhang X, Lee WY, Kang Q, Li G. Conditioned media from endothelial progenitor cells cultured in simulated microgravity promote angiogenesis and bone fracture healing. Stem Cell Res Ther 2021; 12:47. [PMID: 33419467 PMCID: PMC7792074 DOI: 10.1186/s13287-020-02074-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Paracrine signaling from endothelial progenitor cells (EPCs) is beneficial for angiogenesis and thus promotes tissue regeneration. Microgravity (MG) environment is found to facilitate the functional potentials of various stem or progenitor cells. The present study aimed to elucidate the effects of MG on pro-angiogenic properties and fracture repair capacities of conditioned media (CM) from EPCs. Methods Human peripheral blood-derived EPCs were cultured under MG or normal gravity (NG) followed by analysis for angiogenic gene expression. Furthermore, the serum-free CM under MG (MG-CM) or NG (NG-CM) were collected, and their pro-angiogenic properties were examined in human umbilical vein endothelial cells (HUVECs). In order to investigate the effects of MG-CM on fracture healing, they were injected into the fracture gaps of rat models, and radiography, histology, and mechanical test were performed to evaluate neovascularization and fracture healing outcomes. Results MG upregulated the expression of hypoxia-induced factor-1α (HIF-1α) and endothelial nitric oxide synthase (eNOS) and promoted NO release. Comparing to NG-CM, MG-CM significantly facilitated the proliferation, migration, and angiogenesis of HUVECs through NO-induced activation of FAK/Erk1/2-MAPK signaling pathway. In addition, MG-CM were verified to improve angiogenic activities in fracture area in a rat tibial fracture model, accelerate fracture healing, and well restore the biomechanical properties of fracture bone superior to NG-CM. Conclusion These findings provided insight into the use of MG bioreactor to enhance the angiogenic properties of EPCs’ paracrine signals via HIF-1α/eNOS/NO axis, and the administration of MG-CM favored bone fracture repair. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02074-y.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd. 600, Shanghai, 200233, People's Republic of China.,Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Yan Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Rongtai Zuo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd. 600, Shanghai, 200233, People's Republic of China
| | - Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Wayne Yukwai Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd. 600, Shanghai, 200233, People's Republic of China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC. .,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China. .,Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR PRC.
| |
Collapse
|
48
|
Spatio-Temporal Bone Remodeling after Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2020; 22:ijms22010267. [PMID: 33383915 PMCID: PMC7795370 DOI: 10.3390/ijms22010267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022] Open
Abstract
The interaction of hematopoietic cells and the bone microenvironment to maintain bone homeostasis is increasingly appreciated. We hypothesized that the transfer of allogeneic T lymphocytes has extensive effects on bone biology and investigated trabecular and cortical bone structures, the osteoblast reconstitution, and the bone vasculature in experimental hematopoietic stem cell transplantations (HSCT). Allogeneic or syngeneic hematopoietic stem cells (HSC) and allogeneic T lymphocytes were isolated and transferred in a murine model. After 20, 40, and 60 days, bone structures were visualized using microCT and histology. Immune cells were monitored using flow cytometry and bone vessels, bone cells and immune cells were fluorescently stained and visualized. Remodeling of the bone substance, the bone vasculature and bone cell subsets were found to occur as early as day +20 after allogeneic HSCT (including allogeneic T lymphocytes) but not after syngeneic HSCT. We discovered that allogeneic HSCT (including allogeneic T lymphocytes) results in a transient increase of trabecular bone number and bone vessel density. This was paralleled by a cortical thinning as well as disruptive osteoblast lining and loss of B lymphocytes. In summary, our data demonstrate that the adoptive transfer of allogeneic HSCs and allogeneic T lymphocytes can induce profound structural and spatial changes of bone tissue homeostasis as well as bone marrow cell composition, underlining the importance of the adaptive immune system for maintaining a balanced bone biology.
Collapse
|
49
|
Comparison between Tonifying Kidney Yang and Yin in Treating Segmental Bone Defects Based on the Induced Membrane Technique: An Experimental Study in a Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6575127. [PMID: 33424987 PMCID: PMC7781691 DOI: 10.1155/2020/6575127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/24/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023]
Abstract
Tonifying kidney therapy consisting of tonifying kidney yang and yin is the basic principle of Chinese medicine in treating segmental bone defects (SBDs). Previous studies have demonstrated the presence of the differences between tonifying kidney yang and yin in bone metabolism of osteoporosis and distraction osteogenesis models. However, whether the difference between the two tonifying kidney methods in bone repair for the induced membrane (IM) technique occurs or what is the difference remain unclear. Angiogeneic-osteogenic coupling plays an important role in bone repair and the induced membrane couples angiogenesis with the later osteogenesis during the IM process. This study aimed at investigating the effects of tonifying kidney yang (total flavonoids of Rhizoma Drynariae, TFRD) and yin (plastrum testudinis extract, PTE) on angiogenesis and osteogenesis in the IM-treated SBDs. Rats of 6 mm tibia bone defect model treated with IM were divided into five groups: the control group, the model group, the tonifying kidney yang group (TFRD-treated group), the tonifying kidney yin group (PTE-treated group), and the western medicine group. At 4 weeks after insertion of the polymethylmethacrylate (PMMA), three caudal vertebrae from the tail in each rat were implanted into the 6 mm defect gap. Radiographical, histological, immunohistochemical, and immunofluorescent analyses were performed to assess bone and vessel formation at 4 or 12 weeks after insertion of the PMMA, respectively. Our results revealed that TFRD and PTE were beneficial to both angiogenesis and osteogenesis. TFRD exerted a better effect on angiogenesis than PTE and achieved a better result in stage 1 rather than in stage 2 of IM, whereas PTE was superior to TFRD in osteogenesis and achieved a better result in stage 2 instead of stage 1. Collectively, these findings elucidated the beneficial effects of tonifying kidney yang and yin on angiogenesis and osteogenesis of SBD repair during the IM process, as well as the difference that tonifying kidney yang surpasses tonifying kidney yin in angiogenesis while tonifying kidney yin outperforms tonifying kidney yang in osteogenesis, which suggests that the combination between the application of tonifying kidney yang method in stage 1 of IM and tonifying kidney yin method in stage 2 may achieve better repair efficiency.
Collapse
|
50
|
Chai Y, Su J, Hong W, Zhu R, Cheng C, Wang L, Zhang X, Yu B. Antenatal Corticosteroid Therapy Attenuates Angiogenesis Through Inhibiting Osteoclastogenesis in Young Mice. Front Cell Dev Biol 2020; 8:601188. [PMID: 33384997 PMCID: PMC7769874 DOI: 10.3389/fcell.2020.601188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Antenatal corticosteroid therapy (ACT) has been shown to reduce morbidity and mortality rates in preterm delivery, but the fetus is more likely to face the risk of low bone mineralization and low fetal linear growth. However, the mechanism of ACT inducing low bone mineralization remains largely unknown. Pre-osteoclasts, which play an important role in angiogenesis and osteogenesis, are specifically regulating type H vessels (CD31hiEmcnhi) and vessel formation by secreting platelet-derived growth factor-BB (PDGF-BB). We find that the number of pre-osteoclasts and POC-secreted PDGF-BB is dramatically decreased in ACT mice, contributing to the reduction in type H vessels and bone mineralization during the mouse offspring. Quantitative analyses of micro-computed tomography show that the ACT mice have a significant reduction in the mass of trabecular bone relative to the control group. Mononuclear pre-osteoclasts in trabecular bone decreased in ACT mice, which leads to the amount of PDGF-BB reduced and attenuates type H vessel formation. After sorting the Rank+ osteoclast precursors using flow cytometry, we show that the enhancer of zeste homolog 2 (Ezh2) expression is decreased in Rank+ osteoclast precursors in ACT mice. Consistent with the flow data, by using small molecule Ezh2 inhibitor GSK126, we prove that Ezh2 is required for osteoclast differentiation. Downregulating the expression of Ezh2 in osteoclast precursors would reduce PDGF-BB production. Conditioned medium from osteoclast precursor cultures treated with GSK126 inhibited endothelial tube formation, whereas conditioned medium from vehicle group stimulated endothelial tube formation. These results indicate Ezh2 expression of osteoclast precursors is suppressed after ACT, which reduced the pre-osteoclast number and PDGF-BB secretion, thus inhibiting type H vessel formation and ACT-associated low bone mineralization.
Collapse
Affiliation(s)
- Yu Chai
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwen Su
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weisheng Hong
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Runjiu Zhu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|