1
|
Lucateli RL, Silva PHF, Salvador SL, Ervolino E, Furlaneto FAC, Marciano MA, Antunes TBM, Del Arco MCG, Tardelli MDC, de Sousa LG, Messora MR. Probiotics enhance alveolar bone microarchitecture, intestinal morphology and estradiol levels in osteoporotic animals. J Periodontal Res 2024; 59:758-770. [PMID: 38699835 DOI: 10.1111/jre.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Osteoporosis is associated with bone microarchitecture alterations, and the depletion of estrogen during menopause is a major contributing factor to its development. The literature highlights the noteworthy role of gut microbiota in bone metabolism, particularly in the progression of osteoporosis. Periodontal disease leads to alveolar bone loss, which may be influenced by estrogen deficiency, and this mechanism is intricately associated with an imbalance in systemic microbiota. The aim of this study was to evaluate the effects of Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019) and Lacticaseibacillus casei 01 (L. casei 01) administrations on an osteoporosis animal model. MATERIALS AND METHODS Thirty-three female rats were randomly divided into three groups: control (C-OVX), C-OVX-HN019 and C-OVX-LC01. All animals were ovariectomized. In groups C-OVX-HN019 and C-OVX-LC01, the probiotics were administered for 4 months. All animals were euthanized after 16 weeks from ovariectomy. Microtomographic, histopathological and immunohistochemical examinations were conducted on periodontal tissues, whereas histomorphometry, histopathological and immunohistochemical analyses were carried out on the intestine. The levels of estradiol were assessed in blood using an immunoenzymatic assay. The data were subjected to statistical analyses (p < .05). RESULTS The C-OVX-LC01 group exhibited a significant reduction in alveolar bone porosity and an increase in connective tissue density compared to C-OVX (p < .05). The C-OVX-HN019 and C-OVX-LC01 groups presented reduced expression of TRAP and RANKL compared to the C-OVX (p < .05). The C-OVX group presented villi defects, mild neutrophil infiltration, decrease in both villous height and intestinal crypts and reduced expression of intestinal junctional epithelium markers e-cadherin and claudin 01 compared to C-OVX-HN019 and C-OVX-LC01 (p < .05). The C-OVX group had lower estradiol levels than C-OVX-HN019 and C-OVX-LC01 (p < .05). CONCLUSION The probiotic therapy promoted a reduction in alveolar bone destruction and intestinal permeability as well as an increase in estradiol levels in ovariectomized rats. Specifically, the probiotic strain Lacticaseibacillus casei 01 exhibited greater effectiveness compared to Bifidobacterium animalis subsp. lactis HN019, indicating strain-dependent outcomes.
Collapse
Affiliation(s)
- R L Lucateli
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - P H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - S L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - E Ervolino
- Division of Histology, Department of Basic Sciences, Dental School of Araçatuba, UNESP, Araçatuba, São Paulo, Brazil
| | - F A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - M A Marciano
- Department of Restorative Dentistry, School of Dentistry of Piracicaba, University of Campinas, Piracicaba, São Paulo, Brazil
| | - T B M Antunes
- Department of Restorative Dentistry, School of Dentistry of Piracicaba, University of Campinas, Piracicaba, São Paulo, Brazil
| | - M C G Del Arco
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - M D C Tardelli
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - L G de Sousa
- Department of Morphology, Stomatology, and Physiology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - M R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
3
|
Nitrogen-Containing Bisphosphonates Downregulate Cathepsin K and Upregulate Annexin V in Osteoclasts Cultured In Vitro. Int J Dent 2023; 2023:2960941. [PMID: 36866025 PMCID: PMC9974278 DOI: 10.1155/2023/2960941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction Bisphosphonates are widely used in the treatment of osteoporosis; however, they are associated with the serious adverse event of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Aim The aim of this study is to assess the effects of nitrogen-containing bisphosphonates (N-PHs) on the synthesis of IL-1β, TNF-α, sRANKL, cathepsin K, and annexin V in bone cells cultured in vitro. Materials and Methods Osteoblasts and bone marrow-derived osteoclasts were cultured in vitro, subjected to treatment with alendronate, risedronate, or ibandronate at a concentration of 10-5 M for 0 to 96 h and then assayed for IL-1β, sRANKL, and TNF-α production by ELISA. Cathepsin K and Annexin V-FITC staining in osteoclasts were assessed by flow cytometry. Results There was significant downregulation of IL-1β, sRANKL, and TNF-α in experimental osteoblasts compared to control cells, and there was upregulation of IL-1β and downregulation of RANKL and TNF-α in experimental osteoclasts. Furthermore, in osteoclasts, cathepsin K expression was downregulated at 48-72 h with alendronate treatment, while risedronate treatment resulted in upregulated annexin V expression at 48 h compared to the control treatment. Conclusion Bisphosphonates added to bone cells inhibited osteoclastogenesis, which led to the downregulation of cathepsin K and induction of apoptosis in osteoclasts; these changes limited the capacity of bone remodelling and healing that may contribute to BRONJ induced by surgical dental procedures.
Collapse
|
4
|
Kong SH, Kim JH, Kim SW, Jeong AJ, Lee SH, Ye SK, Shin CS. Effect of Denosumab on the Change of Osteoclast Precursors Compared to Zoledronate Treatment in Postmenopausal Women with Osteoporosis. J Bone Metab 2022; 29:93-101. [PMID: 35718926 PMCID: PMC9208900 DOI: 10.11005/jbm.2022.29.2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background A rapid increase in bone turnover and bone loss has been observed in response to the discontinuation of denosumab. It led to an acute increase in the fracture risk, similar to that observed in the untreated patients. We aimed to investigate the effect of denosumab on osteoclast (OC) precursor cells compared to that of zoledronate. Methods The study compared the effects of denosumab (60 mg/24-week) and zoledronate (5 mg/48-week) over 48 weeks in postmenopausal women with osteoporosis. From patients’ peripheral mononuclear cells, CD14+/CD11b+/vitronectin receptor (VNR)- and CD14+/CD11b+/VNR+ cells were isolated using fluorescent-activated cell sorting, representing early and late OC precursors, respectively. The primary endpoint was the changes in OC precursors after 48 weeks of treatment. Results Among the 23 patients, 11 were assigned to the denosumab group and 12 to the zoledronate group (mean age, 69 years). After 48 weeks, the changes in OC precursors were similar between and within the groups. Serum C-terminal telopeptide of type I collagen levels were inversely correlated with OC precursor levels after denosumab treatment (r=−0.72, P<0.001). Lumbar spine, femur neck, and total hip bone mineral density (BMD) increased in both groups. Lumbar spine BMD increased more significantly in the denosumab group than in the zoledronate group. Conclusions Denosumab and zoledronate treatments induced similar changes in OC precursors. During denosumab treatment, old age and suppressed bone turnover were associated with increased OC precursor cell populations. Further validation studies with prospective designs are required.
Collapse
Affiliation(s)
- Sung Hye Kong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Boramae Medical Center, Seoul, Korea
| | - Ae Jin Jeong
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Song-Hee Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
5
|
Wells GA, Hsieh SC, Zheng C, Peterson J, Tugwell P, Liu W. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev 2022; 5:CD004523. [PMID: 35502787 PMCID: PMC9062986 DOI: 10.1002/14651858.cd004523.pub4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Osteoporosis is an abnormal reduction in bone mass and bone deterioration leading to increased fracture risk. Risedronate belongs to the bisphosphonate class of drugs which act to inhibit bone resorption by interfering with the activity of osteoclasts. This is an update of a Cochrane Review that was originally published in 2003. OBJECTIVES We assessed the benefits and harms of risedronate in the primary and secondary prevention of osteoporotic fractures for postmenopausal women at lower and higher risk for fractures, respectively. SEARCH METHODS With broader and updated strategies, we searched the Cochrane Central Register of Control Trials (CENTRAL), MEDLINE and Embase. A grey literature search, including the online databases ClinicalTrials.gov, International Clinical Trials Registry Platform (ICTRP), and drug approval agencies, as well as bibliography checks of relevant systematic reviews was also performed. Eligible trials published between 1966 to 24 March 2021 were identified. SELECTION CRITERIA We included randomised controlled trials that assessed the benefits and harms of risedronate in the prevention of fractures for postmenopausal women. Participants must have received at least one year of risedronate, placebo or other anti-osteoporotic drugs, with or without concurrent calcium/vitamin D. Major outcomes were clinical vertebral, non-vertebral, hip and wrist fractures, withdrawals due to adverse events, and serious adverse events. In the interest of clinical relevance and applicability, we classified a study as secondary prevention if its population fulfilled more than one of the following hierarchical criteria: a diagnosis of osteoporosis, a history of vertebral fractures, low bone mineral density (BMD)T score ≤ -2.5, and age ≥ 75 years old. If none of these criteria was met, the study was considered to be primary prevention. DATA COLLECTION AND ANALYSIS We used standard methodology expected by Cochrane. We pooled the relative risk (RR) of fractures using a fixed-effect model based on the expectation that the clinical and methodological characteristics of the respective primary and secondary prevention studies would be homogeneous, and the experience from the previous review suggesting that there would be a small number of studies. The base case included the data available for the longest treatment period in each placebo-controlled trial and a >15% relative change was considered clinically important. The main findings of the review were presented in summary of findings tables, using the GRADE approach. In addition, we looked at benefit and harm comparisons between different dosage regimens for risedronate and between risedronate and other anti-osteoporotic drugs. MAIN RESULTS Forty-three trials fulfilled the eligibility criteria, among which 33 studies (27,348 participants) reported data that could be extracted and quantitatively synthesized. We had concerns about particular domains of risk of bias in each trial. Selection bias was the most frequent concern, with only 24% of the studies describing appropriate methods for both sequence generation and allocation concealment. Fifty per cent and 39% of the studies reporting benefit and harm outcomes, respectively, were subject to high risk. None of the studies included in the quantitative syntheses were judged to be at low risk of bias in all seven domains. The results described below pertain to the comparisons for daily risedronate 5 mg versus placebo which reported major outcomes. Other comparisons are described in the full text. For primary prevention, low- to very low-certainty evidence was collected from four studies (one to two years in length) including 989 postmenopausal women at lower risk of fractures. Risedronate 5 mg/day may make little or no difference to wrist fractures [RR 0.48 ( 95% CI 0.03 to 7.50; two studies, 243 participants); absolute risk reduction (ARR) 0.6% fewer (95% CI 1% fewer to 7% more)] and withdrawals due to adverse events [RR 0.67 (95% CI 0.38 to 1.18; three studies, 748 participants); ARR 2% fewer (95% CI 5% fewer to 1% more)], based on low-certainty evidence. However, its preventive effects on non-vertebral fractures and serious adverse events are not known due to the very low-certainty evidence. There were zero clinical vertebral and hip fractures reported therefore the effects of risedronate for these outcomes are not estimable. For secondary prevention, nine studies (one to three years in length) including 14,354 postmenopausal women at higher risk of fractures provided evidence. Risedronate 5 mg/day probably prevents non-vertebral fractures [RR 0.80 (95% CI 0.72 to 0.90; six studies, 12,173 participants); RRR 20% (95% CI 10% to 28%) and ARR 2% fewer (95% CI 1% fewer to 3% fewer), moderate certainty], and may reduce hip fractures [RR 0.73 (95% CI 0.56 to 0.94); RRR 27% (95% CI 6% to 44%) and ARR 1% fewer (95% CI 0.2% fewer to 1% fewer), low certainty]. Both of these effects are probably clinically important. However, risedronate's effects are not known for wrist fractures [RR 0.64 (95% CI 0.33 to 1.24); three studies,1746 participants); ARR 1% fewer (95% CI 2% fewer to 1% more), very-low certainty] and not estimable for clinical vertebral fractures due to zero events reported (low certainty). Risedronate results in little to no difference in withdrawals due to adverse events [RR 0.98 (95% CI 0.90 to 1.07; eight studies, 9529 participants); ARR 0.3% fewer (95% CI 2% fewer to 1% more); 16.9% in risedronate versus 17.2% in control, high certainty] and probably results in little to no difference in serious adverse events [RR 1.00 (95% CI 0.94 to 1.07; six studies, 9435 participants); ARR 0% fewer (95% CI 2% fewer to 2% more; 29.2% in both groups, moderate certainty). AUTHORS' CONCLUSIONS This update recaps the key findings from our previous review that, for secondary prevention, risedronate 5 mg/day probably prevents non-vertebral fracture, and may reduce the risk of hip fractures. We are uncertain on whether risedronate 5mg/day reduces clinical vertebral and wrist fractures. Compared to placebo, risedronate probably does not increase the risk of serious adverse events. For primary prevention, the benefit and harms of risedronate were supported by limited evidence with high uncertainty.
Collapse
Affiliation(s)
- George A Wells
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Shu-Ching Hsieh
- Cardiovascular Research Methods Center, University of Ottawa Heart Institute, Ottawa, Canada
| | - Carine Zheng
- University of Ottawa Heart Institute, Ottawa, Canada
- Statistics Canada, Ottawa, Canada
| | - Joan Peterson
- Clinical Epidemiology Unit, Ottawa Civic Hospital / Loeb Research Institute, Ottawa, Canada
| | - Peter Tugwell
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- WHO Collaborating Centre for Knowledge Translation and Health Technology Assessment in Health Equity, Bruyère Research Institute, Ottawa, Canada
| | - Wenfei Liu
- Cardiovascular Research Methods Center, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
6
|
Binkley N, Orwoll E, Chapurlat R, Langdahl BL, Scott BB, Giezek H, Santora AC. Randomized, controlled trial to assess the safety and efficacy of odanacatib in the treatment of men with osteoporosis. Osteoporos Int 2021; 32:173-184. [PMID: 33200257 DOI: 10.1007/s00198-020-05701-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
UNLABELLED Odanacatib (ODN) was investigated as an osteoporosis treatment in 292 men. Compared with placebo, odanacatib improved bone mineral density and led to sustained bone resorption decreases while producing relatively little bone formation reduction that leveled off with time. However, increased risk of stroke in another study stopped further odanacatib development. INTRODUCTION ODN, a selective oral cathepsin K inhibitor, was in development for osteoporosis treatment. This phase 3, double-blind, randomized, placebo-controlled, 24-month study investigated ODN safety and efficacy in men with osteoporosis. METHODS Men with idiopathic osteoporosis or osteoporosis due to hypogonadism and a lumbar spine or hip (total hip [TH], femoral neck [FN], or trochanter) bone mineral density (BMD) T-score of ≤ - 2.5 to ≥ - 4.0 without prior vertebral fracture or ≤ - 1.5 to ≥ - 4.0 with one prior vertebral fracture were randomized (1:1) to once-weekly ODN 50 mg or placebo. All received 5600 IU vitamin D3 weekly and calcium supplementation as needed (≥ 1200 mg daily). The primary efficacy outcome was changed from baseline in lumbar spine BMD versus placebo. RESULTS Overall, 292 men, mean age 68.8 years, were randomly assigned to ODN or placebo. Versus placebo, ODN increased BMD from baseline at the lumbar spine, TH, FN, and trochanter by 5.6%, 2.0%, 1.7%, and 2.1%, respectively (all p < 0.01), and decreased uNTx/Cr (68%, p < 0.001), sCTx (77%, p < 0.001), sP1NP (16%, p = 0.001), and sBSAP (8%, p = 0.019). The between-group bone formation marker decrease peaked at 3 months, then returned toward baseline. The safety profile, including cardiovascular events, was similar between groups. CONCLUSION Though a promising osteoporosis therapy for men, ODN development was discontinued due to increased risk of stroke in the LOFT phase 3 trial. TRIAL REGISTRATION Clinicaltrials.gov NCT01120600 (registered May 11, 2010).
Collapse
Affiliation(s)
- N Binkley
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - E Orwoll
- Oregon Health & Science University, Portland, OR, USA
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital Édouard Herriot, Lyon, France
| | | | - B B Scott
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - H Giezek
- MSD Europe Inc., Brussels, Belgium
| | | |
Collapse
|
7
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
8
|
Tzschentke TM. Pharmacology of bisphosphonates in pain. Br J Pharmacol 2019; 178:1973-1994. [PMID: 31347149 DOI: 10.1111/bph.14799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 01/15/2023] Open
Abstract
The treatment of pain, in particular, chronic pain, remains a clinical challenge. This is particularly true for pain associated with severe or rare conditions, such as bone cancer pain, vulvodynia, or complex regional pain syndrome. Over the recent years, there is an increasing interest in the potential of bisphosphonates in the treatment of pain, although there are few papers describing antinociceptive and anti-hypersensitizing effects of bisphosphonates in various animal models of pain. There is also increasing evidence for clinical efficacy of bisphosphonates in chronic pain states, although the number of well-controlled studies is still limited. However, the mechanisms underlying the analgesic effects of bisphosphonates are still largely elusive. This review provides an overview of preclinical and clinical studies of bisphosphonates in pain and discusses various pharmacological mechanisms that have been postulated to explain their analgesic effects. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
|
9
|
Forte L, Sarda S, Torricelli P, Combes C, Brouillet F, Marsan O, Salamanna F, Fini M, Boanini E, Bigi A. Multifunctionalization Modulates Hydroxyapatite Surface Interaction with Bisphosphonate: Antiosteoporotic and Antioxidative Stress Materials. ACS Biomater Sci Eng 2019; 5:3429-3439. [DOI: 10.1021/acsbiomaterials.9b00795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lucia Forte
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Stéphanie Sarda
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse INP ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10 40136 Bologna, Italy
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse INP ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Fabien Brouillet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Faculté des Sciences Pharmaceutique, 35 Chemin des Maraichers, 31062 Toulouse cedex 9, France
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse INP ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Francesca Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10 40136 Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10 40136 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
10
|
de Vries TJ, El Bakkali I, Kamradt T, Schett G, Jansen IDC, D'Amelio P. What Are the Peripheral Blood Determinants for Increased Osteoclast Formation in the Various Inflammatory Diseases Associated With Bone Loss? Front Immunol 2019; 10:505. [PMID: 30941138 PMCID: PMC6434996 DOI: 10.3389/fimmu.2019.00505] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2019] [Indexed: 01/18/2023] Open
Abstract
Local priming of osteoclast precursors (OCp) has long been considered the main and obvious pathway that takes place in the human body, where local bone lining cells and RANKL-expressing osteocytes may facilitate the differentiation of OCp. However, priming of OCp away from bone, such as in inflammatory tissues, as revealed in peripheral blood, may represent a second pathway, particularly relevant in individuals who suffer from systemic bone loss such as prevalent in inflammatory diseases. In this review, we used a systematic approach to review the literature on osteoclast formation in peripheral blood in patients with inflammatory diseases associated with bone loss. Only studies that compared inflammatory (bone) disease with healthy controls in the same study were included. Using this core collection, it becomes clear that experimental osteoclastogenesis using peripheral blood from patients with bone loss diseases in prevalent diseases such as rheumatoid arthritis, osteoporosis, periodontitis, and cancer-related osteopenia unequivocally point toward an intrinsically increased osteoclast formation and activation. In particular, such increased osteoclastogenesis already takes place without the addition of the classical osteoclastogenesis cytokines M-CSF and RANKL in vitro. We show that T-cells and monocytes as OCp are the minimal demands for such unstimulated osteoclast formation. In search for common and disease-specific denominators of the diseases with inflammation-driven bone loss, we demonstrate that altered T-cell activity and a different composition—such as the CD14+CD16+ vs. CD14+CD16– monocytes—and priming of OCp with increased M-CSF, RANKL, and TNF- α levels in peripheral blood play a role in increased osteoclast formation and activity. Future research will likely uncover the barcodes of the OCp in the various inflammatory diseases associated with bone loss.
Collapse
Affiliation(s)
- Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ismail El Bakkali
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thomas Kamradt
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Georg Schett
- Department of Internal Medicine III, Friedrich-Alexander University Erlangen-Nürnberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Ineke D C Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Patrizia D'Amelio
- Gerontology and Bone Metabolic Diseases Division, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Naylor KE, Bradburn M, Paggiosi MA, Gossiel F, Peel NFA, McCloskey EV, Walsh JS, Eastell R. Effects of discontinuing oral bisphosphonate treatments for postmenopausal osteoporosis on bone turnover markers and bone density. Osteoporos Int 2018. [PMID: 29525970 DOI: 10.1007/s00198-018-4460-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
UNLABELLED The antiresorptive potency varies between different bisphosphonates. We investigated the effect of stopping oral bisphosphonate treatment for postmenopausal osteoporosis (ibandronate, alendronate, risedronate) on BTMs and BMD. After stopping treatment, all three groups showed an increase in BTMs and a decrease in hip BMD; however, none returned to pre-treatment baseline values. INTRODUCTION Bisphosphonates (BPs) continue to suppress bone turnover markers (BTMs) after treatment has stopped, leading to the suggestion that a pause in treatment could be considered for low-risk patients. Indirect comparisons suggest that after cessation of treatment, the effects on bone may differ between drugs. We investigated the effects of stopping oral BP treatments for postmenopausal osteoporosis on BTMs and bone mineral density (BMD). METHODS We studied postmenopausal osteoporotic women who had previously taken part in a 2-year randomised study of three oral BPs (ibandronate, alendronate, or risedronate). At the end of the study, women with hip BMD T-score > - 2.5 and considered clinically appropriate to discontinue treatment were invited to participate in a further 2-year observational study. Biochemical response was assessed using BTMs, and BMD was measured by dual-energy X-ray absorptiometry. RESULTS All BTMs increased after treatment withdrawal but remained below the pre-treatment baseline with less suppression of BTMs for the risedronate group compared to alendronate and ibandronate up to 48 weeks. There was no difference between the BP groups 96 weeks after stopping treatment. The change in BMD during the 96 weeks after stopping treatment was - 1.6% (95% CI - 1.9 to - 1.2, P < 0.001) for the total hip and - 0.6% (95% CI - 1.1 to - 0.2, P = 0.17) at the lumbar spine with no difference between the three BP groups (P = 0.85 and P = 0.48, respectively). CONCLUSION For all treatment groups, there was an increase in BTMs and a decrease in hip BMD after stopping BPs for 2 years; however, none returned to pre-treatment baseline values.
Collapse
Affiliation(s)
- K E Naylor
- Academic Unit of Bone Metabolism, The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
| | - M Bradburn
- Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - M A Paggiosi
- Academic Unit of Bone Metabolism, The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - F Gossiel
- Academic Unit of Bone Metabolism, The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - N F A Peel
- Metabolic Bone Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Northern General Hospital Sheffield, Sheffield, UK
| | - E V McCloskey
- Academic Unit of Bone Metabolism, The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- Centre for Integrated Research into Musculoskeletal Ageing, Sheffield, UK
| | - J S Walsh
- Academic Unit of Bone Metabolism, The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - R Eastell
- Academic Unit of Bone Metabolism, The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Wang L, Guo TZ, Hou S, Wei T, Li WW, Shi X, Clark JD, Kingery WS. Bisphosphonates Inhibit Pain, Bone Loss, and Inflammation in a Rat Tibia Fracture Model of Complex Regional Pain Syndrome. Anesth Analg 2017; 123:1033-45. [PMID: 27636578 DOI: 10.1213/ane.0000000000001518] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Bisphosphonates are used to prevent the bone loss and fractures associated with osteoporosis, bone metastases, multiple myeloma, and osteogenesis deformans. Distal limb fractures cause regional bone loss with cutaneous inflammation and pain in the injured limb that can develop into complex regional pain syndrome (CRPS). Clinical trials have reported that antiresorptive bisphosphonates can prevent fracture-induced bone loss, inhibit serum inflammatory cytokine levels, and alleviate CRPS pain. Previously, we observed that the inhibition of inflammatory cytokines or adaptive immune responses attenuated the development of pain behavior in a rat fracture model of CRPS, and we hypothesized that bisphosphonates could prevent pain behavior, trabecular bone loss, postfracture cutaneous cytokine upregulation, and adaptive immune responses in this CRPS model. METHODS Rats underwent tibia fracture and cast immobilization for 4 weeks and were chronically administered either subcutaneously perfused alendronate or oral zoledronate. Behavioral measurements included hindpaw von Frey allodynia, unweighting, warmth, and edema. Bone microarchitecture was measured by microcomputed tomography, and bone cellular activity was evaluated by static and dynamic histomorphometry. Spinal cord Fos immunostaining was performed, and skin cytokine (tumor necrosis factor, interleukin [IL]-1, IL-6) and nerve growth factor (NGF) levels were determined by enzyme immunoassay. Skin and sciatic nerve immunoglobulin levels were determined by enzyme immunoassay. RESULTS Rats with tibia fractures developed hindpaw allodynia, unweighting, warmth, and edema, increased spinal Fos expression and trabecular bone loss in the lumbar vertebra and bilateral distal femurs as measured by microcomputed tomography, increased trabecular bone resorption and osteoclast surface with decreased bone formation rates, increased cutaneous inflammatory cytokine and NGF expression, and elevated immunocomplex deposition in skin and nerve. Alendronate (60 μg/kg/d subcutaneously [s.c.]) or zoledronate (3 mg/kg/d orally) treatment for 28 days, started at the time of fracture, completely inhibited the development of hindpaw allodynia and reduced hindpaw unweighting by 44% ± 13% and 58% ± 5%, respectively. Orally administered zoledronate (3 mg/kg/d for 21 days) treatment also completely reversed established allodynia and unweighting when started at 4 weeks postfracture. Histomorphometric and microcomputed tomography analysis demonstrated that both the 3 and 60 μg/kg/d alendronate treatments reversed trabecular bone loss (an 88% ± 25% and 188% ± 39% increase in the ipsilateral distal femur BV/TV, respectively) and blocked the increase in osteoclast numbers and erosion surface observed in bilateral distal femurs and in L5 vertebra of the fracture rats. Alendronate treatment inhibited fracture-induced increases in hindpaw inflammatory mediators, reducing postfracture levels of tumor necrosis factor by 43% ± 9%, IL-1 by 60% ± 9%, IL-6 by 56% ± 14%, and NGF by 37% ± 14%, but had no effect on increased spinal cord Fos expression, or skin and sciatic nerve immunocomplex deposition. CONCLUSIONS Collectively, these results indicate that bisphosphonate therapy inhibits pain, osteoclast activation, trabecular bone loss, and cutaneous inflammation in the rat fracture model of CRPS, data supporting the hypothesis that bisphosphonate therapy can provide effective multimodal treatment for CRPS.
Collapse
Affiliation(s)
- Liping Wang
- From the *Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; †Department of Anesthesiology, Stanford University School of Medicine, Stanford, California; and ‡Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Qiu S, Divine GW, Palnitkar S, Kulkarni P, Guthrie TS, Honasoge M, Rao SD. Bone Structure and Turnover Status in Postmenopausal Women with Atypical Femur Fracture After Prolonged Bisphosphonate Therapy. Calcif Tissue Int 2017; 100:235-243. [PMID: 28013363 PMCID: PMC5315598 DOI: 10.1007/s00223-016-0223-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022]
Abstract
Atypical femur fracture (AFF), a serious complication of long-term bisphosphonate therapy, is usually preceded by an incomplete fracture appearing on the lateral femur. AFF is most likely the result of severely suppressed bone turnover (SSBT). However, the differences in bone structure and turnover between patients with incomplete and complete AFF remain unknown. We examined trans-iliac bone biopsies from 12 white postmenopausal women with AFF (incomplete = 5; complete = 7) on BP therapy of >5 years and 43 healthy white premenopausal women. Histomorphometric measurements were performed separately in cancellous, intracortical and endosteal envelopes. Of the 43 histomorphometric measurements on 3 difference bone surfaces (cancellous, intracortical and endosteal), only 2 bone resorption variables (Oc.S/BS and Oc.S/NOS) on the endosteal surface were significantly lower in patients with complete AFF than those with incomplete AFF. Compared to healthy premenopausal women, the trabecular bone volume, thickness and number were all significantly lower in patients with AFF. The dynamic bone formation variables in patients with AFF were significantly reduced on all bone surfaces. The likelihood of a biopsy with no tetracycline labeling was significantly higher in AFF patients than in healthy premenopausal women. Based on these results, we conclude that there are no significant differences in bone turnover between patients with incomplete and complete AFF, suggesting that the suppression of bone turnover had already existed in the femur with incomplete AFF. Compared to healthy premenopausal women, bone turnover is similarly suppressed in patients with either type of AFF.
Collapse
Affiliation(s)
- Shijing Qiu
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA.
| | - George W Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Saroj Palnitkar
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA
| | - Pooja Kulkarni
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA
| | - Trent S Guthrie
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Mahalakshmi Honasoge
- Division of Endocrinology, Diabetes, and Bone and Mineral Disorders, Henry Ford Hospital, Detroit, MI, USA
| | - Sudhaker D Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA
- Division of Endocrinology, Diabetes, and Bone and Mineral Disorders, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
14
|
Koek WNH, van der Eerden BCJ, Alves RDAM, van Driel M, Schreuders-Koedam M, Zillikens MC, van Leeuwen JPTM. Osteoclastogenic capacity of peripheral blood mononuclear cells is not different between women with and without osteoporosis. Bone 2017; 95:108-114. [PMID: 27845263 DOI: 10.1016/j.bone.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/07/2016] [Accepted: 11/10/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Peripheral Blood Mononuclear Cells (PBMCs) have been extensively used as a culture model to generate osteoclasts in vitro. The aim of this study was to assess the osteoclastogenic potential of PBMCs derived from post-menopausal women with longstanding osteoporosis and compare this with PBMCs from healthy controls. MATERIAL AND METHODS We selected from the population-based Rotterdam Study 82 participants of which 43 were diagnosed with osteoporosis (T-score below -2.5 at the lumbar spine) and the presence of at least 1 fracture and 29 healthy controls (T-score above 1; no fracture). PBMCs were differentiated into osteoclasts, and both differentiation capacity and activity were measured. Total RNA was obtained to assess gene expression of osteoclast markers. Deoxypyridinoline (DPD) was measured in plasma as a marker for bone resorption, in vivo. RESULTS Neither the number of osteoclasts nor cathepsin K (CTSK) and dendritic cell-specific transmembrane protein (TM7SF4) gene expression was significantly different between both groups. There was also no significant difference in resorption pit area and plasma DPD levels. Stratification by fracture type into a group with vertebral, non-vertebral and both vertebral and non-vertebral fractures showed no difference in osteoclast formation or osteoclastic bone resorption. However, plasma DPD, but not the RNA expression markers, was significantly lower in the group of subjects with vertebral fracture group and those with vertebral and non-vertebral fractures compared to the healthy controls. No differences in osteoclastogenesis, osteoclastic resorption and plasma DPD levels were detected also after exclusion of past or present users of bisphosphonates and glucocorticoids. Stratification into high and low DPD levels showed higher osteoclastogenesis and more osteoclastic bone resorption in the high DPD group compared to the low DPD levels within the group of osteoporotic subjects. CONCLUSION This study showed no difference in PBMC osteoclastogenic capacity and activity between women with and without osteoporosis and at least one previous fracture, who were on average 29.5years after menopause, suggesting that there is no difference in circulating osteoclast precursors. Although we cannot exclude that circulating precursors may behave differently at the bone site, it is possible that long after menopause a more stable phase of bone turnover is reached compared to earlier after the start of menopause in which differences in circulating osteoclast precursors and osteoclastogenic potential are more prominent.
Collapse
Affiliation(s)
- W N H Koek
- Department of Internal medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - R D A M Alves
- Department of Internal medicine, Erasmus MC, Rotterdam, The Netherlands
| | - M van Driel
- Department of Internal medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - M C Zillikens
- Department of Internal medicine, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
15
|
Lim SS, Lee B, Kim IS, Hwang SJ. Differential modulation of zoledronate and etidronate in osseous healing of an extracted socket and tibia defect. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 123:8-19. [PMID: 27727104 DOI: 10.1016/j.oooo.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Osteonecrosis of the jaw has been increasing after dentoalveolar surgery in patients treated with an antiresorptive bisphosphonate (BP), especially strong zoledronate (ZA). The pathophysiology underlying why osteonecrosis occurs exclusively in the jaw bone remains unclear. This study investigated skeletal site-specific bone healing during the use of BPs to explore the preferential incidence of osteonecrosis of the jaw bone. STUDY DESIGN Extraction of mandibular molar and creation of a tibia defect were performed in rats 2 weeks after weekly intravenous injections with the potent ZA and the weaker BP etidronate. Bone healing was evaluated radiographically and histologically 1 and 4 weeks after defect creation. RESULTS Bone healing at the extracted socket showed that resorption precedes bone formation, while it was the opposite at the tibia defect. ZA use potentially suppressed bone remodeling, which led to impaired healing at the extracted socket but full regeneration of the tibia defect. However, etidronate showed less suppression of bone remodeling and resulted in increased bone formation at the extracted socket and full regeneration of the tibia defect. CONCLUSIONS These results suggest that skeletal site-dependent differences in the bone healing process underlie BP-related preferential occurrence of osteonecrosis of the jaw bone.
Collapse
Affiliation(s)
- Shin Saeng Lim
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Lee
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In Sook Kim
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Soon Jung Hwang
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Bethel M, Bůžková P, Fink HA, Robbins JA, Cauley JA, Lee J, Barzilay JI, Jalal DI, Carbone LD. Soluble CD14 and fracture risk. Osteoporos Int 2016; 27:1755-63. [PMID: 26659065 DOI: 10.1007/s00198-015-3439-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED Soluble CD14 (sCD14) is an inflammatory marker associated with osteoclasts. Using Cox proportional hazards models, we found a positive association between plasma levels of sCD14 and risk of incident fracture among participants in the Cardiovascular Health Study. sCD14 may be useful in identifying those at risk for fracture. INTRODUCTION Soluble CD14, a proinflammatory cytokine, is primarily derived from macrophages/monocytes that can differentiate into osteoclasts. The purpose of this study was to examine the relationship between sCD14 levels and osteoporotic fractures. METHODS In the Cardiovascular Health Study, 5462 men and women had sCD14 levels measured at baseline. Incident hip fractures (median follow-up time 12.5 years) and incident composite fractures (defined as the first hip, pelvis, humerus, or distal radius fracture, median follow-up 8.6 years) were identified from hospital discharge summaries and/or Medicare claims data. Cox proportional hazards models were used to model the association between sCD14 levels and time to incident hip or composite fracture, overall and as a function of race and gender. RESULTS In unadjusted models, there was a positive association between sCD14 levels (per 1 standard deviation increase, i.e., 361.6 ng/mL) and incident hip (HR, 1.26; 95 % CI, 1.17, 1.36) and composite (HR, 1.20; 95 % CI, 1.12, 1.28) fractures. When models were fully adjusted for demographics, lifestyle factors, and medication use, these associations were no longer significant. However, in whites, the association of sCD14 levels with hip fractures remained significant in fully adjusted models (HR, 1.11; 95 % CI, 1.01-1.23). Associations of sCD14 levels with hip and composite fracture did not differ between men and women. CONCLUSIONS In this large cohort of community-dwelling older adults, higher sCD14 levels were associated with an increased risk of incident hip fractures in whites.
Collapse
Affiliation(s)
- M Bethel
- Department of Medicine, Medical College of Georgia, 1120 15th Street, BI 5070, Augusta, GA, 30912, USA.
- Subspecialty Service, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| | - P Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - H A Fink
- Geriatric Research Education and Clinical Center, and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Medicine, and Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - J A Robbins
- Division of General Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA
| | - J A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Lee
- Divisions of Endocrinology, Clinical Nutrition and Vascular Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA
| | - J I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia and the Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - D I Jalal
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - L D Carbone
- Department of Medicine, Medical College of Georgia, 1120 15th Street, BI 5070, Augusta, GA, 30912, USA
- Subspecialty Service, Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
17
|
Lin X, Yu H, Zhao C, Qian Y, Hong D, Huang K, Mo J, Qin A, Fang X, Fan S. The Peripheral Blood Mononuclear Cell Count Is Associated With Bone Health in Elderly Men: A Cross-Sectional Population-Based Study. Medicine (Baltimore) 2016; 95:e3357. [PMID: 27082593 PMCID: PMC4839837 DOI: 10.1097/md.0000000000003357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The peripheral blood mononuclear cell (PBMC) count is a routinely used and meaningful index for infection and blood diseases. PBMCs may be closely related to osteoclasts and include osteoclast precursors; we examined the association between the PBMC count and bone health. This research included 2806 community men aged ≥50 years who underwent full health examinations from October 2007 through December 2011 in four medical centers. The PBMC count was significantly high among subjects with "at least osteopenia" compared with controls. In analysis of covariance adjusted for potential confounders, the bone mineral density (BMD) value and T-score had a significant decreasing trend across the quartiles of PBMC count. In univariate analysis, the PBMC count had a strong association with "at least osteopenia" (odds ratio [OR] = 2.520, 95% confidence interval [CI]: 1.397-4.547). After adjustment for confounding factors (multivariate analysis) from Model 1 to 4, PBMC count remained as an independent risk factor for "at least osteopenia" (OR = 2.481, 95% CI: 1.176-5.236). Moreover, after adjusting for all confounding variables, participants had a significantly high OR in the body mass index (BMI) <25 group (OR = 2.798, CI: 1.122-6.973; P = 0.027) and systolic blood pressure (SBP) <140 group (OR = 2.519, CI: 1.059-5.993; P = 0.037). In conclusion, the PBMC count is significantly associated with bone loss in elderly men and the exact mechanism requires further clarification.
Collapse
Affiliation(s)
- Xianfeng Lin
- From the Department of Orthopedic Surgery, Sir Run Run Shaw Hospital (XL, HY, KH, JM, XF, SF); Department of Orthopedic Surgery, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (CZ); Department of Orthopedic Surgery, Shaoxing People's Hospital, Shaoxing (YQ); Department of Orthopedic Surgery, Taizhou Hospital of Wenzhou Medical University, Linhai (DH); and Department of Orthopedic, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (AQ), China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim BB, Ko Y, Park JB. Effects of risedronate on the morphology and viability of gingiva-derived mesenchymal stem cells. Biomed Rep 2015; 3:845-848. [PMID: 26623028 DOI: 10.3892/br.2015.520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/15/2015] [Indexed: 01/05/2023] Open
Abstract
Risedronate has been used for the prevention and treatment of postmenopausal and corticosteroid-induced osteoporosis. The present study was performed to evaluate the effects of risedronate on the morphology and viability of human stem cells derived from the gingiva. Stem cells derived from the gingiva were grown in the presence of risedronate at concentrations that ranged from 1 to 10 µM. The morphology of the cells was viewed under an inverted microscope, and cell proliferation was analyzed with a cell counting kit-8 (CCK-8) on days 2, 4 and 7. The untreated control group showed a spindle-shaped, fibroblast-like morphology. The shapes of the cells treated with 1 and 5 µM risedronate were similar to that of the control group on day 2. However, morphology of the 10 µM group markedly differed from that of the control group. The shapes of the cells in the 1, 5 and 10 µM groups were rounder, and pronounced alterations when compared with the untreated control group were noted in all groups on day 7. The cultures growing in the presence of risedronate showed decreased CCK-8 values on day 7. In conclusion, risedronate produced notable alterations in the morphology of the cells and reduced the viability of gingival mesenchymal stem cells.
Collapse
Affiliation(s)
- Bo-Bae Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
19
|
Vijayan V, Khandelwal M, Manglani K, Gupta S, Surolia A. Methionine down-regulates TLR4/MyD88/NF-κB signalling in osteoclast precursors to reduce bone loss during osteoporosis. Br J Pharmacol 2014; 171:107-21. [PMID: 24111943 DOI: 10.1111/bph.12434] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/07/2013] [Accepted: 09/11/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Studies have demonstrated that a moderate intake of amino acids is associated with development of bone health. Methionine, a sulphur-containing essential amino acid, has been largely implicated for improving cartilage formation, however its physiological significance on bone integrity and functionality have not been elucidated. We investigated whether methionine can prevent osteoporotic bone loss. EXPERIMENTAL APPROACH The anti-resorptive effect of methionine, (250 mg kg(-1) body wt administered in drinking water for 10 weeks), was evaluated in ovariectomized (OVX) rats by monitoring changes in bone turnover, formation of osteoclasts from blood-derived mononuclear cells and changes in the synthesis of pro-osteoclastogenic cytokines. KEY RESULTS Methionine improved bone density and significantly decreased the degree of osteoclast development from blood mononuclear cells in OVX rats, as indicated by decreased production of osteoclast markers tartarate resistant acid phosphatase b (TRAP5b) and MIP-1α. siRNA-mediated knockdown of myeloid differentiation primary response 88 [MyD88], a signalling molecule in the toll-like receptor (TLR) signalling cascade, abolished the synthesis of both TRAP5b and MIP-1α in developing osteoclasts. Methionine supplementation disrupted osteoclast development by inhibiting TLR-4/MyD88/NF-κB pathway. CONCLUSIONS AND IMPLICATIONS TLR-4/MyD88/NF-κB signalling pathway is integral for osteoclast development and this is down-regulated in osteoporotic system on methionine treatment. Methionine treatment could be beneficial for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- V Vijayan
- Molecular Sciences Laboratory, National Institute of Immunology, New Delhi, India
| | | | | | | | | |
Collapse
|
20
|
Shimano RC, Macedo AP, Falcai MJ, Ervolino E, Shimano AC, Issa JPM. Biomechanical and microstructural benefits of physical exercise associated with risedronate in bones of ovariectomized rats. Microsc Res Tech 2014; 77:431-8. [PMID: 24692117 DOI: 10.1002/jemt.22363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/02/2014] [Accepted: 03/14/2014] [Indexed: 11/11/2022]
Abstract
Several treatments have been developed aiming the prevention of bone loss. There are discussions about the best prophylactic and therapeutic procedures for osteoporosis. This study evaluated the effects of physical exercise associated with risedronate as a prophylactic and therapeutic procedure in osteopenic bones of rats submitted to ovariectomy. We used 48 Wistar rats divided into: ovariectomized or subjected to sham surgery. Ovariectomized rats were divided into the following sub-groups: OVX, 12 weeks sedentary; OVX-EX, treadmill training for 12 weeks; OVX-RA, 12 weeks with risedronate administration; and OVX-EX-RA, 12 weeks with risedronate administration and treadmill training. Rats subjected to sham surgery were divided into the following sub-groups: SH, 12 weeks sedentary; SH-EX, treadmill training for 12 weeks; SH-RA, 12 weeks with risedronate administration; and SH-EX-RA, 12 weeks with risedronate administration and training on the treadmill. The effectiveness of the treatment was evaluated in tibias using biomechanical, radiological, histomorphometric, and immunohistochemical analyses. Data were analyzed by statistical tests, with significance level of P < 0.05. Results of mechanical tests showed that the SH-RA group had lower values compared with OVX-RA group; densitometry showed no significant differences; according to histomorphometric methods, OVX group presented lower results than the SH-EX, OVX-RA, SH-EX-RA, and OVX-EX-RA groups, and SH-EX-RA and OVX-EX-RA groups showed values higher than SH-RA, SH, and OVX-EX groups. The SH-EX-RA and OVX-EX-RA groups had decreased immunostaining for tartrate-resistant acid phosphatase and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin immunostaining. In this experimental model, it was concluded that the physical training associated with use of risedronate exerted positive effects on biomechanical and microstructural properties in bones of ovariectomized rats.
Collapse
Affiliation(s)
- Roberta Carminati Shimano
- Department of Biomechanics, Medicine and Locomotor Apparatus Rehabilitation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Petitprez V, Royer B, Desoutter J, Guiheneuf E, Rigolle A, Marolleau JP, Kamel S, Guillaume N. CD14+ CD16+ monocytes rather than CD14+ CD51/61+ monocytes are a potential cytological marker of circulating osteoclast precursors in multiple myeloma. A preliminary study. Int J Lab Hematol 2014; 37:29-35. [PMID: 24661393 DOI: 10.1111/ijlh.12216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/20/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Osteolytic bone destruction is a major clinical problem in multiple myeloma patients. Osteoclasts can differentiate in vitro from bone marrow-resident monocyte progenitors, such as common monocyte progenitors, as well as circulating monocytes. Various types of monocytes, including osteoclast precursors, appear to circulate systemically. METHODS We investigated the possibility of demonstrating, by in vitro differentiation and flow cytometry, a circulating osteoclast precursor population in multiple myeloma (MM) patients by studying the distribution of CD14(+/++) CD11b(+) CD51/61(+) and CD14(+/++) CD16(+/-) populations. RESULTS Under short-term in vitro osteoclastic differentiation conditions, almost all CD14 monocytes acquired CD51/61 and CD16 expression. Flow cytometry studies failed to demonstrate a statistically significant increase in circulating CD14(+/++) CD11b(+) CD51/61(+) populations in 20 MM patients with osteolytic lesions. However, the minor circulating CD14(+/++) CD16(+) fraction was significantly increased in MM patients compared with healthy volunteers (109.3 ± 63.1/mm(3) vs. 65.3 ± 34.9/mm(3) ; P = 0.005), but with no correlation with markers of tumour burden. The CD14(+/++) CD16(+) to CD14(+/++) CD16(-) ratio was higher in MM patients. CONCLUSION The circulating CD14(+/++) CD11b(+) CD51/61(+) fraction was not correlated with bone lesions in MM patients. However, CD14(+/++) CD16(+) monocytes may be a candidate marker. A larger study must be conducted to confirm these promising results for the diagnosis and follow-up of MM patients.
Collapse
Affiliation(s)
- V Petitprez
- Haematology and Histocompatibility Laboratory, Amiens University Hospital, Amiens, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kyrgidis A, Triaridis S, Vahtsevanos K, Antoniades K. Osteonecrosis of the jaw and bisphosphonate use in breast cancer patients. Expert Rev Anticancer Ther 2014; 9:1125-34. [DOI: 10.1586/era.09.74] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Pandey A, Misra P, Khan MP, Swarnkar G, Tewari MC, Bhambhani S, Trivedi R, Chattopadhyay N, Trivedi PK. Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:69-80. [PMID: 24102754 DOI: 10.1111/pbi.12118] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/09/2013] [Indexed: 05/07/2023]
Abstract
Isoflavones, a group of flavonoids, restricted almost exclusively to family Leguminosae are known to exhibit anticancerous and anti-osteoporotic activities in animal systems and have been a target for metabolic engineering in commonly consumed food crops. Earlier efforts based on the expression of legume isoflavone synthase (IFS) genes in nonlegume plant species led to the limited success in terms of isoflavone content in transgenic tissue due to the limitation of substrate for IFS enzyme. In this work to overcome this limitation, the activation of multiple genes of flavonoid pathway using Arabidopsis transcription factor AtMYB12 has been carried out. We developed transgenic tobacco lines constitutively co-expressing AtMYB12 and GmIFS1 (soybean IFS) genes or independently and carried out their phytochemical and molecular analyses. The leaves of co-expressing transgenic lines were found to have elevated flavonol content along with the accumulation of substantial amount of genistein glycoconjugates being at the highest levels that could be engineered in tobacco leaves till date. Oestrogen-deficient (ovariectomized, Ovx) mice fed with leaf extract from transgenic plant co-expressing AtMYB12 and GmIFS1 but not wild-type extract exhibited significant conservation of trabecular microarchitecture, reduced osteoclast number and expression of osteoclastogenic genes, higher total serum antioxidant levels and increased uterine oestrogenicity compared with Ovx mice treated with vehicle (control). The skeletal effect of the transgenic extract was comparable to oestrogen-treated Ovx mice. Together, our results establish an efficient strategy for successful pathway engineering of isoflavones and other flavonoids in crop plants and provide a direct evidence of improved osteoprotective effect of transgenic plant extract.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Council of Scientific and Industrial Research-National Botanical Research Institute, (CSIR-NBRI), Lucknow, India
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Stuss M, Rieske P, Cegłowska A, Stêpień-Kłos W, Liberski PP, Brzeziańska E, Sewerynek E. Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab 2013; 98:E1007-11. [PMID: 23543663 DOI: 10.1210/jc.2012-3885] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CONTEXT Recent research results have confirmed the high significance of the OPG/RANK/RANKL system in the development of bone diseases. AIM The aim of the reported study was to assess gene expression levels of the OPG/RANK/RANKL system in peripheral blood mononuclear cells (PBMCs) after strontium ranelate (SR) and ibandronate administered to patients with postmenopausal osteoporosis. PATIENTS AND METHODS A total of 89 postmenopausal women, aged 51 to 85 years, patients of the Outpatient Clinic of Osteoporosis of the Military Teaching Hospital in Lodz, were enrolled into the study. The patients were randomly assigned to different medical therapies: ibandronate and SR. Patients of the control group received only calcium and vitamin D₃ supplements. Patient visits were repeated after 3 and 6 months. Measurements of serum alkaline phosphatase concentrations and of RNA expression in PBMCs as well as of total serum calcium and phosphate levels and of their 24-hour urine excretion rates were carried out in material, collected at baseline and after 3 and 6 months of the therapy. Densitometry of the left hip and of the lumbar spine was done at the baseline visit and after 6 months. RESULTS The differences in gene expressions of RANKL and RANK were not significant during the study period and did not differ between the groups in a statistically significant manner. No OPG gene expression was observed in PBMCs of patients in any of the studied groups and at any time point. The tendency of correlation (P = .07) was observed between decreasing RANK gene expression and increasing bone mineral density in the patients treated with SR. CONCLUSIONS Both ibandronate and SR do not seem to cause any significant changes in gene expression levels of OPG/RANK/RANKL in PBMCs during the first 6 months of treatment.
Collapse
Affiliation(s)
- Michal Stuss
- Department of Endocrine Disorders and Bone Metabolism, Medical University of Lodz, 90-752 Łódz, ul. Żeligowskiego 7/9, Poland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Risedronate increases osteoblastic differentiation and function through connexin43. Biochem Biophys Res Commun 2013; 432:152-6. [DOI: 10.1016/j.bbrc.2013.01.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/20/2013] [Indexed: 11/18/2022]
|
27
|
Dalbeth N, Pool B, Stewart A, Horne A, House ME, Cornish J, Reid IR. No reduction in circulating preosteoclasts 18 months after treatment with zoledronate: analysis from a randomized placebo controlled trial. Calcif Tissue Int 2013; 92:1-5. [PMID: 23052228 DOI: 10.1007/s00223-012-9654-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
The conventional model that bisphosphonates bind to the bone surface and inhibit mature osteoclasts does not convincingly explain the prolonged duration of action of zoledronate. We hypothesized that zoledronate on the bone surface adjacent to marrow cells impairs osteoclastogenesis, contributing to sustained inhibition of resorption. In this case, numbers of circulating preosteoclasts may be reduced after zoledronate treatment. This study assessed this possibility in subjects from a clinical trial. Twenty-two osteopenic women participating in a randomized, controlled trial comparing zoledronate 5 mg with placebo were recruited, 18 months after administration of study drug. Peripheral blood mononuclear cells were analyzed for the presence of osteoclast precursors using flow cytometry for preosteoclast markers and the ability to form osteoclast-like cells in culture with RANKL and M-CSF. There was no difference in the percentage of CD14(+)/CD11b(+) cells in peripheral blood between the two groups. The numbers of TRAP(+) multinucleated cells in cultures in the absence of RANKL and M-CSF were very low in both groups, but a significantly higher number of these cells was observed in the zoledronate group compared with the placebo group (p = 0.01). The number of TRAP(+) multinucleated cells and resorption pits following culture with RANKL and M-CSF did not differ between the two groups. Serum P1NP was reduced 53 % at 18 months in the zoledronate group but unchanged in the placebo group. These results do not support the hypothesis that the inhibitory action of zoledronate contributes to its prolonged action on preosteoclasts within bone marrow.
Collapse
Affiliation(s)
- Nicola Dalbeth
- Bone and Joint Research Group, Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
28
|
D'Amelio P, Tamone C, Sassi F, D'Amico L, Roato I, Patanè S, Ravazzoli M, Veneziano L, Ferracini R, Pescarmona GP, Isaia GC. Teriparatide increases the maturation of circulating osteoblast precursors. Osteoporos Int 2012; 23:1245-53. [PMID: 21617993 DOI: 10.1007/s00198-011-1666-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
UNLABELLED This study shows that teriparatide promotes the circulating osteoblast (OB) precursor degree of maturation in patients affected by postmenopausal osteoporosis. INTRODUCTION Anabolic treatment with teriparatide has proven effective for the therapy of postmenopausal osteoporosis and significantly reduces the risk of non-vertebral fragility fractures. The aim of this study was to investigate the effect of teriparatide on circulating OB precursors. METHODS We evaluated by flow cytometry and real-time PCR the expression of OBs typical markers in peripheral blood mononuclear cells during treatment with teriparatide plus calcium and vitamin D, raloxifene plus calcium and vitamin D or calcium and vitamin D alone at various time points. Serum bone alkaline phosphatase and osteocalcin (OC) were measured as markers of bone turnover. RESULTS Our results show that circulating OB precursors are more numerous and more immature in patients affected by fragility fractures than in osteoporotic patients without fractures. We also show that teriparatide treatment increases the expression of alkaline phosphatase and of OC in OB precursors; thus, it increases their degree of maturation. CONCLUSIONS We suggest that teriparatide acts as anabolic agents also by promoting the maturation of OB precursors.
Collapse
Affiliation(s)
- P D'Amelio
- Department of Surgical and Medical Disciplines Gerontology Section, University of Torino-Italy, Corso Bramante 88/90, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yu YY, Lieu S, Hu D, Miclau T, Colnot C. Site specific effects of zoledronic acid during tibial and mandibular fracture repair. PLoS One 2012; 7:e31771. [PMID: 22359627 PMCID: PMC3281002 DOI: 10.1371/journal.pone.0031771] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 01/15/2012] [Indexed: 01/04/2023] Open
Abstract
Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone diseases. Zoledronate (ZA), a nitrogen-containing bisphosphonate (N-BP), is the most potent bisphosphonate among the clinically approved bisphosphonates. Cases of bisphosphonate-induced osteonecrosis of the jaw have been reported in patients receiving long term N-BP treatment. Yet, osteonecrosis does not occur in long bones. The aim of this study was to compare the effects of zoledronate on long bone and cranial bone regeneration using a previously established model of non-stabilized tibial fractures and a new model of mandibular fracture repair. Contrary to tibial fractures, which heal mainly through endochondral ossification, mandibular fractures healed via endochondral and intramembranous ossification with a lesser degree of endochondral ossification compared to tibial fractures. In the tibia, ZA reduced callus and cartilage formation during the early stages of repair. In parallel, we found a delay in cartilage hypertrophy and a decrease in angiogenesis during the soft callus phase of repair. During later stages of repair, ZA delayed callus, cartilage and bone remodeling. In the mandible, ZA delayed callus, cartilage and bone remodeling in correlation with a decrease in osteoclast number during the soft and hard callus phases of repair. These results reveal a more profound impact of ZA on cartilage and bone remodeling in the mandible compared to the tibia. This may predispose mandible bone to adverse effects of ZA in disease conditions. These results also imply that therapeutic effects of ZA may need to be optimized using time and dose-specific treatments in cranial versus long bones.
Collapse
Affiliation(s)
- Yan Yiu Yu
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Shirley Lieu
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Diane Hu
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Céline Colnot
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
- INSERM U781, Hôpital Necker Enfants Malades, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Muto A, Mizoguchi T, Udagawa N, Ito S, Kawahara I, Abiko Y, Arai A, Harada S, Kobayashi Y, Nakamichi Y, Penninger JM, Noguchi T, Takahashi N. Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res 2011; 26:2978-90. [PMID: 21898588 DOI: 10.1002/jbmr.490] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoclasts are derived from the monocyte/macrophage lineage, but little is known about osteoclast precursors in circulation. We previously showed that cell cycle-arrested quiescent osteoclast precursors (QOPs) were detected along bone surfaces as direct osteoclast precursors. Here we show that receptor activator of NF-κB (RANK)-positive cells isolated from bone marrow and peripheral blood possess characteristics of QOPs in mice. RANK-positive cells expressed c-Fms (receptors of macrophage colony-stimulating factor) at various levels, but scarcely expressed other monocyte/granulocyte markers. RANK-positive cells failed to exert phagocytic and proliferating activities, and differentiated into osteoclasts but not into dendritic cells. To identify circulating QOPs, collagen disks containing bone morphogenetic protein-2 (BMP disks) were implanted into mice, which were administered bromodeoxyuridine daily. Most nuclei of osteoclasts detected in BMP-2-induced ectopic bone were bromodeoxyuridine-negative. RANK-positive cells in peripheral blood proliferated more slowly and had a much longer lifespan than F4/80 (a macrophage marker)-positive macrophages. When BMP disks and control disks were implanted in RANK ligand-deficient mice, RANK-positive cells were observed in the BMP disks but not in the controls. F4/80-positive cells were distributed in both disks. Administration of FYT720, a sphingosine 1-phosphate agonist, promoted the egress of RANK-positive cells from hematopoietic tissues into bloodstream. These results suggest that lineage-determined QOPs circulate in the blood and settle in the bone.
Collapse
Affiliation(s)
- Akinori Muto
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Karadag-Saygi E, Akyuz G, Bizargity P, Ay P. The effect of risedronate treatment on serum osteoprotegerin and bone marker levels in postmenopausal women with osteoporosis. Gynecol Endocrinol 2011; 27:1033-6. [PMID: 21627558 DOI: 10.3109/09513590.2011.579657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To evaluate the effect of risedronate treatment on osteoprotegerin (OPG), C-terminal cross-linking telopeptide of type 1 collagen (CTX), osteocalcin (OC), and deoxypyridinoline (DPD). METHODS Eighty postmenopausal osteoporotic patients were randomized into two groups. In first group, patients received 35?mg of risedronate once a week and calcium with vitamin D per day. In second group, patients received only calcium with vitamin D per day. Bone turnover markers were measured at baseline, 1st, 3rd and 6th month. RESULTS OPG levels were significantly reduced at 1st and 6th month of treatment in both groups, but no statistically significant difference was detected between groups. In the group treated with risedronate, difference in CTX level was observed at 3rd month of treatment, while a difference in DPD and OC levels were observed at 6th month of treatment. The baseline OPG levels correlated with age, menopause duration, and CTX levels. There was no correlation between OPG levels and the levels of the other markers during treatment. CONCLUSION The present study showed that using risedronate in treatment of postmenopausal osteoporosis causes no specific changes in OPG levels; therefore, in contrast to some of the studies in the literature OPG may not be useful marker in monitoring of bisphosphonate.
Collapse
Affiliation(s)
- Evrim Karadag-Saygi
- Department of Physical Medicine and Rehabilitation, Marmara University School of Medicine, Istanbul, Turkey.
| | | | | | | |
Collapse
|
32
|
Eslami B, Zhou S, Van Eekeren I, LeBoff MS, Glowacki J. Reduced osteoclastogenesis and RANKL expression in marrow from women taking alendronate. Calcif Tissue Int 2011; 88:272-80. [PMID: 21327765 PMCID: PMC3060993 DOI: 10.1007/s00223-011-9473-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/14/2010] [Indexed: 12/20/2022]
Abstract
Alendronate (AL) is commonly used for the prevention and treatment of osteoporotic fractures. Little is known about the effects of AL administration on osteoclast differentiation from human marrow progenitor cells. We used marrow discarded during orthopedic surgery to test the hypothesis that cultures of bone marrow-derived stem cells (BMCs) from subjects receiving AL (+AL) may differ from control subjects with respect to in vitro osteoclast differentiation and regulatory factors. The number of osteoclasts generated in BMC cultures from control subjects was 4.7-fold greater than that from +AL subjects (P = 0.015). RANKL expression in +AL BMCs was 57% of that in controls (P = 0.001), and OPG expression in +AL BMCs was greater than in controls (153%, P = 0.01). The mean RANKL/OPG ratio in BMCs was 0.65 ± 0.35 for +AL specimens and 1.28 ± 0.53 for controls (P = 0.031). In addition, we assessed the direct effect of AL on expression of RANKL and OPG in marrow stromal cells isolated from nine control women. Treatment with AL downregulated RANKL expression and upregulated OPG expression, with an average 50% decrease in RANKL/OPG ratio at 10(-7) M (P = 0.004). These results show that osteoclast differentiation is dysregulated in marrow isolated from +AL subjects. Furthermore, AL may inhibit human osteoclastogenesis by affecting the key regulatory genes in marrow cells.
Collapse
Affiliation(s)
- Behnam Eslami
- Department of Orthopedic Surgery, Brigham and Women Hospital and Harvard Medical School, Boston, MA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women Hospital and Harvard Medical School, Boston, MA
| | - Inge Van Eekeren
- Department of Orthopedic Surgery, Brigham and Women Hospital and Harvard Medical School, Boston, MA
| | - Meryl S. LeBoff
- Division of Endocrinology, Brigham and Women Hospital and Harvard Medical School, Boston, MA
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women Hospital and Harvard Medical School, Boston, MA
- Department of Oral & Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA
| |
Collapse
|
33
|
Kramer JM, Fantasia JE. Bisphosphonates and Osteonecrosis of the Jaws: A Review of Clinical Features and the Drug Effect on Oral Soft Tissues. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9083-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Henriksen K, Bollerslev J, Everts V, Karsdal MA. Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis. Endocr Rev 2011; 32:31-63. [PMID: 20851921 DOI: 10.1210/er.2010-0006] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoclasts have traditionally been associated exclusively with catabolic functions that are a prerequisite for bone resorption. However, emerging data suggest that osteoclasts also carry out functions that are important for optimal bone formation and bone quality. Moreover, recent findings indicate that osteoclasts have different subtypes depending on their location, genotype, and possibly in response to drug intervention. The aim of the current review is to describe the subtypes of osteoclasts in four different settings: 1) physiological, in relation to turnover of different bone types; 2) pathological, as exemplified by monogenomic disorders; 3) pathological, as identified by different disorders; and 4) in drug-induced situations. The profiles of these subtypes strongly suggest that these osteoclasts belong to a heterogeneous cell population, namely, a diverse macrophage-associated cell type with bone catabolic and anabolic functions that are dependent on both local and systemic parameters. Further insight into these osteoclast subtypes may be important for understanding cell-cell communication in the bone microenvironment, treatment effects, and ultimately bone quality.
Collapse
Affiliation(s)
- K Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
35
|
D'Amelio P, Grimaldi A, Cristofaro MA, Ravazzoli M, Molinatti PA, Pescarmona GP, Isaia GC. Alendronate reduces osteoclast precursors in osteoporosis. Osteoporos Int 2010; 21:1741-50. [PMID: 19949772 DOI: 10.1007/s00198-009-1129-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/06/2009] [Indexed: 11/30/2022]
Abstract
UNLABELLED This study evaluates the effect of alendronate on osteoclastogenesis, cytokine production, and bone resorption in postmenopausal women. We suggest that it acts on mature bone resorbing osteoclasts after 3 months of treatment, whereas, after 1 year, it diminishes their formation by reducing their precursors and serum RANKL. INTRODUCTION Osteoclasts are the target cells of bisphosphonates, though the most drug-sensitive steps of their formation and activity have not been determined. The present study evaluates the effect of alendronate on osteoclastogenesis, cytokine production, and bone resorption in postmenopausal women. METHODS The study was conducted on 35 osteoporotic women; 15 were pretreated with alendronate 70 mg/week, whereas, 20 were treated with calcium 1 g/day and vitamin D 800 IU/day. After 3 months, 30 received alendonate 70/mg, vitamin D 2800 IU/week, and calcium 1 g/day for 12 months (combined therapy), whereas, the other five patients remained on calcium 1 g/day and vitamin D 800 IU/day. The following parameters were assessed before and after therapy: changes in bone resorption markers, circulating osteoclast precursors, formation of osteoclasts in peripheral blood mononuclear cell cultures, their viability, and variations in cytokines production. RESULTS After 3 months of alendronate, there was no significant reduction in the number of osteoclast precursors, osteoclast formation and viability, and cytokine levels, whereas, there was a significant reduction of bone resorption markers. One year of the combined therapy, on the other hand, reduced osteoclast precursors, osteoclast formation, and serum RANKL, whereas, calcium plus vitamin D alone had no effect. CONCLUSIONS We suggest that alendronate mainly acts on mature bone resorbing osteoclasts in the short term, whereas, its long-term administration diminishes their formation by reducing their precursors and serum RANKL.
Collapse
Affiliation(s)
- P D'Amelio
- Gerontology Section, Department of Surgical and Medical Disciplines, University of Torino, Corso Bramante 88/90, 10126, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Effects of treatment with risedronate and alfacalcidol on progression of atherosclerosis in postmenopausal women with type 2 diabetes mellitus accompanied with osteoporosis. Am J Med Sci 2010; 339:519-24. [PMID: 20400887 DOI: 10.1097/maj.0b013e3181db6dfe] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Accumulating evidence suggests that osteoporosis and cardiovascular disease have epidemiologic similarities. This study investigated the effects of treatment with risedronate and alfacalcidol on parameters of atherosclerosis in postmenopausal women with type 2 diabetes accompanied with osteoporosis. METHODS Thirteen Japanese type 2 diabetes postmenopausal women with newly diagnosed osteoporosis (osteoporosis group) and 13 age- and weight-matched diabetic women with normal bone mineral density (control group) were enrolled in this 1-year prospective study. Risedronate (2.5 mg/d) and alfacalcidol (1 microg/d) were given to the osteoporosis group for a year. We measured parameters of atherosclerosis, such as ultrasonographically evaluated plaque score (PS) and abdominal aortic calcification score (AACS) calibrated by x-ray. RESULTS Patients with osteoporosis had significantly higher PS and AACS than control [mean (range)-PS: 11.85 (0.00-27.50) versus 4.90 (0.00-10.90), P = 0.02 and AACS: 4.0 (0.0-14.0) versus 1.0 (0.0-7.0), P = 0.01]. After 1-year treatment, PS and AACS in the osteoporosis group were not statistically changed, whereas both parameters in the control group were significantly increased (P = 0.01 and P = 0.03, respectively). When percent changes in these parameters were compared between 2 groups, they were significantly different at any time points (at least P < 0.05). CONCLUSIONS Atherosclerosis parameters in diabetic patients with osteoporosis were higher than those in patients without it. Combination therapy of risedronate with alfacalcidol might protect against progressive atherosclerosis.
Collapse
|
37
|
D'Amelio P, Cristofaro MA, Grimaldi A, Ravazzoli M, Pluviano F, Grosso E, Pescarmona GP, Isaia GC. The role of circulating bone cell precursors in fracture healing. Calcif Tissue Int 2010; 86:463-9. [PMID: 20390407 DOI: 10.1007/s00223-010-9362-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/24/2010] [Indexed: 12/21/2022]
Abstract
Fracture healing is a complex process that involves several cell types; as a previous report suggested an increase in osteoblast (OB) precursors in peripheral blood during this process, this paper examines the role of circulating bone cell precursors in this process in the light of a prior suggestion that OB precursors are increased. Nine healthy men less than 60 years old with traumatic fractures were enrolled. The parameters circulating OB precursors (osteocalcin+/alkaline phosphatase+/CD15- cells) and osteoclast precursors (CD14+/CD11b+/vitronectin receptor + cells) were measured by flow cytometry; bone formation markers and TGFbeta1, by ELISA; and PTH, by RIA in serum on arrival at the emergency department (baseline) and 15 days after fracture. Bone cell precursors behaved differently during healing. TGFbeta1 was inversely correlated with OB number, but increased their degree of maturation at baseline. Bone formation markers and TGFbeta1 were increased after fracture, whereas PTH was decreased. The TGFbeta1 increase was directly correlated with age, whereas age was not correlated with the precursors. In conclusion, we confirm the role of TGFbeta1 in fracture healing; and its possible role in the control of pre-OB homeostasis. There was no variation in circulating precursor cells during healing, though the increase in TGFbeta1 may suggest increased pre-OB maturation and homing to the injured site.
Collapse
Affiliation(s)
- Patrizia D'Amelio
- Section of Gerontology, Department of Surgical and Medical Disciplines, University of Torino, Corso Bramante 88/90, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kawate H, Ohnaka K, Adachi M, Kono S, Ikematsu H, Matsuo H, Higuchi K, Takayama T, Takayanagi R. Alendronate improves QOL of postmenopausal women with osteoporosis. Clin Interv Aging 2010; 5:123-31. [PMID: 20458350 PMCID: PMC2861847 DOI: 10.2147/cia.s9696] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Postmenopausal osteoporosis causes bone fracture as well as pain, physical, psychological and socially adverse effects, which affects a patient's quality of life (QOL). The effect of alendronate on QOL was investigated compared with that of alfacalcidol in post-menopausal osteoporotic women. PATIENTS AND METHODS A total of 44 postmenopausal osteoporotic women (mean age 69.8 years) with back or joint pain, although capable of walking, were randomly assigned to two groups; group A (n=25) received 5 mg/day of alendronate, and group B (n=19) received 0.5 microg/day of alfacalcidol, for the first 4 months. For the following 2 months, the group A received 0.5 microg/day of alfacalcidol and the group B received 5 mg/day of alendronate in a crossover design. The patient's QOL was evaluated by score of Japanese Osteoporosis Quality of Life Questionnaire (JOQOL), and pain intensity using a visual analog scale (VAS). Bone metabolism was measured by bone mineral density (BMD) and a biomarker for bone resorption, urinary crosslinked N-terminal telopeptide of type I collagen (NTX). RESULTS With 4-month treatment, alendronate, but not alfacalcidol, improved pain-related QOL, reduced joint pain by VAS, and increased bone mineral density. Both treatments significantly reduced bone resorption, the inhibition was significantly higher with alendronate (-56.5%) compared with alfacalcidol (-18.1%). After crossover, the patients in group A received alfacalcidol and had a reduced total and daily living activity-related QOL scores, and increased upper back pain by VAS. The group B received alendronate had significantly reduced bone resorption after the 2 months. CONCLUSION Alendronate improves the QOL of Japanese postmenopausal women with osteoporosis by reducing pain intensity as well as increasing bone mineral density.
Collapse
Affiliation(s)
- Hisaya Kawate
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, and Internal Medicine, Haradoi Hospital, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Treatment protocols of bisphosphonate-related osteonecrosis of the jaws. Head Neck 2009; 31:1112-3; author reply 1113-4. [DOI: 10.1002/hed.21148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
41
|
Kyrgidis A, Triaridis S, Antoniades K. Effects of bisphosphonates on keratinocytes and fibroblasts having a role in the development of osteonecrosis of the jaw. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.bihy.2009.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Bowsher RR, Sailstad JM. Insights in the application of research-grade diagnostic kits for biomarker assessments in support of clinical drug development: bioanalysis of circulating concentrations of soluble receptor activator of nuclear factor kappaB ligand. J Pharm Biomed Anal 2008; 48:1282-9. [PMID: 18977625 DOI: 10.1016/j.jpba.2008.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/06/2008] [Accepted: 09/10/2008] [Indexed: 01/06/2023]
Abstract
Application of research-grade diagnostic kits in clinical drug development has grown commensurate with the increased interest in utilization of biomarkers as drug development tools. Since novel biomarkers are frequently macromolecular, immunoassay methodology comprises the 'technology-of-choice' for biomarker quantification. In particular, commercial research-grade immunoassay kits are appealing for use in biomarker quantification during clinical phase drug development because of their ready availability, ease of operation and perceived convenience. However, bioanalytical validation issues arise often during the application of commercial kits, as GLP regulatory-compliant application places greater demands on kit design and performance. In this review, we have used the receptor activator of nuclear factor kappaB ligand (RANKL) as a model system to offer some insights into the challenges that can be encountered in the application of 'research-grade' diagnostic kits in support of clinical drug development. Currently only a few assays are available commercially for the determination of circulating concentrations of sRANKL. Of these, two immunoassay designs have been most often. The first design employs human osteoprotegerin to capture unbound sRANKL from serum and, thereby, provides a measure of circulating free concentrations. In contrast, the other common assay design first involves preincubation of serum samples with human osteoprotegerin to convert the free fraction of sRANKL to the osteoprotegerin-bound complex. The bound fraction is subsequently captured by an anti-osteoprotegerin antibody. In both immunoassay designs, detection is accomplished with an anti-sRANKL enzyme conjugation system. In this report we review these sRANKL immunoassay designs critically from the perspective of their potential suitability as drug development biomarker tools. In addition, analytical challenges relevant to the application of these 'research-grade' diagnostic kits for regulatory-compliant determination of sRANKL concentrations are discussed.
Collapse
Affiliation(s)
- Ronald R Bowsher
- B2S Consulting, 6656 Flowstone Way, Indianapolis, IN 46237, United States.
| | | |
Collapse
|
43
|
D'Amelio P, Grimaldi A, Di Bella S, Brianza SZM, Cristofaro MA, Tamone C, Giribaldi G, Ulliers D, Pescarmona GP, Isaia G. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 2008; 43:92-100. [PMID: 18407820 DOI: 10.1016/j.bone.2008.02.017] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/22/2008] [Accepted: 02/14/2008] [Indexed: 12/17/2022]
Abstract
Compelling evidences suggest that increased production of osteoclastogenic cytokines by activated T cells plays a relevant role in the bone loss induced by estrogen deficiency in the mouse. However, little information is available on the role of T cells in post-menopausal bone loss in humans. To investigate this issue we have assessed the production of cytokines involved in osteoclastogenesis (RANKL, TNFalpha and OPG), in vitro osteoclast (OC) formation in pre and post-menopausal women, the latter with or without osteoporosis. We evaluated also OC precursors in peripheral blood and the ability of peripheral blood mononuclear cells to produce TNFalpha in both basal and stimulated condition by flow cytometry in these subjects. Our data demonstrate that estrogen deficiency enhances the production of the pro-osteoclastogenetic cytokines TNFalpha and RANKL and increases the number of circulating OC precursors. Furthermore, we show that T cells and monocytes from women with osteoporosis exhibit a higher production of TNFalpha than those from the other two groups. Our findings suggest that estrogen deficiency stimulates OC formation both by increasing the production of TNFalpha and RANKL and increasing the number of OC precursors. Women with post-menopausal osteoporosis have a higher T cell activity than healthy post-menopausal subjects; T cells thus contribute to the bone loss induced by estrogen deficiency in humans as they do in the mouse.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristina Tamone
- Department of Internal Medicine, University of Torino, Italy
| | - Giuliana Giribaldi
- Center for Experimental Research and Medical Studies (CERMS), Ospedale San Giovanni Battista, Torino, Italy; Department of Genetics, Biology and Biochemistry, University of Torino, Italy
| | - Daniela Ulliers
- Department of Genetics, Biology and Biochemistry, University of Torino, Italy
| | - Gian P Pescarmona
- Center for Experimental Research and Medical Studies (CERMS), Ospedale San Giovanni Battista, Torino, Italy; Department of Genetics, Biology and Biochemistry, University of Torino, Italy
| | - Giancarlo Isaia
- Department of Internal Medicine, University of Torino, Italy
| |
Collapse
|
44
|
|