1
|
Hong X, Zhang Z, Wan Z. Analysis on the potential of Pennisetum hydridum for phytoremediation of Cd-polluted soil fertilized by worm castings. PLoS One 2025; 20:e0318528. [PMID: 40163447 PMCID: PMC11957277 DOI: 10.1371/journal.pone.0318528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/16/2025] [Indexed: 04/02/2025] Open
Abstract
Soil heavy metal pollution including Cd, is the main factor that causes the decline of ecological environment quality, the excessive content in crops and the harm to human health. Phytoremediation is one of the important ways to control heavy metals, which has both ecological and economic benefits. However, most plant species have limited remediation ability and cannot achieve good heavy metal removal effect. In contrast, P. hydridum, easy to cultivate, has large biomass and short growth cycle, shows strong restoration ability in the treatment of heavy metal polluted soil. In order to explore its phytoremediation in Cd-polluted soils under appropriate agronomic measures, this experiment adopts the field random block experiment design to study the control effect and application safety of the application of organic fertilizers (warm castings and biogas slurry) to plant it in the Cd-polluted farmland. The results showed the Cd in the soil after P. hydridum harvesting was 0.53-0.56 mg/kg, and the partial Cd in the shoot was 0.21-0.28 mg/kg (fresh weight), and the enrichment coefficients were all greater than 1, and the extraction amount and efficiency of Cd were 7.17-9.43 mg/m2 and 5.71%-7.01%, respectively. All those data express a decrease in Cd under various treatment conditions, indicating that, P. hydridum can grow under high concentration and it has a certain enrichment effect on Cd, especially in the application of organic fertilizers, which could not only improve the growth performance of the plant, but also improve the soil, much better than that of other Cd hyper-accumulators. Moreover, the positive correlation between the biomass allocation rate and Cd in the soil reflects that the biomass allocation of the plant behaved in different ways with the increase of Cd oil. It is also feasible in terms of application safety due to a long and gradual process to enrich Cd in soil. This study made a proof that it would be a green and environmentally friendly treatment method by making good use of its high biomass to adsorb and remove heavy metals from soil, which would have a good application prospect and development value.
Collapse
Affiliation(s)
| | - Zhi Zhang
- Yuzhang Normal University, Nanchang, China,
| | - Zhiwei Wan
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| |
Collapse
|
2
|
Fan G, Liu Q, Wu M, Bi J, Qin X, Fang Q, Mei S, Wan Z, Lv Y, Song L, Wang Y. Association between multiple metal exposure and bone mineral density among Chinese adults. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:475. [PMID: 39400877 DOI: 10.1007/s10653-024-02261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Previous studies about metal exposures and bone mineral density (BMD) have mainly focused on individual metals. The objective of this study was to explore the association of single and multiple metal exposures with BMD among Chinese adults. We recruited 2922 participants from Tongji Hospital in Wuhan, China. The urinary concentrations of 21 metals were measured by the inductively coupled plasma mass spectrometer. BMD was measured using dual-energy X-ray absorptiometry. We applied linear regression and Bayesian kernel machine regression (BKMR) to examine the association of single and multiple metal exposure with BMD, respectively. The linear regression model showed that cadmium (Cd) and strontium (Sr) were associated with lower BMD (all P-trend < 0.05). Compared with the lowest quantiles, the β (95% CI) of BMD in the highest quartile of Cd and Sr was - 0.032 (- 0.049, - 0.016) and - 0.033 (- 0.049, - 0.018), respectively. The BKMR results showed that co-exposure to 21 metals was negatively associated with BMD among the total participants and males. Our study suggested that exposure to multiple metals was negatively associated with BMD, particularly among males. More prospective studies are needed to identify these associations and reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Tang Y, Lyu T, Cao H, Zhang W, Zhang R, Liu S, Guo T, Zhou X, Jiang Y. Recommendations for the reference concentration of cadmium exposure based on a physiologically based toxicokinetic model integrated with a human respiratory tract model. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135323. [PMID: 39079294 DOI: 10.1016/j.jhazmat.2024.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Cadmium (Cd) poses a significant threat to human health. However, chronic toxicity parameters for inhalation exposure are lacking, especially for noncritical systemic toxic effects. A physiologically based toxicokinetic (PBTK) model can be used to extrapolate toxicity parameters across various exposure routes. We combined a PBTK model with a human respiratory tract (HRT) model, which is applicable to the general population and capable of simulating the deposition and clearance processes of various airborne Cd compounds in the respiratory tract. Monte Carlo analysis was used to simulate the distribution of sensitive parameters to reflect individual variability. Validation based on datasets from general and occupational populations showed that the improved model had acceptable or better predictive performance, outperforming the original model with a 14.45 % decrease in the root mean square error (RMSE). Using this PBTK-HRT model, we extrapolated toxicity parameters from oral exposure to inhalation exposure for four systemic toxic effects with doseresponse relationships but no known inhalation toxicity parameters, and ultimately recommended reference concentrations (RfCs) for four diseases (chronic kidney disease: 0.01 μg/m3, osteoporosis: 0.01 μg/m3, stroke: 0.04 μg/m3, diabetes mellitus: 0.13 μg/m3), contributing to a comprehensive assessment of the health risks of Cd inhalation exposure. ENVIRONMENTAL IMPLICATION: Cadmium (Cd), a heavy metal, can cause lung cancer, chronic kidney disease, and osteoporosis and pose a significant threat to human health. We combined a physiologically based toxicokinetic (PBTK) model with a human respiratory tract (HRT) model to achieve better predictive performance and wider applicability; this model was subsequently employed for route-to-route extrapolation of toxicity parameters. Additionally, for the first time, we focused on multiple subchronic and chronic systemic toxic effects in addition to critical effects and derived their reference concentrations (RfCs), which can be used to assess the health risk of Cd inhalation exposure more comprehensively and accurately.
Collapse
Affiliation(s)
- Yilin Tang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Tong Lyu
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Hongbin Cao
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Wei Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ruidi Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Siqi Liu
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Tianqing Guo
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xu Zhou
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanxue Jiang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
4
|
Sikakwe GU, Ojo SA, Uzosike PC. Assessment of human health risk concerning edible plants contamination with toxic elements around functional and derelict mines. Food Chem Toxicol 2024; 189:114760. [PMID: 38824991 DOI: 10.1016/j.fct.2024.114760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Edible plants samples were analysed for non-carcinogenic and carcinogenic human health risks. The elements nickel (Ni), cadmium (Cd), arsenic (As), lead (Pb), chromium (Cr) and mercury (Hg) analysed using atomic absorption spectrophotometer (AAS). The recovery, limit of detection (LOD) and limit of quantification (LOQ) ranged from 75 to 89 %, 0.001-0.003 and 0.003-0.01, respectively. The mean value of Hg (0.34 mg/kg) exceeded the limit of 0.05 mg/kg recommended by World Health Organization (WHO). The estimated daily intake (EDI) of Cd in adults ranged from 7.93 × 10-7 to 1.43 × 10-4 and that of Hg from 0.07 to 1.27 and Cd (0.08 × 10-4) in children. These are below the oral reference doses (RfD). Hazard Quotient (HQ) of Hg in children was 1.92. The elements Hg and As obtained the highest total hazard (THI) index of 2.02 in mango1 and oil palm. Arsenic possessed the highest cancer risk of 4.5 × 10-4 in children and 1.9 × 10-4 in adults. Cancer risk (CR) ranged from low to moderate (10-6-10-4), which is below the limit of 10-3. The total carcinogenic risk (TCR) of the edible plants were above the limit of 10-6. The study identified minimal As and Hg pollution and carcinogenic risks in edible plants.
Collapse
Affiliation(s)
- Gregory Udie Sikakwe
- Department of Geology & Geophysics Faculty of Physical Sciences Alex Ekwueme University Ndufu-Alike, Abakaliki, Nigeria.
| | - Samuel Adebayo Ojo
- Zonal Advanced Space Technology Applications Laboratory at Alex Ekwueme Federal University Ndufu-Alike, Abakaliki, Nigeria
| | - Peter Chika Uzosike
- Department of Education Foundations Faculty of Education Alex Ekwueme Federal University Ndufu-Alike, Abakaliki Nigeria
| |
Collapse
|
5
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
6
|
Mo L, Chen L, Wan Y, Huang H, Mo L, Zhu W, Yang G, Li Z, Wei Q, Song J, Yang X. An aqueous extract of Prunella vulgaris L. ameliorates cadmium-induced bone loss by promoting osteogenic differentiation in female rats. Food Chem Toxicol 2023; 180:114005. [PMID: 37640280 DOI: 10.1016/j.fct.2023.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Cadmium (Cd) causes bone loss, concerning inhibiting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Prunella vulgaris L. (PV) has the potential for promoting osteogenic differentiation, but its influence on Cd-induced bone loss is unclear. This study investigated the effect of PV aqueous extract (PVE) on Cd-induced bone loss and its underlying mechanisms. Eight-week-old female SD rats were randomly assigned into four groups and treated for 16 weeks: Control, Cd (50 mg/L of Cd chloride), Cd + PV Low (125 mg/kg bw of PVE), and Cd + PV High (250 mg/kg bw of PVE). PV ameliorated femoral bone loss in Cd-treated rats manifested as increases in bone mineral density, bone volume, trabecular thickness, number, and area, and decreases in trabecular separation. Compared with Cd group, PV-treatment groups had higher serum levels of bone formation markers (ALP, BGP). Additionally, in PV-treatment groups, expressions of bone formation markers (Osterix, Runx2) and molecules involved in osteogenic differentiation signal pathway BMP/Smad (BMP4, Smad1/5/9) in the tibia of rats and isolated rat primary BMSCs were upregulated. These results suggest that PV alleviates Cd-induced bone loss by promoting osteogenic differentiation, which is likely associated with BMP/Smad pathway.
Collapse
Affiliation(s)
- Lijun Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Linquan Chen
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Yu Wan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Haibin Huang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Lifen Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Guangyu Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Ziyin Li
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, PR China
| | - Qinzhi Wei
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jia Song
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
7
|
Yang JL, Juhasz AL, Li MY, Ding J, Xue XM, Zhou D, Ma LQ, Li HB. Chronic Exposure to Drinking Water As, Pb, and Cd at Provisional Guideline Values Reduces Weight Gain in Male Mice via Gut Microflora Alterations and Intestinal Inflammation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12981-12990. [PMID: 37615500 DOI: 10.1021/acs.est.3c02388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Few studies have investigated the long-term effect of exposure to arsenic (As), lead (Pb), and cadmium (Cd) via drinking water at the provisional guideline values on gut microflora. In this study, male and female mice were exposed to water As, Pb, or Cd at 10, 10, or 5 μg L-1 for 6 months. At the end of the exposure, the net weight gain of male mice exposed to As and Pb (9.91 ± 1.35 and 11.2 ± 1.50 g) was significantly (p < 0.05) lower compared to unexposed control mice (14.1 ± 3.24 g), while this was not observed for female mice. Relative abundance of Akkermansia, a protective gut bacterium against intestinal inflammation, was reduced from 29.7% to 3.20%, 4.83%, and 17.0% after As, Pb, and Cd exposure in male mice, which likely caused chronic intestinal inflammation, as suggested by 2.81- to 9.60-fold higher mRNA levels of pro-inflammatory factors in ileal enterocytes of male mice. These results indicate that long-term exposure to drinking water As, Pb, and Cd at concentrations equivalent to the China provisional guideline values can cause loss of protective bacteria and lead to chronic intestinal inflammation, thereby affecting body weight gain in male mice.
Collapse
Affiliation(s)
- Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Meng-Ya Li
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Marini HR, Bellone F, Catalano A, Squadrito G, Micali A, Puzzolo D, Freni J, Pallio G, Minutoli L. Nutraceuticals as Alternative Approach against Cadmium-Induced Kidney Damage: A Narrative Review. Metabolites 2023; 13:722. [PMID: 37367879 PMCID: PMC10303146 DOI: 10.3390/metabo13060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is the kidney, where it accumulates. In the present narrative review, we assessed experimental and clinical data dealing with the mechanisms of kidney morphological and functional damage caused by Cd and the state of the art about possible therapeutic managements. Intriguingly, skeleton fragility related to Cd exposure has been demonstrated to be induced both by a direct Cd toxic effect on bone mineralization and by renal failure. Our team and other research groups studied the possible pathophysiological molecular pathways induced by Cd, such as lipid peroxidation, inflammation, programmed cell death, and hormonal kidney discrepancy, that, through further molecular crosstalk, trigger serious glomerular and tubular injury, leading to chronic kidney disease (CKD). Moreover, CKD is associated with the presence of dysbiosis, and the results of recent studies have confirmed the altered composition and functions of the gut microbial communities in CKD. Therefore, as recent knowledge demonstrates a strong connection between diet, food components, and CKD management, and also taking into account that gut microbiota are very sensitive to these biological factors and environmental pollutants, nutraceuticals, mainly present in foods typical of the Mediterranean diet, can be considered a safe therapeutic strategy in Cd-induced kidney damage and, accordingly, could help in the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy;
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (D.P.); (J.F.)
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (D.P.); (J.F.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| |
Collapse
|
9
|
Peng X, Li C, Zhao D, Huang L. Associations of micronutrients exposure with cadmium body burden among population: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114878. [PMID: 37060803 DOI: 10.1016/j.ecoenv.2023.114878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The absorption and accumulation of cadmium (Cd) within the human body can be influenced by the status of certain micronutrients, while available evidence for the association between micronutrient exposure and Cd body burden remains fragmented and inconsistent. To address this issue, this article reviews and synthesizes epidemiological studies that examine the association between micronutrient exposure and Cd burden in humans, to elucidate the potential association between micronutrient exposure and Cd body burden. METHODS We conducted a systematic review of epidemiologic studies reporting the association between micronutrient status and Cd body burden among the population. Relevant articles were selected based on predetermined criteria from PubMed, Web of Science, and Scopus databases published from 2000 to 2021. The exposures that were evaluated included micronutrients (zinc, selenium, iron, calcium, and vitamins) status or intakes of them. The outcome of interest was the Cd body burden as indicated by blood Cd or urinary Cd levels. The quality of included studies was assessed using The Joanna Briggs Institute critical appraisal tool. We extracted data from each article, including study design, study site, study population, micronutrient status, Cd body burden, and the correlations between micronutrient status and Cd body burden. RESULTS Our systematic search yielded 1660 articles. Of these, forty-four were selected for inclusion based on prespecified criteria. These selected articles evaluated the relationship between Cd body burden and seven different micronutrients, namely, selenium (Se), zinc (Zn), calcium (Ca), iron (Fe), vitamin A, vitamin B12, and vitamin D. The majority of studies (n = 41) were observational, while only three were randomized controlled trials. Among the seventeen studies assessing Zn status, ten reported a negative association between serum Zn levels or intake and urinary and blood Cd levels. Results were inconsistent among the ten studies examining the association between Se levels and Cd body burden. Six studies showed that Cd in blood and urine was negatively correlated with serum ferritin (SF), a biomarker of body Fe status. Two studies reported a negative correlation between Ca and blood Cd. CONCLUSIONS This synthesis of available evidence suggests that certain micronutrients, especially Zn and Fe, may play a role in reducing the Cd body burden among populations. The evidence strongly supports a negative association between Zn, Fe, and Cd body burden, whereas evidence for Se, Ca and vitamins is insufficient to draw definitive conclusions regarding their relationship with Cd body burden. In addition, observational studies limit the ability to infer a causal relationship between micronutrients and Cd body burden, highlighting the need for additional intervention studies. Our review may inform nutrient supplementation guidance, control of Cd body burden, and future research to mitigate the adverse health effects of Cd in the context of global Cd pollution.
Collapse
Affiliation(s)
- Xiangwen Peng
- School of the Environment, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Chen Li
- School of the Environment, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Di Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Huang
- School of the Environment, School of Medicine, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-Tech Institute, Suzhou 215123, China.
| |
Collapse
|
10
|
Ran D, Zhou D, Liu G, Ma Y, Ali W, Yu R, Wang Q, Zhao H, Zhu J, Zou H, Liu Z. Reactive Oxygen Species Control Osteoblast Apoptosis through SIRT1/PGC-1α/P53 Lys382 Signaling, Mediating the Onset of Cd-Induced Osteoporosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37023393 DOI: 10.1021/acs.jafc.2c08505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The imbalance between osteogenesis and osteoclastogenesis is a feature of bone metabolic disease. Cadmium (Cd) exposure causes human bone loss and osteoporosis (OP) through bioaccumulation of the food chain. However, the impact of Cd on bone tissues and the underlying molecular mechanisms are not well-characterized. In the current study, we found that the Cd concentration in bone tissues of OP patients was higher than normal subjects; meanwhile, the nuclear silent information regulator of transcription 1 (SIRT1) protein expression level was significantly decreased, which is a new star molecule to treat OP. It is further revealed that SIRT1 activation markedly reprograms bone metabolic and stress-response pathways that incline with osteoblast (OB) apoptosis. Suppressing reactive oxygen species (ROS) release with N-acetyl-l-cysteine (NAC) abolished Cd-induced reduction of SIRT1 protein, deacetylation of P53, OB apoptosis, and attenuated OP. Conversely, overexpression of SIRT1 suppressed Cd-induced ROS release. SIRT1 overexpression in vivo and in vitro dampened PGC-1α protein, acetylation of P53 at lysine 382, and caspase-dependent apoptosis. These results reveal that ROS/SIRT1 controls P53 acetylation and coordinates OB apoptosis involved in the onset of OP.
Collapse
Affiliation(s)
- Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, People's Republic of China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Dehui Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Gang Liu
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Rui Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Qinghua Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
11
|
de Carvalho Machado C, Dinis-Oliveira RJ. Clinical and Forensic Signs Resulting from Exposure to Heavy Metals and Other Chemical Elements of the Periodic Table. J Clin Med 2023; 12:2591. [PMID: 37048674 PMCID: PMC10095087 DOI: 10.3390/jcm12072591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Several heavy metals and other chemical elements are natural components of the Earth's crust and their properties and toxicity have been recognized for thousands of years. Moreover, their use in industries presents a major source of environmental and occupational pollution. Therefore, this ubiquity in daily life may result in several potential exposures coming from natural sources (e.g., through food and water contamination), industrial processes, and commercial products, among others. The toxicity of most chemical elements of the periodic table accrues from their highly reactive nature, resulting in the formation of complexes with intracellular compounds that impair cellular pathways, leading to dysfunction, necrosis, and apoptosis. Nervous, gastrointestinal, hematopoietic, renal, and dermatological systems are the main targets. This manuscript aims to collect the clinical and forensic signs related to poisoning from heavy metals, such as thallium, lead, copper, mercury, iron, cadmium, and bismuth, as well as other chemical elements such as arsenic, selenium, and fluorine. Furthermore, their main sources of occupational and environmental exposure are highlighted in this review. The importance of rapid recognition is related to the fact that, through a high degree of suspicion, the clinician could rapidly initiate treatment even before the toxicological results are available, which can make a huge difference in these patients' outcomes.
Collapse
Affiliation(s)
- Carolina de Carvalho Machado
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- UCIBIO-REQUIMTE-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- MTG Research and Development Lab, 4200-604 Porto, Portugal
| |
Collapse
|
12
|
Huang JW, Fang WH, Chen WL. Detrimental Association Between Blood Cadmium Concentration and Trabecular Bone Score. Biol Trace Elem Res 2023; 201:82-89. [PMID: 35137281 DOI: 10.1007/s12011-022-03143-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/29/2022] [Indexed: 01/11/2023]
Abstract
Osteoporosis has been recognized as a significant cause of disability in the elderly leading to heavy socioeconomic burden. Current measurements such as dual-energy X-ray absorptiometry (DEXA) and bone mineral density (BMD) have limitations. In contrast, trabecular bone score (TBS) is an emerging tool for bone quality assessment. The objective of our study was to investigate the relationship between TBS and trace elements (cadmium and lead). We analyzed all subjects from the 2005-2006 and 2007-2008 National Health and Nutrition Examination Survey (NHANES) dataset and included a total of 8,244 participants in our study; 49.4% of the enrolled subjects were male. We used blood cadmium (Cd) and lead (Pb) concentrations to define environmental exposure. The main variables were TBS and BMD. Other significant demographic features were included as covariates and later adjusted using linear regression models to determine the association between TBS and four quartiles based on the blood trace element concentrations with or without sex differences. The fully adjusted regression model revealed a negative relationship between TBS and blood cadmium (B-Cd) significant for both males and females (both p < 0.05). The β-coefficient for males was -0.009 (95% confidence intervals (CI): (-0.015 to -0.004)) and -0.019 for female (95% CI: (-0.024 to -0.013)). We also found a dose-dependent relationship between TBS and B-Cd for both sexes (both trend's p < 0.05). Our study concluded that TBS could measure Cd-related bone quality deterioration for both males and females.
Collapse
Affiliation(s)
- Jun-Wei Huang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Hui Fang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China.
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Republic of China.
| |
Collapse
|
13
|
Cirovic A, Denic A, Clarke BL, Vassallo R, Cirovic A, Landry GM. A hypoxia-driven occurrence of chronic kidney disease and osteoporosis in COPD individuals: New insights into environmental cadmium exposure. Toxicology 2022; 482:153355. [DOI: 10.1016/j.tox.2022.153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
|
14
|
Niebla-Canelo D, Gutiérrez-Fernández ÁJ, Rubio-Armendáriz C, Hardisson A, González-Weller D, Paz-Montelongo S. Toxic Metals (Al, Cd, and Pb) in Instant Soups: An Assessment of Dietary Intake. Foods 2022; 11:3810. [PMID: 36496618 PMCID: PMC9738032 DOI: 10.3390/foods11233810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Instant soups and noodles are one of the most widely consumed commercial food products. These products are made from ingredients of animal (chicken, meat) and/or vegetable origin, in addition to various food additives that prolong the shelf life of the product. It should be noted that instant soups are a dehydrated product, whose water-removal process can increase the accumulation of contaminants, such as toxic metals (Al, Cd, or Pb), that are harmful to the health of consumers. The content of toxic metals (Al, Cd, and Pb) in a total of 130 samples of instant soups of different types (poultry, meat, and vegetables) was determined by ICP-OES (inductively coupled plasma-optical emission spectrometry). The Al content (32.28 ± 19.26), the Cd content (0.027 ± 0.016), and the Pb content (0.12 ± 0.13) in the vegetable soups were worth mentioning. Considering an intake of twenty grams (recommended by the manufacturer), the dietary intake of Al (19.56% of the TWI set at 1 mg/kg bw/week), the intake of Cd (6.59% of the TWI set at 2.5 µg/kg bw/week), and the Pb intake (16.18% of the BMDL set for nephrotoxic effects at 0.63 µg/kg bw/week and 6.84% of the BMDL set for cardiovascular effects at 1.50 µg/kg bw/week) in the population aged 3-10 years, instant soups are not recommended for the population aged 3-10 years, while their consumption does not pose a health risk for adults. However, it is necessary to consider the cooking water used in the preparation of these products, as it may increase exposure to these toxic metals, in addition to the rest of the diet.
Collapse
Affiliation(s)
- Daniel Niebla-Canelo
- Department of Toxicology, Universidad de La Laguna, 38071 La Laguna, Tenerife, Canary Islands, Spain
| | | | - Carmen Rubio-Armendáriz
- Department of Toxicology, Universidad de La Laguna, 38071 La Laguna, Tenerife, Canary Islands, Spain
| | - Arturo Hardisson
- Department of Toxicology, Universidad de La Laguna, 38071 La Laguna, Tenerife, Canary Islands, Spain
| | - Dailos González-Weller
- Health Inspection and Laboratory Service, Canary Health Service, 38006 Santa Cruz de Tenerife, Tenerife, Canary Islands, Spain
| | - Soraya Paz-Montelongo
- Department of Toxicology, Universidad de La Laguna, 38071 La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
15
|
Long-Term Sex-Specific Effects of Cadmium Exposure on Osteoporosis and Bone Density: A 10-Year Community-Based Cohort Study. J Clin Med 2022; 11:jcm11102899. [PMID: 35629026 PMCID: PMC9145052 DOI: 10.3390/jcm11102899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
This study explored the long-term effects of cadmium (Cd) exposure on osteoporosis incidence and bone mineral density (BMD). This retrospective cohort study included men aged ≥50 years and post-menopausal women from the 2001−2002 Korea Genome and Epidemiology Study. Participants previously diagnosed with osteoporosis were excluded. Blood Cd concentrations were measured and categorized as <0.5, 0.5−1.0, and >1.0 μg/L. BMD was measured using quantitative ultrasound. Osteoporosis was diagnosed when the T-score was ≤−2.5. Confounders that affect exposure and outcome were controlled. Osteoporosis incidence and differences in BMD (ΔBMD) were assessed until 2012. The osteoporosis incidence among 243 participants who were followed up for an average of 6.3 years was 22.2%. In all the participants, a dose−response relationship was observed between blood Cd and incident osteoporosis and ΔBMD (both p-for-trend < 0.01). After adjusting for age, sex, smoking, physical activity, body mass index, creatinine, and baseline BMD, a blood Cd concentration of >1.0 μg/L was an independent risk factor for incident osteoporosis and decrements in ΔBMD. In women, blood Cd concentrations of >0.5 μg/L increased the risk for osteoporosis. Exposure to Cd prospectively increases the risk for osteoporosis and decrements of ΔBMD, particularly in women, even in lower doses of Cd.
Collapse
|
16
|
Qing Y, Yang J, Chen Y, Shi C, Zhang Q, Ning Z, Yu Y, Li Y. Urinary cadmium in relation to bone damage: Cadmium exposure threshold dose and health-based guidance value estimation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112824. [PMID: 34592522 DOI: 10.1016/j.ecoenv.2021.112824] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) is a widespread heavy metal with osteotoxicity, and bone mineral density (BMD) is often used as an early sensitive biomarker of bone damage. This study retrieved worldwide epidemiological studies to conduct a systematic meta-analysis to explore the association between Cd exposure and bone damage. A random effect model was used to establish the relationship between urinary Cd (U-Cd) and BMD and explore the influence of covariate factors. The benchmark dose method was used to calculate the safety threshold of U-Cd when the BMD decrease within an acceptable range. Toxicokinetic (TK) model was used to estimate the health-based guidance value (HBGV) of dietary Cd exposure based on the U-Cd threshold. The 95% lower confidence interval of benchmark dose of U-Cd derived in this study was 1.71 μg/g Cr, and the HBGV of dietary Cd exposure was determined to be 0.64 μg/kg bw/day. Gender had the greatest influence on BMD, followed by body mass index (BMI), age, and race. This study conducted a comprehensive systematic analysis of global research and was the first exploration to quantify the decreased BMD caused by Cd exposure in a large-scale population. The results provided reference for the risk assessment of Cd exposure and the formulation of dietary exposure standards.
Collapse
Affiliation(s)
- Ying Qing
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Jiaqi Yang
- School of Public Health/Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and food science, Fudan University, Shanghai 200032, China
| | - Yanfeng Chen
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chengjie Shi
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Qianrong Zhang
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Zhongping Ning
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China
| | - Ying Yu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China.
| |
Collapse
|
17
|
Han Y, Zveushe OK, Dong F, Ling Q, Chen Y, Sajid S, Zhou L, Resco de Dios V. Unraveling the effects of arbuscular mycorrhizal fungi on cadmium uptake and detoxification mechanisms in perennial ryegrass (Lolium perenne). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149222. [PMID: 34375244 DOI: 10.1016/j.scitotenv.2021.149222] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and one of the most toxic metals in the environment. Arbuscular mycorrhizal fungi (AMF) assisted phytoremediation can be used to remove Cd from polluted soils but the role of AMF, which mediate in Cd accumulation and tolerance, remains poorly understood. Here we inoculated Lolium perenne with two different AMF species (Glomus etunicatum and Glomus mosseae). Mycorrhizal L. perenne and non-mycorrhizal controls were exposed to Cd stress and we tested the effects of AMF mycorrhization on Cd uptake and subsequent tolerance, as well as the underlying mechanisms. Mycorrhizal infection increased root Cd2+ uptake and we observed that net Cd2+ influx was coupled with net Ca2+ influx. The inactivation of Ca2+ transporter channels decreased Cd2+ uptake in non-inoculated roots to a greater extent than in inoculated roots, indicating that AMF activates additional ion transport channels. In consequence, inoculated plants exhibited higher Cd accumulation in both roots and shoots than non-inoculated controls. However, AMF-inoculated plants showed higher chlorophyll concentrations, photosynthesis, and growth under Cd, indicating lower Cd toxicity in AMF-inoculated plants, despite the increase in Cd uptake. We observed that AMF-inoculated favored the isolation of Cd within cell walls and vacuoles, and had higher concentrations of superoxide dismutase activity and glutathione concentration in roots than non-inoculated plants, consequently experiencing less stress upon Cd exposure. Our results highlight the potential and mechanism of AMF for enhancing phytoremediation of L. perenne in heavy metal contaminated environments.
Collapse
Affiliation(s)
- Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Obey Kudakwashe Zveushe
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Qin Ling
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yun Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Sumbal Sajid
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida 25198, Spain; Department of Crop and Forest Sciences, Universitat de Lleida, Lleida 25198, Spain.
| |
Collapse
|
18
|
Boughammoura S, Zarka M, Messaoudi I, Solal MC. Interactions between cadmium and zinc on gene expression pattern of differentiation markers in MC3T3-E1 cell line. Xenobiotica 2021; 51:1038-1046. [PMID: 34338604 DOI: 10.1080/00498254.2021.1963881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We evaluated, in vitro, the interactions between cadmium (Cd) and zinc (Zn) during the proliferation and differentiation process using bone MC3T3-E1 cell line.Cells were treated with CdCl2 and/or ZnCl2 for 24 and 48 h and 5 µM CdCl2 was found as low cytotoxic dose and 25 µM ZnCl2 as the best Zn treatment for cell proliferation. Gene expression of some bone markers (Runx2, collagen α1 (Colα1), osteocalcin (Oc), alkaline phosphatase (ALP) and bone sialoprotein (BSP)) was studied at 24, 48 and 72 h.Treatment by CdCl2 depressed Runx2, Colα1, and BSP mRNA levels after 24 h. Oc and ALP gene expression was found to be decreased after 72 h.CdCl2 -exposure decreased ALP activity and Ca deposit in matrix. In concomitant treatment by CdCl2 and ZnCl2, gene expression of osteoblastic markers was found to be up-regulated (p < 0, 05) compared to CdCl2 treated cells, ALP staining and mineralization were increased.Our results show that Zn could prevent Cd-induced toxicity on MC3T3-E1 cells, probably through the restoration of Runx2, col α1, BSP, ALP and Oc and gene expression inhibited by Cd.
Collapse
Affiliation(s)
- Sana Boughammoura
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Mylène Zarka
- U1132: Biologie de l'Os et de Cartilage, Hôpital Lariboisière, Paris, France
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Martine Cohen Solal
- U1132: Biologie de l'Os et de Cartilage, Hôpital Lariboisière, Paris, France
| |
Collapse
|
19
|
Determination of chemical elements in rice from Singapore markets: Distribution, estimated intake and differentiation of rice varieties. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Li D, Lin H, Zhang M, Meng J, Hu L, Yu B. Urine Cadmium as a Risk Factor for Osteoporosis and Osteopenia: A Meta-Analysis. Front Med (Lausanne) 2021; 8:648902. [PMID: 33937289 PMCID: PMC8085254 DOI: 10.3389/fmed.2021.648902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: As society ages, the incidence of osteoporosis increases. In several studies, cadmium (Cd) is thought to be related to osteoporosis. However, there are conflicting reports about the relationship between Cd and the risk of osteoporosis and osteopenia. Therefore, the purpose of this meta-analysis was to explore the relationship between Cd and osteoporosis and osteopenia. Methods: Through a review of the literature, articles published in PubMed as of December 2020 were identified and the references of related publications and reviews were reviewed. Ultimately, 17 eligible articles were selected to determine the relationship between blood and urine Cd concentrations for the risk of osteoporosis or osteopenia. In this study, we performed a classification analysis, heterogeneity test, subgroup analysis, and evaluated publication bias. Results: A total of 17 studies were included, including seven on blood Cd and 10 on urine Cd. By combining the odds ratio (OR) and 95% confidence interval (CI) for the lowest and highest categories, the odds ratio of blood Cd concentration that increased the risk of osteoporosis or osteopenia was OR 1.21 (95% CI: 0.84–1.58) and that of urine Cd concentration that increased the risk of osteoporosis or osteopenia was OR 1.80 (95% CI: 1.42–2.18), and the results of the subgroup analysis were also consistent. Conclusions: Our research indicates that while urine cadmium (Cd) concentration may be related to increased risk of osteoporosis and osteopenia, blood Cd concentration may not. Therefore, compared to blood Cd concentration, urine Cd concentration may be more reliable as a risk factor for osteoporosis and osteopenia. This result should be interpreted with caution. Currently. research on the relationship between Cd concentration and osteoporosis and osteopenia is limited, thus, further large, high-quality prospective studies are required to elucidate the relationship between Cd concentration and osteoporosis and osteopenia.
Collapse
Affiliation(s)
- Dong Li
- The Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - HaoJie Lin
- Jinan Blood Supply and Security Center, Jinan, China
| | - Min Zhang
- Department of Nursing, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Meng
- The Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - LiYou Hu
- The Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Yu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Burden of osteoporosis and costs associated with human biomonitored cadmium exposure in three European countries: France, Spain and Belgium. Int J Hyg Environ Health 2021; 234:113747. [PMID: 33862487 DOI: 10.1016/j.ijheh.2021.113747] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal widespread in the environment leading to human exposure in particular through diet (when smoking is excluded), as documented by recent human biomonitoring (HBM) surveys. Exposure to Cd at environmental low-exposure levels has been associated with adverse effects such as renal toxicity and more recently bone effects. The implication, even if limited, of Cd in the etiology of osteoporosis can be of high importance at the population level given the significant prevalence of osteoporosis and the ubiquitous and life-long exposure to Cd. Therefore, the osteoporosis cases attributable to Cd exposure was estimated in three European countries (Belgium, France and Spain), based on measured urinary Cd levels from HBM studies conducted in these countries. The targeted population was women over 55 years old, for which risk levels associated with environmental Cd exposure were available. Around 23% of the cases were attributed to Cd exposure. Moreover, in a prospective simulation approach of lifelong urinary Cd concentrations assuming different intakes scenarios, future osteoporosis attributable cases were calculated, based on urinary Cd levels measured in women aged under 55. Between 6 and 34% of the considered populations under 55 years were at risk for osteoporosis. Finally, the costs associated to the burden of osteoporosis-related fractures attributable to Cd for each country targeted in this paper were assessed, standing for a major contributing role of Cd exposure in the overall social costs related to osteoporosis. Absolute costs ranged between 0.12 (low estimate in Belgium) and 2.6 billion Euros (high estimate in France) in women currently over 55 years old and at risk for fractures. Our results support the importance of reducing exposure of the general population to Cd.
Collapse
|
22
|
Wang SL, Hsieh CY, Wu CR, Chen JC, Wang YL. Highly sensitive FET sensors for cadmium detection in one drop of human serum with a hand-held device and investigation of the sensing mechanism. BIOMICROFLUIDICS 2021; 15:024110. [PMID: 33868537 PMCID: PMC8043755 DOI: 10.1063/5.0042977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
As the heavy metal contamination is becoming worse, monitoring the heavy metal content in water or human body gets more and more important. In this research, a cadmium ion-selective field effect transistor (Cd-ISFET) for rapidly detecting cadmium ions has been developed and the mechanism of the sensor is also investigated in depth. Our Cd-ISFET sensor exhibits high sensitivity beyond the ideal Nernst sensitivity, wide dynamic range, low detection limit (∼10-11M), which is comparable with inductively coupled plasma mass spectrometry, and easy operation enabling people to detect cadmium ion by themselves. From the analysis of electrical measurement results, this Cd-ISFET is preferred to operate at the bias with the maximum transconductance of the FET to enhance the sensor signal. The AC impedance measurement is carried out to directly investigate the mechanism of an ion-selective membrane (ISM). From impedance results, the real part of the total impedance, which is the resistance, was shown to dominate the sensor signal. The potential drop across the ISM is caused by the heavy metal ion in the membrane, which is employed to the gate of the FET via an extended gate electrode. Cadmium ion detection in one drop of human serum with this sensor was demonstrated. This cost-effective and highly sensitive sensor is promising and can be used by anyone and anywhere to prevent people from cadmium poisoning.
Collapse
Affiliation(s)
- Shin-Li Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ching-Yen Hsieh
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chang-Run Wu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | - Yu-Lin Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
23
|
Ding Y, Li X, Liu Y, Wang S, Cheng D. Protection Mechanisms Underlying Oral Administration of Chlorogenic Acid against Cadmium-Induced Hepatorenal Injury Related to Regulating Intestinal Flora Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1675-1683. [PMID: 33494608 DOI: 10.1021/acs.jafc.0c06698] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a heavy metal, which is widely used in the industry and daily life. It has a long half-life, so large amounts of Cd can accumulate in humans and become toxic. Chlorogenic acid (CGA) can eliminate free radicals and inhibit lipid peroxidation and is mainly used to prevent metal toxicity. In the present study, mice are given CGA by intraperitoneal injection or gavage, respectively, to explore the mechanism of preventing Cd toxicity. In acute Cd-exposed mice, CGA treatment (ip) alleviated Cd-induced oxidative damage and reduced the production of NO and MPO in the liver and kidney tissues, while TLR4 expression levels did not change significantly. After 8 weeks of Cd exposure, CGA administration (gavage) significantly alleviated gut dysbiosis by decreasing the Firmicutes to Bacteroidetes ratio, enhancing the relative abundances of bacteria, including Ruminiclostridium_9, Alloprevotella, and Rikenella, and inhibiting the activation of the TLR4/MyD88/NF-κB signaling pathway. These findings suggested that protection mechanisms underlying the oral administration of CGA against the Cd-induced hepatorenal injury was related to the regulation of the intestinal flora balance. CGA can be used as an effective component in daily diet to prevent Cd toxicity.
Collapse
Affiliation(s)
- Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yutong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Gu J, Li S, Wang G, Zhang X, Yuan Y, Liu X, Bian J, Tong X, Liu Z. Cadmium Toxicity on Chondrocytes and the Palliative Effects of 1α, 25-Dihydroxy Vitamin D 3 in White Leghorns Chicken's Embryo. Front Vet Sci 2021; 8:637369. [PMID: 33644155 PMCID: PMC7902530 DOI: 10.3389/fvets.2021.637369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Cadmium (Cd) can causes osteoporosis and joint swelling. However, the mechanism of Cd toxicity in chondrocytes and how to alleviate Cd poisoning to chondrocytes are still unclear. Herein, we evaluated the toxicity of Cd to chicken chondrocytes, and whether vitamin D can relieve the toxicity of Cd to chondrocytes. Primary chondrocytes were collected from knee-joint cartilage of 15-day-old chicken embryos. They were treated with (0, 1, 2, and 4) μM Cd alone, 10-8 M 1α,25-(OH)2D3 alone, or 2 μM Cd combined with 10-8 M 1α,25-(OH)2D3. We found that Cd significantly inhibited Sox9 and ACAN mRNA expression, which are markers for chondrocyte differentiation, downregulated the mitochondrial membrane potential, upregulated the Bax/B-cell lymphoma 2 ratio. Furthermore, Cd significantly promoted matrix metalloproteinase (MMP)-9 expression, thus accelerating the degradation of extracellular matrix. And Cd also inhibited the expression of main macromolecular protein of extracellular matrix, Collagen type IIα1 (COL2A1) and acid mucopolysaccharide. However, 1α,25-(OH)2D3 pretreatment significantly alleviated the toxicity effects of Cd on the differentiation, apoptosis and extracellular matrix gene expression in primary chondrocytes. Conclusively, Cd exposure could inhibited chicken embryo chondrocytes differentiation, extracellular matrix gene expression, and induced chondrocyte apoptosis. However, these toxic effects of Cd are alleviated by the pretreatment of chondrocytes with 1α,25-(OH)2D3.
Collapse
Affiliation(s)
- Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Saihui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Guoshuai Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xueqing Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Amuno S, Shekh K, Kodzhahinchev V, Niyogi S, Al Kaissi A. Skeletal pathology and bone mineral density changes in wild muskrats (Ondatra zibethicus) and red squirrels (Tamiasciurus hudsonicus) inhabiting arsenic polluted areas of Yellowknife, Northwest Territories (Canada): A radiographic densitometry study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111721. [PMID: 33396052 DOI: 10.1016/j.ecoenv.2020.111721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The City of Yellowknife is a known hotspot of arsenic contamination and there is a growing body of evidence suggesting that local wildlife in the vicinity of the abandoned Giant Mine site may be at risk of decreased bone mineralization and various bone disorders. The purpose of this study was to preliminarily measure bone mineral density (BMD) changes and investigate the incidence, pattern, and severity of bone lesions in wild muskrats and red squirrels breeding in three (3) catchment areas at different distances from the Giant Mine Site in Yellowknife, Northwest Territories (Canada): ~2 km (location 1), ~18 km (location 2), and ~40-100 km (location 3). Full femoral bones of 15 muskrats and 15 red squirrels were collected from the three sampling locations (5 from each location) and subjected to radiographic analysis and densitometric measurements. The patterns and severities of bone lesions, including changes in bone mineral density, were evaluated and compared between groups. As levels were significantly higher in the bones of muskrats caught from location 1 and 2, relative to location 3. Further, As and Cd levels were significantly higher in the bones of squirrels caught from locations 1 and 2 relative to squirrels caught from location 3. The preliminary results from bones revealed that radiographic abnormalities such as bone rarefaction, osteopenia, and thinning of the femoral shafts with significant ossific cystic lesions and bowing were the most common skeletal pathologies found in bones of red squirrels from the three locations. Radiographic appearances of massive sclerosis and dysplasia, including severe osteocondensation and osteopathia striata-like abnormalities, were found in the bones of muskrats from all the sampling locations. Densitometric evaluation showed no significant differences between the three locations in the bone parameters measured. However, there was a statistically significant correlation between As content in the bones of muskrats and percent fat content in the femur samples, which suggests that accumulation of As could have been a causal factor for a change in percent fat in femurs of muskrats.
Collapse
Affiliation(s)
- S Amuno
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada.
| | - K Shekh
- Department of Biology, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - V Kodzhahinchev
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - S Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - A Al Kaissi
- Ludwig Boltzmann Institute of Osteology, at the Hanusch Hospital of OEGK and, AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna, Austria and Orthopedic Hospital of Speising, Vienna, Austria
| |
Collapse
|
26
|
Association between blood cadmium levels and the risk of osteopenia and osteoporosis in Korean post-menopausal women. Arch Osteoporos 2021; 16:22. [PMID: 33527234 PMCID: PMC7850996 DOI: 10.1007/s11657-021-00887-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/06/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED We aimed to investigate the association between cadmium levels and the risk of osteopenia and osteoporosis in Korean post-menopausal women. There was a significant positive association between cadmium levels and the risk of osteopenia and osteoporosis, but further studies for dose response are required. PURPOSE Cadmium exposure can exert detrimental effects on bone health, particularly in post-menopausal women. However, previous studies have failed to report an association in Korean post-menopausal women. We aimed to investigate the association between cadmium levels and the risk of osteopenia and osteoporosis in Korean post-menopausal women. METHODS In total, 5432 participants from the 4th and 5th Korean National Health and Nutrition Examination Survey (KNHANES) were randomly sampled for measurements of heavy metal concentrations in the blood, bone mass density (BMD), and nutrient intake. We analyzed data for 1031 post-menopausal women ≥50 years of age. Blood cadmium levels were categorized into quartiles, and a multinomial logistic regression model was used for analysis. RESULTS There was a significant positive association between cadmium levels and the risk of osteopenia and osteoporosis, but the odds ratio (OR) at the 4th level was lower than that at the 3rd level (OR and 95% confidence interval (CI) for osteopenia: 2nd quartile: 1.24, 0.88-1.74; 3rd quartile: 3.22, 2.24-4.64; 4th quartile: 1.27, 0.87-1.85; P for trend <0.001; OR and 95% CI for osteoporosis: 2nd quartile: 1.54, 1.05-2.25; 3rd quartile: 3.63, 2.31-5.69; 4th quartile: 1.70, 1.03-2.81; P for trend <0.001). This trend was consistent in the sensitivity analysis. CONCLUSION Our findings suggest that there is an association between blood cadmium levels and the risk of osteopenia and osteoporosis in Korean post-menopausal women. However, further prospective studies are required to determine whether there is a dose-response relationship and address potential selection bias, especially in patients with femoral neck osteoporosis.
Collapse
|
27
|
Tian J, Li Z, Wang L, Qiu D, Zhang X, Xin X, Cai Z, Lei B. Metabolic signatures for safety assessment of low-level cadmium exposure on human osteoblast-like cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111257. [PMID: 32890951 DOI: 10.1016/j.ecoenv.2020.111257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Cadmium has been widely detected in the environment and various foods. The association between cadmium burden and osteoporosis has been studied in cohorts. However, the effects and mechanisms of environmental cadmium exposure on bone metabolism is poorly understood. This study aims to investigate the altered metabolites in bone cells affected by low-level cadmium by metabolomics analysis. Specifically, we used the dosage of cadmium that do not decrease the cell viability (determined by MTT assay) to treat Saos-2 cells for 24 h. ICP-MS was applied to quantify the cadmium in culture medium and cell precipitate. The cellular metabolites were extracted and analyzed by liquid chromatography-mass spectrometry. The pathway analysis based on the identified differential metabolites showed that 1 μM cadmium significantly affected citric acid cycle and malate-aspartate shuttle, while 10 μM cadmium treatment affected citric acid cycle, alanine metabolism, glucose-alanine cycle, pyrimidine metabolism and glutamate metabolism. Taken together, 1 μM cadmium exposure could suppress the electrons transportation from the cytosol to mitochondrial matrix in Saos-2, and the impediment of the electron transport chain further inhibited downstream activities in citric acid cycle, which resulted in the accumulation of pyruvic acid. In addition, the suppressed pyrimidine degradation resulted in senescent nucleic acid accumulation and the decrease of mRNA transcription in Saos-2 cells. In general, our studies unveil the cadmium-induced metabolic perturbations in Saos-2 cells and demonstrate the feasibility of our established metabolomics pipeline to understand cadmium-induced effects on bone.
Collapse
Affiliation(s)
- Jinglin Tian
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenchi Li
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Liuyi Wang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Deyi Qiu
- Technology Center of Zhongshan Customs, Zhongshan, China
| | - Xianchen Zhang
- Technology Center of Zhongshan Customs, Zhongshan, China
| | - Xiong Xin
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Zongwei Cai
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Bo Lei
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China.
| |
Collapse
|
28
|
Wako Y, Hiratsuka H, Kurotaki T, Tsuchitani M, Umemura T. Relationship between osteoid formation and iron deposition induced by chronic cadmium exposure in ovariectomized rats. J Appl Toxicol 2020; 41:1304-1315. [PMID: 33283302 DOI: 10.1002/jat.4118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/24/2020] [Accepted: 11/08/2020] [Indexed: 11/10/2022]
Abstract
Itai-itai (Japanese, "It hurts! It hurts!") disease (IID), a form of osteomalacia, can be induced in ovariectomized rats by long-term administration of cadmium (Cd). This IID rat model shows severe anemia, severe nephropathy, and osteomalacia accompanied by iron (Fe) deposition at the mineralization front. We characterized the pathogenesis of Cd-induced bone lesions by investigating the relationship between Fe deposition and osteoid tissue formation in ovariectomized rats. The rats were injected with CdCl2 (0.5 mg/kg) for 70 weeks, with or without co-injection of erythropoietin (EPO) for varying lengths of time to elucidate whether EPO prevents and/or cures anemia, and, with the restoration from anemia, lessens the osteoid tissue formation. Necropsies were performed at 25, 50, or 70 weeks. Fe deposition at the mineralization front of bone was found at 50 weeks and increased thereafter. Animals injected with EPO showed decreased Fe deposition, although there was no relation between EPO administration and osteoid formation in the femur. Because the increase in bone lesion severity was independent of the amount of Fe deposition, we suggest that Fe deposition is not involved in the etiology of Cd-induced femoral bone lesions.
Collapse
Affiliation(s)
- Yumi Wako
- Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, Ibaraki, Japan.,Kumamoto Laboratory, Nonclinical Research Center, LSI Medience Corporation, Kumamoto, Japan
| | - Hideaki Hiratsuka
- Head Office for Open Innovation Strategy, Tohoku University, Sendai, Japan
| | - Tetsurou Kurotaki
- Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, Ibaraki, Japan
| | - Minoru Tsuchitani
- Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, Ibaraki, Japan
| | - Takashi Umemura
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Szlacheta Z, Wąsik M, Machoń-Grecka A, Kasperczyk A, Dobrakowski M, Bellanti F, Szlacheta P, Kasperczyk S. Potential Antioxidant Activity of Calcium and Selected Oxidative Stress Markers in Lead- and Cadmium-Exposed Workers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8035631. [PMID: 33082913 PMCID: PMC7558770 DOI: 10.1155/2020/8035631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Occupational lead (Pb) and cadmium (Cd) exposure occurs during processing and casting of nonferrous metals such as zinc. In contrast to Pb and Cd, Ca is essential for living organisms due to its important role in a multitude of functions, from cell signaling to bone growth. Pb and Cd exposure affects calcium metabolism in various ways. The aim of this study was to investigate the blood levels of Pb, Cd, and Ca and the levels of selected oxidative stress biomarkers in workers exposed to Pb and Cd. Population groups included 264 male employees in a lead-zinc smelter. The study population was divided into two subgroups based on the median of Ca serum level (2.42 mmol/l): the low-Ca-level group (L-Ca group) and the high-Ca-level group (H-Ca group). Ca level was significantly higher in the H-Ca group than in the L-Ca group due to the study design (by 26%). The level of zinc protoporphyrin (ZPP) was significantly higher in the L-Ca group than in the H-Ca group by 13%, while the blood lead levels (PbB) were similar in the examined groups. The level of cadmium (CdB) was significantly higher in the L-Ca group than in the H-Ca group by 33%. From oxidative stress markers in serum, only the levels of malondialdehyde (MDA) and ceruloplasmin (CER) were significantly higher in the L-Ca group than in the H-Ca group, by 12% and 4%, respectively. The correlation analysis showed negative correlations between Ca level and the levels of PbB, ZPP, CdB, and MDA. The presented results indicate that Ca level modulates the serum concentration of Cd and has an impact on Pb-induced impairment of heme synthesis. The higher Ca levels may lead to a decrease in the concentration of lipid peroxidation products. Moreover, serum calcium level seems to be able to modify the level of acute-phase proteins. Obtained results suggest that higher Ca level may be useful in reducing Cd level in occupationally exposed workers.
Collapse
Affiliation(s)
| | - Marta Wąsik
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Anna Machoń-Grecka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Patryk Szlacheta
- Department of Toxicology and Health Protection, Faculty of Health Science in Bytom, Medical University of Silesia in Katowice, Bytom, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
30
|
Kim TH, Kim JH, Le Kim MD, Suh WD, Kim JE, Yeon HJ, Park YS, Kim SH, Oh YH, Jo GH. Exposure assessment and safe intake guidelines for heavy metals in consumed fishery products in the Republic of Korea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33042-33051. [PMID: 32529622 DOI: 10.1007/s11356-020-09624-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals in food are non-intentional pollutants such as lead (Pb), cadmium (Cd), and mercury (Hg). Pb, a neurotoxic substance, is classified as a possible carcinogen for humans (group 2B) by the International Agency for Research on Cancer (IARC) under the World Health Organization (WHO). Cd, a substance that causes kidney damage, is classified as a substance that causes human cancer (group 1). In this study, inductively coupled plasma atomic emission spectrometry (ICP-AES) and a mercury analyzer (MA) were used to identify the concentrations of heavy metals (Pb, Cd, Hg) in fishery products and to assess the effects of chronic human exposure to heavy metals via fisheries consumption. Food consumption data were obtained from the Korea National Health and Nutrition Examination Survey (KNHANES 2010-2015), and the mean exposure concentrations for Pb, Cd, and Hg were 0.0067 μg/kg bw/day, 1.1277 μg/kg bw/month, and 0.0872 μg/kg bw/week, respectively. Exposures to Pb, Cd, and Hg using the 95th percentile of the consumption data were 0.0183 μg/kg bw/day, 4.0230 μg/kg bw/month, and 0.2268 μg/kg bw/week, respectively, corresponding to 3, 16, and 6% of the human exposure safety standard. Safe guidelines for the intake of fishery products are proposed to reduce the exposure to and accumulation of heavy metals in humans.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Noeun Inspection Office for Agricultural, Fishery and Livestock Products, Daejeon Metropolitan City Institute of Health and Environment, Yuseong-gu, Daejeon, 34146, Republic of Korea.
| | - Ju Ho Kim
- Noeun Inspection Office for Agricultural, Fishery and Livestock Products, Daejeon Metropolitan City Institute of Health and Environment, Yuseong-gu, Daejeon, 34146, Republic of Korea
| | - Min Dil Le Kim
- Noeun Inspection Office for Agricultural, Fishery and Livestock Products, Daejeon Metropolitan City Institute of Health and Environment, Yuseong-gu, Daejeon, 34146, Republic of Korea
| | - Won Duck Suh
- Noeun Inspection Office for Agricultural, Fishery and Livestock Products, Daejeon Metropolitan City Institute of Health and Environment, Yuseong-gu, Daejeon, 34146, Republic of Korea
| | - Ji Eun Kim
- Noeun Inspection Office for Agricultural, Fishery and Livestock Products, Daejeon Metropolitan City Institute of Health and Environment, Yuseong-gu, Daejeon, 34146, Republic of Korea
| | - Hyun Jun Yeon
- Noeun Inspection Office for Agricultural, Fishery and Livestock Products, Daejeon Metropolitan City Institute of Health and Environment, Yuseong-gu, Daejeon, 34146, Republic of Korea
| | - Young Soek Park
- Noeun Inspection Office for Agricultural, Fishery and Livestock Products, Daejeon Metropolitan City Institute of Health and Environment, Yuseong-gu, Daejeon, 34146, Republic of Korea
| | - Soo-Hwaun Kim
- Food Contaminants Division, Food Safety Evaluation Department, Ministry of Food and Drug Safety, National Food and Drug Safety Evaluation, Osong, Cheongju, 28159, Republic of Korea
| | - Yoon-Hee Oh
- Noeun Inspection Office for Agricultural, Fishery and Livestock Products, Daejeon Metropolitan City Institute of Health and Environment, Yuseong-gu, Daejeon, 34146, Republic of Korea
| | - Gune-Hee Jo
- Noeun Inspection Office for Agricultural, Fishery and Livestock Products, Daejeon Metropolitan City Institute of Health and Environment, Yuseong-gu, Daejeon, 34146, Republic of Korea
| |
Collapse
|
31
|
Meltzer GY, Watkins BX, Vieira D, Zelikoff JT, Boden-Albala B. A Systematic Review of Environmental Health Outcomes in Selected American Indian and Alaska Native Populations. J Racial Ethn Health Disparities 2020; 7:698-739. [PMID: 31974734 DOI: 10.1007/s40615-020-00700-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Economic and social marginalization among American Indians and Alaska Natives (AI/ANs) results in higher chronic disease prevalence. Potential causal associations between toxic environmental exposures and adverse health outcomes within AI/AN communities are not well understood. OBJECTIVES This review examines epidemiological literature on exposure to toxicants and associated adverse health outcomes among AI/AN populations. METHODS PubMed, Embase, Cochrane, Environment Complete, Web of Science Plus, DART, and ToxLine were searched for English-language articles. The following data were extracted: lead author's last name, publication year, cohort name, study location, AI/AN tribe, study initiation and conclusion, sample size, primary characteristic, environmental exposure, health outcomes, risk estimates, and covariates. RESULTS About 31 articles on three types of environmental exposures met inclusion criteria: persistent organic pollutants (POPs), heavy metals, and open dumpsites. Of these, 17 addressed exposure to POPs, 10 heavy metal exposure, 2 exposure to both POPs and heavy metals, and 2 exposure to open dumpsites. Studies on the Mohawk Nation at Akwesasne; Yupik on St. Lawrence Island, Alaska; Navajo Nation; Gila River Indian Community; Cheyenne River Sioux; 197 Alaska Native villages; and 13 tribes in Arizona, Oklahoma, North Dakota, and South Dakota that participated in the Strong Heart Study support associations between toxicant exposure and various chronic conditions including cardiovascular conditions, reproductive abnormalities, cancer, autoimmune disorders, neurological deficits, and diabetes. DISCUSSION The complex interplay of environmental and social factors in disease etiology among AI/ANs is a product of externally imposed environmental exposures, systemic discrimination, and modifiable risk behaviors. The connection between environmental health disparities and adverse health outcomes indicates a need for further study.
Collapse
Affiliation(s)
- Gabriella Y Meltzer
- Department of Social and Behavioral Sciences, New York University School of Global Public Health, 715/719 Broadway, New York, NY, 10003, USA.
| | - Beverly-Xaviera Watkins
- Department of Epidemiology, New York University School of Global Public Health, 715/719 Broadway, New York, NY, 10003, USA
| | - Dorice Vieira
- Health Sciences Library, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Bernadette Boden-Albala
- Department of Population Health, University of California Irvine, 653 East Peltason Drive, Irvine, CA, 92697, USA
| |
Collapse
|
32
|
Yakout SM, Alharbi F, Abdi S, Al-Daghri NM, Al-Amro A, Khattak MNK. Serum minerals (Ca, P, Co, Mn, Ni, Cd) and growth hormone (IGF-1 and IGF-2) levels in postmenopausal Saudi women with osteoporosis. Medicine (Baltimore) 2020; 99:e20840. [PMID: 32629669 PMCID: PMC7337560 DOI: 10.1097/md.0000000000020840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Osteoporosis is reported to be common among Saudi women. Several minerals appear to be important determinants of insulin-like growth factor (IGF), the bioactivity of which regulates bone and mineral metabolism. Here we proposed that mineral status may alter the IGF system among individuals with osteoporosis. This study aims to evaluate the relationships between essential elements and IGF levels among postmenopausal Saudi women with osteoporosis. A total of 128 postmenopausal Saudi women aged ≥50 years old were recruited in this study. Diagnosis of osteoporosis was done by using dual-energy x-ray absorptiometry to determine the bone minerals density (BMD). Serum calcium and phosphate were determined using routine chemical analyzer. Serum Co, Mn, Ni, Cd were measured using inductively coupled plasma mass spectrometry. Serum IGF-1 and IGF-2 were determined using Luminex xMAP. Using stepwise linear regression analysis, only Cd was identified to be significantly associated with IGF1 in osteoporosis, explaining 3% (confidence interval 0.01-0.05; P = 0001) of the variance perceived. Our results suggest that Cd exposure indirectly affects BMD which may increase the risk of osteoporosis in postmenopausal women. Further longitudinal study using a larger sample size is recommended to determine causality of Cd levels and IGF-1.
Collapse
Affiliation(s)
- Sobhy M. Yakout
- Biochemistry Department, College of Science
- Department of Biochemistry, Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Saba Abdi
- Biochemistry Department, College of Science
| | - Nasser M. Al-Daghri
- Biochemistry Department, College of Science
- Department of Biochemistry, Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Malak Nawaz Khan Khattak
- Biochemistry Department, College of Science
- Department of Biochemistry, Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Huihui Z, Xin L, Zisong X, Yue W, Zhiyuan T, Meijun A, Yuehui Z, Wenxu Z, Nan X, Guangyu S. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110469. [PMID: 32179235 DOI: 10.1016/j.ecoenv.2020.110469] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 05/03/2023]
Abstract
To explore the mechanism of how lead (Pb) and cadmium (Cd) stress affects photosynthesis of mulberry (Morus alba L.), we looked at the effects of different concentrations of Pb and Cd stress (at 100 and 200 μmol L-1), which are two heavy metal elements, on leaf chlorophyll (Chl), photosynthesis gas exchange, Chl fluorescence, and reactive oxygen species (ROS) metabolism in mulberry leaves. The results showed that higher concentrations of Pb and Cd reduced leaf Chl content, especially in Chl a where content was more sensitive than in Chl b. Under Pb and Cd stress, the photosynthetic carbon assimilation capacity of mulberry leaves was reduced, which was a consequence of combined limitations of stomatal and non-stomatal factors. The main non-stomatal factors were decreased photosystem II (PSII) and photosystem I (PSI) activity and carboxylation efficiency (CE). Damage to the donor side of the PSII reaction center was greater than the acceptor side. After being treated with 100 μmol L-1 of Pb and Cd, mulberry leaves continued to be able to dissipate excess excitation energy by starting non-photochemical quenching (NPQ), but when Pb and Cd concentrations were increased to 200 μmol L-1, the protection mechanism that depends on NPQ was impaired. Excessive excitation energy from chloroplasts promoted a great increase of ROS, such as superoxide anion (O2•-) and H2O2. Moreover, under high Pb and Cd stress, superoxide dismutase (SOD) and ascorbate peroxidase (APX) were also inhibited to some extent, and excessive ROS also resulted in a significantly higher degree of oxidative damage. Compared with Cd, the effect of Pb stress at the same concentration level displayed a significantly lower impact on Chl content, photosynthetic carbon assimilation, and stomatal conductance. Meanwhile, Pb stress mainly damaged activity of the oxygen-evolving complex (OEC) located on PSII donor side, but it reduced the electronic pressure on the PSII acceptor side and PSI. Furthermore, under Pb stress, the NPQ, SOD, and APX activity were all significantly higher than those under Cd stress. Thus under Pb stress, the degree of photoinhibition and oxidative damage of PSII and PSI in mulberry leaves were significantly lower than under Cd stress.
Collapse
Affiliation(s)
- Zhang Huihui
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Xin
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xu Zisong
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wang Yue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Teng Zhiyuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - An Meijun
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Zhang Yuehui
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Zhu Wenxu
- School of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xu Nan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
34
|
Okolie CU, Chen H, Zhao Y, Tian D, Zhang L, Su M, Jiang Z, Li Z, Li H. Cadmium immobilization in aqueous solution by Aspergillus niger and geological fluorapatite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7647-7656. [PMID: 31889269 DOI: 10.1007/s11356-019-07500-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the application of fungus Aspergillus niger and geological fluorapatite (FAp) to cadmium (Cd) immobilization in aqueous solution. The initial Cd concentrations were set at 100, 50, 25, and 10 mg L-1. The mineralogy of the products was investigated by using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflection-infrared spectroscopy (ATR-IR). In both A. niger + FAp + Cd and A. niger + Cd treatments, A. niger secreted abundant oxalic acid, then dissolved the FAp, and reacted with Cd2+ cations to produce relatively insoluble Cd oxalate. Meanwhile, FAp can provide P source to improve microbial growth. The fungal tolerance to Cd2+ was identified at around 100 mg L-1. The final Cd concentrations of 13.7, 3.2, and 0.2 mg L-1 were recorded for A. niger + FAp + Cd treatments with initial Cd concentrations of 50, 25, and 10 mg L-1 respectively. Meanwhile, it was observed that the Cd concentration at 25 mg L-1 stimulated higher bioactivities of A. niger, which further enhanced Cd bioremediation. The immobilization efficiency (%) of the treatments at low to medium Cd concentrations was in the order: Asp + FAp > Asp > FAp, while FAp alone was most efficient at the high Cd concentration of 100 mg L-1. This research provides insights into the mechanisms of combining fungus and FAp as a composite to Cd contamination at various Cd levels.
Collapse
Affiliation(s)
- Christopher Uche Okolie
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haoming Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yexin Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Da Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhonquan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
35
|
Hildebrand J, Thakar S, Watts TL, Banfield L, Thabane L, Macri J, Hill S, Samaan MC. The impact of environmental cadmium exposure on type 2 diabetes risk: a protocol for an overview of systematic reviews. Syst Rev 2019; 8:309. [PMID: 31810499 PMCID: PMC6896588 DOI: 10.1186/s13643-019-1246-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide epidemic, and while its etiology is polygenic, the role of environmental contaminant exposure in T2DM pathogenesis is of increasing importance. However, the evidence presented in systematic reviews on the relationship between cadmium exposure and T2DM development is inconsistent. This overview aims to assess existing evidence from systematic reviews linking cadmium exposure to T2DM and select metabolic disorders in humans. METHODS Searches will be conducted in Medline, Embase, Web of Science, GEOBASE, BIOSIS Previews, and Cochrane Database of Systematic Reviews. Two reviewers (J.H and S.T.) will independently complete screening, data abstraction, risk of bias evaluation, and quality assessment. The primary outcome will be the association between cadmium exposure and T2DM prevalence. Secondary outcomes will include prediabetes, obesity, dyslipidemia, hypertension, and non-alcoholic fatty liver disease. We will perform a meta-analysis if two or more studies assess similar populations, utilize analogous methods, have related study designs, and evaluate similar outcomes. DISCUSSION This overview will assess current evidence from systematic reviews for the association between cadmium exposure and risk of T2DM and other metabolic morbidities. This overview may be helpful for policy-makers and healthcare teams aiming to mitigate T2DM risk in populations at risk of cadmium exposure. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019125956.
Collapse
Affiliation(s)
- Julia Hildebrand
- Department of Pediatrics, McMaster University, Hamilton, Ontario Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario Canada
| | - Swarni Thakar
- Department of Pediatrics, McMaster University, Hamilton, Ontario Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario Canada
| | - Tonya-Leah Watts
- Department of Pediatrics, McMaster University, Hamilton, Ontario Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, Ontario Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario Canada
- Department of Anesthesia, McMaster University, Hamilton, Ontario Canada
- Centre for Evaluation of Medicines, St. Joseph’s Healthcare, Hamilton, Ontario Canada
- Biostatistics Unit, St. Joseph’s Healthcare Hamilton, Hamilton, Ontario Canada
| | - Joseph Macri
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario Canada
| | - Stephen Hill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario Canada
| | - M. Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, Ontario Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario Canada
| |
Collapse
|
36
|
Suami RB, Al Salah DMM, Kabala CD, Otamonga JP, Mulaji CK, Mpiana PT, Poté JW. Assessment of metal concentrations in oysters and shrimp from Atlantic Coast of the Democratic Republic of the Congo. Heliyon 2019; 5:e03049. [PMID: 32083201 PMCID: PMC7019083 DOI: 10.1016/j.heliyon.2019.e03049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/08/2019] [Accepted: 12/11/2019] [Indexed: 11/23/2022] Open
Abstract
Oysters and shrimp are abundant and commonly consumed seafood by the indigenous population of the Kongo central region of the Democratic Republic of the Congo (DRC). Literature reviews suggest that no data were available for the metal concentrations in these species. Consequently, the purpose of this study is to determine the metal concentrations in tissues of oysters (Egeria congica) and shrimp (Macrobrachium spp., Parapenaeus spp., Penaeus spp.) collected in November 2017 from the Atlantic Ocean Coast of DRC in the territory of Muanda. Metal levels in the seafood species studied here were put into context using international regulation for human consumption set by the Food and Agriculture Organization (FAO), Canadian Food Inspection Agency (CFIA), European Union (EU), and World Health Organization (WHO). Our results demonstrated that the concentration of heavy metals varied considerably between sampling sites and analyzed species (P < 0.05), with the values (in mg kg1) ranged between 0.05-0.41, 0.03-2.25,
Collapse
Affiliation(s)
- Robert B. Suami
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
- University of Kinshasa (UNIKIN), Faculty of Pharmaceutical Sciences, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Dhafer Mohammed M. Al Salah
- Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, School of Earth and Environmental Sciences, Faculty of Science, University of Geneva, Uni Carl Vogt, 66 Boulevard Carl-Vogt, Geneva 4, CH-1211, Switzerland
- King Abdulaziz City for Science and Technology, Joint Centers of Excellence Program, Prince Turki the 1st Street, Riyadh, 11442, Saudi Arabia
| | - César D. Kabala
- University of Kinshasa (UNIKIN), Faculty of Pharmaceutical Sciences, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - J.-P. Otamonga
- Université Pédagogique Nationale (UPN). Croisement Route de Matadi et Avenue de la Libération. Quartier Binza/UPN, B.P. 8815, Kinshasa, République Démocratique du Congo
| | - Crispin K. Mulaji
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
| | - Pius T. Mpiana
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
| | - John W. Poté
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
- Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, School of Earth and Environmental Sciences, Faculty of Science, University of Geneva, Uni Carl Vogt, 66 Boulevard Carl-Vogt, Geneva 4, CH-1211, Switzerland
- Université Pédagogique Nationale (UPN). Croisement Route de Matadi et Avenue de la Libération. Quartier Binza/UPN, B.P. 8815, Kinshasa, République Démocratique du Congo
| |
Collapse
|
37
|
Al-Ghafari A, Elmorsy E, Fikry E, Alrowaili M, Carter WG. The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS One 2019; 14:e0225341. [PMID: 31756223 PMCID: PMC6874340 DOI: 10.1371/journal.pone.0225341] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/01/2019] [Indexed: 01/09/2023] Open
Abstract
The heavy metals (HMs) lead and cadmium are persistent environmental pollutants capable of inducing ill-health in exposed individuals. One of the primary sites of accumulation and potential damage from HMs is bone, and we therefore examined the acute effects of lead and cadmium on human bone osteoblasts in vitro over a concentration range of 0.1 μM to 1mM, and for 3, 6, 12, 24, and 48 hour exposures. Incubation of osteoblasts with either lead or cadmium reduced cell viability in a concentrations and exposure durations dependent manner, as measured using MTT and LDH assays. Cytotoxicity was significant from 0.1 μM concentrations after 48 hour exposures. Both HMs damaged cellular bioenergetics with reductions of ATP production, mitochondrial complex activities, and aerobic respiration. There was a concomitant elevation of reactive oxygen species, with induction of redox stress measured as increased lipid peroxidation, and depleted cellular redox defense systems via reduced superoxide dismutase and catalase activity and cellular glutathione levels. Both HMs induced nuclear activation of Nrf2, presumably to increase transcription of antioxidant responsive genes to combat oxidative stress. Incubation of osteoblasts with HMs also compromised the secretion of procollagen type 1, osteocalcin, and alkaline phosphatase. Pre-incubation of osteoblasts with reduced glutathione prior to challenge with HMs lessened the cytotoxicity of the HMs, indicative that antioxidants may be a beneficial treatment adjunct in cases of acute lead or cadmium poisoning.
Collapse
Affiliation(s)
- Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar; Saudi Arabia
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Emad Fikry
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Majed Alrowaili
- Department of Surgery, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| |
Collapse
|
38
|
Eskola M, Elliott CT, Hajšlová J, Steiner D, Krska R. Towards a dietary-exposome assessment of chemicals in food: An update on the chronic health risks for the European consumer. Crit Rev Food Sci Nutr 2019; 60:1890-1911. [PMID: 31094210 DOI: 10.1080/10408398.2019.1612320] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An informed opinion to a hugely important question, whether the food on the Europeans' plate is safe to eat, is provided. Today, the Europeans face food-borne health risks from non-communicable diseases induced by excess body weight, outbreaks caused by pathogens, antimicrobial resistance and exposures to chemical contaminants. In this review, these risks are first put in an order of importance. Then, not only potentially injurious dietary chemicals are discussed but also beneficial factors of the food. This review can be regarded as an attempt towards a dietary-exposome evaluation of the chemicals, the average European adult consumers could chronically expose to during their life-times. Risk ranking reveals that currently the European adults are chronically exposed to a mixture of potentially genotoxic-carcinogenic contaminants, particularly food process contaminants, at the potential risk levels. Furthermore, several of the contaminants whose dietary exposures pose risks appear to be carcinogens operating with a genotoxic mode of action targeting the liver. This suggests that combined health risks from the exposure to a mixture of the chemical contaminants poses a greater potential risk than the risks assessed for single compounds. Over 100 European-level risk assessments are examined. Finally, the importance of a diversified and balanced diet is emphasized.
Collapse
Affiliation(s)
- Mari Eskola
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - David Steiner
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
39
|
Singh P, Tiwari D, Mishra M, Kumar D. Molecular Mechanisms of Heavy Metal Toxicity in Cancer Progression. NETWORKING OF MUTAGENS IN ENVIRONMENTAL TOXICOLOGY 2019. [DOI: 10.1007/978-3-319-96511-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Mousavi SE, Amini H, Heydarpour P, Amini Chermahini F, Godderis L. Air pollution, environmental chemicals, and smoking may trigger vitamin D deficiency: Evidence and potential mechanisms. ENVIRONMENT INTERNATIONAL 2019; 122:67-90. [PMID: 30509511 DOI: 10.1016/j.envint.2018.11.052] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Beyond vitamin D (VD) effect on bone homeostasis, numerous physiological functions in human health have been described for this versatile prohormone. In 2016, 95% of the world's population lived in areas where annual mean ambient particulate matter (<2.5 μm) levels exceeded the World Health Organization guideline value (Shaddick et al., 2018). On the other hand, industries disperse thousands of chemicals continually into the environment. Further, considerable fraction of populations are exposed to tobacco smoke. All of these may disrupt biochemical pathways and cause detrimental consequences, such as VD deficiency (VDD). In spite of the remarkable number of studies conducted on the role of some of the above mentioned exposures on VDD, the literature suffers from two main shortcomings: (1) an overview of the impacts of environmental exposures on the levels of main VD metabolites, and (2) credible engaged mechanisms in VDD because of those exposures. To summarize explanations for these unclear topics, we conducted the present review, using relevant keywords in the PubMed database, to investigate the adverse effects of exposure to air pollution, some environmental chemicals, and smoking on the VD metabolism, and incorporate relevant potential pathways disrupting VD endocrine system (VDES) leading to VDD. Air pollution may lead to the reduction of VD cutaneous production either directly by blocking ultraviolet B photons or indirectly by decreasing outdoor activity. Heavy metals may reduce VD serum levels by increasing renal tubular dysfunction, as well as downregulating the transcription of cytochrome P450 mixed-function oxidases (CYPs). Endocrine-disrupting chemicals (EDCs) may inhibit the activity and expression of CYPs, and indirectly cause VDD through weight gain and dysregulation of thyroid hormone, parathyroid hormone, and calcium homeostasis. Smoking through several pathways decreases serum 25(OH)D and 1,25(OH)2D levels, VD intake from diet, and the cutaneous production of VD through skin aging. In summary, disturbance in the cutaneous production of cholecalciferol, decreased intestinal intake of VD, the modulation of genes involved in VD homeostasis, and decreased local production of calcitriol in target tissues are the most likely mechanisms that involve in decreasing the serum VD levels.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- Department of Water and Wastewater Treatment, Water and Wastewater Consulting Engineers (Design & Research), Isfahan, Iran; Social Health Determinants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Heresh Amini
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pouria Heydarpour
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amini Chermahini
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven (KU, Leuven), Belgium; IDEWE, External Service for Prevention at Protection at Work, Heverlee, Belgium
| |
Collapse
|
41
|
Zhang P, Huang Z, Ma Y, Li Y, Ali N, Li Q, Chen D. On-line detection of radioactive and non-radioactive heavy metals in tobacco smoke using portable laser-induced breakdown spectroscopy. Analyst 2019; 144:3567-3572. [DOI: 10.1039/c9an00050j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A portable laser-induced breakdown spectroscopy (PLIBS) device is proposed for on-line detection of radioactive and non-radioactive heavy metals in tobacco smoke with ultra-high sensitivity.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Precision Instruments and Optoelectronics Engineering
- Tianjin University
- Tianjin
- China
| | - Zhixuan Huang
- School of Precision Instruments and Optoelectronics Engineering
- Tianjin University
- Tianjin
- China
| | - Yiwen Ma
- School of Precision Instruments and Optoelectronics Engineering
- Tianjin University
- Tianjin
- China
| | - Yang Li
- School of Precision Instruments and Optoelectronics Engineering
- Tianjin University
- Tianjin
- China
| | - Naqash Ali
- School of Precision Instruments and Optoelectronics Engineering
- Tianjin University
- Tianjin
- China
| | - Qifeng Li
- School of Precision Instruments and Optoelectronics Engineering
- Tianjin University
- Tianjin
- China
| | - Da Chen
- Center for Aircraft Fire and Emergency
- Civil Aviation University of China
- Tianjin 300300
- China
| |
Collapse
|
42
|
Zhang H, Xu N, Li X, Long J, Sui X, Wu Y, Li J, Wang J, Zhong H, Sun GY. Arbuscular Mycorrhizal Fungi ( Glomus mosseae) Improves Growth, Photosynthesis and Protects Photosystem II in Leaves of Lolium perenne L. in Cadmium Contaminated Soil. FRONTIERS IN PLANT SCIENCE 2018; 9:1156. [PMID: 30150997 PMCID: PMC6099091 DOI: 10.3389/fpls.2018.01156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/20/2018] [Indexed: 05/20/2023]
Abstract
In this study, the effects of inoculating arbuscular mycorrhizal fungi (Glomus mosseae) on the growth, chlorophyll content, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of Lolium perenne L. in cadmium (Cd) contaminated soil were investigated. The results showed that the root vigor of L. perenne declined, while the chlorophyll content significantly decreased with the increase of Cd content, especially the chlorophyll a content in leaves. The photosynthetic carbon assimilation capacity and PSII activity of L. perenne leaves were also significantly inhibited by Cd stress, especially the electron transfer at the receptor side of PSII, which was more sensitive to Cd stress. The infection level of G. mosseae on L. perenne roots was relatively high and inoculation with G. mosseae increased the mycorrhizal infection rate of L. perenne roots up to 50-70%. Due to the impact of the mycorrhizal infection, the Cd content in L. perenne roots was significantly increased compared to non-inoculated treatment; however, the Cd content in the aboveground part of L. perenne was not significantly different compared to the non-inoculated treatment. After inoculation with G. mosseae, the root vigor of L. perenne increased to some extent, alleviating the chlorophyll degradation in L. perenne leaves under Cd contaminated soil. Infection with G. mosseae can improve the stoma limitation of L. perenne leaves in Cd contaminated soil and increase the non-stomatal factors including the tolerance of its photosynthetic apparatus to Cd, to improve photosynthetic capacity. G. mosseae infection can improve the photosynthetic electron transport capacity of PSII in L. perenne leaves under Cd stress and promotes the activity of the oxygen-evolving complex to different degrees at the donor side of PSII and the electron transport capacity from QA to QB on the receptor side of PSII. Thus, this guarantees that L. perenne leaves inoculated with G. mosseae in Cd contaminated soil have relatively higher PSII activity. Therefore, inoculation with G. mosseae can improve the capacity of Cd tolerance of L. perenne with regard to various aspects, such as morphological characteristics and photosynthetic functions, and reduce the toxicity of Cd on L. perenne.
Collapse
Affiliation(s)
- Huihui Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, Harbin, China
| | - Nan Xu
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xin Li
- School of Resources and Environmental Science, Northeast Agricultural University, Harbin, China
| | - Jinghong Long
- School of Resources and Environmental Science, Northeast Agricultural University, Harbin, China
| | - Xin Sui
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Yining Wu
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jinbo Li
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jifeng Wang
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Haixiu Zhong
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Guang Y. Sun
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
43
|
Aendo P, Netvichian R, Tippayalak S, Sanguankiat A, Khuntamoon T, Songserm T, Tulayakul P. Health Risk Contamination of Heavy Metals in Yolk and Albumen of Duck Eggs Collected in Central and Western Thailand. Biol Trace Elem Res 2018; 184:501-507. [PMID: 29151237 DOI: 10.1007/s12011-017-1202-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
Two hundred duck egg samples were collected from 20 farms in Central and Western Thailand. The levels of Zn, Co, Mn, Fe, and Cr in yolks were found significantly higher than in albumen, whereas the levels of Cd and Cu contaminations in egg albumen were significantly higher than in yolks. The mean level of Pb contamination in whole eggs was 4.06 ± 2.70 mg kg-1 dry weight. This level was higher than the Thai agricultural standard no. 6703-2005 for duck eggs set at 0.1 ppm for the magnitude of 40.6 times. In addition, 98% (196/200) of duck egg samples had Pb levels higher than the standard limit. However, the calculation of daily intakes of Pb, Cd, and Cu contamination in the current study of duck eggs shows that these metals were lower than the World Health Organization and the Food and Agriculture Organization provisional tolerated daily intake. These levels may, however, present a health risk resulting from a long-term exposure. It can be concluded that consumers may be at risk of Pb, Cd, and Cu contamination if they consume contaminated duck eggs. In addition, long-term monitoring of the health risks of heavy metals contamination should be conducted concerning the duck egg production system in Thailand.
Collapse
Affiliation(s)
- P Aendo
- Center for Duck Health Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - R Netvichian
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - S Tippayalak
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - A Sanguankiat
- Center for Duck Health Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - T Khuntamoon
- Center for Duck Health Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - T Songserm
- Center for Duck Health Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - P Tulayakul
- Center for Duck Health Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
44
|
Akintola OA, Sangodoyin AY, Agunbiade FO. Anthropogenic activities impact on atmospheric environmental quality in a gas-flaring community: application of fuzzy logic modelling concept. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21915-21926. [PMID: 29797191 DOI: 10.1007/s11356-018-2295-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
We present a modelling concept for evaluating the impacts of anthropogenic activities suspected to be from gas flaring on the quality of the atmosphere using domestic roof-harvested rainwater (DRHRW) as indicator. We analysed seven metals (Cu, Cd, Pb, Zn, Fe, Ca, and Mg) and six water quality parameters (acidity, PO43-, SO42-, NO3-, Cl-, and pH). These were used as input parameters in 12 sampling points from gas-flaring environments (Port Harcourt, Nigeria) using Ibadan as reference. We formulated the results of these input parameters into membership function fuzzy matrices based on four degrees of impact: extremely high, high, medium, and low, using regulatory limits as criteria. We generated indices that classified the degree of anthropogenic activity impact on the sites from the product membership function matrices and weight matrices, with investigated (gas-flaring) environment as between medium and high impact compared to those from reference (residential) environment that was classified as between low and medium impact. Major contaminants of concern found in the harvested rainwater were Pb and Cd. There is also the urgent need to stop gas-flaring activities in Port Harcourt area in particular and Niger Delta region of Nigeria in general, so as to minimise the untold health hazard that people living in the area are currently faced with. The fuzzy methodology presented has also indicated that the water cannot safely support potable uses and should not be consumed without purification due to the impact of anthropogenic activities in the area but may be useful for other domestic purposes.
Collapse
Affiliation(s)
- Olayiwola Akin Akintola
- National Horticultural Research Institute, Jericho Reservation Area, Idi-Ishin, P.M.B.5432, Dugbe Post Office, Ibadan, Nigeria.
| | - Abimbola Yisau Sangodoyin
- Department of Agricultural and Environmental Engineering, Faculty of Technology, University of Ibadan, Ibadan, Nigeria
| | - Foluso Oyedotun Agunbiade
- Department of Chemistry, Faculty of Sciences, University of Lagos, Akoka, Lagos, Lagos State, Nigeria
| |
Collapse
|
45
|
Pereira AS, Dorneles AOS, Bernardy K, Sasso VM, Bernardy D, Possebom G, Rossato LV, Dressler VL, Tabaldi LA. Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18548-18558. [PMID: 29700750 DOI: 10.1007/s11356-018-2005-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/11/2018] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is toxic to plants and animals, making it necessary to develop strategies that seek to reduce its introduction into food chains. Thus, the aim of this study was to investigate whether silicon (Si) and selenium (Se) reduce Cd concentrations in Pfaffia glomerata medicinal plant and attenuate the oxidative stress promoted by this metal. These plants were cultivated in hydroponics under the following treatments: control (nutrient solution), 2.5 μM Se, 2.5 mM Si, 50 μM Cd, 50 μM Cd + 2.5 μM Se, 50 μM Cd + 2.5 mM Si. After 14 days of exposure to treatments, leaves and roots were collected for the determination of dry weight of shoot and roots, Cd concentrations, chlorophyll and carotenoids content, and biochemical parameters (lipid peroxidation and guaiacol peroxidase and superoxide dismutase activities). The data were submitted to analysis of variance and means were compared with Scott-Knott test at 5% error probability. Roots of P. glomerata plants showed a significant reduction on dry weight accumulation when exposed to Cd. However, both Se and Si promoted a significant reduction of deleterious effects of Cd. The Cd concentrations in the tissues were reduced in the presence of Se or Si. Plants treated with Cd together with Se or Si presented higher pigment content than those with only Cd, thus showing a reduction in the negative effects caused by this element. In the treatments in which Se and Si were added in the growth medium together with Cd, an activation of superoxide dismutase and guaiacol peroxidase enzymes was observed in the roots and shoot, which may have contributed to lower lipid peroxidation. Thus, Se and Si reduce Cd concentrations and have potential to ameliorate Cd toxicity in P. glomerata plants, which can be used to increase productivity and quality of medicinal plants.
Collapse
Affiliation(s)
- Aline Soares Pereira
- Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
- Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | | | - Katieli Bernardy
- Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Daniele Bernardy
- Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Gessieli Possebom
- Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
46
|
Nordberg GF, Bernard A, Diamond GL, Duffus JH, Illing P, Nordberg M, Bergdahl IA, Jin T, Skerfving S. Risk assessment of effects of cadmium on human health (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2016-0910] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Chemistry and Human Health, Division VII of the International Union on Pure and Applied Chemistry (IUPAC), provides guidance on risk assessment methodology and, as appropriate, assessment of risks to human health from chemicals of exceptional toxicity. The aim of this document is to describe dose-response relationships for the health effects of low-level exposure to cadmium, in particular, with an emphasis on causation. The term “cadmium” in this document includes all chemical species of cadmium, as well as those in cadmium compounds. Diet is the main source of cadmium exposure in the general population. Smokers and workers in cadmium industries have additional exposure. Adverse effects have been shown in populations with high industrial or environmental exposures. Epidemiological studies in general populations have also reported statistically significant associations with a number of adverse health effects at low exposures. Cadmium is recognized as a human carcinogen, a classification mainly based on occupational studies of lung cancer. Other cancers have been reported, but dose-response relationships cannot be defined. Cardiovascular disease has been associated with cadmium exposure in recent epidemiological studies, but more evidence is needed in order to establish causality. Adequate evidence of dose-response relationships is available for kidney effects. There is a relationship between cadmium exposure and kidney effects in terms of low molecular mass (LMM) proteinuria. Long-term cadmium exposures with urine cadmium of 2 nmol mmol−1 creatinine cause such effects in a susceptible part of the population. Higher exposures result in increases in the size of these effects. This assessment is supported by toxicokinetic and toxicodynamic (TKTD) modelling. Associations between urine cadmium lower than 2 nmol mmol−1 creatinine and LMM proteinuria are influenced by confounding by co-excretion of cadmium with protein. A number of epidemiological studies, including some on low exposures, have reported statistically significant associations between cadmium exposure and bone demineralization and fracture risk. Exposures leading to urine cadmium of 5 nmol mmol−1 creatinine and more increase the risk of bone effects. Similar associations at much lower urine cadmium levels have been reported. However, complexities in the cause and effect relationship mean that a no-effect level cannot be defined. LMM proteinuria was selected as the critical effect for cadmium, thus identifying the kidney cortex as the critical organ, although bone effects may occur at exposure levels similar to those giving rise to kidney effects. To avoid these effects, population exposures should not exceed that resulting in cadmium values in urine of more than 2 nmol mmol−1 creatinine. As cadmium is carcinogenic, a ‘safe’ exposure level cannot be defined. We therefore recommend that cadmium exposures be kept as low as possible. Because the safety margin for toxic effects in kidney and bone is small, or non-existent, in many populations around the world, there is a need to reduce cadmium pollution globally.
Collapse
Affiliation(s)
- Gunnar F. Nordberg
- Occupational and Environmental Medicine , Department of Public Health and Clinical Medicine , Umeå University , SE-90187 Umeå , Sweden
| | - Alfred Bernard
- Department of Toxicology , Catholic University of Louvain , Brussels , Belgium
| | | | - John H. Duffus
- The Edinburgh Centre for Toxicology , 43 Mansionhouse Road , Edinburgh EH9 2JD, Scotland , UK
| | | | - Monica Nordberg
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Ingvar A. Bergdahl
- Occupational and Environmental Medicine , Department of Public Health and Clinical Medicine , Umeå University , SE-90187 Umeå , Sweden
| | - Taiyi Jin
- Department of Occupational Health and Toxicology , School of Public Health, Fudan University , Shanghai , China
| | - Staffan Skerfving
- Division of Occupational and Environmental Medicine, University Hospital , Lund , Sweden
| |
Collapse
|
47
|
Castro-González NP, Calderón-Sánchez F, Moreno-Rojas R, Moreno-Ortega A, Tamariz-Flores JV. Health risks in rural populations due to heavy metals found in agricultural soils irrigated with wastewater in the Alto Balsas sub-basin in Tlaxcala and Puebla, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:476-486. [PMID: 29022359 DOI: 10.1080/09603123.2017.1386767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to determine the hazard ratio (HQ), the risk index (HI), and the cancer risk index (CRI) for populations of adults and children exposed to ingestion, dermal contact and inhalation of heavy metals in agricultural soil. For these, the contents of Cd, Pb, Ni, Cu, Co, Cr, Zn, and the metalloid As were determined in soils of four zones of the sub-basin of Alto Balsas, during two different periods of the year. The average content of metals in the soil was 1.24, 14.77, 14.80, 13.06, 5.50, 17.65, 22.89, and 5.32 mg kg-1 for Cd, Pb, Ni, Cu, Co, Cr, Zn, and As, respectively. The highest risk in terms of HQ and HI was for adults, especially for men who are affected through the skin, with Cd and Cr being the most dangerous. CRI values were within the allowable range, without posing problems for adult and child populations.
Collapse
Affiliation(s)
- Numa Pompilio Castro-González
- a Facultad de Ingeniería Agrohidráulica , Benemérita Universidad Autónoma de Puebla , Puebla , México
- c Departamento de Bromatología y Biotecnología de alimentos , Universidad de Córdoba, Campus de Rabanales-Edificio Darwin , Córdoba , España
| | | | - Rafael Moreno-Rojas
- c Departamento de Bromatología y Biotecnología de alimentos , Universidad de Córdoba, Campus de Rabanales-Edificio Darwin , Córdoba , España
| | - Alicia Moreno-Ortega
- c Departamento de Bromatología y Biotecnología de alimentos , Universidad de Córdoba, Campus de Rabanales-Edificio Darwin , Córdoba , España
| | - José Víctor Tamariz-Flores
- d Departamento de Investigación en Ciencias Agrícolas. Benemérita Universidad Autónoma de Puebla , Puebla , México
| |
Collapse
|
48
|
Boubakri S, Djebbi MA, Bouaziz Z, Namour P, Ben Haj Amara A, Ghorbel-Abid I, Kalfat R. Nanoscale zero-valent iron functionalized Posidonia oceanica marine biomass for heavy metal removal from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27879-27896. [PMID: 28988320 DOI: 10.1007/s11356-017-0247-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Because of the excellent reducing capacity of nanoscale zero-valent iron (NZVI), it can be used as alternative materials for the removal of a variety of reducible water contaminants including toxic metals. The current paper reports the research results obtained for self-prepared biosorbent, Posidonia oceanica biomass, activated in alkaline medium and functionalized with NZVI particles. The structural characteristics, surface morphology, and binding properties of the resulting nanobiosorbent are presented. Batch comparative adsorption trials including adsorption kinetics and isothermals onto raw Posidonia, Posidonia-OH and Posidonia-OH-NZVI were investigated on three heavy metal ions: Cd(II), Pb(II), and Cu(II). The nanobiosorbent showed better properties, such as high reactivity and high uptake rate through the sorption process. The toxic metal removal has been monitored in terms of pseudo-first- and pseudo-second-order kinetics, and both Langmuir- and Freundlich-type isotherm models have been used to describe the sorption mechanism. The experimental data of all studied systems showed that the uptake kinetics follow the pseudo-second-order kinetic model and the equilibrium uptake can adopt the Langmuir-type isotherm model which assumes a monolayer coverage as the adsorption saturates and no further adsorption occurs. The thermodynamic results confirm that all sorption processes were feasible, spontaneous and thermodynamically favorable. Zeta potential data displayed that Cd(II), Pb(II), and Cu(II) tend to be reduced after exposure on the Posidonia-OH-NZVI surface. Furthermore, sorption competitions of the metals from binary and ternary systems were carried out onto Posidonia-OH-NZVI in order to gain further insight into the sorption efficiency of this material. Therefore, as a result, the proposed new nanobiosorbent could offer potential benefits in remediation of heavy metal-contaminated water as a green and environmentally friendly bionanocomposite.
Collapse
Affiliation(s)
- Saber Boubakri
- Laboratoire Matériaux, Traitement et Analyse, Institut National de Recherche et d'Analyse Physico-chimique, BiotechPole Sidi-Thabet, 2020, Ariana, Tunisia
- Laboratoire des Applications de la Chimie aux Ressources et Substances Naturelles et a l'Environnement, Universite de Carthage, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
| | - Mohamed Amine Djebbi
- Laboratoire de Physique des Materiaux Lamellaires et Nanomatériaux Hybrides, Faculte des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia.
- Institut des Sciences Analytiques UMR CNRS 5280, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France.
- Irstea, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France.
| | - Zaineb Bouaziz
- Laboratoire de Physique des Materiaux Lamellaires et Nanomatériaux Hybrides, Faculte des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia
| | - Philippe Namour
- Irstea, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Abdesslem Ben Haj Amara
- Laboratoire de Physique des Materiaux Lamellaires et Nanomatériaux Hybrides, Faculte des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia
| | - Ibtissem Ghorbel-Abid
- Laboratoire Matériaux, Traitement et Analyse, Institut National de Recherche et d'Analyse Physico-chimique, BiotechPole Sidi-Thabet, 2020, Ariana, Tunisia
| | - Rafik Kalfat
- Laboratoire Matériaux, Traitement et Analyse, Institut National de Recherche et d'Analyse Physico-chimique, BiotechPole Sidi-Thabet, 2020, Ariana, Tunisia
| |
Collapse
|
49
|
Lv Y, Wang P, Huang R, Liang X, Wang P, Tan J, Chen Z, Dun Z, Wang J, Jiang Q, Wu S, Ling H, Li Z, Yang X. Cadmium Exposure and Osteoporosis: A Population-Based Study and Benchmark Dose Estimation in Southern China. J Bone Miner Res 2017; 32:1990-2000. [PMID: 28407309 DOI: 10.1002/jbmr.3151] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 01/05/2023]
Abstract
This study aimed to assess the association between osteoporosis and long-term environmental Cd exposure through diet in southern China. A total of 1116 subjects from a Cd-polluted area and a non-Cd-polluted area were investigated. All subjects met the criteria of having been living in the investigated area for more than 15 years and lived on a subsistence diet of rice and vegetables grown in that area. Besides bone mineral density, the levels of urinary markers of early renal impairment, such as urinary N-acetyl-β-D-glucosaminidase (NAG), α1 -microglobulin, β2 -microglobulin, and urinary albumin, were also determined. Urinary Cd concentrations of all studied subjects ranged from 0.21 to 87.31 µg/g creatinine, with a median of 3.97 µg/g creatinine. Multivariate linear regression models indicated a significant negative association of urinary Cd concentrations with bone mineral density. In logistic regression models, both categorical and continuous urinary Cd concentrations were positively associated with osteoporosis. Subjects in the second, third, and fourth quartiles of urinary Cd concentration had greater odds of osteoporosis compared with subjects in the first quartile (odds ratio [OR] = 3.07, 95% confidence interval [CI], 1.77 to 5.33; OR = 4.63, 95% CI, 2.68 to 7.98; OR = 9.15, 95% CI, 5.26 to 15.94, respectively). Additional adjustment for levels of urinary markers did not attenuate the associations. No evidence existed of an interaction between urinary Cd concentration and renal function using levels of urinary markers, and estimated glomerular filtration rate (eGFR). In all subjects, the benchmark dose and benchmark dose lower bound were 1.14 (0.61) and 2.73 (1.83) µg/g creatinine, with benchmark response set at 5% and 10%, respectively. The benchmark dose of urinary Cd was lower in women than in men. This study demonstrated an inverse association between the body burden of Cd and osteoporosis. The toxic effect of Cd on bone may occur in parallel to nephrotoxicity. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yingjian Lv
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Ping Wang
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Rui Huang
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Xuxia Liang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Peng Wang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianbin Tan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Zihui Chen
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Zhongjun Dun
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Jing Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qi Jiang
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Shixuan Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.,School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Haituan Ling
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Zhixue Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.,School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xingfen Yang
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Eom SY, Seo MN, Lee YS, Park KS, Hong YS, Sohn SJ, Kim YD, Choi BS, Lim JA, Kwon HJ, Kim H, Park JD. Low-Level Environmental Cadmium Exposure Induces Kidney Tubule Damage in the General Population of Korean Adults. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:401-409. [PMID: 28819681 DOI: 10.1007/s00244-017-0443-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is the most potent nephrotoxic heavy metal and may affect bone; it also has a long biological half-life in the human body. This study was designed to assess the effect of environmental low-level Cd exposure on kidney function and bone in the general population. The subjects of this cross-sectional study were 1907 healthy Korean adults who had not been exposed to Cd occupationally. We analyzed the concentrations of Cd in the urine, markers of renal tubule damage, such as β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) activity in the urine, calculated the estimated glomerular filtration rate (eGFR) using serum creatinine, and measured bone mineral density (BMD). Also, we analyzed malondialdehyde (MDA) levels in the urine. The geometric mean concentration of Cd in urine was higher in women (1.36 μg/g creatinine) than in men (0.82 μg/g creatinine). Urinary Cd was significantly positively correlated with urinary β2-MG and NAG activity, whereas it was negatively correlated with eGFR and BMD. The risk of renal tubule damage was significantly associated with urine Cd level, and the association remained significant after controlling for various confounding variables. However, no association was observed between urinary Cd level and glomerular dysfunction or bone damage. The concentration of MDA was increased with urinary Cd level in a dose-dependent manner. These findings suggest that low-level environmental Cd exposure may cause microscopic damage to renal tubules through oxidative stress but might not impair kidney glomeruli or bones.
Collapse
Affiliation(s)
- Sang-Yong Eom
- College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Mi-Na Seo
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Korea
| | - Young-Sub Lee
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Korea
| | - Kyung-Su Park
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Korea
| | | | - Seok-Joon Sohn
- College of Medicine, Chonnam University, Kwangju, Seoul, Korea
| | - Yong-Dae Kim
- College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Byung-Sun Choi
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Korea
| | - Ji-Ae Lim
- College of Medicine, Dankook University, Cheonan, Korea
| | - Ho-Jang Kwon
- College of Medicine, Dankook University, Cheonan, Korea
| | - Heon Kim
- College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Jung-Duck Park
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Korea.
| |
Collapse
|