1
|
Ghaemi Z, Noshadi M. Evaluation of fluoride exposure using disability-adjusted life years and health risk assessment in south-western Iran: A novel Monte Carlo simulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116705. [PMID: 39003868 DOI: 10.1016/j.ecoenv.2024.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/08/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Consumption of fluoride-contaminated water is a worldwide concern, especially in developing countries, including Iran. However, there are restricted studies of non-single-value health risk assessment and the disease burden regarding fluoride intake nationwide. Prolonged exposure to excessive fluoride has been linked to adverse health effects such as dental and skeletal fluorosis. This can lead to under-mineralization of hard tissues, causing aesthetic concerns for teeth and changes in bone structure, increasing the risk of fractures. As such, we aimed to implement probability-based frameworks using Monte Carlo methods to explore the potential adverse effects of fluoride via the ingestion route. This platform consists of two sectors: 1) health risk assessment of various age categories coupled with a variance decomposition technique to measure the contributions of predictor variables in the outcome of the health risk model, and 2) implementing Monte Carlo methods in dose-response curves to explore the fluoride-induced burden of diseases of dental fluorosis and skeletal fractures in terms of disability-adjusted life years (DALYs). For this purpose, total water samples of 8053 (N=8053) from 57 sites were analyzed in Fars and Bushehr Provinces. The mean fluoride concentrations were 0.75 mg/L and 1.09 mg/L, with maximum fluoride contents of 6.5 mg/L and 3.22 mg/L for the Fars and Bushehr provinces, respectively. The hazard quotient of the 95th percentile (HQ>1) revealed that all infants and children in the study area were potentially vulnerable to over-receiving fluoride. Sobol' sensitivity analysis indices, including first-order, second-order, and total order, disclosed that fluoride concentration (Cw), ingestion rate (IRw), and their mutual interactions were the most influential factors in the health risk model. DALYs rate of dental fluorosis was as high as 981.45 (uncertainty interval: UI 95 % 353.23-1618.40) in Lamerd, and maximum DALYs of skeletal fractures occurred in Mohr 71.61(49.75-92.71), in Fars Province, indicated severe dental fluorosis but mild hazard regarding fractures. Residents of the Tang-e Eram in Bushehr Province with a DALYs rate of 3609.40 (1296.68-5993.73) for dental fluorosis and a DALYs rate of 284.67 (199.11-367.99) for skeletal fractures were the most potentially endangered population. By evaluating the outputs of the DALYs model, the gap in scenarios of central tendency exposure and reasonable maximum exposure highlights the role of food source intake in over-receiving fluoride. This research insists on implementing defluoridation programs in fluoride-endemic zones to combat the undesirable effects of fluoride. The global measures presented in this research aim to address the root causes of contamination and help policymakers and authorities mitigate fluoride's harmful impacts on the environment and public health.
Collapse
Affiliation(s)
- Zeynab Ghaemi
- Department of Water Engineering, Shiraz University, Shiraz, Iran.
| | - Masoud Noshadi
- Department of Water Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
2
|
Al-Saidi HM, Khan S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit Rev Anal Chem 2024; 54:93-109. [PMID: 35417281 DOI: 10.1080/10408347.2022.2063017] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thioureas and their derivatives are organosulfur compounds having excellent biological and non-biological applications. These compounds contain S- and N-, which are nucleophilic and allow for establishing inter-and intramolecular hydrogen bonding. These characteristics make thiourea moiety a very important chemosensor to detect various environmental pollutants. This article covers a broad range of thioureas and their derivatives that are used for highly sensitive, selective, and simple fluorimetric (turn-off and turn-on), and colorimetric chemosensors for the detection and determination of different types of anions, such as CN-, AcO-, F-, ClO- and citrate ions, etc., and neutral analytes such as ATP, DCP, and Amlodipine, etc., in biological, environmental, and agriculture samples. Further, the sensing performances of thioureas-based chemosensors have been compared and discussed, which could help the readers for the future design of organic fluorescent and colorimetric sensors to detect anions and neutral analytes. We hope this study will support the new thoughts to design highly efficient, selective, and sensitive chemosensors to detect different analytes in biological, environmental, and agricultural samples.
Collapse
Affiliation(s)
- Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Vasisth D, Mehra P, Yadav L, Kumari V, Bhatia U, Garg R. Fluoride and its Implications on Oral Health: A Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S49-S52. [PMID: 38595498 PMCID: PMC11001095 DOI: 10.4103/jpbs.jpbs_929_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 04/11/2024] Open
Abstract
This article aims to review the literature about the history of fluoride, its toxicity, prevalence, prevention, diagnosis, and management in oral healthcare practice. Fluoride is the cornerstone of oral health, playing a pivotal role in oral health. Fluoride can be administered topically or systemically. Topically, it is found in toothpaste, mouth rinses, and professional treatments such as fluoride varnish. These directly shield teeth from decay and strengthen the existing enamel. Systemically, fluoride is ingested through water, foods, or supplements, benefiting tooth development, especially in children. Nevertheless, responsible fluoride use is essential. Overexposure can lead to dental fluorosis, affecting tooth aesthetics. Consulting a dentist for personalized guidance on fluoride usage can help strike the right balance between oral protection and potential side effects, ensuring a radiant and healthy smile for life.
Collapse
Affiliation(s)
- Diwakar Vasisth
- Department of Dental and Oral Surgery, Lady Hardinge Medical College and Hospital, Ministry of Health and Family Welfare, Government of India, New Delhi, Delhi, India
| | - Pravesh Mehra
- Department of Dental and Oral Surgery, Lady Hardinge Medical College and Hospital, Ministry of Health and Family Welfare, Government of India, New Delhi, Delhi, India
| | - Lucky Yadav
- Department of Dental and Oral Surgery, Lady Hardinge Medical College and Hospital, Ministry of Health and Family Welfare, Government of India, New Delhi, Delhi, India
| | - Vibha Kumari
- Department of Dental and Oral Surgery, Lady Hardinge Medical College and Hospital, Ministry of Health and Family Welfare, Government of India, New Delhi, Delhi, India
| | - Urvi Bhatia
- Department of Dental and Oral Surgery, Lady Hardinge Medical College and Hospital, Ministry of Health and Family Welfare, Government of India, New Delhi, Delhi, India
| | - Riya Garg
- Department of Dental and Oral Surgery, Lady Hardinge Medical College and Hospital, Ministry of Health and Family Welfare, Government of India, New Delhi, Delhi, India
| |
Collapse
|
4
|
Kumar S, Chhabra V, Mehra M, K S, Kumar B H, Shenoy S, Swamy RS, Murti K, Pai KSR, Kumar N. The fluorosis conundrum: bridging the gap between science and public health. Toxicol Mech Methods 2024; 34:214-235. [PMID: 37921264 DOI: 10.1080/15376516.2023.2268722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Fluorosis, a chronic condition brought on by excessive fluoride ingestion which, has drawn much scientific attention and public health concern. It is a complex and multifaceted issue that affects millions of people worldwide. Despite decades of scientific research elucidating the causes, mechanisms, and prevention strategies for fluorosis, there remains a significant gap between scientific understanding and public health implementation. While the scientific community has made significant strides in understanding the etiology and prevention of fluorosis, effectively translating this knowledge into public health policies and practices remains challenging. This review explores the gap between scientific research on fluorosis and its practical implementation in public health initiatives. It suggests developing evidence-based guidelines for fluoride exposure and recommends comprehensive educational campaigns targeting the public and healthcare providers. Furthermore, it emphasizes the need for further research to fill the existing knowledge gaps and promote evidence-based decision-making. By fostering collaboration, communication, and evidence-based practices, policymakers, healthcare professionals, and the public can work together to implement preventive measures and mitigate the burden of fluorosis on affected communities. This review highlighted several vital strategies to bridge the gap between science and public health in the context of fluorosis. It emphasizes the importance of translating scientific evidence into actionable guidelines, raising public awareness about fluoride consumption, and promoting preventive measures at individual and community levels.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Manmeet Mehra
- Department of Pharmacology, Guru Nanak Dev University, Amritsar, India
| | - Saranya K
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| |
Collapse
|
5
|
India Aldana S, Colicino E, Cantoral Preciado A, Tolentino M, Baccarelli AA, Wright RO, Téllez Rojo MM, Valvi D. Longitudinal associations between early-life fluoride exposures and cardiometabolic outcomes in school-aged children. ENVIRONMENT INTERNATIONAL 2024; 183:108375. [PMID: 38128386 PMCID: PMC10842303 DOI: 10.1016/j.envint.2023.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND/AIM Fluoride is a natural mineral present in food, water, and dental products, constituting ubiquitous long-term exposure in early childhood and across the lifespan. Experimental evidence shows fluoride-induced lipid disturbances with potential implications for cardiometabolic health. However, epidemiological studies are scarce. For the first time, we evaluated associations between repeated fluoride measures and cardiometabolic outcomes in children. METHODS We studied ∼ 500 Mexican children from the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort with measurements on urinary fluoride at age 4, and dietary fluoride at ages 4, 6, and 8 years approximately. We used covariate-adjusted linear mixed-effects and linear regression models to assess fluoride associations with multiple cardiometabolic outcomes (ages 4-8): lipids (total cholesterol, HDL, LDL, and triglycerides), glucose, HbA1c, adipokines (leptin and adiponectin), body fat, and age- and sex-specific z-scores of body mass index (zBMI), waist circumference, and blood pressure. RESULTS Dietary fluoride intake at age 4 was associated with annual increases in triglycerides [β per-fluoride-doubling = 2.02 (95 % CI: 0.37, 3.69)], cholesterol [β = 1.46 (95 % CI: 0.52, 2.39)], HDL [β = 0.39 (95 % CI: 0.02, 0.76)], LDL [β = 0.87 (95 % CI: 0.02, 1.71)], and HbA1c [β = 0.76 (95 % CI: 0.28, 1.24)], and decreased leptin [β = -3.58 (95 % CI: -6.34, -0.75)] between the ages 4 and 8. In cross-sectional analyses at age 8, higher tertiles of fluoride exposure were associated with increases in zBMI, triglycerides, glucose, and leptin (p-tertile trend < 0.05). Stronger associations were observed in boys at year 8 and in girls prior to year 8 (p-sex interaction < 0.05). Fewer but consistent associations were observed for urinary fluoride at age 4, indicating increased annual changes in HDL and HbA1c with higher fluoride levels. CONCLUSION Dietary fluoride exposures in early- and mid-childhood were associated with adverse cardiometabolic outcomes in school-aged children. Further research is needed to elucidate whether these associations persist at later ages.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Maricruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City, Mexico
| | - Andrea A Baccarelli
- Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha María Téllez Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Nelima D, Wambu EW, Kituyi JL. Fluoride distribution in selected foodstuffs from Nakuru County, Kenya, and the risk factors for its human overexposure. Sci Rep 2023; 13:15295. [PMID: 37714918 PMCID: PMC10504336 DOI: 10.1038/s41598-023-41601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
Critical data on the impacts of fluoride (F) in food systems along the Eastern Africa Rift Valley System (EARS) is needed for public health risk assessment and for the development of strategies for ameliorating its deleterious effects among the affected communities. Long-term F overexposure causes dental and skeletal fluorosis, and leads to neurotoxicity, which impacts several important body functions. Investigating F exposure pathways is of essence to inform and safeguard public health of the affected communities. The current study assessed the F levels in potatoes (Solanum tuberosum L.), beans (Phaseolus vulgaris L.) and garden peas (Possum sativa) from Nakuru County, Kenya, by potentiometric analysis using F ion-selective electrodes. It then evaluated the risk factors for excessive human exposure to F through contaminated foodstuffs. The mean F levels in the potatoes (8.50 ± 4.70 mg/kg), beans (8.02 ± 4.12 mg/kg) and peas (4.99 ± 1.25 mg/kg) exceeded recommended dietary allowances (RDA) level of 4 mg/kg endorsed by US Institute of Medicine for the different categories of people. The F distribution trends in beans and potatoes reflected the environmental patterns of F contamination of the study area but the spatial extent Fin the peas indicated existence of partial resistance of the pea plants to environmental F uptake. The results indicated that both the beans and the potatoes were more liable to accumulating greater amounts of F from the environment than garden peas and that all the three foodstuffs contained high F levels that posed greater risk of F overexposure and its deleterious impacts among the young children, male populations, and in people of greater body weight and high physical activity levels.
Collapse
Affiliation(s)
- Delphine Nelima
- Department of Chemistry, School of Science, University of Eldoret, P.O. BOX, Eldoret, 1125-30100, Kenya
| | - Enos W Wambu
- Department of Chemistry, School of Science, University of Eldoret, P.O. BOX, Eldoret, 1125-30100, Kenya.
| | - John L Kituyi
- Department of Chemistry, School of Science, University of Eldoret, P.O. BOX, Eldoret, 1125-30100, Kenya
| |
Collapse
|
8
|
Zhu S, Liu J, Zhao J, Zhou B, Zhang Y, Wang H. HIF-1α-mediated autophagy and canonical Wnt/β-catenin signalling activation are involved in fluoride-induced osteosclerosis in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120396. [PMID: 36220573 DOI: 10.1016/j.envpol.2022.120396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Fluoride (F) exposure can cause osteosclerosis, which is characterised by a high bone mass, but its mechanism is not fully illustrated. Here, we aimed to evaluate the effects of excessive F exposure on the bone lesion by treating female Sprague-Dawley rats with different concentrations of sodium fluoride (NaF) (0, 55, 110 and 221 mg/L) for 90 days and the corresponding concentrations of fluorine ion (0, 25, 50 and 100 mg/L, respectively). Histopathological results showed that excessive F exposure caused the enlargement of trabeculae and their integration into one large piece, growth plate thickening, articular cartilage impairment and bone collagen abnormality. Meanwhile, F promoted calcium deposition and bone mineralisation, and induced abnormal osteogenesis increased. The results of micro-computed tomography also confirmed that excessive F destroyed the bone microstructure and induced a high-bone-mass phenotype, consistent with the results of pathomorphology. Mechanistically, excessive amounts of F led to angiogenesis inhibition and HIF-1α signalling enhancement. Subsequently, F induced autophagy and canonical Wnt/β-catenin signalling pathway activation. Collectively, these results manifested that F enhanced the hypoxia inducible factor-1α signalling, which in turn triggered autophagy and canonical Wnt/β-catenin signalling activation, ultimately leading to osteosclerosis in the rats.
Collapse
Affiliation(s)
- Shiquan Zhu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Bianhua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Yuling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Hongwei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
9
|
Chaulagain R, Chhatkuli A, Shrestha AR, Chhetri BK, Pandey S. Mean Fluoride Concentration in Drinking Water Sources of a Municipality: A Descriptive Cross-sectional Study. JNMA J Nepal Med Assoc 2022; 60:947-951. [PMID: 36705170 PMCID: PMC9795107 DOI: 10.31729/jnma.7898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Fluoride is essential for the growth and development of teeth and bone. Excess or less fluoride consumption can have harmful effects on our bodies. Fluoride level of 0.5-1.5 mg/l is said to be optimized according to the World Health Organization. The level of fluoride varies among the different geographical regions and water sources. It is essential to find out the fluoride content of various water sources used for drinking purposes. The aim of this study was to find the mean concentration of fluoride in drinking water sources of a municipality. Methods A descriptive cross-sectional study was conducted in a Municipality. The study was conducted from 1 December 2021 to 30 December 2021 after receiving ethical approval from the Ethical Review Board (Reference number: 1134). Water samples were collected and the fluoride content was estimated using 2-parasulfophenylazo-1,8-dihydroxy-3,6-napthalene-disulfonate colorimetric method. The data collected from the laboratory were calculated and presented in the form of a table. Point estimate and 95% Confidence Interval were calculated. Results The mean value of fluoride content in 160 collected water samples was 0.369±0.275 mg/l (0.33-0.41, 95% Confidence Interval). Among the different wards, the fluoride content was 0.708±0.27 mg/l in ward number 12 followed by a fluoride content of 0.57±0.19 mg/l in ward number 5. Conclusions In this study, the mean fluoride levels were lower when compared with similar studies conducted in similar settings. The levels were lower than that recommended by the World Health Organization. The various controlled methods of fluoridation have to be quickly initiated. Other means of fluoride consumption, like the use of fluoridated toothpaste, has to be recommended. Keywords dental caries; drinking water; fluoride.
Collapse
Affiliation(s)
- Rajib Chaulagain
- Department of Oral Pathology, Chitwan Medical College, Bharatpur, Chitwan, Nepal,Correspondence: Dr Rajib Chaulagain, Department of Oral Pathology, Chitwan Medical College, Bharatpur, Chitwan, Nepal. , Phone: +977-9860199335
| | | | | | | | | |
Collapse
|
10
|
Du C, Xiao P, Gao S, Chen S, Chen B, Huang W, Zhao C. High Fluoride Ingestion Impairs Bone Fracture Healing by Attenuating M2 Macrophage Differentiation. Front Bioeng Biotechnol 2022; 10:791433. [PMID: 35669059 PMCID: PMC9164140 DOI: 10.3389/fbioe.2022.791433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Fluorosis is still endemic in at least 25 countries around the world. In this study, we investigated the effect of high fluoride intake on fracture healing. Our in vitro experiments found that fluoride inhibited the osteogenic and angiogenic differentiation of MSCs in a dose-dependent manner. By constructing a bone fracture model, we found that high fluoride intake influences bone fracture by attenuating endochondral ossification and angiogenesis. In the mechanism, we clarified that high fluoride inhibits M2 differentiation rather than M1 differentiation in the fracture area, which may contribute to the delayed healing of the fracture. These findings provide an essential reference for the clinical treatment of bone fracture patients with a history of high fluoride intake or skeletal fluorosis patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Huang
- *Correspondence: Wei Huang, ; Chen Zhao,
| | - Chen Zhao
- *Correspondence: Wei Huang, ; Chen Zhao,
| |
Collapse
|
11
|
Kandjou V, Nkwe DO, Ntuli F, Keroletswe N. Evaluating the degree of chemical contamination of underground aquifers in Botswana and analysing viable purification and desalination means; a review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Tang J, Zhu Y, Xiang B, Li Y, Tan T, Xu Y, Li M. Multiple pollutants in groundwater near an abandoned Chinese fluorine chemical park: concentrations, correlations and health risk assessments. Sci Rep 2022; 12:3370. [PMID: 35232998 PMCID: PMC8888542 DOI: 10.1038/s41598-022-07201-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Contamination and adverse effects from various pollutants often appear in abandoned industrial regions. Thus, nine groundwater samples were collected from the vicinity of the fluorochemical industry in Fuxin City, Liaoning Province, to determine concentrations of the ten heavy metals arsenic (As), chromium (Cr), cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), manganese (Mn), zinc (Zn), iron (Fe) and mercury(Hg), as well as those of fluorine (F−) and eighteen poly- and perfluorinated substances (PFASs), analyse correlation relationships, and assess the health risks for different age groups. The results showed that the levels of fluorine (F−) (0.92–4.42 mg·L−1), Mn (0.0005–4.91 mg·L−1) and Fe (1.45–5.61 mg·L−1) exceeded the standard limits for drinking water. Short chain perfluorobutanoic acid (PFBA) (4.14–2501.42 ng·L−1), perfluorobutane sulfonate (PFBS) (17.07–51,818.61 ng·L−1) and perfluorohexanoic acid (PFHxA) (0.47–936.32 ng·L−1) were the predominant substances from the PFASs group. No individual PFASs levels had significant relationships with F− or heavy metal contents. There was a positive relationship between short chain PFASs concentrations and water depth and a negative relationship between long chain PFASs concentration and water depth. The hazard quotient (HQ) decreased in the order F− > heavy metals > PFASs and also decreased for older age groups. In addition, As, Fe, Mn and perfluorooctanoic acid (PFOA) were the main sources of risk from the heavy metal and PFASs groups, respectively.
Collapse
Affiliation(s)
- Jiaxi Tang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China. .,Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Yongle Zhu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Biao Xiang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yu Li
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Ting Tan
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Ying Xu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Mengxue Li
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
13
|
Angwa LM, Jiang Y, Pei J, Sun D. Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol Trace Elem Res 2022; 200:1418-1441. [PMID: 34003450 DOI: 10.1007/s12011-021-02729-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Fluorosis is a major public health problem globally. The non-availability of specific treatment and the irreversible nature of dental and skeletal lesions poses a challenge in the management of fluorosis. Oxidative stress is known to be one of the most important mechanisms of fluoride toxicity. Fluoride promotes the accumulation of reactive oxygen species by inhibiting the activity of antioxidant enzymes, resulting in the excessive production of reactive oxygen species at the cellular level which further leads to activation of cell death processes such as apoptosis. Phytochemicals that act as antioxidants have the potential to protect cells from oxidative stress. Evidence confirms that clinical symptoms of fluorosis can be mitigated to some extent or prevented by long-term intake of antioxidants and plant products. The primary purpose of this review is to examine recent findings that focus on the amelioration of fluoride-induced oxidative stress and apoptosis by natural and synthetic phytochemicals and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Linet M Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- Department of Clinical Medicine, Kabarak University, Nakuru, 20157, Kenya
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
14
|
Roberts WE, Mangum JE, Schneider PM. Pathophysiology of Demineralization, Part I: Attrition, Erosion, Abfraction, and Noncarious Cervical Lesions. Curr Osteoporos Rep 2022; 20:90-105. [PMID: 35129809 PMCID: PMC8930910 DOI: 10.1007/s11914-022-00722-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Compare pathophysiology for infectious and noninfectious demineralization disease relative to mineral maintenance, physiologic fluoride levels, and mechanical degradation. RECENT FINDINGS Environmental acidity, biomechanics, and intercrystalline percolation of endemic fluoride regulate resistance to demineralization relative to osteopenia, noncarious cervical lesions, and dental caries. Demineralization is the most prevalent chronic disease in the world: osteoporosis (OP) >10%, dental caries ~100%. OP is severely debilitating while caries is potentially fatal. Mineralized tissues have a common physiology: cell-mediated apposition, protein matrix, fluid logistics (blood, saliva), intercrystalline ion percolation, cyclic demineralization/remineralization, and acid-based degradation (microbes, clastic cells). Etiology of demineralization involves fluid percolation, metabolism, homeostasis, biomechanics, mechanical wear (attrition or abrasion), and biofilm-related infections. Bone mineral density measurement assesses skeletal mass. Attrition, abrasion, erosion, and abfraction are diagnosed visually, but invisible subsurface caries <400μm cannot be detected. Controlling demineralization at all levels is an important horizon for cost-effective wellness worldwide.
Collapse
Affiliation(s)
- W. Eugene Roberts
- grid.257413.60000 0001 2287 3919Indiana University & Purdue University at Indianapolis, 8260 Skipjack Drive, Indianapolis, IN 46236 USA
| | - Jonathan E. Mangum
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, Dentistry and Health Sciences, University of Melbourne, Corner Grattan Street and Royal Parade, Parkville, Victoria 3010 Australia
| | - Paul M. Schneider
- grid.1008.90000 0001 2179 088XMelbourne Dental School, University of Melbourne, 720 Swanston St, Melbourne, Victoria 3010 Australia
| |
Collapse
|
15
|
Wang C, Huertas DS, Rowe JW, Finkelstein R, Carstensen LL, Jackson RB. Rethinking the urban physical environment for century-long lives: from age-friendly to longevity-ready cities. NATURE AGING 2021; 1:1088-1095. [PMID: 35937461 PMCID: PMC9355489 DOI: 10.1038/s43587-021-00140-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
In response to increasing life expectancies and urbanization, initiatives for age-friendly cities seek to facilitate active and healthy aging by strengthening supports and services for older people. While laudable, these efforts typically neglect early-life exposures that influence long-term well-being. With a focus on the urban physical environment, we argue that longevity-ready cities can accomplish more than initiatives focused solely on old age. We review features of cities that cumulatively influence healthy aging and longevity, discuss the need for proactive interventions in a changing climate, and highlight inequities in the ambient physical environment, especially those encountered at early ages, that powerfully contribute to disparities in later life stages. Compared with strategies aimed largely at accommodating older populations, longevity-ready cities would aim to reduce the sources of disadvantages across the life course and simultaneously improve the well-being of older people.
Collapse
Affiliation(s)
- Chenghao Wang
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Stanford Center on Longevity, Stanford, CA, USA
| | - Diego Sierra Huertas
- Stanford Center on Longevity, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - John W. Rowe
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ruth Finkelstein
- Brookdale Center for Healthy Aging, Hunter College, The City University of New York, New York, NY, USA
| | - Laura L. Carstensen
- Stanford Center on Longevity, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Robert B. Jackson
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment and Precourt Institute for Energy, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Nicole W. Denser but Not Stronger? Fluoride-Induced Bone Growth and Increased Risk of Hip Fractures. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:74001. [PMID: 34251877 PMCID: PMC8274691 DOI: 10.1289/ehp9533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
|
17
|
Helte E, Donat Vargas C, Kippler M, Wolk A, Michaëlsson K, Åkesson A. Fluoride in Drinking Water, Diet, and Urine in Relation to Bone Mineral Density and Fracture Incidence in Postmenopausal Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47005. [PMID: 33822648 PMCID: PMC8043127 DOI: 10.1289/ehp7404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Although randomized controlled trials (RCTs) have demonstrated that high fluoride increases bone mineral density (BMD) and skeletal fragility, observational studies of low-dose chronic exposure through drinking water (<1.5mg/L, the maximum recommended by the World Health Organization) have been inconclusive. OBJECTIVE We assessed associations of fluoride in urine, and intake via diet and drinking water, with BMD and fracture incidence in postmenopausal women exposed to drinking water fluoride ≤1mg/L. METHODS Data were from participants in the Swedish Mammography Cohort-Clinical, a population-based prospective cohort study. At baseline (2004-2009), fluoride exposure was assessed based on urine concentrations (n=4,306) and estimated dietary intake (including drinking water) (n=4,072), and BMD was measured using dual energy X-ray absorptiometry. Incident fractures were ascertained via register-linkage through 2017. Residential history was collected to identify women with long-term consistent drinking water exposures prior to baseline. RESULTS At baseline, mean urine fluoride was 1.2mg/g creatinine (±1.9) and mean dietary intake was 2.2mg/d (±0.9), respectively. During follow-up, 850, 529, and 187 cases of any fractures, osteoporotic fractures, and hip fractures, respectively, were ascertained. Baseline BMD was slightly higher among women in the highest vs. lowest tertiles of exposure. Fluoride exposures were positively associated with incident hip fractures, with multivariable-adjusted hazard ratios of 1.50 (95% CI: 1.04, 2.17) and 1.59 (95% CI: 1.10, 2.30), for the highest vs. lowest tertiles of urine fluoride and dietary fluoride, respectively. Associations with other fractures were less pronounced for urine fluoride, and null for dietary fluoride. Restricting the analyses to women with consistent long-term drinking water exposures prior to baseline strengthened associations between fractures and urinary fluoride. DISCUSSION In this cohort of postmenopausal women, the risk of fractures was increased in association with two separate indicators of fluoride exposure. Our findings are consistent with RCTs and suggest that high consumption of drinking water with a fluoride concentration of ∼1mg/L may increase both BMD and skeletal fragility in older women. https://doi.org/10.1289/EHP7404.
Collapse
Affiliation(s)
- Emilie Helte
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Carolina Donat Vargas
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
- Department of Preventive Medicine and Public Health, School of Medicine, Campus of International Excellence, Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
- Department of Surgical Sciences, Orthopedics, Uppsala University, Uppsala, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Orthopedics, Uppsala University, Uppsala, Sweden
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| |
Collapse
|
18
|
Gao M, Sun L, Xu K, Zhang L, Zhang Y, He T, Sun R, Huang H, Zhu J, Zhang Y, Zhou G, Ba Y. Association between low-to-moderate fluoride exposure and bone mineral density in Chinese adults: Non-negligible role of RUNX2 promoter methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111031. [PMID: 32888610 DOI: 10.1016/j.ecoenv.2020.111031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Bone mineral density (BMD) changes were reported to be associated with excessive fluoride exposure and abnormal expression of RUNX2. However, whether the alteration of methylation status, a most commonly used marker for the alteration of gene expression in epidemiological investigation, of RUNX2 is associated with low-to-moderate fluoride exposure and BMD changes has not been reported. Our study aims to explore the role of RUNX2 promoter methylation in BMD changes induced by low-to-moderate fluoride exposure. A total of 1124 adults (413 men and 711 women) were recruited from Kaifeng City in 2017. We measured BMD using ultrasound bone densitometer. Concentrations of urinary fluoride (UF) were measured using ion-selective electrode, and the participants were grouped into control group (CG) and excessive fluoride group (EFG) according to the concentration of UF. We extracted DNA from fasting peripheral blood samples and then detected the promoter methylation levels of RUNX2 using quantitative methylation-specific PCR. Relationships between UF concentration, RUNX2 promoter methylation and BMD changes were analyzed using generalized linear model and logistic regression. Results showed in EFG (UF concentration > 1.6 mg/L), BMD was negatively correlated with UF concentration (β: -0.14; 95%CI: -0.26, -0.01) and RUNX2 promoter methylation (β: -0.13; 95%CI: -0.22, -0.03) in women. The methylation rate of RUNX2 promoter increased by 2.16% for each 1 mg/L increment in UF concentration of women in EFG (95%CI: 0.37, 3.96). No any significant associations between UF concentration, RUNX2 promoter methylation, and BMD were observed in the individuals in CG. Mediation analysis showed that RUNX2 promoter methylation mediated 18.2% (95% CI: 4.2%, 53.2%) of the association between UF concentration and BMD of women in EFG. In conclusion, excessive fluoride exposure (>1.6 mg/L) is associated with changes of BMD in women, and this association is mediated by RUNX2 promoter methylation.
Collapse
Affiliation(s)
- Minghui Gao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Long Sun
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475004, PR China.
| | - Kaihong Xu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Luoming Zhang
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475004, PR China.
| | - Yanli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Tongkun He
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Renjie Sun
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Hui Huang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Jingyuan Zhu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yawei Zhang
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA.
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yue Ba
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
19
|
Sun R, Zhou G, Liu L, Ren L, Xi Y, Zhu J, Huang H, Li Z, Li Y, Cheng X, Ba Y. Fluoride exposure and CALCA methylation is associated with the bone mineral density of Chinese women. CHEMOSPHERE 2020; 253:126616. [PMID: 32283421 DOI: 10.1016/j.chemosphere.2020.126616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Excessive exposure to fluoride has been reported to affect bone mineral density (BMD). CALCA expression plays a critical part in bone formation. However, the role of CALCA in the association between fluoride and BMD is not known. We conducted a cross-sectional study and recruited 722 women in rural areas of Henan Province, China, to assess the relationship between fluoride exposure, CALCA methylation, and BMD. Urinary levels of fluoride, CALCA methylation, and BMD were measured by a fluoride ion-selective electrode, standalone ultrasound bone densitometer, and quantitative methylation-specific polymerases chain reaction, respectively. The association among fluoride exposure, CALCA methylation, and BMD was age-specific. Specifically, BMD was negatively correlated with methylation (β: -0.008; 95% CI: -0.016, 0.000) and fluoride exposure (β: -0.063; 95% CI: -0.129, -0.002) in women over 45 years and 50-54 years of age, respectively, whereas methylation was positively correlated with fluoride exposure (β: 4.953; 95% CI: 1.162, 8.743) in women aged 40-44 years. Besides, increased BMD in women aged 45-49 years induced by the interactive effect of the highest methylation of CALCA exon 1 (tertile 3) and fluoride exposure was observed (P for interaction < 0.05). Our findings suggest an age-specific association between exposure to excessive fluoride, CALCA methylation, and BMD in a rural population of women in China. Notably, the susceptibility of BMD to fluoride exposure may be modified by CALCA methylation.
Collapse
Affiliation(s)
- Renjie Sun
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lihua Liu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lijun Ren
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475000, China
| | - Yu Xi
- Tongxu Center for Disease Control and Prevention, Kaifeng, Henan, 475400, China
| | - Jingyuan Zhu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xuemin Cheng
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
20
|
Yan F, Ma X, Jin Q, Tong Y, Tang H, Lin X, Liu J. Phenylboronic acid-functionalized vertically ordered mesoporous silica films for selective electrochemical determination of fluoride ion in tap water. Mikrochim Acta 2020; 187:470. [DOI: 10.1007/s00604-020-04422-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/30/2020] [Indexed: 02/01/2023]
|
21
|
Kouk S, Rapp TB. Excision of Prominent Bony Mass due to Skeletal Fluorosis: A Case Report. JBJS Case Connect 2020; 10:e0107. [PMID: 32649084 DOI: 10.2106/jbjs.cc.19.00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CASE A 72-year-old man presented for evaluation of bony prominences over extremities. Radiographic imaging demonstrated masses of varying sizes extending from the cortical surfaces without medullary continuity. The patient had a history of Freon inhalation abuse and was diagnosed with skeletal fluorosis due to elevated serum fluoride levels. He underwent an uncomplicated excision of a left fibular mass that was threatening skin breakdown. CONCLUSIONS This is the first reported surgical case of skeletal fluorosis demonstrating continued enlargement of bony prominences throughout the body. Skeletal fluorosis not only causes diffuse mineralization but may also lead to protruding lesions throughout the body.
Collapse
Affiliation(s)
- Shalen Kouk
- 1Department of Orthopedic Surgery, Resident Physician NYU Langone Medical Center, New York, New York 2Division of Orthopedic Oncology, Department of Orthopedic Surgery, NYU Langone Medical Center, New York, New York
| | | |
Collapse
|
22
|
Oliveira CM, Teixeira H, Alves SM, Pina MF. Regional drinking water composition effects on hip fracture risk: a spatial analysis of nationwide hospital admissions in Portugal, from 2000 to 2010. SAUDE E SOCIEDADE 2020. [DOI: 10.1590/s0104-12902020200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Geographical variation on hip fractures (HF) may be related to the geographical variation of drinking water composition (DWC); minerals in drinking water may contribute to its fragility. We aim to investigate the effects of DWC on HF risk in Portugal (2000-2010). From National Hospital Discharge Register we selected admissions of patients aged ≥50 years, diagnosed with HF caused by low/moderate energy traumas. Water components and characteristics were selected at the municipality level. A spatial generalized additive model with a negative binomial distribution as a link function was used to estimate the association of HF with variations in DWC. There were 96,905HF (77.3% in women). The spatial pattern of HF risk was attenuated after being adjusted for water parameters. Results show an indirect association between calcium, magnesium, and iron and HF risk but no clear relation between aluminum, cadmium, fluoride, manganese, or color and HF risk. Regarding pH, the 6.7pH and 7pH interval seems to pose a lower risk. Different dose-response relationships were identified. The increase of calcium, magnesium, and iron values in DWC seems to reduce regional HF risk. Long-term exposure to water parameters, even within the regulatory limits, might increase the regional HF risk.
Collapse
Affiliation(s)
- Carla Maria Oliveira
- Universidade do Porto, Portugal; Universidade do Porto, Portugal; Instituto Politécnico do Porto, Portugal
| | - Hugo Teixeira
- Universidade do Porto, Portugal; Universidade do Porto, Portugal
| | - Sandra Maria Alves
- Universidade do Porto, Portugal; Universidade do Porto, Portugal; Instituto Politécnico do Porto, Portugal
| | - Maria Fátima Pina
- Universidade do Porto, Portugal; Universidade do Porto, Portugal; Fundação Oswaldo Cruz, Brasil
| |
Collapse
|
23
|
Wang J, Yang J, Cheng X, Xiao R, Zhao Y, Xu H, Zhu Y, Yan Z, Ommati MM, Manthari RK, Wang J. Calcium Alleviates Fluoride-Induced Bone Damage by Inhibiting Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10832-10843. [PMID: 31464433 DOI: 10.1021/acs.jafc.9b04295] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Excessive fluoride mainly causes skeletal lesions. Recently, it has been reported that an appropriate level of calcium can alleviate fluorosis. However, the appropriate concentration and mechanism of calcium addition is unclear. Hence, we evaluated the histopathology and ultrastructure, DNA fragmentation, hormonal imbalances, biomechanical levels, and expression of apoptosis-related genes after treating the rats with 150 mg/L NaF and different concentrations of CaCO3. Our results suggested that NaF induced the histopathological and ultrastructural injury, with a concomitant increase in the DNA fragmentation (P < 0.05) and serum OC (17.5 ± 0.89 pmoL/L) at 120 days. In addition, the qRT-PCR and western blotting results indicated that NaF exposure upregulated the mRNA and protein expression of Bax, Calpain, Caspase 12, Caspase 9, Caspase 7, Caspase 3, CAD, PARP, and AIF while downregulated Bcl-2 (P < 0.01) and decreased the bone ultimate load by 27.1%, the ultimate stress by 10.1%, and the ultimate deformity by 23.3% at 120 days. However, 1% CaCO3 supplementation decreased the serum OC (14.7 ± 0.65 pmoL/L), bone F content (P < 0.01), and fracture and breakage of collagen fibers and changed the expression of endoplasmic reticulum pathway-related genes and proteins at 120 days. Further, 1% CaCO3 supplementation increased the bone ultimate load by 20.9%, the ultimate stress by 4.89%, and the ultimate deformity by 21.6%. In summary, we conclude that 1% CaCO3 supplementation alleviated fluoride-induced bone damage by inhibiting endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
|
24
|
Yue X, Su Y, Wang X, Li L, Ji W, Ozaki Y. Reusable Silicon-Based SERS Chip for Ratiometric Analysis of Fluoride Ion in Aqueous Solutions. ACS Sens 2019; 4:2336-2342. [PMID: 31397153 DOI: 10.1021/acssensors.9b00881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An innovative ratiometric surface-enhanced Raman scattering (SERS) sensor using a 4-mercaptoboric acid (4-MPBA)-modified silver nanoparticle-decorated silicon wafer (Si@Ag NPs chip) was proposed for the ultrasensitive determination of F- ions in aqueous solutions. The principle of sensing strategy is based on fluoride-induced structural symmetry breaking and charge redistribution of phenylboronic acid, leading to a band shift of the C-C stretching mode of 4-MPBA from 1589 to 1576 cm-1. Accordingly, a ratiometric signal of the area ratio (A1576/A1589) between the fluoride-bond MPBA molecules and unoccupied MPBA molecules can be used for the quantitative response of F- ions. In comparison with other SERS-based sensing methods, this ratiometric method can avoid a large error resulting from the inhomogeneity of substrates. Under the optimized analytical conditions, the proposed SERS sensor possesses a quick response to F- ions within 2 min and exhibits high selectivity for F- ions with the determination limit of 10-8 M, which is over 3 orders of magnitude lower than the World Health Organization (WHO) guideline value for F- ions in drinking water. Of particular significance, the present sensor features favorable recyclability, which preserves suitable reproducibility during 6-time cyclic determination of F- ions. The practical utility of this sensing system for the determination of F- ions was tested with real water and toothpaste samples, and the results demonstrate that this sensor shows high recoveries (90-110%). Given its simple principle and easy operation, the present silicon-based SERS sensor could serve as a promising sensor for various practical applications.
Collapse
Affiliation(s)
- Xiaomin Yue
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan Su
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinnan Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Linfang Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Ji
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
25
|
Li Y. Stain removal and whitening by baking soda dentifrice: A review of literature. J Am Dent Assoc 2019; 148:S20-S26. [PMID: 29056186 DOI: 10.1016/j.adaj.2017.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tooth discoloration may be caused by intrinsic or extrinsic stains or a combination of both. There are 2 major approaches to removing the stains, including the chemical mechanism using peroxides for tooth bleaching and the mechanical mechanism using abrasives in prophylactic pastes and dentifrices to remove stains, resulting in a whitening effect. Attempts have also been made to add a low concentration of peroxides to dentifrices to enhance their abrasive cleaning to remove tooth stains. TYPES OF STUDIES REVIEWED This article provides a review of both in vitro and clinical studies on stain removal and whitening effect of dentifrices containing sodium bicarbonate (baking soda). In recent years, whitening dentifrices have become popular because of little additional effort for use, ease of availability, low cost, and accumulated evidence of clinical efficacy and safety in the literature. Advances in research and technology have led to innovative formulations of dentifrices using baking soda as the sole abrasive or a component of an abrasive system. Baking soda is biologically compatible with acid-buffering capacities, antibacterial at high concentrations, and has a relatively lower abrasivity. CONCLUSIONS The evidence available in the literature indicates that baking soda-based dentifrices are effective and safe for tooth stain removal and consequently whitening. A number of clinical studies have also shown that baking soda-based dentifrices are more effective in stain removal and whitening than some non-baking soda-containing dentifrices with a higher abrasivity. So far, research efforts have mainly focused on stain removal and tooth-whitening efficacy and clinical safety of baking soda dentifrices used with manual toothbrushes, with only a few studies investigating their effects using powered toothbrushes, for which further research is encouraged. PRACTICAL IMPLICATIONS As part of a daily oral hygiene practice, baking soda-based dentifrice is a desirable, alternative or additional measure for tooth stain removal and whitening.
Collapse
|
26
|
Cantoral A, Luna-Villa LC, Mantilla-Rodriguez AA, Mercado A, Lippert F, Liu Y, Peterson KE, Hu H, Téllez-Rojo MM, Martinez-Mier EA. Fluoride Content in Foods and Beverages From Mexico City Markets and Supermarkets. Food Nutr Bull 2019; 40:514-531. [PMID: 31342782 DOI: 10.1177/0379572119858486] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sources of fluoride exposure for Mexicans include foods, beverages, fluoridated salt, and naturally fluoridated water. There are no available data describing fluoride content of foods and beverages consumed in Mexico. OBJECTIVE To measure the content of fluoride in foods and beverages typically consumed and to compare their content to that of those from the United States and the United Kingdom. METHODS Foods and beverages reported as part of the Mexican Health and Nutrition Survey (n = 182) were purchased in the largest supermarket chains and local markets in Mexico City. Samples were analyzed for fluoride, at least in duplicate, using a modification of the hexamethyldisiloxane microdiffusion method. Value contents were compared to those from the US Department of Agriculture and UK fluoride content tables. RESULTS The food groups with the lowest and highest fluoride content were eggs (2.32 µg/100 g) and seafood (371 µg/100 g), respectively. When estimating the amount of fluoride per portion size, the lowest content corresponded to eggs and the highest to fast foods. Meats and sausages, cereals, fast food, sweets and cakes, fruits, dairy products, legumes, and seafood from Mexico presented higher fluoride contents than similar foods from the United States or the United Kingdom. Drinks and eggs from the United States exhibited the highest contents, while this was the case for pasta, soups, and vegetables from the United Kingdom. CONCLUSION The majority of items analyzed contained higher fluoride contents than their US and UK counterparts. Data generated provide the first and largest table on fluoride content, which will be useful for future comparisons and estimations.
Collapse
Affiliation(s)
- Alejandra Cantoral
- CONACYT, Mexico city, Mexico.,Center for Research on Nutrition and Health, National Institute of Public Health, Morelos, Mexico
| | | | - Andres A Mantilla-Rodriguez
- Department of Cardiology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Adriana Mercado
- Center for Research on Nutrition and Health, National Institute of Public Health, Morelos, Mexico
| | - Frank Lippert
- Department of Cardiology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Yun Liu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Howard Hu
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Morelos, Mexico
| | - Esperanza A Martinez-Mier
- Department of Cardiology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN, USA
| |
Collapse
|
27
|
Daiwile AP, Tarale P, Sivanesan S, Naoghare PK, Bafana A, Parmar D, Kannan K. Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:410-417. [PMID: 30469026 DOI: 10.1016/j.ecoenv.2018.11.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/21/2018] [Accepted: 11/09/2018] [Indexed: 05/19/2023]
Abstract
Fluoride is an essential trace element required for proper bone and tooth development. Systemic high exposure to fluoride through environmental exposure (drinking water and food) may result in toxicity causing a disorder called fluorosis. In the present study, we investigated the alteration in DNA methylation profile with chronic exposure (30 days) to fluoride (8 mg/l) and its relevance in the development of fluorosis. Whole genome bisulfite sequencing (WGBS) was carried out in human osteosarcoma cells (HOS) exposed to fluoride. Whole genome bisulfite sequencing (WGBS) and functional annotation of differentially methylated genes indicate alterations in methylation status of genes involved in biological processes associated with bone development pathways. Combined analysis of promoter DNA hyper methylation, STRING: functional protein association networks and gene expression analysis revealed epigenetic alterations in BMP1, METAP2, MMP11 and BACH1 genes, which plays a role in the extracellular matrix disassembly, collagen catabolic/organization process, skeletal morphogenesis/development, ossification and osteoblast development. The present study shows that fluoride causes promoter DNA hypermethylation in BMP1, METAP2, MMP11 and BACH1 genes with subsequent down-regulation in their expression level (RNA level). The results implies that fluoride induced DNA hypermethylation of these genes may hamper extracellular matrix deposition, cartilage formation, angiogenesis, vascular system development and porosity of bone, thus promote skeletal fluorosis.
Collapse
Affiliation(s)
- Atul P Daiwile
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Prashant Tarale
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Saravanadevi Sivanesan
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India.
| | - Pravin K Naoghare
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Amit Bafana
- Director's Research Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow 226001, India
| | - Krishnamurthi Kannan
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| |
Collapse
|
28
|
Aghapour S, Bina B, Tarrahi MJ, Amiri F, Ebrahimi A. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:137. [PMID: 29441413 DOI: 10.1007/s10661-018-6467-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Fluoride (F) contamination in groundwater can be problematic to human health. This study evaluated the concentration of fluoride in groundwater resources of Isfahan Province, the central plateau of Iran, and its related health issues to the inhabitant populations. For this purpose, 573 drinking groundwater samples were analyzed in 2016 by using the spectrophotometric method. Non-carcinogenic health risks due to F exposure through consumption of drinking water were assessed using the US EPA method. In addition, the associated zoning maps of the obtained results were presented using geographic information system (GIS). The results indicated that F content in drinking water ranged from 0.02 to 2.8 mg/L. The F contents were less than 0.50 mg/L in 63% of the drinking groundwater samples, 0.51-1.5 mg/L in 33.15%, and higher than 1.5 mg/L in 3.85% (Iran and World Health Organization guidelines) of the drinking groundwater samples. The F levels in the west and the south groundwater resources of the study areas were lower than 0.5 mg/L, which is within the recommended values for controlling dental caries (0.50-1.0 mg/L). Therefore, these places require more attention and more research is needed to increase F intake for health benefit. The HQ index for children, teens and male and female adults had health hazards (HQ > 1) in 51, 17, 28, and 18 of samples, respectively. Groundwater resources having a risk of more than one were located in the counties of Nayin, Natanz, and Ardestan. So, in these areas, there are potential risks of dental fluorosis. The most vulnerable groups were children. The F levels must be reduced in this region to decrease endemic fluorosis.
Collapse
Affiliation(s)
- Saba Aghapour
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bijan Bina
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javad Tarrahi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Amiri
- Water Quality Manager, Isfahan Rural Water and Wastewater Co, Isfahan, Iran
| | - Afshin Ebrahimi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
29
|
Peicher K, Maalouf NM. Skeletal Fluorosis Due to Fluorocarbon Inhalation from an Air Dust Cleaner. Calcif Tissue Int 2017; 101:545-548. [PMID: 28725909 DOI: 10.1007/s00223-017-0305-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Skeletal fluorosis (SF) is an osteosclerotic metabolic bone disorder caused by excessive ingestion or inhalation of fluoride. SF is extremely rare in developed countries. We report a case of SF due to inhalational abuse from a fluoride-containing air dust cleaner. A 33-year-old man with no past medical history presented with progressively worsening low back pain for 2 years. Physical examination was notable for loss of lumbar lordosis and tenderness over the lumbar spine. Radiographs were notable for uniform generalized osteosclerosis in the long bones, entire spine, rib cage, and pelvic bones, and loss of the normal lumbar curvature. DXA scan showed Z-scores of +10.7 at the lumbar spine, +6.5 at the total hip, and +1.0 at the 1/3 radius. Laboratory studies were notable for elevated serum alkaline phosphatase (334 U/L, ref: 40-129 U/L) compared to a normal value 3 years prior, suggesting acquired osteosclerosis. Serum fluoride concentration returned elevated (2.8 mg/L, ref: 0.0-0.2 mg/L). Initially, the source of fluoride excess could not be identified. At a follow-up visit, he was found inhaling from a can of an air duster hidden in an inner pocket. He admitted "huffing" 2-7 cans weekly from a fluorocarbon-containing air dust cleaner for the past 3 years to achieve a euphoric feeling, explaining the source of his SF. Fluoride inhalation can be a potential source for SF, and should be suspected in patients with acquired osteosclerosis, as inhalant abuse is increasingly practiced in many countries.
Collapse
Affiliation(s)
- Katherine Peicher
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naim M Maalouf
- Division of Mineral Metabolism, Department of Internal of Medicine, and The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8885, USA.
| |
Collapse
|
30
|
Waugh DT, Godfrey M, Limeback H, Potter W. Black Tea Source, Production, and Consumption: Assessment of Health Risks of Fluoride Intake in New Zealand. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2017; 2017:5120504. [PMID: 28713433 PMCID: PMC5497633 DOI: 10.1155/2017/5120504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/25/2017] [Accepted: 05/18/2017] [Indexed: 02/03/2023]
Abstract
In countries with fluoridation of public water, it is imperative to determine other dietary sources of fluoride intake to reduce the public health risk of chronic exposure. New Zealand has one of the highest per capita consumption rates of black tea internationally and is one of the few countries to artificially fluoridate public water; yet no information is available to consumers on the fluoride levels in tea products. In this study, we determined the contribution of black tea as a source of dietary fluoride intake by measuring the fluoride content in 18 brands of commercially available products in New Zealand. Fluoride concentrations were measured by potentiometric method with a fluoride ion-selective electrode and the contribution of black tea to Adequate Intake (AI) and Tolerable Upper Intake Level (UL) was calculated for a range of consumption scenarios. We examined factors that influence the fluoride content in manufactured tea and tea infusions, as well as temporal changes in fluoride exposure from black tea. We review the international evidence regarding chronic fluoride intake and its association with chronic pain, arthritic disease, and musculoskeletal disorders and provide insights into possible association between fluoride intake and the high prevalence of these disorders in New Zealand.
Collapse
Affiliation(s)
- Declan T. Waugh
- EnviroManagement Services, 11 Riverview, Dohertys Rd, Bandon, Co. Cork P72 YF10, Ireland
| | - Michael Godfrey
- Bay of Plenty Environmental Health Clinic, 1416A Cameron Road, Tauranga 3012, New Zealand
| | - Hardy Limeback
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, Canada M5G 1G6
| | - William Potter
- Department of Chemistry and Biochemistry, KEH M2225, University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
31
|
Liu Y, Maguire A, Tianqui G, Yanguo S, Zohoori FV. Fluoride concentrations in a range of ready-to-drink beverages consumed in Heilongjiang Province, north-east China. Nutr Health 2017; 23:25-32. [PMID: 28032531 DOI: 10.1177/0260106016685726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Consumption of ready-to-drink beverages, as a potential source of fluoride (F), has increased considerably in China over the last decade. To help inform the public and policy makers, this study aimed to measure F concentration of ready-to-drink beverages on sale in Heilongjiang province, north east China. Three batches of 106 drink products manufactured by 26 companies were purchased from the main national supermarkets in Harbin, Heilongjiang province, China. The F concentration of all samples was determined, in triplicate, using a fluoride ion-selective electrode in conjunction with a meter and a direct method of analysis. The products were categorised into 10 groups according to product type. F concentrations of the samples ranged from 0.012-1.625 mg/l with a mean of 0.189 mg/l and a median of 0.076 mg/l. More than half of the products (55%) had an F concentration of ≤0.1 mg/l, while <5% had a F concentration of >0.7 mg/l. The 'tea with milk' group contained the highest mean F concentration (1.350 mg/l), whereas the lowest mean F concentration (0.027 mg/l) was found for the 'fruit juice' group. For some products, such as tea, fruit juice and carbonated beverages, there were substantial variations in F concentration between batches, manufacturers and production sites. In conclusion, ready-to-drink products (apart from tea), sold in Heilongjiang province, China, when consumed in moderation are unlikely to constitute a substantial risk factor for the development of dental or skeletal fluorosis.
Collapse
Affiliation(s)
- Ying Liu
- 1 Harbin University of Commerce, PR China
| | | | | | - Shi Yanguo
- 1 Harbin University of Commerce, PR China
| | | |
Collapse
|
32
|
Tucci JR, Whitford GM, McAlister WH, Novack D, Mumm S, Keaveny TM, Whyte MP. Skeletal Fluorosis Due To Inhalation Abuse of a Difluoroethane-Containing Computer Cleaner. J Bone Miner Res 2017; 32:188-195. [PMID: 27449958 PMCID: PMC5977397 DOI: 10.1002/jbmr.2923] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
Skeletal fluorosis (SF) is endemic in many countries and millions of people are affected worldwide, whereas in the United States SF is rare with occasional descriptions of unique cases. We report a 28-year-old American man who was healthy until 2 years earlier when he gradually experienced difficulty walking and an abnormal gait, left hip pain, loss of mobility in his right wrist and forearm, and progressive deformities including enlargement of the digits of both hands. Dual-energy X-ray absorptiometry (DXA) of his lumbar spine, femoral neck, total hip, and the one-third forearm revealed bone mineral density (BMD) Z-scores of +6.2, +4.8, +3.0, and -0.2, respectively. Serum, urine, and bone fluoride levels were all elevated and ultimately explained by chronic sniffing abuse of a computer cleaner containing 1,1-difluoroethane. Our findings reflect SF due to the unusual cause of inhalation abuse of difluoroethane. Because this practice seems widespread, particularly in the young, there may be many more such cases. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joseph R. Tucci
- Department of Medicine, Roger Williams Medical Center, Providence, RI, USA 02908; Boston University School of Medicine; Boston, MA, USA, 02118
| | - Gary M. Whitford
- Department of Oral Biology, School of Dental Medicine, George Regents University; Augusta, Georgia, USA, 30912
| | - William H. McAlister
- Department of Pediatric Radiology, Mallinckrodt Institute of Radiology at St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Deborah Novack
- Division of Bone and Mineral Diseases, Department of Internal Medicine, and Department of Pathology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA, 63110
| | - Steven Mumm
- Division of Bone and Mineral Diseases, Department of Internal Medicine, and Department of Pathology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA, 63110
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA, 63110
| | - Tony M. Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California; Berkeley, CA, USA, 94720
| | - Michael P. Whyte
- Division of Bone and Mineral Diseases, Department of Internal Medicine, and Department of Pathology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA, 63110
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA, 63110
| |
Collapse
|
33
|
Bronckers AL, Lyaruu DM. Magnesium, pH regulation and modulation by mouse ameloblasts exposed to fluoride. Bone 2017; 94:56-64. [PMID: 27744011 DOI: 10.1016/j.bone.2016.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022]
Abstract
Supraoptimal intake of fluoride (F) induces structural defects in forming enamel, dentin and bone and increases the risk of bone fractures. In comparison to bone and dentin is formation of enamel most sensitive to low levels of F and the degree of enamel fluorosis depends on the mouse strain. What molecular mechanism is responsible for these differences in sensitivity is unclear. Maturation ameloblasts transport bicarbonates into enamel in exchange for Cl- to buffer protons released by forming apatites. We proposed that F-enhanced mineral deposition releases excess of protons that will affect mineralization in forming enamel. In this study we tested the hypothesis that increased sensitivity to F is associated with a reduced capacity of ameloblasts to buffer acids. Quantified electron probe microanalysis showed that enamel of F-sensitive C57Bl mice contained the same levels of Cl- as enamel of F-resistant FVB mice. Enamel of C57Bl mice was less mineral dense, contained less Ca but more Mg and K. Ameloblast modulation was much more impaired than in FVB mice. In enamel of FVB mice the levels of Mg correlated negative with Ca (r=-0.57, p=0.01) and with the Ca/P molar ratio (r=-0.32, p=0.53). In moderate and high acidic enamel the correlations between Mg and Ca/P ratio were strong (r=-0.75, p=0.08) to very strong negative (r=-0.98, p=0.0020), respectively. Correlations in enamel between F and Ca were (weak) negative but between F and Ca/P very high positive (r=+0.95, p=0.003) in high acidic enamel and less positive (r=0.45, p=0.27) in moderate acidic fluorotic enamel (r=0.45, p=0.27). Similar correlations between Mg and Ca/P or F and Ca/P were found in dentin and bone of fluorotic and Cftr null mice. These data are consistent with the concept that Mg delays but F increases maturation of crystals particularly when enamel is acidic. The sensitivity of forming enamel to F likely is due to the sensitivity of pH cycling to acidification of enamel associated with F-induced release of protons.
Collapse
Affiliation(s)
- Antonius Ljj Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, The Netherlands.
| | - Donacian M Lyaruu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
34
|
|
35
|
Goschorska M, Gutowska I, Baranowska-Bosiacka I, Rać ME, Chlubek D. Fluoride Content in Alcoholic Drinks. Biol Trace Elem Res 2016; 171:468-471. [PMID: 26475300 PMCID: PMC4856716 DOI: 10.1007/s12011-015-0519-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/23/2015] [Indexed: 11/26/2022]
Abstract
The aim of the study was to determine the role of alcoholic drinks as a potential source of dietary fluoride by means of measuring fluoride levels in selected alcoholic drinks available on the Polish market that are also diverse in terms of the percentage content of ethanol. The study was conducted on 48 types of drinks with low, medium, and high alcohol content available on the Polish market and offered by various manufacturers, both Polish and foreign. Fluoride concentrations in individual samples were measured by potentiometric method with a fluoride ion-selective electrode. The highest fluoride levels were determined in the lowest percentage drinks (less than 10 % v/v ethanol), with the lowest fluoride levels observed in the highest percentage drinks (above 40 % v/v ethanol). In terms of types of alcoholic drinks, the highest fluoride levels were determined in beers and wines, while the lowest levels were observed in vodkas. These data confirm the fact that alcoholic beverages need to be considered as a significant source of fluoride delivered into the body.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry, Pomeranian Medical University, PowstańcówWlkp. av. 72, 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24 street, 71-460, Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University, PowstańcówWlkp. av. 72, 70-111, Szczecin, Poland
| | - Monika Ewa Rać
- Department of Biochemistry, Pomeranian Medical University, PowstańcówWlkp. av. 72, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry, Pomeranian Medical University, PowstańcówWlkp. av. 72, 70-111, Szczecin, Poland
| |
Collapse
|
36
|
McNeill FE, Mostafaei F, Pidruczny A, Chettle DR. Correlation between fluorine content in tea and bone assessed using neutron activation analysis in a Canadian urban population. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4749-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Young N, Newton J, Morris J, Morris J, Langford J, Iloya J, Edwards D, Makhani S, Verne J. Community water fluoridation and health outcomes in England: a cross-sectional study. Community Dent Oral Epidemiol 2015; 43:550-9. [DOI: 10.1111/cdoe.12180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/26/2015] [Indexed: 11/30/2022]
|
38
|
Yin XH, Huang GL, Lin DR, Wan CC, Wang YD, Song JK, Xu P. Exposure to fluoride in drinking water and hip fracture risk: a meta-analysis of observational studies. PLoS One 2015; 10:e0126488. [PMID: 26020536 PMCID: PMC4447426 DOI: 10.1371/journal.pone.0126488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 04/06/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Many observational studies have shown that exposure to fluoride in drinking water is associated with hip fracture risk. However, the findings are varied or even contradictory. In this work, we performed a meta-analysis to assess the relationship between fluoride exposure and hip fracture risk. METHODS PubMed and EMBASE databases were searched to identify relevant observational studies from the time of inception until March 2014 without restrictions. Data from the included studies were extracted and analyzed by two authors. Summary relative risks (RRs) with corresponding 95% confidence intervals (CIs) were pooled using random- or fixed-effects models as appropriate. Sensitivity analyses and meta-regression were conducted to explore possible explanations for heterogeneity. Finally, publication bias was assessed. RESULTS Fourteen observational studies involving thirteen cohort studies and one case-control study were included in the meta-analysis. Exposure to fluoride in drinking water does not significantly increase the incidence of hip fracture (RRs, 1.05; 95% CIs, 0.96-1.15). Sensitivity analyses based on adjustment for covariates, effect measure, country, sex, sample size, quality of Newcastle-Ottawa Scale scores, and follow-up period validated the strength of the results. Meta-regression showed that country, gender, quality of Newcastle-Ottawa Scale scores, adjustment for covariates and sample size were not sources of heterogeneity. Little evidence of publication bias was observed. CONCLUSION The present meta-analysis suggests that chronic fluoride exposure from drinking water does not significantly increase the risk of hip fracture. Given the potential confounding factors and exposure misclassification, further large-scale, high-quality studies are needed to evaluate the association between exposure to fluoride in drinking water and hip fracture risk.
Collapse
Affiliation(s)
- Xin-Hai Yin
- Department of Oral and Maxillary Surgery, Gui Zhou provincial people's hospital, Guiyang, Gui Zhou, PR China
| | - Guang-Lei Huang
- Department of Oral and Maxillary Surgery, Gui Zhou provincial people's hospital, Guiyang, Gui Zhou, PR China
| | - Du-Ren Lin
- Department of Oral and Maxillary Surgery, Gui Zhou provincial people's hospital, Guiyang, Gui Zhou, PR China
| | - Cheng-Cheng Wan
- Department of Oral and Maxillary Surgery, Gui Zhou provincial people's hospital, Guiyang, Gui Zhou, PR China
| | - Ya-Dong Wang
- Department of Oral and Maxillary Surgery, Gui Zhou provincial people's hospital, Guiyang, Gui Zhou, PR China
| | - Ju-Kun Song
- Department of Oral and Maxillary Surgery, Gui Zhou provincial people's hospital, Guiyang, Gui Zhou, PR China
- * E-mail:
| | - Ping Xu
- Department of Oral and Maxillary Surgery, Gui Zhou provincial people's hospital, Guiyang, Gui Zhou, PR China
| |
Collapse
|
39
|
O′Sullivan V, O′Connell BC. Water fluoridation, dentition status and bone health of older people in Ireland. Community Dent Oral Epidemiol 2014; 43:58-67. [DOI: 10.1111/cdoe.12130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 08/30/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Vincent O′Sullivan
- The Irish Longitudinal Study on Ageing; Trinity College Dublin; Dublin 2 Ireland
- Lancaster University Management School; Lancaster University; Lancaster UK
| | - Brian C. O′Connell
- Dublin Dental University Hospital; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
40
|
Indermitte E, Saava A, Karro E. Reducing exposure to high fluoride drinking water in Estonia-a countrywide study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:3132-42. [PMID: 24637908 PMCID: PMC3987025 DOI: 10.3390/ijerph110303132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 11/30/2022]
Abstract
Fluoride is a naturally occurring contaminant in groundwater in Estonia. There are several regions in Estonia with fluoride contents in public water supplies as high as 7 mg/L. Long-term exposure to high-fluoride drinking water may have several adverse health effects, primarily dental fluorosis. The opportunities for exposure reduction rely highly on water treatment technologies. Since 2004 public water suppliers in Estonia have made efforts to diminish fluoride content in drinking water systems. A follow-up study on a country level was carried out in 2004–2012 to analyze the changes in population exposure to excessive (over 1.5 mg/L) fluoride in drinking water and to get information about the reduction methods applied by public water supplies (PWS) to optimize the fluoride levels in public water system. The results showed that bigger PWS have been more effective in fluoride reduction measures than small PWS. The main methods used to lower the fluoride content were reverse osmosis technology and replacement of water sources with new ones (new drilled wells). As a result of all the measures taken the overall high-fluoride exposure has been reduced substantially (82%).
Collapse
Affiliation(s)
- Ene Indermitte
- Department of Public Health, University of Tartu, Ravila 19, Tartu 50411, Estonia.
| | - Astrid Saava
- Department of Public Health, University of Tartu, Ravila 19, Tartu 50411, Estonia.
| | - Enn Karro
- Department of Geology, University of Tartu, Ravila 14a, Tartu 50411, Estonia.
| |
Collapse
|
41
|
Näsman P, Ekstrand J, Granath F, Ekbom A, Fored CM. Estimated drinking water fluoride exposure and risk of hip fracture: a cohort study. J Dent Res 2013; 92:1029-34. [PMID: 24084670 DOI: 10.1177/0022034513506443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The cariostatic benefit from water fluoridation is indisputable, but the knowledge of possible adverse effects on bone and fracture risk due to fluoride exposure is ambiguous. The association between long-term (chronic) drinking water fluoride exposure and hip fracture (ICD-7-9: '820' and ICD-10: 'S72.0-S72.2') was assessed in Sweden using nationwide registers. All individuals born in Sweden between January 1, 1900 and December 31, 1919, alive and living in their municipality of birth at the time of start of follow-up, were eligible for this study. Information on the study population (n = 473,277) was linked among the Swedish National In-Patient Register (IPR), the Swedish Cause of Death Register, and the Register of Population and Population Changes. Estimated individual drinking water fluoride exposure was stratified into 4 categories: very low, < 0.3 mg/L; low, 0.3 to 0.69 mg/L; medium, 0.7 to 1.49 mg/L; and high, ≥ 1.5 mg/L. Overall, we found no association between chronic fluoride exposure and the occurrence of hip fracture. The risk estimates did not change in analyses restricted to only low-trauma osteoporotic hip fractures. Chronic fluoride exposure from drinking water does not seem to have any important effects on the risk of hip fracture, in the investigated exposure range.
Collapse
Affiliation(s)
- P Näsman
- Clinical Epidemiology Unit, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | | | | | | | | |
Collapse
|
42
|
Mostafaei F, McNeill FE, Chettle DR, Prestwich WV, Inskip M. Design of a phantom equivalent to measure bone-fluorine in a human's hand via delayed neutron activation analysis. Physiol Meas 2013; 34:503-12. [DOI: 10.1088/0967-3334/34/5/503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
WANG Z, YIN X. Comparison of the defluoridation efficiency of calcium phosphate and chitin in the exoskeleton of Antarctic krill. ACTA ACUST UNITED AC 2013. [DOI: 10.3724/sp.j.1085.2012.00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
|
45
|
Position of the Academy of Nutrition and Dietetics: the impact of fluoride on health. J Acad Nutr Diet 2012; 112:1443-1453. [PMID: 22939444 DOI: 10.1016/j.jand.2012.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Indexed: 11/22/2022]
Abstract
It is the position of the Academy of Nutrition and Dietetics to support optimal systemic and topical fluoride as an important public health measure to promote oral health and overall health throughout life. Fluoride is an important element in the mineralization of bone and teeth. The proper use of topical and systemic fluoride has resulted in major reductions in dental caries and its associated disability. Dental caries remains the most prevalent chronic disease in children and affects all age groups of the population. The Centers for Disease Control and Prevention has named fluoridation of water as one of the 10 most important public health measures of the 21st century. Currently, >72% of the US population that is served by community water systems benefits from water fluoridation. However, only 27 states provide fluoridated water to more than three quarters of the state's residents on public water systems. Fluoride also plays a role in bone health. However, at this time, use of high doses of fluoride for osteoporosis prevention is considered experimental only. Dietetics practitioners should routinely monitor and promote the use of fluorides for all age groups.
Collapse
|
46
|
Chamberlain M, Gräfe JL, Byun SH, Chettle DR, Egden LM, Orchard GM, Webber CE, McNeill FE. The feasibility ofin vivoquantification of bone-fluorine in humans by delayed neutron activation analysis: a pilot study. Physiol Meas 2012; 33:243-57. [DOI: 10.1088/0967-3334/33/2/243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Petrone P, Giordano M, Giustino S, Guarino FM. Enduring fluoride health hazard for the Vesuvius area population: the case of AD 79 Herculaneum. PLoS One 2011; 6:e21085. [PMID: 21698155 PMCID: PMC3116870 DOI: 10.1371/journal.pone.0021085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 05/19/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The study of ancient skeletal pathologies can be adopted as a key tool in assessing and tracing several diseases from past to present times. Skeletal fluorosis, a chronic metabolic bone and joint disease causing excessive ossification and joint ankylosis, has been only rarely considered in differential diagnoses of palaeopathological lesions. Even today its early stages are misdiagnosed in endemic areas. METHODOLOGY/PRINCIPAL FINDINGS Endemic fluorosis induced by high concentrations of fluoride in water and soils is a major health problem in several countries, particularly in volcanic areas. Here we describe for the first time the features of endemic fluorosis in the Herculaneum victims of the 79 AD eruption, resulting from long-term exposure to high levels of environmental fluoride which still occur today. CONCLUSIONS/SIGNIFICANCE Our observations on morphological, radiological, histological and chemical skeletal and dental features of this ancient population now suggest that in this area fluorosis was already endemic in Roman times. This evidence merged with currently available epidemiologic data reveal for the Vesuvius area population a permanent fluoride health hazard, whose public health and socio-economic impact is currently underestimated. The present guidelines for fluoridated tap water might be reconsidered accordingly, particularly around Mt Vesuvius and in other fluoride hazard areas with high natural fluoride levels.
Collapse
Affiliation(s)
- Pierpaolo Petrone
- Museo di Antropologia, Centro Musei delle Scienze Naturali, Università degli Studi di Napoli Federico II, Naples, Italy.
| | | | | | | |
Collapse
|
48
|
Jha SK, Mishra VK, Sharma DK, Damodaran T. Fluoride in the environment and its metabolism in humans. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 211:121-42. [PMID: 21287392 DOI: 10.1007/978-1-4419-8011-3_4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The presence of environmental fluoride and its impact on human health is well documented. When consumed in adequate quantity, fluoride prevents dental caries, assists in the formation of dental enamels, and prevents deficiencies in bone mineralization. At excessive exposure levels, ingestion of fluoride causes dental fluorosis skeletal fluorosis, and manifestations such as gastrointestinal, neurological, and urinary problems. The distribution of fluoride in the environment is uneven and largely is believed to derive from geogenic causes. The natural sources of fluoride are fluorite, fluorapatite, and cryolite, whereas anthropogenic sources include coal burning, oil refining, steel production, brick-making industries, and phosphatic fertilizer plants, among others. Among the various sources of fluoride in the environment, those of anthropogenic origin have occasionally been considered to be major ones. The gourndwater is more susceptible to fluoride accumulation and contamination than are other environmental media, primarily because of its contact with geological substrates underneath. The high fluoride concentration in water usually reflects the solubility of fluoride (CaF₂). High concentrations are also often associated with soft, alkaline, and calcium-deficient waters. The fluoride compounds that occur naturally in drinking water are almost totally bioavailable (90%) and are completely absorbed from the gastrointestinal tract. As a result, drinking water is considered to be the potential source of fluoride that causes fluorosis. Because the bioavailability of fluoride is generally reduced in humans when consumed with milk or a calcium-rich diet, it is highly recommended that the inhabitants of fluoride-contaminated areas should incorporate calcium-rich foods in their routine diet. Guidelines for limiting the fluoride intake from drinking water have been postulated by various authorities. Such limits are designed to protect public health and should reflect all fluoride intake sources, including dietary fluoride. The toxicological risks posed by fluoride could be better understood if epidemiological surveillance for dental and skeletal fluorosis would be systematically conducted in fluoride-affected areas. Such input would greatly improve understanding of the human dose-response relationship. Such surveillance of potentially high fluoride areas is also important because it would help to delineate, much earlier, the remedial measures that are appropriate for those areas.
Collapse
Affiliation(s)
- Sunil Kumar Jha
- Regional Research Station, Central Soil Salinity Research Institute, Jail Road, Lucknow, Uttar Pradesh, India.
| | | | | | | |
Collapse
|
49
|
Carleton SM, Whitford GM, Phillips CL. Dietary fluoride restriction does not alter femoral biomechanical strength in col1a2-deficient (oim) mice with type I collagen glomerulopathy. J Nutr 2010; 140:1752-6. [PMID: 20724489 DOI: 10.3945/jn.109.120261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous disease due primarily to mutations in the type I procollagen genes, COL1A1 and COL1A2, causing bone deformity and numerous lifetime fractures. OI murine (oim) model mice carry a mutation in the col1a2 gene causing aberrant production of homotrimeric type I collagen [α1(I)(3)], leading to bone fragility and glomerular accumulation of type I collagen. Previous studies demonstrated that heterozygous (+/oim) and homozygous (oim/oim) mice have elevated tibiae fluoride concentrations but reduced femoral biomechanics. However, it is unclear whether these 2 variables are causally related, because impaired renal function could reduce urinary fluoride excretion, thus elevating bone fluoride concentrations regardless of disease status. Our goal in this study was to determine whether dietary fluoride restriction would improve femoral biomechanics in oim mice. Wild-type, +/oim, and oim/oim mice were fed a control (5 mg/kg fluoride) or fluoride-restricted diet (0 mg/kg fluoride) for ∼13 wk, at which time plasma and femora were analyzed for fluoride concentrations and bone biomechanical properties. In wild-type, +/oim, and oim/oim mice, dietary fluoride restriction reduced femoral fluoride burden by 54-74%, respectively (P < 0.05), without affecting glomerular collagen deposition. Oim/oim mice fed the fluoride-restricted diet had reduced material tensile strength (P < 0.05) compared with oim/oim mice fed the control diet. However, dietary fluoride restriction did not affect stiffness or whole bone femoral breaking strength, regardless of genotype. These data suggest that oim mice have reduced bone strength due to homotrimeric type I collagen, independent of bone fluoride content.
Collapse
|
50
|
Chachra D, Limeback H, Willett TL, Grynpas MD. The long-term effects of water fluoridation on the human skeleton. J Dent Res 2010; 89:1219-23. [PMID: 20858781 DOI: 10.1177/0022034510376070] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Municipal water fluoridation has notably reduced the incidence of dental caries and is widely considered a public health success. However, ingested fluoride is sequestered into bone, as well as teeth, and data on the long-term effect of exposure to these very low doses of fluoride remain inconclusive. Epidemiological studies suggest that effects of fluoride on bone are minimal. We hypothesized that the direct measurement of bone tissue from individuals residing in municipalities with and without fluoridated water would reveal a relationship between fluoride content and structural or mechanical properties of bone. However, consonant with the epidemiological data, only a weak relationship among fluoride exposure, accumulated fluoride, and the physical characteristics of bone was observed. Analysis of our data suggests that the variability in heterogenous urban populations may be too high for the effects, if any, of low-level fluoride administration on skeletal tissue to be discerned.
Collapse
Affiliation(s)
- D Chachra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|