1
|
Lafage-Proust MH, Magne D. Biology of bone mineralization and ectopic calcifications: the same actors for different plays. Arch Pediatr 2024; 31:4S3-4S12. [PMID: 39343471 DOI: 10.1016/s0929-693x(24)00151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bone has several crucial functions. It is essential for locomotion and allows our body to stand erect against gravity. A mismatch between the mechanical stresses applied to it and its mechanical resistance leads to fractures. Bone also has numerous endocrine functions. It acts as a reservoir for minerals such as calcium and phosphorus, making it the target of calciotropic hormones that mobilize these minerals, particularly calcium, according to the body's needs. Additionally, bone secretes hormones, notably fibroblast growth factor 23 (FGF23), which regulates urinary excretion of phosphate and the bioavailability of active vitamin D. Bone mineralization is the process that facilitates the organized deposition of minerals in the bone matrix, providing rigidity and appropriate mechanical resistance. This process is compromised in genetically related bone mineralization disorders, such as those causing hypophosphatemia or hypophosphatasia. Conversely, calcification can be pathological, affecting soft tissues like the blood vessels, as seen in generalized arterial calcification of infancy (GACI) or arterial calcification due to CD73 deficiency (ACDC). The aim of this article is to first present the composition and structure of the mineralized bone matrix, to review the current understanding of the molecular mechanisms of mineralization, and finally to discuss the conditions associated with ectopic calcification and the underlying mechanisms.
Collapse
Affiliation(s)
| | - David Magne
- University of Lyon I; ICBMS, UMR CNRS 5246, F-69622, LYON, France.
| |
Collapse
|
2
|
Li Y, Chen L, Lin M, Wang C, Zhang R, Li Y, Zou Q. Micro-CT analysis of osteomyelitis of rabbit tibial for model establishment and biomaterials application in tissue engineering. Heliyon 2022; 8:e12471. [PMID: 36643303 PMCID: PMC9834739 DOI: 10.1016/j.heliyon.2022.e12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Osteomyelitis is one of the most difficult diseases to treat in orthopedics field. The construction of animal models of osteomyelitis is now more mature but still lacks a deeper criterion other than "successful infection". In this work, rabbit tibial osteomyelitis model with S. aureus infection was established. Whole tibia, cortical bone around bone window, and tibial condyle were characterized in considerable detail using micro-CT and other means at 2/4/6 weeks, respectively. The results show that in addition to the obvious inflammatory response and bone destruction, osteomyelitis caused some other effects on compact and cancellous bone, and in particular, changes in bone mineral density after infection were of interest. Although the modeling groups all exhibited osteolysis and bone loss, their overall bone mineral density averages and those of the control groups were mostly in the range of 870 mg/cm3 to 920 mg/cm3, without statistical difference. The results suggest that overall bone mineral density is determined by both bone destruction conditions and the amount of dead bone deposition. This work provides a reference basis for the selection of time points for the subsequent animal models establishment and some valuable reference indicators of the application of biomaterials in tissue engineering.
Collapse
Affiliation(s)
- Yufan Li
- Analytical and Testing Center, Nano Biomaterials Research Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Li Chen
- Analytical and Testing Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Mingyue Lin
- Analytical and Testing Center, Nano Biomaterials Research Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Chenxin Wang
- Analytical and Testing Center, Nano Biomaterials Research Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Rui Zhang
- Analytical and Testing Center, Nano Biomaterials Research Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yubao Li
- Analytical and Testing Center, Nano Biomaterials Research Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Qin Zou
- Analytical and Testing Center, Nano Biomaterials Research Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, Sichuan, 610064, China
| |
Collapse
|
3
|
Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery. Bioact Mater 2022; 14:152-168. [PMID: 35310351 PMCID: PMC8892166 DOI: 10.1016/j.bioactmat.2021.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
Barrier membranes are commonly used as part of the dental surgical technique guided bone regeneration (GBR) and are often made of resorbable collagen or non-resorbable materials such as PTFE. While collagen membranes do not provide sufficient mechanical protection of the covered bone defect, titanium reinforced membranes and non-resorbable membranes need to be removed in a second surgery. Thus, biodegradable GBR membranes made of pure magnesium might be an alternative. In this study a biodegradable pure magnesium (99.95%) membrane has been proven to have all of the necessary requirements for an optimal regenerative outcome from both a mechanical and biological perspective. After implantation, the magnesium membrane separates the regenerating bone from the overlying, faster proliferating soft tissue. During the initial healing period, the membrane maintained a barrier function and space provision, whilst retaining the positioning of the bone graft material within the defect space. As the magnesium metal corroded, it formed a salty corrosion layer and local gas cavities, both of which extended the functional lifespan of the membrane barrier capabilities. During the resorption of the magnesium metal and magnesium salts, it was observed that the membrane became surrounded and then replaced by new bone. After the membrane had completely resorbed, only healthy tissue remained. The in vivo performance study demonstrated that the magnesium membrane has a comparable healing response and tissue regeneration to that of a resorbable collagen membrane. Overall, the magnesium membrane demonstrated all of the ideal qualities for a barrier membrane used in GBR treatment. First report on a biodegradable metallic barrier membrane for use in oral surgery is presented. The mechanical stability of the metallic barrier membrane provides a careful shielding of the augmented bone defect. Full resorption of metallic barrier membrane and bone healing is completed long before current standards for second surgical patient treatment.
Collapse
|
4
|
Rux CJ, Vahidi G, Darabi A, Cox LM, Heveran CM. Perilacunar bone tissue exhibits sub-micrometer modulus gradation which depends on the recency of osteocyte bone formation in both young adult and early-old-age female C57Bl/6 mice. Bone 2022; 157:116327. [PMID: 35026452 PMCID: PMC8858864 DOI: 10.1016/j.bone.2022.116327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes resorb and replace bone local to the lacunar-canalicular system (LCS). However, whether osteocyte remodeling impacts bone quality adjacent to the LCS is not understood. Further, while aging is well-established to decrease osteocyte viability and truncate LCS geometry, it is unclear if aging also decreases perilacunar bone quality. To address these questions, we employed atomic force microscopy (AFM) to generate nanoscale-resolution modulus maps for cortical femur osteocyte lacunae from young (5-month) and early-old-age (22-month) female C57Bl/6 mice. AFM-mapped lacunae were also imaged with confocal laser scanning microscopy to determine which osteocytes recently deposited bone as determined by the presence of fluorochrome labels administered 2d and 8d before euthanasia. Modulus gradation with distance from the lacunar wall was compared for labeled (i.e., bone forming) and non-labeled lacunae in both young and aged mice. All mapped lacunae showed sub-microscale modulus gradation, with peak modulus values 200-400 nm from the lacunar wall. Perilacunar modulus gradations depended on the recency of osteocyte bone formation (i.e., the presence of labels). For both ages, 2d-labeled perilacunar bone had lower peak and bulk modulus compared to non-labeled perilacunar bone. Lacunar length reduced with age, but lacunar shape and size were not strong predictors of modulus gradation. Our findings demonstrate for the first time that osteocyte perilacunar remodeling impacts bone tissue modulus, one contributor to bone quality. Given the immense scale of the LCS, differences in perilacunar modulus resulting from osteocyte remodeling activity may affect the quality of a substantial amount of bone tissue.
Collapse
Affiliation(s)
- Caleb J Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America; UC Berkeley-UCSF Graduate Program in Bioengineering, United States of America
| | - Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Amir Darabi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Lewis M Cox
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
5
|
Groetsch A, Zysset PK, Varga P, Pacureanu A, Peyrin F, Wolfram U. An experimentally informed statistical elasto-plastic mineralised collagen fibre model at the micrometre and nanometre lengthscale. Sci Rep 2021; 11:15539. [PMID: 34330938 PMCID: PMC8324897 DOI: 10.1038/s41598-021-93505-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/23/2021] [Indexed: 11/08/2022] Open
Abstract
Bone is an intriguingly complex material. It combines high strength, toughness and lightweight via an elaborate hierarchical structure. This structure results from a biologically driven self-assembly and self-organisation, and leads to different deformation mechanisms along the length scales. Characterising multiscale bone mechanics is fundamental to better understand these mechanisms including changes due to bone-related diseases. It also guides us in the design of new bio-inspired materials. A key-gap in understanding bone's behaviour exists for its fundamental mechanical unit, the mineralised collagen fibre, a composite of organic collagen molecules and inorganic mineral nanocrystals. Here, we report an experimentally informed statistical elasto-plastic model to explain the fibre behaviour including the nanoscale interplay and load transfer with its main mechanical components. We utilise data from synchrotron nanoscale imaging, and combined micropillar compression and synchrotron X-ray scattering to develop the model. We see that a 10-15% micro- and nanomechanical heterogeneity in mechanical properties is essential to promote the ductile microscale behaviour preventing an abrupt overall failure even when individual fibrils have failed. We see that mineral particles take up 45% of strain compared to collagen molecules while interfibrillar shearing seems to enable the ductile post-yield behaviour. Our results suggest that a change in mineralisation and fibril-to-matrix interaction leads to different mechanical properties among mineralised tissues. Our model operates at crystalline-, molecular- and continuum-levels and sheds light on the micro- and nanoscale deformation of fibril-matrix reinforced composites.
Collapse
Affiliation(s)
- Alexander Groetsch
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| | | | - Françoise Peyrin
- Université de Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, UCBL Lyon 1, Creatis, Lyon, France
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
6
|
Pimentel A, Ureña-Torres P, Bover J, Luis Fernandez-Martín J, Cohen-Solal M. Bone Fragility Fractures in CKD Patients. Calcif Tissue Int 2021; 108:539-550. [PMID: 33219822 PMCID: PMC8052229 DOI: 10.1007/s00223-020-00779-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Chronic kidney diseases (CKD) are associated with mineral and bone diseases (MBD), including pain, bone loss, and fractures. Bone fragility related to CKD includes the risk factors observed in osteoporosis in addition to those related to CKD, resulting in a higher risk of mortality related to fractures. Unawareness of such complications led to a poor management of fractures and a lack of preventive approaches. The current guidelines of the Kidney Disease Improving Global Outcomes (KDIGO) recommend the assessment of bone mineral density if results will impact treatment decision. In addition to bone density, circulating biomarkers of mineral, serum bone turnover markers, and imaging techniques are currently available to evaluate the fracture risk. The purpose of this review is to provide an overview of the epidemiology and pathogenesis of CKD-associated bone loss. The contribution of the current tools and other techniques in development are discussed. We here propose a current view of how to better predict bone fragility and the therapeutic options in CKD.
Collapse
Affiliation(s)
| | - Pablo Ureña-Torres
- AURA Paris-Nord, Saint-Ouen, France
- Necker Hospital, University of Paris Descartes, Department of Renal Physiology, Paris, France
| | - Jordi Bover
- Fundació Puigvert, Universitat Autònoma, IIB Sant Pau, REDinREN, Nephrology Department, Barcelona, Catalonia, Spain
| | - Jose Luis Fernandez-Martín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), REDinREN del ISCIII, Hospital Universitario Central de Asturias. Universidad de Oviedo, Bone and Mineral Research Unit, Oviedo, Asturias, Spain
| | - Martine Cohen-Solal
- INSERM U1132 & Université de Paris, Hôpital Lariboisière, Department of Rheumatology, Paris, France.
| |
Collapse
|
7
|
Vahidi G, Rux C, Sherk VD, Heveran CM. Lacunar-canalicular bone remodeling: Impacts on bone quality and tools for assessment. Bone 2021; 143:115663. [PMID: 32987198 PMCID: PMC7769905 DOI: 10.1016/j.bone.2020.115663] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Osteocytes can resorb as well as replace bone adjacent to the expansive lacunar-canalicular system (LCS). Suppressed LCS remodeling decreases bone fracture toughness, but it is unclear how altered LCS remodeling impacts bone quality. The first goal of this review is to assess how LCS remodeling impacts LCS morphology as well as the composition and mechanical properties of surrounding bone tissue. The second goal is to compare tools available for the assessment of bone quality at length-scales that are physiologically-relevant to LCS remodeling. We find that changes to LCS morphology occur in response to a variety of physiological conditions and diseases and can be classified in two general phenotypes. In the 'aging phenotype', seen in aging and in some disuse models, the LCS is truncated and osteocytes apoptosis is increased. In the 'osteocytic osteolysis' phenotype, which is adaptive in some physiological settings and possibly maladaptive in others, the LCS enlarges and osteocytes generally maintain viability. Bone composition and mechanical properties vary near the osteocyte and change with at least some conditions that alter LCS morphology. However, few studies have evaluated bone composition and mechanical properties close to the LCS and so the impacts of LCS remodeling phenotypes on bone tissue quality are still undetermined. We summarize the current understanding of how LCS remodeling impacts LCS morphology, tissue-scale bone composition and mechanical properties, and whole-bone material properties. Tools are compared for assessing tissue-scale bone properties, as well as the resolution, advantages, and limitations of these techniques.
Collapse
Affiliation(s)
- G Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - C Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - V D Sherk
- Department of Orthopedics, University of Colorado Anschutz School of Medicine, United States of America
| | - C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
8
|
Akhter MP, Recker RR. High resolution imaging in bone tissue research-review. Bone 2021; 143:115620. [PMID: 32866682 DOI: 10.1016/j.bone.2020.115620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
This review article focuses on imaging of bone tissue to understand skeletal health with regards to bone quality. Skeletal fragility fractures are due to bone diseases such as osteoporosis which result in low bone mass and bone mineral density (BMD) leading to high risk of fragility fractures. Recent advances in imaging and analysis technologies have highly benefitted the field of biological sciences. In particular, their application in skeletal health has been of significant importance in understanding bone mechanical behavior (structure and properties) at the tissue level. While synchrotron based microCT technique has remained the gold standard for non-destructive evaluation of structure in material and biological sciences, several lab based microCT systems have been developed to provide high resolution imaging of specimens with greater access, and ease of use in laboratory settings. Lab based microCT scanners are widely used in the bone field as a standard tool to evaluate three-dimensional (3D) morphologies of bone structure at image resolutions appropriate for bone samples from small animals to bone biopsy specimens from humans. Both synchrotron and standard lab based microCT systems provide high resolution imaging ex vivo for a small sized specimen. A few X-ray based systems are also commercially available for in vivo scanning at relatively low image resolutions. Synchrotron-based CT microscopy is being used for various ultra-high-resolution image analyses using complex 3D software. However, the synchrotron-based CT technology is in high demand, allows only limited numbers of specimens, expensive, requires complex additional instrumentation, and is not easily available to researchers as it requires access to a synchrotron source which is always limited. Therefore, desktop laboratory scanners (microXCT, Zeiss/Xradia, Scanco, SkyScan. etc.), mimicking the synchrotron based CT technology or image resolution, have been developed to solve the accessibility issues. These lab based scanners have helped both material science, and the bone field to investigate bone tissue morphologies at submicron mage resolutions. Considerable progress has been made in both in vivo and ex vivo imaging towards providing high resolution images of bone tissue. Both clinical and research imaging technologies will continue to improve and help understand osteoporosis and other related skeletal issues in order to develop targeted treatments for bone fragility. This review summarizes the high resolution imaging work in bone research.
Collapse
Affiliation(s)
- M P Akhter
- Creighton University Osteoporosis Research Center, Omaha, NE, United States of America.
| | - R R Recker
- Creighton University Osteoporosis Research Center, Omaha, NE, United States of America
| |
Collapse
|
9
|
Lerebours C, Weinkamer R, Roschger A, Buenzli PR. Mineral density differences between femoral cortical bone and trabecular bone are not explained by turnover rate alone. Bone Rep 2020; 13:100731. [PMID: 33392366 PMCID: PMC7772649 DOI: 10.1016/j.bonr.2020.100731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/24/2022] Open
Abstract
Bone mineral density distributions (BMDDs) are a measurable property of bone tissues that depends strongly on bone remodelling and mineralisation processes. These processes can vary significantly in health and disease and across skeletal sites, so there is high interest in analysing these processes from experimental BMDDs. Here, we propose a rigorous hypothesis-testing approach based on a mathematical model of mineral heterogeneity in bone due to remodelling and mineralisation, to help explain differences observed between the BMDD of human femoral cortical bone and the BMDD of human trabecular bone. Recent BMDD measurements show that femoral cortical bone possesses a higher bone mineral density, but a similar mineral heterogeneity around the mean compared to trabecular bone. By combining this data with the mathematical model, we are able to test whether this difference in BMDD can be explained by (i) differences in turnover rate; (ii) differences in osteoclast resorption behaviour; and (iii) differences in mineralisation kinetics between the two bone types. We find that accounting only for differences in turnover rate is inconsistent with the fact that both BMDDs have a similar spread around the mean, and that accounting for differences in osteoclast resorption behaviour leads to biologically inconsistent bone remodelling patterns. We conclude that the kinetics of mineral accumulation in bone matrix must therefore be different in femoral cortical bone and trabecular bone. Although both cortical and trabecular bone are made up of lamellar bone, the different mineralisation kinetics in the two types of bone point towards more profound structural differences than usually assumed.
Collapse
Affiliation(s)
- Chloé Lerebours
- School of Mathematical Sciences, Monash University, Clayton, Australia
| | - Richard Weinkamer
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - Andreas Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany.,Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
10
|
Li Y, Zhang Y, Zhang X, Lu W, Liu X, Hu M, Wang D. Aucubin exerts anti-osteoporotic effects by promoting osteoblast differentiation. Aging (Albany NY) 2020; 12:2226-2245. [PMID: 32023550 PMCID: PMC7041723 DOI: 10.18632/aging.102742] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a metabolic disease characterized by reduced osteoblast differentiation and proliferation. Oxidative stress plays a role in the pathogenesis of osteoporosis. Aucubin (AU), an iridoid glycoside, was previously shown to promote osteoblast differentiation. We investigated the effects of AU on MG63 human osteoblast-like cells treated with dexamethasone (Dex) or hydrogen peroxide (H2O2) to induce oxidative damage. AU protected MG63 cells against apoptosis, and promoted increased expression of cytokines associated with osteoblast differentiation, including collagen I, osteocalcin (OCN), osteopontin (OPN), and osterix. In Dex- and H2O2-treated MG63 cells, AU also enhanced the expression of anti-oxidative stress-associated factors in the nuclear respiratory factor 2 signaling pathway, including superoxide dismutases 1 and 2, heme oxygenases 1 and 2, and catalase. In vivo, using a Dex-induced mouse model of osteoporosis, AU promoted increased cortical bone thickness, increased bone density, and tighter trabecular bone. Additionally, it stimulated an increase in the expression of collagen I, OCN, OPN, osterix, and phosphorylated Akt and Smads in bone tissue. Finally, AU stimulated the expression of cytokines associated with osteoblast differentiation in bone tissue and serum. Our data indicate AU may have therapeutic efficacy in osteoporosis.
Collapse
Affiliation(s)
- Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xinrui Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqian Lu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Cai X, Follet H, Peralta L, Gardegaront M, Farlay D, Gauthier R, Yu B, Gineyts E, Olivier C, Langer M, Gourrier A, Mitton D, Peyrin F, Grimal Q, Laugier P. Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Acta Biomater 2019; 90:254-266. [PMID: 30922952 DOI: 10.1016/j.actbio.2019.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
Abstract
The strong dependence between cortical bone elasticity at the millimetre-scale (mesoscale) and cortical porosity has been evidenced by previous studies. However, bone is an anisotropic composite material made by mineral, proteins and water assembled in a hierarchical structure. Whether the variations of structural and compositional properties of bone affect the different elastic coefficients at the mesoscale is not clear. Aiming to understand the relationships between bone elastic properties and compositions and microstructure, we applied state-of-the-art experimental modalities to assess these aspects of bone characteristics. All elastic coefficients (stiffness tensor of the transverse isotropic bone material), structure of the vascular pore network, collagen and mineral properties were measured in 52 specimens from the femoral diaphysis of 26 elderly donors. Statistical analyses and micromechanical modeling showed that vascular pore volume fraction and the degree of mineralization of bone are the most important determinants of cortical bone anisotropic mesoscopic elasticity. Though significant correlations were observed between collagen properties and elasticity, their effects in bone mesoscopic elasticity were minor in our data. This work also provides a unique set of data exhibiting a range of variations of compositional and microstructural cortical bone properties in the elderly and gives strong experimental evidence and basis for further development of biomechanical models for human cortical bone. STATEMENT OF SIGNIFICANCE: This study reports the relationships between microstructure, composition and the mesoscale anisotropic elastic properties of human femoral cortical bone in elderly. For the first time, we provide data covering the complete anisotropic elastic tensor, the microstructure of cortical vascular porosity, mineral and collagen characteristics obtained from the same or adjacent samples in each donor. The results revealed that cortical vascular porosity and degree of mineralization of bone are the most important determinants of bone anisotropic stiffness at the mesoscale. The presented data gives strong experimental evidence and basis for further development of biomechanical models for human cortical bone.
Collapse
|
12
|
Soltan N, Kawalilak CE, Cooper DM, Kontulainen SA, Johnston JD. Cortical porosity assessment in the distal radius: A comparison of HR-pQCT measures with Synchrotron-Radiation micro-CT-based measures. Bone 2019; 120:439-445. [PMID: 30553853 DOI: 10.1016/j.bone.2018.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To determine the agreement between cortical porosity derived from high resolution peripheral quantitative computed tomography (HR-pQCT) (via standard threshold, mean density and density inhomogeneity methods) and synchrotron radiation micro-CT (SR-μCT) derived porosity at the distal radius. METHODS We scanned 10 cadaveric radii (mean donor age: 79, SD 11 years) at the standard distal region using HR-pQCT and SR-μCT at voxel sizes of 82 μm and 17.7 μm, respectively. Common cortical regions were delineated for each specimen in both imaging modalities. HR-pQCT images were analyzed for cortical porosity using the following methods: Standard threshold, mean density, and density inhomogeneity (via recommended and optimized equations). We assessed agreement in porosity measures between HR-pQCT methods and SR-μCT by reporting predicted variance from linear regression and mean bias with limits of agreement (LOA). RESULTS The standard threshold and mean density methods predicted 85% and 89% of variance and indicated underestimation (mean bias -9.1%, LOA -15.9% to -2.2%) and overestimation (10.4%, 4.6% to 16.2%) of porosity, respectively. The density inhomogeneity method with recommended equation predicted 89% of variance and mean bias of 14.9% (-4.3 to 34.2) with systematic over-estimation of porosity in more porous specimens. The density inhomogeneity method with optimized equation predicted 91% of variance without bias (0.0%, -5.3 to 5.2). CONCLUSION HR-pQCT imaged porosity assessed with the density inhomogeneity method with optimized equation indicated the best agreement with SR-μCT derived porosity.
Collapse
Affiliation(s)
- Nikoo Soltan
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chantal E Kawalilak
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M Cooper
- Department of Anatomy & Cellular Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
13
|
Alyahya A, Alqareer A, Swain M. Microcomputed Tomography Calibration Using Polymers and Minerals for Enamel Mineral Content Quantitation. Med Princ Pract 2019; 28:247-255. [PMID: 30820021 PMCID: PMC6597939 DOI: 10.1159/000499186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of this paper was to develop calibration standards (CSs) that are readily available for clinical researchers for the quantitation of enamel mineral content. METHOD Polyethylene terephthalate (PET), acetal, polyphenylene sulfide (PPS), selenite, Egyptian alabaster, aragonite, and fluorite were fashioned into discs, and their densities were measured and stacked for microcomputed tomography examination. Frame averaging, flat-field correction, pre-filtration, and beam-hardening correction were applied. CSs were checked for homogeneity. The linear relationship between the mean greyscale value (GSV) of each disc and its physically calculated density was explored, and reproducibility was tested. A calibration function was established and then validated using a bovine enamel disc and sound enamel of extracted human premolar teeth. RESULTS Measured densities were PET (ρ = 1.38 g/cm3), acetal (ρ = 1.41 g/cm3), PPS (ρ = 1.64 g/cm3), selenite (ρ = 2.24 g/cm3), Egyptian alabaster (ρ = 2.7 g/cm3), aragonite (ρ = 2.72 g/cm3), and fluorite (ρ = 3.11 g/cm3). Examination of the profile sections of CSs confirmed the uniformity of GSVs with minimal beam-hardening effect. A squared Pearson correlation coefficient of R2 = 0.994 was determined between the mean GSV of each CS and its calculated density and was reproduced at different settings with R2 >0.99. A linear regression equation of density (y) versus GSV (x) was established using the least squares regression equation method. The estimated density of the bovine enamel disc (2.48 g/cm3) showed high accuracy when compared to the physically measured value (2.45 g/cm3). The -relative error was 1.2%. Densities of sound enamel in the extracted human premolar teeth were 2.6-3.1 g/cm3. CONCLUSIONS This is a simple, valid, and reproducible method to quantitate enamel mineral content. This simple, yet accurate system could be used to expand knowledge in the field of enamel caries research.
Collapse
Affiliation(s)
- Asma Alyahya
- Department of Developmental and Preventive Sciences, Faculty of Dentistry, Kuwait University, Safat, Kuwait,
| | - Athbi Alqareer
- Department of Developmental and Preventive Sciences, Faculty of Dentistry, Kuwait University, Safat, Kuwait
| | - Michael Swain
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Safat, Kuwait
- Don State Technical University, Rostov-on-Don, Russian Federation
| |
Collapse
|
14
|
Zhao X, Song HK, Wehrli FW. In vivo bone 31 P relaxation times and their implications on mineral quantification. Magn Reson Med 2018; 80:2514-2524. [PMID: 29744923 PMCID: PMC6226373 DOI: 10.1002/mrm.27230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/13/2018] [Accepted: 03/31/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE The intersubject variations in bone phosphorus-31 (31 P) T1 and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> , as well as the implications on in vivo 31 P MRI-based bone mineral quantification, were investigated at 3T field strength. METHODS A technique that isolates the bone signal from the composite in vivo 31 P spectrum was first evaluated via simulation and experiments ex vivo and subsequently applied to measure the T1 of bone 31 P collectively with a spectroscopic saturation recovery sequence in a group of healthy subjects aged 26 to 76 years. <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> was derived from the bone signal linewidth. The density of bone 31 P was derived for all subjects from 31 P zero TE images acquired in the same scan session using the measured relaxation times. Test-retest experiments were also performed to evaluate repeatability of this in vivo MRI-based bone mineral quantification protocol. RESULTS The T1 obtained in vivo using the proposed spectral separation method combined with saturation recovery sequence is 38.4 ± 1.5 s for the subjects studied. Average 31 P density found was 6.40 ± 0.58 mol/L (corresponding to 1072 ± 98 mg/cm3 mineral density), in good agreement with an earlier study in specimens from donors of similar age range. Neither the relaxation times (P = 0.18 for T1 , P = 0.99 for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> ) nor 31 P density (P = 0.55) were found to correlate with subject age. Average coefficients of variation for the repeat study were 1.5%, 2.6%, and 4.4% for bone 31 P T1 , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> , and density, respectively. CONCLUSION Neither 31 P T1 nor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> varies significantly in healthy adults across a 50-year age range, therefore obviating the need for subject-specific measurements.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Giuliani A, Mazzoni S, Ruggiu A, Canciani B, Cancedda R, Tavella S. High-Resolution X-Ray Tomography: A 3D Exploration Into the Skeletal Architecture in Mouse Models Submitted to Microgravity Constraints. Front Physiol 2018; 9:181. [PMID: 29593553 PMCID: PMC5859385 DOI: 10.3389/fphys.2018.00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Bone remodeling process consists in a slow building phase and in faster resorption with the objective to maintain a functional skeleton locomotion to counteract the Earth gravity. Thus, during spaceflights, the skeleton does not act against gravity, with a rapid decrease of bone mass and density, favoring bone fracture. Several studies approached the problem by imaging the bone architecture and density of cosmonauts returned by the different spaceflights. However, the weaknesses of the previously reported studies was two-fold: on the one hand the research suffered the small statistical sample size of almost all human spaceflight studies, on the other the results were not fully reliable, mainly due to the fact that the observed bone structures were small compared with the spatial resolution of the available imaging devices. The recent advances in high-resolution X-ray tomography have stimulated the study of weight-bearing skeletal sites by novel approaches, mainly based on the use of the mouse and its various strains as an animal model, and sometimes taking advantage of the synchrotron radiation support to approach studies of 3D bone architecture and mineralization degree mapping at different hierarchical levels. Here we report the first, to our knowledge, systematic review of the recent advances in studying the skeletal bone architecture by high-resolution X-ray tomography after submission of mice models to microgravity constrains.
Collapse
Affiliation(s)
- Alessandra Giuliani
- Sezione di Biochimica, Biologia e Fisica Applicata, Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Serena Mazzoni
- Sezione di Biochimica, Biologia e Fisica Applicata, Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Ruggiu
- Dipartimento di Medicina Sperimentale, Universita' di Genova and Ospedale Policlinico San Martino, Genova, Italy
| | - Barbara Canciani
- Dipartimento di Medicina Sperimentale, Universita' di Genova and Ospedale Policlinico San Martino, Genova, Italy
| | - Ranieri Cancedda
- Dipartimento di Medicina Sperimentale, Universita' di Genova and Ospedale Policlinico San Martino, Genova, Italy
| | - Sara Tavella
- Dipartimento di Medicina Sperimentale, Universita' di Genova and Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
16
|
Misof BM, Roschger P, Klaushofer K, Rauch F, Ma J, Mack DR, Ward LM. Increased bone matrix mineralization in treatment-naïve children with inflammatory bowel disease. Bone 2017; 105:50-56. [PMID: 28705682 DOI: 10.1016/j.bone.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) affects many organ systems including the skeleton. In children with IBD, bone mineral density (BMD) and bone turnover are frequently low. Disturbances in bone mineralization density distribution (BMDD) are linked to alterations in bone material strength; however, BMDD has not previously been reported in children with chronic inflammatory disorders. The aim of this study was to characterize BMDD based on quantitative backscatter electron imaging in cancellous (Cn.) and cortical (Ct.) compartments from trans-iliac biopsy samples from a cohort of 20 treatment-naïve children at the time of their IBD diagnosis (12 males, mean age 14.5±2.3years). The outcomes were compared to pediatric reference BMDD data and correlation with revisited biochemical and histomorphometric outcomes was analyzed. BMDD in treatment-naïve children with IBD was shifted toward higher calcium concentrations compared to reference: (i) In cancellous bone, the most frequent calcium concentration (Cn.CaPeak+2.8%, p=0.004) and the portion of highly mineralized bone (Cn.CaHigh+52%, p=0.009) were increased. (ii) In cortical bone, the mineralization heterogeneity (Ct.CaWidth+17.0%, p=0.001) and Ct.CaHigh (+30.4%, p=0.006) were increased. (iii) Furthermore, significant correlations with serum alkaline phosphatase (ALP), bone-specific alkaline phosphatase (bsALP), and urinary crosslinked N-telopeptide of type I collagen (uNTX) were observed: the higher CaMean (the average calcium concentration), CaPeak and CaHigh, the lower were ALP, bsALP, and uNTX (p-value from <0.001 to 0.05). Children with treatment-naïve IBD have decreased bone turnover leading to a higher bone matrix mineralization density, findings which may contribute to compromised bone strength.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann-Institute of Osteology at Hanusch-Hospital of WGKK & Trauma Centre Meidling of AUVA, 1st Medical Department, Hanusch-Hospital, Vienna, Austria.
| | - Paul Roschger
- Ludwig Boltzmann-Institute of Osteology at Hanusch-Hospital of WGKK & Trauma Centre Meidling of AUVA, 1st Medical Department, Hanusch-Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann-Institute of Osteology at Hanusch-Hospital of WGKK & Trauma Centre Meidling of AUVA, 1st Medical Department, Hanusch-Hospital, Vienna, Austria
| | - Frank Rauch
- Department of Pediatrics, McGill University, Shriners Hospital of Montréal, Montréal, Canada
| | - Jinhui Ma
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, Ontario, Canada; School of Epidemiology and Preventive Medicine, University of Ottawa, Ottawa, Canada
| | - David R Mack
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre, Ottawa, Ontario, Canada; Department of Paediatrics, University of Ottawa, Canada
| | - Leanne M Ward
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, Ontario, Canada; Department of Paediatrics, University of Ottawa, Canada
| |
Collapse
|
17
|
Pimentel A, Ureña-Torres P, Zillikens MC, Bover J, Cohen-Solal M. Fractures in patients with CKD—diagnosis, treatment, and prevention: a review by members of the European Calcified Tissue Society and the European Renal Association of Nephrology Dialysis and Transplantation. Kidney Int 2017; 92:1343-1355. [DOI: 10.1016/j.kint.2017.07.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 01/29/2023]
|
18
|
Jin A, Cobb J, Hansen U, Bhattacharya R, Reinhard C, Vo N, Atwood R, Li J, Karunaratne A, Wiles C, Abel R. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017; 6:602-609. [PMID: 29066534 PMCID: PMC5670367 DOI: 10.1302/2046-3758.610.bjr-2016-0321.r1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2vs 6.55/cm2vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1.
Collapse
Affiliation(s)
- A Jin
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - J Cobb
- Imperial College London, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - U Hansen
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - R Bhattacharya
- Musculoskeletal Sciences, Surgery and Cancer, Imperial College London, Charing Cross Hospital, 7L21, East Lab Block MSk Lab, Margravine Road, London W6 8RP, UK
| | - C Reinhard
- Diamond Light Source Ltd, Fermi Avenue, Didcot OX11 0DE, Oxfordshire, UK
| | - N Vo
- Diamond Light Source Ltd, Fermi Avenue, Didcot OX11 0DE, Oxfordshire, UK
| | - R Atwood
- Diamond Light Source Ltd, Fermi Avenue, Didcot OX11 0DE, Oxfordshire, UK
| | - J Li
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - A Karunaratne
- Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - C Wiles
- Musculoskeletal Sciences, Surgery and Cancer, Imperial College London, Charing Cross Hospital, 7L21, East Lab Block MSk Lab, Margravine Road, London W6 8RP, UK
| | - R Abel
- Musculoskeletal Sciences, Surgery and Cancer, Imperial College London, Charing Cross Hospital, 7L21, East Lab Block MSk Lab, Margravine Road, London W6 8RP, UK
| |
Collapse
|
19
|
The use of bone mineral density measured by dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed microtomography in chronic kidney disease. J Nephrol 2017; 30:635-643. [PMID: 28900872 DOI: 10.1007/s40620-017-0433-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
Chronic kidney disease (CKD) is a risk factor for fractures. The current evaluation of fracture risk is based upon the combination of various clinical factors and quantitative imaging of bone. X-ray-based tools were developed to evaluate bone status and predict fracture risk. Dual energy X-ray absorptiometry (DXA) is available worldwide. Longitudinal studies showed that low areal Bone Mineral Density (BMD) measured by DXA predicts fractures in the CKD population as it does in non uremic populations, with good specificity and moderate sensitivity. Peripheral quantitative computed tomography (pQCT) and high resolution pQCT are research tools which measure volumetric BMD at the tibia and radius. They are able to discriminate between the cortical and trabecular envelopes which are differentially affected by renal osteodystrophy. In CKD, a rapid thinning and increased porosity at the cortex is observed which is associated with increased the risk for fracture.
Collapse
|
20
|
Mashiatulla M, Ross RD, Sumner DR. Validation of cortical bone mineral density distribution using micro-computed tomography. Bone 2017; 99:53-61. [PMID: 28363808 PMCID: PMC5481667 DOI: 10.1016/j.bone.2017.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 01/06/2023]
Abstract
Changes in the bone mineral density distribution (BMDD), due to disease or drugs, can alter whole bone mechanical properties such as strength, stiffness and toughness. The methods currently available for assessing BMDD are destructive and two-dimensional. Micro-computed tomography (μCT) has been used extensively to quantify the three-dimensional geometry of bone and to measure the mean degree of mineralization, commonly called the tissue mineral density (TMD). The TMD measurement has been validated to ash density; however parameters describing the frequency distribution of TMD have not yet been validated. In the current study we tested the ability of μCT to estimate six BMDD parameters: mean, heterogeneity (assessed by the full-width-at-half-maximum (FWHM) and the coefficient of variation (CoV)), the upper and lower 5% cutoffs of the frequency distribution, and peak mineralization) in rat sized femoral cortical bone samples. We used backscatter scanning electron microscopy (bSEM) as the standard. Aluminum and hydroxyapatite phantoms were used to identify optimal scanner settings (70kVp, and 57μA, with a 1500ms integration time). When using hydroxyapatite samples that spanned a broad range of mineralization levels, high correlations were found between μCT and bSEM for all BMDD parameters (R2≥0.92, p<0.010). When using cortical bone samples from rats and various species machined to mimic rat cortical bone geometry, significant correlations between μCT and bSEM were found for mean mineralization (R2=0.65, p<0.001), peak mineralization (R2=0.61, p<0.001) the lower 5% cutoff (R2=0.62, p<0.001) and the upper 5% cutoff (R2=0.33, p=0.021), but not for heterogeneity, measured by FWHM (R2=0.05, p=0.412) and CoV (R2=0.04, p=0.469). Thus, while mean mineralization and most parameters used to characterize the BMDD can be assessed with μCT in rat sized cortical bone samples, caution should be used when reporting the heterogeneity.
Collapse
Affiliation(s)
- Maleeha Mashiatulla
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
BARUFFALDI FABIO, STOICO ROSSELLA, TASSANI SIMONE, MECOZZI LAURA, FALCIONI STEFANO, FERSINI CHIARA. VALIDATION OF A BONE MINERAL DENSITY CALIBRATION PROTOCOL FOR MICRO-COMPUTED TOMOGRAPHY. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417500154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Micro-computed tomography (micro-CT) is widely used for in vitro studies to characterize bone structure at the resolution of 10–100 microns. However, a densitometric calibration protocol is necessary to convert the X-ray attenuation coefficient provided by micro-CT in bone mineral density (BMD). The lastest one has an important role to improve the accuracy of subject-specific finite element models. This work presents a simple calibration protocol based on the use of solid hydroxyapatite phantoms with the correction of the beam hardening effect. The method was validated in comparison to ashing measures of cortical and trabecular human bone. In addition, bone samples tissue mineral density (TMD) was calculated with two different methods. The correlation between ash density and BMD was linear both for cortical ([Formula: see text]) and trabecular bone ([Formula: see text]). The analysis stratified by tissue type versus the pooled analysis confirmed the validity of a common linear model for both types of tissue ([Formula: see text]). Despite its simplicity, the correlation obtained in this work does not depend on the acquisition settings of the micro-CT. TMD was shown to be dependent on the tissue investigated, with values in the range of 1.15–1.21[Formula: see text]mg/mm3 for trabecular bone, and 1.19–1.29[Formula: see text]mg/mm3 for cortical bone. Results are of some interest for generating micro finite elements models.
Collapse
Affiliation(s)
- FABIO BARUFFALDI
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - ROSSELLA STOICO
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - SIMONE TASSANI
- Universitat Pompeu Fabra, Department of Informatics and Communication Technologies, Barcelona, Spain
| | - LAURA MECOZZI
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - STEFANO FALCIONI
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - CHIARA FERSINI
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
22
|
Wu Y, Zhou L, Bergot C, Peyrin F, Bousson V. Cortical Bone Mineralization in the Human Femoral Neck in Cases and Controls from Synchrotron Radiation Study. Cell Biochem Biophys 2017; 73:51-7. [PMID: 25663507 DOI: 10.1007/s12013-015-0572-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To compare the degree and distribution of mineralization in femoral neck cortex from 23 women with hip fractures (age 65-96 years) and 17 female controls (age 72-103 years), we obtained 3D data by synchrotron radiation microtomography (SRμCT). Variables were degree of mineralization of bone (DMB) in total cortex (cDMBSRMEAN), osteons (oDMBSRMEAN), and pure interstitial tissue (intDMBSRMEAN). The cortex on SRμCT images was divided into nine to twelve 50-μm zones from the periosteum to the endosteum; cDMBSRMEAN, oDMBSRMEAN, and intDMBSRMEAN were measured in each zone. We used descriptive statistics and t tests, general linear model analyses to compare DMBSR values across zones and individuals, one-way analysis of variance for within-group comparisons of zones. In patients, the variance of mineral content value was not different than in controls, but mean values of degree of mineralization varied across zones. These cross-sectional data suggest that bone fragility may be related to a greater heterogeneity of the distribution of mineralization in femoral neck cortex.
Collapse
Affiliation(s)
- Yan Wu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jian She Road, Zhengzhou, 450052, Henan, China. .,Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 10 avenue de Verdun, 75010, Paris, France.
| | - Liangqiang Zhou
- Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 10 avenue de Verdun, 75010, Paris, France.,Department of Medical Engineering, Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Catherine Bergot
- Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 10 avenue de Verdun, 75010, Paris, France
| | | | - Valérie Bousson
- Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 10 avenue de Verdun, 75010, Paris, France
| |
Collapse
|
23
|
Ostertag A, Peyrin F, Gouttenoire PJ, Laredo JD, DeVernejoul MC, Cohen Solal M, Chappard C. Multiscale and multimodality computed tomography for cortical bone analysis. Phys Med Biol 2016; 61:8553-8576. [PMID: 27845939 DOI: 10.1088/0031-9155/61/24/8553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In clinical studies, high resolution peripheral quantitative computed tomography (HR-pQCT) is used to separately evaluate cortical bone and trabecular bone with an isotropic voxel of 82 µm3, and typical cortical parameters are cortical density (D.comp), thickness (Ct.Th), and porosity (Ct.Po). In vitro, micro-computed tomography (micro-CT) is used to explore the internal cortical bone micro-structure with isotropic voxels and high resolution synchrotron radiation (SR); micro-CT is considered the 'gold standard'. In 16 tibias and 8 femurs, HR-pQCT measurements were compared to conventional micro-CT measurements. To test modality effects, conventional micro-CT measurements were compared to SR micro-CT measurements at 7.5 µm3; SR micro-CT measurements were also tested at different voxel sizes for the femurs, specifically, 7.5 µm3 versus 2.8 µm3. D.comp (r = -0.88, p < 10-3) was the parameter best correlated with porosity (Po.V/TV). The correlation was not affected by the removal of pores under 130 µm. Ct.Th was also significantly highly correlated (r = -0.89 p < 10-3), while Ct.Po was correlated with its counterpart Po.V/TV (r = 0.74, p < 10-3). From SR micro-CT and conventional micro-CT at 7.5 µm3 in matching areas, Po.V/TV and pore diameter were underestimated in conventional micro-CT with mean ± standard deviation (SD) biases of -2.5 ± 1.9% and -0.08 ± 0.08 mm, respectively. In contrast, pore number (Po.N) and pore separation (Po.Sp) were overestimated with mean ± SD biases of +0.03 ± 0.04 mm-1 and +0.02 ± 0.04 mm, respectively. The results from the tibia and femur were similar when the results of SR micro-CT at 7.5 µm3 and 2.8 µm3 were compared. Po.V/TV, specific surface of pores (Po.S/Po.V), and Po.N were underestimated with mean biases of -1.7 ± 0.9%, -4.6 ± 4.4 mm-1, and -0.26 ± 0.15 mm-1, respectively. In contrast, pore spacing was overestimated at 7.5 µm3 compared to 2.8 µm3 with mean biases of 0.05 ± 0.03 mm. Cortical bone measurements from HR-pQCT images provided consistent results compared to those obtained using conventional micro-CT at the distal tibia. D.comp was highly correlated to Po.V/TV because it considers both the micro-porosity (Haversian systems) and macro-porosity (resorption lacunae) of cortical bone. The complexity of canal organization, (including shape, connectivity, and surface) are not fully considered in conventional micro-CT in relation to beam hardening and cone beam reconstruction artifacts. With the exception of Po.V/TV measurements, morphological and topological measurements depend on the characteristics of the x-ray beam, and to a lesser extent, on image resolution.
Collapse
Affiliation(s)
- A Ostertag
- Bioscar U1132 Inserm-Paris Diderot University, Paris, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Pawson DJ, Glanzmann M, Luechinger R, Müller R, Stok KS. Quantitative morphometric patterns in cartilage and bone from the humeral heads of end-stage osteoarthritis patients. Osteoarthritis Cartilage 2015; 23:1377-87. [PMID: 25887368 DOI: 10.1016/j.joca.2015.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/14/2015] [Accepted: 04/02/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this work is to investigate in a quantitative manner, the gross and regional structural patterns in cartilage and bone from the humeral head of end-stage OA patients, with the goal of identifying patterns of disease. Since the prevalence of primary OA of the shoulder is increasing as the population ages and the non-traumatic degenerative changes leading to this disease are poorly understood, a site-specific morphometric analysis speaks to the structure-function remodelling relationship of the pathological anatomy. METHODS Humeral heads were harvested from twenty-one patients undergoing shoulder arthroplasty for end-stage primary OA. The samples were scanned with micro-computed tomography and magnetic resonance imaging (MRI), and registered to provide reconstructed 3D datasets of the cartilage, cortical and trabecular bone tissues. Gross visual examination of the datasets allowed samples to be classified as OA-like, osteoporosis (OP)-like or OA/OP-like. RESULTS Volumes of interest (VOI) separating the OA-like samples into five distinct regions showed positive correlations between bone and cartilage morphometric parameters; specifically in areas where more cartilage has been lost, the underlying subchondral cortical bone was more porous and thicker, while the subchondral trabecular bone was more dense, including more connections and trabeculae. These differences were site-specific, where the central humeral head saw the greatest destruction of cartilage and bone sclerosis, followed by the anterior aspects. CONCLUSION The ability to correlate bone and cartilage changes is valuable, as these structural cues may allow a more targeted diagnostic approach and a better classification of the disease, leading to improved therapies.
Collapse
Affiliation(s)
- D J Pawson
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | | | - R Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| | - R Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - K S Stok
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Synchrotron radiation techniques for nanotoxicology. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1531-49. [DOI: 10.1016/j.nano.2015.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/30/2015] [Accepted: 04/04/2015] [Indexed: 12/12/2022]
|
26
|
de Souza CG, Jorgetti V, Dos Reis LM, Croci AT. Histomorphometric analysis of the femoral neck in patients with and without femoral neck fracture. ACTA ORTOPEDICA BRASILEIRA 2015; 23:98-102. [PMID: 27069409 PMCID: PMC4813411 DOI: 10.1590/1413-78522015230201055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE: To determine, through bone histomorphometry in femoral neck, whether there are differences in the cancellous bone of the proximal femur from female patients over 60 years old who had femoral neck fracture and similar patients who did not have such fracture. METHODS: We analyzed the trabecular part of the femur of 13 female patients, aged over 60 years old, by the bone histomorphometry method. Seven of these patients had femoral neck fracture. All of them were subjected to hip arthroplasty. RESULTS: Bone densitometry showed no significant difference. There was no significant difference on the average thickness of the trabecular bone (124.38µm versus 147.09µm). The number of bone trabeculae was lower (1.52, versus 1.88) and the separation between them was larger (541,19µm versus 391,14µm) in the fracture group. CONCLUSION: A difference in histomorphometric parameters of cancellous bone of the femur neck was observed among patients who had fractures as compared to patients who had not. Level of Evidence II, Diagnostic Studies.
Collapse
Affiliation(s)
- Caio Gonçalves de Souza
- Universidade de São Paulo, Faculdade de Medina, Hospital das Clínicas, Department of Orthopedics and Traumatology, São Paulo, SP, Brazil, 1. Department of Orthopedics and Traumatology, Hospital das Clínicas da Faculdade de Medina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vanda Jorgetti
- Universidade de São Paulo, Faculdade de Medina, Laboratory of Medical Investigation, São Paulo, SP, Brazil, 2. Laboratory of Medical Investigation LIM 16, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luciene Machado Dos Reis
- Universidade de São Paulo, Faculdade de Medina, Laboratory of Medical Investigation, São Paulo, SP, Brazil, 2. Laboratory of Medical Investigation LIM 16, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alberto Tesconi Croci
- Universidade de São Paulo, Faculdade de Medina, Hospital das Clínicas, Department of Orthopedics and Traumatology, São Paulo, SP, Brazil, 1. Department of Orthopedics and Traumatology, Hospital das Clínicas da Faculdade de Medina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
27
|
Misof BM, Dempster DW, Zhou H, Roschger P, Fratzl-Zelman N, Fratzl P, Silverberg SJ, Shane E, Cohen A, Stein E, Nickolas TL, Recker RR, Lappe J, Bilezikian JP, Klaushofer K. Relationship of bone mineralization density distribution (BMDD) in cortical and cancellous bone within the iliac crest of healthy premenopausal women. Calcif Tissue Int 2014; 95:332-9. [PMID: 25134800 PMCID: PMC4464772 DOI: 10.1007/s00223-014-9901-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
Abstract
Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25-48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.Ca(Width)), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.Ca(Mean)). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.Ca(High)) and positively with the percentage of lowly mineralized bone areas (Ct.Ca(Low)). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD.
Collapse
Affiliation(s)
- B. M. Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - D. W. Dempster
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, NY, USA
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, NY, USA
| | - P. Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - N. Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - P. Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - S. J. Silverberg
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - E. Shane
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - A. Cohen
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - E. Stein
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - T. L. Nickolas
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - R. R. Recker
- Creighton University Osteoporosis Research Center, Omaha, NE, USA
| | - J. Lappe
- Creighton University Osteoporosis Research Center, Omaha, NE, USA
| | - J. P. Bilezikian
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| |
Collapse
|
28
|
Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the degree of mineralization with osteoporosis and its treatment. Curr Osteoporos Rep 2014; 12:338-50. [PMID: 24947951 DOI: 10.1007/s11914-014-0218-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The diagnosis of osteoporosis is based on low bone mineral density (BMD) and/or the occurrence of fragility fractures. The majority of patients, however, have also abnormally low bone matrix mineralization. The latter is indicative of alterations in bone turnover rates and/or in kinetics of mineral accumulation within the newly formed bone matrix. Osteoporosis therapies can alter the bone matrix mineralization according to their action on bone turnover and/or mineralization kinetics. Antiresorptives, including the most widely used bisphosphonates, reduce the bone turnover rate resulting in a decrease in heterogeneity and an increase in the degree of mineralization toward to or even beyond normal values. Anabolic agents increase the bone volume and the amount of newly formed bone resulting in a likely transient decrease in mean degree and homogeneity of mineralization. Hence, the measurement of bone matrix mineralization is a sensitive tool to evaluate the response to therapy.
Collapse
Affiliation(s)
- Paul Roschger
- 1st Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Heinrich Collin Str. 30, A-1140, Vienna, Austria,
| | | | | | | | | |
Collapse
|
29
|
Okazaki N, Chiba K, Taguchi K, Nango N, Kubota S, Ito M, Osaki M. Trabecular microfractures in the femoral head with osteoporosis: analysis of microcallus formations by synchrotron radiation micro CT. Bone 2014; 64:82-7. [PMID: 24705007 DOI: 10.1016/j.bone.2014.03.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/07/2014] [Accepted: 03/18/2014] [Indexed: 12/01/2022]
Abstract
Trabecular bone microfracture pathogenesis and associated healing processes are not well understood. We analyzed the microcalluses that form subsequent to microfractures in patients with osteoporosis (OP) using synchrotron radiation micro CT (SRCT). Subchondral bone columns were extracted from the femoral heads of 11 female patients with a femoral neck fracture. SRCT scanning was performed with 5.9×5.9×5.9 μm3 voxel size and the microcallus number was measured in a 5-mm cubic subchondral bone region. The trabecular bone microstructure was measured and its relationship to the microcallus number was analyzed. In addition, the degree of mineralization of the microcallus region and that of the rest of the trabecular bone were measured and compared. Microcallus formations were detected in all cases, with a mean microcallus number of 4.9 (range, 2-11). The microcallus number had a significantly negative correlation with bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and degree of mineralization, and had a positive correlation with specific bone surface (BS/BV). The degree of mineralization of the microcallus region was lower than that of the rest of the trabecular bone and had a wider range of values. Microcallus formations were frequently detected in patients with OP, and more prevalent in the bone with thinner trabeculae, suggesting microfractures might occur due to activities of daily living as the OP progresses. The degree of mineralization of microcallus might represent the process of bone healing from immature woven bone to mature trabecular bone.
Collapse
Affiliation(s)
- Narihiro Okazaki
- Department of Orthopaedic Surgery, Nagasaki University School of Medicine, Japan
| | - Ko Chiba
- Department of Orthopaedic Surgery, Nagasaki University School of Medicine, Japan.
| | - Kenji Taguchi
- Department of Orthopaedic Surgery, Nagasaki University School of Medicine, Japan
| | | | | | - Masako Ito
- Department of Radiology, Nagasaki University School of Medicine, Japan
| | - Makoto Osaki
- Department of Orthopaedic Surgery, Nagasaki University School of Medicine, Japan
| |
Collapse
|
30
|
Ross RD, Edwards LH, Acerbo AS, Ominsky MS, Virdi AS, Sena K, Miller LM, Sumner DR. Bone matrix quality after sclerostin antibody treatment. J Bone Miner Res 2014; 29:1597-607. [PMID: 24470143 DOI: 10.1002/jbmr.2188] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/10/2022]
Abstract
Sclerostin antibody (Scl-Ab) is a novel bone-forming agent that is currently undergoing preclinical and clinical testing. Scl-Ab treatment is known to dramatically increase bone mass, but little is known about the quality of the bone formed during treatment. In the current study, global mineralization of bone matrix in rats and nonhuman primates treated with vehicle or Scl-Ab was assayed by backscattered scanning electron microscopy (bSEM) to quantify the bone mineral density distribution (BMDD). Additionally, fluorochrome labeling allowed tissue age-specific measurements to be made in the primate model with Fourier-transform infrared microspectroscopy to determine the kinetics of mineralization, carbonate substitution, crystallinity, and collagen cross-linking. Despite up to 54% increases in the bone volume after Scl-Ab treatment, the mean global mineralization of trabecular and cortical bone was unaffected in both animal models investigated. However, there were two subtle changes in the BMDD after Scl-Ab treatment in the primate trabecular bone, including an increase in the number of pixels with a low mineralization value (Z5) and a decrease in the standard deviation of the distribution. Tissue age-specific measurements in the primate model showed that Scl-Ab treatment did not affect the mineral-to-matrix ratio, crystallinity, or collagen cross-linking in the endocortical, intracortical, or trabecular compartments. Scl-Ab treatment was associated with a nonsignificant trend toward accelerated mineralization intracortically and a nearly 10% increase in carbonate substitution for tissue older than 2 weeks in the trabecular compartment (p < 0.001). These findings suggest that Scl-Ab treatment does not negatively impact bone matrix quality.
Collapse
Affiliation(s)
- Ryan D Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ostertag A, Peyrin F, Fernandez S, Laredo JD, de Vernejoul MC, Chappard C. Cortical measurements of the tibia from high resolution peripheral quantitative computed tomography images: a comparison with synchrotron radiation micro-computed tomography. Bone 2014; 63:7-14. [PMID: 24582804 DOI: 10.1016/j.bone.2014.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
High resolution-peripheral quantitative computed tomography (HR-pQCT) measurements are carried out in clinical research protocols to analyze cortical bone. Micro-computed tomography (micro-CT) is a standard tool for ex vivo examination of bone in 3D. The aim of this work was to evaluate cortical measurements derived from HR-pQCT images compared to those from synchrotron radiation (SR) micro-CT in a distal position (4.2 cm from the distal pilon). Twenty-nine tibia specimens were scanned with HR-pQCT using protocols provided by the manufacturer. The standard measured outcomes included volumetric bone density (gHA/cm(3)) of the cortical region (Dcomp), and the cortical thickness (Ct.Th, mm). New features, such as cortical porosity (Ct.Po) and mean pore diameter (Ct.Po.Dm), were measured by an auto-contouring process. All tibias were harvested from the posterior region and imaged with SR micro-CT (voxel size=7.5 μm). The cortical thickness, (Ct.Thmicro-CT), porosity (PoV/TV), pore diameter, pore spacing, pore number, and degree of mineralization of bone (DMB) were obtained for SR micro-CT images. For standard measurements on HR-pQCT images, site matched analyses with micro-CT were completed to obtain Dcomplocal and Ct.Thlocal. Dcomp was highly correlated to PoV/TV (r=-0.84, p<10(-4)) but not to DMB. Dcomplocal was correlated to PoV/TV (r=-0.72, p<10(-4)) and to DMB (r=0.40, p>0.05). Ct.Thlocal and Ct.Thmicro-CT were moderately correlated (r=0.53, p<0.01). Ct.Th and Ct.Po results from the autocontouring process are influenced by the level of trabecularization of the cortical bone and need manual correction of the endosteal contour. Distal tibia is a reliable region to study cortical bone with Dcomp as the best parameter because it reflects both the micro-porosity (Havers canals) and macro-porosity (resorption lacunae) of the cortical bone.
Collapse
Affiliation(s)
- Agnès Ostertag
- INSERM 606 University Paris Diderot, PRES Sorbonne Paris Cité, 75010 Paris France
| | - Françoise Peyrin
- CREATIS, INSERM U1044, CNRS 5220, Université de Lyon, 69621 Villeurbanne Cedex, France; ESRF, X-ray Imaging Group, 38043 Grenoble Cedex, France
| | - Sylvie Fernandez
- INSERM 606 University Paris Diderot, PRES Sorbonne Paris Cité, 75010 Paris France
| | - Jean Denis Laredo
- B2OA, UMR CNRS7052, University Denis Diderot, PRES Sorbonne Paris Cité, 75010 Paris, France
| | | | - Christine Chappard
- B2OA, UMR CNRS7052, University Denis Diderot, PRES Sorbonne Paris Cité, 75010 Paris, France.
| |
Collapse
|
32
|
Hesse B, Langer M, Varga P, Pacureanu A, Dong P, Schrof S, Männicke N, Suhonen H, Olivier C, Maurer P, Kazakia GJ, Raum K, Peyrin F. Alterations of mass density and 3D osteocyte lacunar properties in bisphosphonate-related osteonecrotic human jaw bone, a synchrotron µCT study. PLoS One 2014; 9:e88481. [PMID: 24586331 PMCID: PMC3931622 DOI: 10.1371/journal.pone.0088481] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/08/2014] [Indexed: 11/26/2022] Open
Abstract
Osteonecrosis of the jaw, in association with bisphosphonates (BRONJ) used for treating osteoporosis or cancer, is a severe and most often irreversible side effect whose underlying pathophysiological mechanisms remain largely unknown. Osteocytes are involved in bone remodeling and mineralization where they orchestrate the delicate equilibrium between osteoclast and osteoblast activity and through the active process called osteocytic osteolysis. Here, we hypothesized that (i) changes of the mineralized tissue matrix play a substantial role in the pathogenesis of BRONJ, and (ii) the osteocyte lacunar morphology is altered in BRONJ. Synchrotron µCT with phase contrast is an appropriate tool for assessing both the 3D morphology of the osteocyte lacunae and the bone matrix mass density. Here, we used this technique to investigate the mass density distribution and 3D osteocyte lacunar properties at the sub-micrometer scale in human bone samples from the jaw, femur and tibia. First, we compared healthy human jaw bone to human tibia and femur in order to assess the specific differences and address potential explanations of why the jaw bone is exclusively targeted by the necrosis as a side effect of BP treatment. Second, we investigated the differences between BRONJ and control jaw bone samples to detect potential differences which could aid an improved understanding of the course of BRONJ. We found that the apparent mass density of jaw bone was significantly smaller compared to that of tibia, consistent with a higher bone turnover in the jaw bone. The variance of the lacunar volume distribution was significantly different depending on the anatomical site. The comparison between BRONJ and control jaw specimens revealed no significant increase in mineralization after BP. We found a significant decrease in osteocyte-lacunar density in the BRONJ group compared to the control jaw. Interestingly, the osteocyte-lacunar volume distribution was not altered after BP treatment.
Collapse
Affiliation(s)
- Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
- Berlin-Brandenburg School for Regenerative Therapies & Julius Wolff Institut, Charité, Universitätsmedizin Berlin, Germany
| | - Max Langer
- European Synchrotron Radiation Facility, Grenoble, France
- Université de Lyon, CREATIS, CNRS UMR5220, INSA-Lyon, Lyon, France
| | - Peter Varga
- Berlin-Brandenburg School for Regenerative Therapies & Julius Wolff Institut, Charité, Universitätsmedizin Berlin, Germany
| | - Alexandra Pacureanu
- European Synchrotron Radiation Facility, Grenoble, France
- Université de Lyon, CREATIS, CNRS UMR5220, INSA-Lyon, Lyon, France
- Centre for Image Analysis and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pei Dong
- European Synchrotron Radiation Facility, Grenoble, France
- Université de Lyon, CREATIS, CNRS UMR5220, INSA-Lyon, Lyon, France
| | - Susanne Schrof
- Berlin-Brandenburg School for Regenerative Therapies & Julius Wolff Institut, Charité, Universitätsmedizin Berlin, Germany
| | - Nils Männicke
- Berlin-Brandenburg School for Regenerative Therapies & Julius Wolff Institut, Charité, Universitätsmedizin Berlin, Germany
| | - Heikki Suhonen
- European Synchrotron Radiation Facility, Grenoble, France
| | - Cecile Olivier
- European Synchrotron Radiation Facility, Grenoble, France
- Université de Lyon, CREATIS, CNRS UMR5220, INSA-Lyon, Lyon, France
| | - Peter Maurer
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Klinikum Bremerhaven-Reinkenheide, Kiel, Germany
| | - Galateia J. Kazakia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies & Julius Wolff Institut, Charité, Universitätsmedizin Berlin, Germany
| | - Francoise Peyrin
- European Synchrotron Radiation Facility, Grenoble, France
- Université de Lyon, CREATIS, CNRS UMR5220, INSA-Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
33
|
Blanchard R, Dejaco A, Bongaers E, Hellmich C. Intravoxel bone micromechanics for microCT-based finite element simulations. J Biomech 2013; 46:2710-21. [DOI: 10.1016/j.jbiomech.2013.06.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 12/11/2022]
|
34
|
Jurgens WJFM, Kroeze RJ, Zandieh-Doulabi B, van Dijk A, Renders GAP, Smit TH, van Milligen FJ, Ritt MJPF, Helder MN. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores Open Access 2013; 2:315-25. [PMID: 23914338 PMCID: PMC3731690 DOI: 10.1089/biores.2013.0024] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regenerative therapies offer attractive alternatives for the treatment of osteochondral defects. Adipose-derived stromal vascular fraction (SVF) cells allow the development of one-step surgical procedures by their abundant availability and high frequency. In this pilot study we evaluated the in vivo safety, feasibility, and efficacy of this concept using scaffolds seeded with freshly isolated (SVF) or cultured adipose stem cells (ASCs), and compared these to their acellular counterparts. Osteochondral defects were created in medial condyles and trochlear grooves in knees of eight goats. Defects were filled with acellular collagen I/III scaffolds or scaffolds seeded with SVF cells or cultured ASCs. Osteochondral regeneration was evaluated after 1 and 4 months by macroscopy, immunohistochemistry, biomechanical analysis, microCT analysis, and biochemistry. After 1 month, no adverse effects were noted. Microscopic, but not macroscopic evaluation showed considerable yet not significant differences, with cell-loaded constructs showing more extensive regeneration. After 4 months, acellular constructs displayed increased regeneration, however, to a lesser degree than cell-treated constructs. The latter exhibited more extensive collagen type II, hyaline-like cartilage, and higher elastic moduli, and their glycosaminoglycan content in the cartilaginous layer better approached native tissue values. Moreover, their defect regions contained higher levels of regenerated, mature subchondral bone with more intense collagen type I staining. SVF cells tended to perform best on all parameters. In summary, this pilot study demonstrated the preclinical safety and feasibility of a one-step surgical procedure for osteochondral defect regeneration. Similar regeneration was found between freshly isolated SVF cells and cultured ASCs. Larger studies with longer follow-up are required to substantiate these findings.
Collapse
Affiliation(s)
- Wouter J F M Jurgens
- Department of Plastic, Reconstructive, & Hand Surgery, VU University Medical Center (VUmc), Amsterdam, The Netherlands . ; MOVE/Skeletal Tissue Engineering Group Amsterdam (STEGA) , Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Misof BM, Roschger P, Gabriel D, Paschalis EP, Eriksen EF, Recker RR, Gasser JA, Klaushofer K. Annual intravenous zoledronic acid for three years increased cancellous bone matrix mineralization beyond normal values in the HORIZON biopsy cohort. J Bone Miner Res 2013; 28:442-8. [PMID: 23044788 DOI: 10.1002/jbmr.1780] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/31/2012] [Accepted: 09/14/2012] [Indexed: 11/11/2022]
Abstract
The efficacy of 3 years of annual intravenous administration of zoledronic acid (ZOL) in reducing vertebral and nonvertebral fractures in postmenopausal osteoporosis has been shown by the HORIZON pivotal fracture trial. Histomorphometric analysis of transiliac bone biopsies from the HORIZON participants revealed significantly improved trabecular architecture and reduced bone remodeling for the ZOL-treated versus placebo-treated patients. The aim of our study was to evaluate the cancellous and cortical bone mineralization density distribution (BMDD) in these biopsies by quantitative backscattered electron imaging (qBEI). The study cohort comprised 82 patients on active treatment (ZOL, yearly doses of 5 mg) and 70 treated with placebo, and all received adequate Ca and VitD supplementation. Comparison of ZOL-treated versus placebo-treated cancellous (Cn.) and cortical (Ct.) BMDD-derived variables resulted in significantly higher average (Cn.CaMean + 3.2%, Ct.CaMean + 2.7%) and mode calcium concentrations (Cn.CaPeak + 2.1%, Ct.CaPeak + 1.5%), increased percentages of highly mineralized bone areas (Cn.CaHigh + 64%, Ct.CaHigh + 31%), lower heterogeneity of mineralization (Cn.CaWidth -14%, Ct.CaWidth -13%), and decreased percentages of low mineralized bone areas (Cn.CaLow -22%, Ct.CaLow -26%) versus placebo (all p < 0.001). Cn. BMDD from the patients on active treatment also revealed a statistically significant shift to higher Ca concentrations when compared to a historical normal reference BMDD. These differences in BMDD from ZOL patients compared to the other groups were in line with the correlation of BMDD variables with previously determined cancellous mineralizing surface per bone surface (Cn. MS/BS, a primary histomorphometric index for bone turnover), showing that those with lower Cn. MS/BS had a higher degree of bone matrix mineralization. However, the differences in BMDD variables between the study groups remained when adjusted for Cn. MS/BS, suggesting that other factors in addition to reduced bone turnover might contribute to the higher bone matrix mineralization after ZOL treatment.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen C, Li YF, Qu Y, Chai Z, Zhao Y. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem Soc Rev 2013; 42:8266-303. [DOI: 10.1039/c3cs60111k] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Chappard C. [Microarchitecture assessment of human trabecular bone: description of methods]. Med Sci (Paris) 2012; 28:1111-5. [PMID: 23290412 DOI: 10.1051/medsci/20122812022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trabecular bone microarchitecture changes in relation to mechanical stress, effects of age, osteoporosis and anti-osteoporotic drugs. In vivo, these anomalies can be evaluated using textural parameters on high resolution radiographs and images of DXA. It is possible to extract morphological and topological parameters: apparent on MRI images and 3D with a dedicated device called High resolution peripheral quantitative computed tomography (HR-pQCT) with a resolution close to the size of the trabeculae. In vitro, it is possible to obtain on bone samples a 2D analysis by histomorphometry and a 3D analysis from 10 µm images obtained by synchrotron radiation or conventional micro-CT.
Collapse
Affiliation(s)
- Christine Chappard
- Laboratoire de biomécanique et biomatériaux ostéo-articulaires (B2OA), UMR 7052 CNRS, Université Paris Diderot-PRES Sorbonne Paris Cité, 10, avenue de Verdun, 75010 Paris, France.
| |
Collapse
|
38
|
Langer M, Pacureanu A, Suhonen H, Grimal Q, Cloetens P, Peyrin F. X-ray phase nanotomography resolves the 3D human bone ultrastructure. PLoS One 2012; 7:e35691. [PMID: 22952569 PMCID: PMC3430646 DOI: 10.1371/journal.pone.0035691] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/21/2012] [Indexed: 11/22/2022] Open
Abstract
Bone strength and failure are increasingly thought to be due to ultrastructural properties, such as the morphology of the lacuno-canalicular network, the collagen fiber orientation and the mineralization on the nanoscale. However, these properties have not been studied in 3D so far. Here we report the investigation of the human bone ultrastructure with X-ray phase nanotomography, which now provides the required sensitivity, spatial resolution and field of view. The 3D organization of the lacuno-canalicular network is studied in detail over several cells in osteonal and interstitial tissue. Nanoscale density variations are revealed and show that the cement line separating these tissues is hypermineralized. Finally, we show that the collagen fibers are organized as a twisted plywood structure in 3D.
Collapse
Affiliation(s)
- Max Langer
- Creatis, Université de Lyon, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon, France.
| | | | | | | | | | | |
Collapse
|
39
|
van der Meulen MCH, Boskey AL. Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality. Arthritis Res Ther 2012; 14:220. [PMID: 22958475 PMCID: PMC3580578 DOI: 10.1186/ar4013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bisphosphonates are highly effective agents for reducing osteoporotic fractures in women and men, decreasing fracture incidence at the hip and spine up to 50%. In a small subset of patients, however, these agents have recently been associated with 'atypical femoral fractures' (AFFs) in the subtrochanteric region or the diaphysis. These fractures have several atypical characteristics, including occurrence with minimal trauma; younger age than typical osteoporotic fractures; occurrence at cortical, rather than cancellous sites; early radiographic appearance similar to that of a stress fracture; transverse fracture pattern rather than the familiar spiral or transverse-oblique morphologies; initiation on the lateral cortex; and high risk of fracture on the contralateral side, at the same location as the initial fracture. Fracture is a mechanical phenomenon that occurs when the loads applied to a structure such as a long bone exceed its load-bearing capacity, either due to a single catastrophic overload (traumatic failure) or as a result of accumulated damage and crack propagation at sub-failure loads (fatigue failure). The association of AFFs with no or minimal trauma suggests a fatigue-based mechanism that depends on cortical cross-sectional geometry and tissue material properties. In the case of AFFs, bisphosphonate treatment may alter cortical tissue properties, as these agents are known to alter bone remodeling. This review discusses the use of bisphosphonates, their effects on bone remodeling, mechanics and tissue composition, their significance as an effective therapy for osteoporosis, and why these agents may increase fracture risk in a small population of patients.
Collapse
|
40
|
Bazin D, Daudon M, Combes C, Rey C. Characterization and some physicochemical aspects of pathological microcalcifications. Chem Rev 2012; 112:5092-120. [PMID: 22809072 DOI: 10.1021/cr200068d] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D Bazin
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, 91405 Orsay, France.
| | | | | | | |
Collapse
|
41
|
Evaluation of rib microstructure in Wistar rats using SR-μCT after radiation therapy simulation for breast cancer. Appl Radiat Isot 2012; 70:1296-9. [DOI: 10.1016/j.apradiso.2012.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 01/04/2012] [Accepted: 02/16/2012] [Indexed: 11/19/2022]
|
42
|
Pacureanu A, Langer M, Boller E, Tafforeau P, Peyrin F. Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup. Med Phys 2012; 39:2229-38. [DOI: 10.1118/1.3697525] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
43
|
Fu Q, Huang W, Jia W, Rahaman MN, Liu X, Tomsia AP. Three-dimensional visualization of bioactive glass-bone integration in a rabbit tibia model using synchrotron X-ray microcomputed tomography. Tissue Eng Part A 2011; 17:3077-84. [PMID: 21875330 DOI: 10.1089/ten.tea.2011.0068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Synchrotron X-ray microcomputed tomography (SR microCT), with a micron resolution, was used to evaluate the osteoconduction and osteointegration by borate bioactive glass after implantation 12 weeks in a rabbit tibia model. The study focused on the biomaterial-bone interface. Results from SR microCT two-dimensional and three-dimensional (3D) reconstructions provided precise imaging of the biomaterial-bone integration and detailed microarchitecture of both the bone-like glass graft and the newly formed trabecular bone. Osteoconduction, the formation of new trabecular bone within a tibia defect, occurred only in the tibiae implanted with teicoplanin-loaded borate glass but not in those with teicoplanin-loaded CaSO(4) beads, indicating the excellent biocompatibility of the glass implants. 3D reconstruction of the tibiae also showed the infiltration of vascular tissue in both the bioactive glass graft and the new trabecular bone. This study indicates that SR microCT can serve as a valuable complementary technique for imaging bone repair when using bioactive glass implants.
Collapse
Affiliation(s)
- Qiang Fu
- Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res 2011; 469:2179-93. [PMID: 21344275 PMCID: PMC3126972 DOI: 10.1007/s11999-010-1766-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The role of bone structure, one component of bone quality, has emerged as a contributor to bone strength. The application of high-resolution imaging in evaluating bone structure has evolved from an in vitro technology for small specimens to an emerging clinical research tool for in vivo studies in humans. However, many technical and practical challenges remain to translate these techniques into established clinical outcomes. QUESTIONS/PURPOSES We reviewed use of high-resolution CT for evaluating trabecular microarchitecture and cortical ultrastructure of bone specimens ex vivo, extension of these techniques to in vivo human imaging studies, and recent studies involving application of high-resolution CT to characterize bone structure in the context of skeletal disease. METHODS We performed the literature review using PubMed and Google Scholar. Keywords included CT, MDCT, micro-CT, high-resolution peripheral CT, bone microarchitecture, and bone quality. RESULTS Specimens can be imaged by micro-CT at a resolution starting at 1 μm, but in vivo human imaging is restricted to a voxel size of 82 μm (with actual spatial resolution of ~ 130 μm) due to technical limitations and radiation dose considerations. Presently, this mode is limited to peripheral skeletal regions, such as the wrist and tibia. In contrast, multidetector CT can assess the central skeleton but incurs a higher radiation burden on the subject and provides lower resolution (200-500 μm). CONCLUSIONS CT currently provides quantitative measures of bone structure and may be used for estimating bone strength mathematically. The techniques may provide clinically relevant information by enhancing our understanding of fracture risk and establishing the efficacy of antifracture for osteoporosis and other bone metabolic disorders.
Collapse
Affiliation(s)
- Andrew J. Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| | - Thomas M. Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| |
Collapse
|
45
|
Hartmann MA, Dunlop JWC, Bréchet YJM, Fratzl P, Weinkamer R. Trabecular bone remodelling simulated by a stochastic exchange of discrete bone packets from the surface. J Mech Behav Biomed Mater 2011; 4:879-87. [PMID: 21616469 DOI: 10.1016/j.jmbbm.2011.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/22/2010] [Accepted: 03/01/2011] [Indexed: 11/18/2022]
Abstract
Human bone is constantly renewed through life via the process of bone remodelling, in which individual packets of bone are removed by osteoclasts and replaced by osteoblasts. Remodelling is mechanically controlled, where osteocytes embedded within the bone matrix are thought to act as mechanical sensors. In this computational work, a stochastic model for bone remodelling is used in which the renewal of bone material occurs by exchange of discrete bone packets. We tested different hypotheses of how the mechanical stimulus for bone remodelling is integrated by osteocytes and sent to actor cells on the bone's surface. A collective (summed) signal from multiple osteocytes as opposed to an individual (maximal) signal from a single osteocyte was found to lead to lower inner porosity and surface roughness of the simulated bone structure. This observation can be interpreted in that collective osteocyte signalling provides an effective surface tension to the remodelling process. Furthermore, the material heterogeneity due to remodelling was studied on a network of trabeculae. As the model is discrete, the age of individual bone packets can be monitored with time. The simulation results were compared with experimental data coming from quantitative back scattered electron imaging by transforming the information about the age of the bone packet into a mineral content. Discrepancies with experiments indicate that osteoclasts preferentially resorb low mineralized, i.e. young, bone at the bone's surface.
Collapse
Affiliation(s)
- M A Hartmann
- Institute of Physics, University of Leoben, Austria
| | | | | | | | | |
Collapse
|
46
|
Mineral heterogeneity affects predictions of intratrabecular stress and strain. J Biomech 2011; 44:402-7. [DOI: 10.1016/j.jbiomech.2010.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 11/21/2022]
|
47
|
3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation. Micron 2010; 41:990-6. [DOI: 10.1016/j.micron.2010.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 11/19/2022]
|
48
|
Li EK, Zhu TY, Hung VY, Kwok AW, Lee VW, Lee KK, Griffith JF, Li M, Wong KC, Leung PC, Qin L, Tam LS. Ibandronate increases cortical bone density in patients with systemic lupus erythematosus on long-term glucocorticoid. Arthritis Res Ther 2010; 12:R198. [PMID: 20964867 PMCID: PMC2991035 DOI: 10.1186/ar3170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/10/2010] [Accepted: 10/22/2010] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The purpose of this research is to assess the effects of oral ibandronate on bone microarchitecture by using high-resolution peripheral quantitative computed tomography (HR-pQCT) in patients with systemic lupus erythematosus (SLE) taking a long-term glucocorticoid. METHODS In this double-blind placebo-controlled study, 40 Chinese female SLE patients taking prednisolone were randomly assigned to receive either monthly oral ibandronate (150 mg) or placebo with daily 1-hydroxycholecalciferol (Alfacalcidol; 1 μg) and calcium supplement for 12 months. Assessments of bone microarchitecture by using HR-pQCT and area bone mineral density (aBMD) of the lumbar spine and hip with dual-energy x-ray absorptiometry (DXA) were performed at baseline and 12 months. RESULTS No differences in baseline characteristics were found between the two groups. After 12 months, no statistical differences were noted in any of the bone densities, microarchitectural parameters, or percentage changes of these parameters, as measured with HR-pQCT or DXA between the two groups. However, within the active group, the percentage improvement was significant in cortical bone density (P = 0.023) which was absent in the placebo group. Improvement was also seen in the aBMD of both the lumbar spine (P < 0.0001) and the hip (P < 0.005). In the placebo group, the percentage increase in trabecular separation was significant (P = 0.04), and the percentage improvement in aBMD in the spine also was significant (P = 0.049). CONCLUSIONS Oral ibandronate treatment improves microarchitecture in SLE patients taking long-term glucocorticoid assessed with HR-pQCT, and this new technology may have a role in assessing bony changes in future longitudinal studies in SLE patients. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00668330.
Collapse
Affiliation(s)
- Edmund K Li
- Department of Medicine, The Chinese University of Hong Kong, Prince Wales Hospital, 30-32 Ngan Shing Street, Sha Tin, NT, Hong Kong, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zou W, Hunter N, Swain MV. Application of polychromatic µCT for mineral density determination. J Dent Res 2010; 90:18-30. [PMID: 20858779 DOI: 10.1177/0022034510378429] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Accurate assessment of mineral density (MD) provides information critical to the understanding of mineralization processes of calcified tissues, including bones and teeth. High-resolution three-dimensional assessment of the MD of teeth has been demonstrated by relatively inaccessible synchrotron radiation microcomputed tomography (SRµCT). While conventional desktop µCT (CµCT) technology is widely available, polychromatic source and cone-shaped beam geometry confound MD assessment. Recently, considerable attention has been given to optimizing quantitative data from CµCT systems with polychromatic x-ray sources. In this review, we focus on the approaches that minimize inaccuracies arising from beam hardening, in particular, beam filtration during the scan, beam-hardening correction during reconstruction, and mineral density calibration. Filtration along with lowest possible source voltage results in a narrow and near-single-peak spectrum, favoring high contrast and minimal beam-hardening artifacts. More effective beam monochromatization approaches are described. We also examine the significance of beam-hardening correction in determining the accuracy of mineral density estimation. In addition, standards for the calibration of reconstructed grey-scale attenuation values against MD, including K(2)PHO(4) liquid phantom, and polymer-hydroxyapatite (HA) and solid hydroxyapatite (HA) phantoms, are discussed.
Collapse
Affiliation(s)
- W Zou
- Biomaterials Research Unit, Faculty of Dentistry, University of Sydney, Sydney Dental Hospital, 2 Chalmers Street, Surry Hills, NSW 2010, Australia
| | | | | |
Collapse
|
50
|
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 2010; 25:1468-86. [PMID: 20533309 DOI: 10.1002/jbmr.141] [Citation(s) in RCA: 3301] [Impact Index Per Article: 220.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Use of high-resolution micro-computed tomography (microCT) imaging to assess trabecular and cortical bone morphology has grown immensely. There are several commercially available microCT systems, each with different approaches to image acquisition, evaluation, and reporting of outcomes. This lack of consistency makes it difficult to interpret reported results and to compare findings across different studies. This article addresses this critical need for standardized terminology and consistent reporting of parameters related to image acquisition and analysis, and key outcome assessments, particularly with respect to ex vivo analysis of rodent specimens. Thus the guidelines herein provide recommendations regarding (1) standardized terminology and units, (2) information to be included in describing the methods for a given experiment, and (3) a minimal set of outcome variables that should be reported. Whereas the specific research objective will determine the experimental design, these guidelines are intended to ensure accurate and consistent reporting of microCT-derived bone morphometry and density measurements. In particular, the methods section for papers that present microCT-based outcomes must include details of the following scan aspects: (1) image acquisition, including the scanning medium, X-ray tube potential, and voxel size, as well as clear descriptions of the size and location of the volume of interest and the method used to delineate trabecular and cortical bone regions, and (2) image processing, including the algorithms used for image filtration and the approach used for image segmentation. Morphometric analyses should be based on 3D algorithms that do not rely on assumptions about the underlying structure whenever possible. When reporting microCT results, the minimal set of variables that should be used to describe trabecular bone morphometry includes bone volume fraction and trabecular number, thickness, and separation. The minimal set of variables that should be used to describe cortical bone morphometry includes total cross-sectional area, cortical bone area, cortical bone area fraction, and cortical thickness. Other variables also may be appropriate depending on the research question and technical quality of the scan. Standard nomenclature, outlined in this article, should be followed for reporting of results.
Collapse
Affiliation(s)
- Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|