1
|
Du X, Zhao M, Jiang L, Pang L, Wang J, Lv Y, Yao C, Wu R. A mini-review on gene delivery technique using nanoparticles-mediated photoporation induced by nanosecond pulsed laser. Drug Deliv 2024; 31:2306231. [PMID: 38245895 PMCID: PMC10802807 DOI: 10.1080/10717544.2024.2306231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Nanosecond pulsed laser induced photoporation has gained increasing attention from scholars as an effective method for delivering the membrane-impermeable extracellular materials into living cells. Compared with femtosecond laser, nanosecond laser has the advantage of high throughput and low costs. It also has a higher delivery efficiency than continuous wave laser. Here, we provide an extensive overview of current status of nanosecond pulsed laser induced photoporation, covering the photoporation mechanism as well as various factors that impact the delivery efficiency of photoporation. Additionally, we discuss various techniques for achieving photoporation, such as direct photoporation, nanoparticles-mediated photoporation and plasmonic substrates mediated photoporation. Among these techniques, nanoparticles-mediated photoporation is the most promising approach for potential clinical application. Studies have already been reported to safely destruct the vitreous opacities in vivo by nanosecond laser induced vapor nanobubble. Finally, we discuss the potential of nanosecond laser induced phototoporation for future clinical applications, particularly in the areas of skin and ophthalmic pathologies. We hope this review can inspire scientists to further improve nanosecond laser induced photoporation and facilitate its eventual clinical application.
Collapse
Affiliation(s)
- Xiaofan Du
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Meng Zhao
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Le Jiang
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Lihui Pang
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024; 18:1360870. [PMID: 38572073 PMCID: PMC10987880 DOI: 10.3389/fncel.2024.1360870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.
Collapse
Affiliation(s)
- Paul R. Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - James M. Begeng
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Tong
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
3
|
Illath K, Kar S, Shinde A, Ojha R, Iyer DR, Mahapatra NR, Nagai M, Santra TS. Microfluidic device-fabricated spiky nano-burflower shape gold nanomaterials facilitate large biomolecule delivery into cells using infrared light pulses. LAB ON A CHIP 2023; 23:4783-4803. [PMID: 37870396 DOI: 10.1039/d3lc00341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Photothermal nanoparticle-sensitised photoporation is an emerging approach, which is considered an efficient tool for the intracellular delivery of biomolecules. Nevertheless, using this method to achieve high transfection efficiency generally compromises cell viability and uneven distribution of nanoparticles results in non-uniform delivery. Here, we show that high aspect ratio gold nano-burflowers, synthesised in a microfluidic device, facilitate highly efficient small to very-large cargo delivery uniformly using infrared light pulses without sacrificing cell viability. By precisely controlling the flow rates of shaping reagent and reducing agent, high-density (24 numbers) sharply branched spikes (∼80 nm tip-to-tip length) of higher aspect ratios (∼6.5) with a small core diameter (∼45 nm) were synthesised. As produced gold burflower-shape nanoparticles are biocompatible, colloidally stable (large surface zeta potential value), and uniform in morphology with a higher plasmonic peak (max. 890 nm). Theoretical analysis revealed that spikes on the nanoparticles generate a higher electromagnetic field enhancement upon interaction with light pulses. It induces plasmonic nanobubbles in the vicinity of the cells, followed by pore formation on the membrane leading to diverse biomolecular delivery into cells. Our platform has been successfully implemented for uniform delivery of small to very large biomolecules, including siRNA (20-24 bp), plasmid DNA expressing green fluorescent protein (6.2 kbp), Cas-9 plasmid (9.3 kbp), and β-galactosidase enzyme (465 kDa) into diverse mammalian cells with high transfection efficiency and cell viability. For very large biomolecules such as enzymes, the best results were achieved as ∼100% transfection efficiency and ∼100% cell viability in SiHa cells. Together, our findings demonstrate that the spiky gold nano-burflower shape nanoparticles manufactured in a microfluidic system exhibited excellent plasmonic behaviour and could serve as an effective tool in manipulating cell physiology.
Collapse
Affiliation(s)
- Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, India
| | - Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Rajdeep Ojha
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | - Dhanya R Iyer
- Department of Biotechnology, Indian Institute of Technology Madras, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
4
|
Pedrosa TDL, Farooq S, de Araujo RE. Selecting High-Performance Gold Nanorods for Photothermal Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4188. [PMID: 36500811 PMCID: PMC9737450 DOI: 10.3390/nano12234188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
In this work, we establish a new paradigm on identifying optimal arbitrarily shaped metallic nanostructures for photothermal applications. Crucial thermo-optical parameters that rule plasmonic heating are appraised, exploring a nanoparticle size-dependence approach. Our results indicate two distinct figures of merit for the optimization of metallic nanoheaters, under both non-cumulative femtosecond and continuum laser excitation. As a case study, gold nanorods are evaluated for infrared photothermal conversion in water, and the influence of the particle length and diameter are depicted. For non-cumulative femtosecond pulses, efficient photothermal conversion is observed for gold nanorods of small volumes. For continuous wave (CW) excitation at 800 nm and 1064 nm, the optimal gold nanorod dimensions (in water) are, respectively, 90 × 25nm and 150 × 30 nm. Figure of Merit (FoM) variations up to 700% were found considering structures with the same peak wavelength. The effect of collective heating is also appraised. The designing of high-performance plasmonic nanoparticles, based on quantifying FoM, allows a rational use of nanoheaters for localized photothermal applications.
Collapse
Affiliation(s)
- Túlio de L. Pedrosa
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| | - Sajid Farooq
- Center for Lasers and Applications, Instituto de Pesquisas Energeticas e Nucleares, IPEN—CNEN, Sao Paulo 05508-000, Brazil
| | - Renato E. de Araujo
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| |
Collapse
|
5
|
Dominguez-Paredes D, Jahanshahi A, Kozielski KL. Translational considerations for the design of untethered nanomaterials in human neural stimulation. Brain Stimul 2021; 14:1285-1297. [PMID: 34375694 DOI: 10.1016/j.brs.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/03/2021] [Accepted: 08/01/2021] [Indexed: 12/18/2022] Open
Abstract
Neural stimulation is a powerful tool to study brain physiology and an effective treatment for many neurological disorders. Conventional interfaces use electrodes implanted in the brain. As these are often invasive and have limited spatial targeting, they carry a potential risk of side-effects. Smaller neural devices may overcome these obstacles, and as such, the field of nanoscale and remotely powered neural stimulation devices is growing. This review will report on current untethered, injectable nanomaterial technologies intended for neural stimulation, with a focus on material-tissue interface engineering. We will review nanomaterials capable of wireless neural stimulation, and discuss their stimulation mechanisms. Taking cues from more established nanomaterial fields (e.g., cancer theranostics, drug delivery), we will then discuss methods to modify material interfaces with passive and bioactive coatings. We will discuss methods of delivery to a desired brain region, particularly in the context of how delivery and localization are affected by surface modification. We will also consider each of these aspects of nanoscale neurostimulators with a focus on their prospects for translation to clinical use.
Collapse
Affiliation(s)
- David Dominguez-Paredes
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kristen L Kozielski
- Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany; Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Du X, Wang J, Chen L, Zhang Z, Yao C. Delivery of Foreign Materials into Adherent Cells by Gold Nanoparticle-Mediated Photoporation. MEMBRANES 2021; 11:550. [PMID: 34436313 PMCID: PMC8399729 DOI: 10.3390/membranes11080550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Delivering extracellular materials into adherent cells presents several challenges. A homemade photoporation platform, mediated by gold nanoparticles (AuNPs), was constructed to find a suitable method for finding all adherent cells in this process with high delivery efficiency. The thermal dynamics of AuNPs could be monitored. Based on this system, 60 nm AuNPs were selected to be attached to cells for optimal photoporation. After irradiating the cells covered with AuNPs using a nanosecond pulse laser, fluorescein isothiocyanate-dextran in the medium were delivered into optoporated adherent HeLa (human cervical cell lines) cells. The delivery efficiency and cell viability of this process were evaluated using a fluorescence microscope and flow cytometry. The experimental results showed that targeting cells using antibodies, laser irradiation from the top of the cell culture well, and reducing the cell medium are important for improving the delivery efficiency. The optimal loading efficiency for adherent HeLa cells was 53.4%.
Collapse
Affiliation(s)
| | | | | | | | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (X.D.); (J.W.); (L.C.); (Z.Z.)
| |
Collapse
|
7
|
Hasanzadeh Kafshgari M, Agiotis L, Largillière I, Patskovsky S, Meunier M. Antibody-Functionalized Gold Nanostar-Mediated On-Resonance Picosecond Laser Optoporation for Targeted Delivery of RNA Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007577. [PMID: 33783106 DOI: 10.1002/smll.202007577] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The rapid advances of genetic and genomic technology indicate promising therapeutic potential of genetic materials for regulating abnormal gene expressions causing diseases and disorders. However, targeted intracellular delivery of RNA therapeutics still remains a major challenge hindering the clinical translation. In this study, an elaborated plasmonic optoporation approach is proposed to efficiently and selectively transfect specific cells. The site-specific optoporation is obtained by tuning the spectral range of a supercontinuum pulsed picosecond laser in order for each individual cell binding gold nanostar with their unique resonance peak to magnify the local field strength in the near-infrared region and facilitate a selective delivery of small interfering RNA, messenger RNA, and Cas9-ribonucleoprotein into human retinal pigment epithelial cells. Numerical simulations indicate that optoporation is not due to a plasma-mediated process but rather due to a highly localized temperature rise both in time (few nanoseconds) and space (few nanometers). Taking advantage of the numerical simulation and fine-tuning of the optical strategy, the perforated lipid bilayer of targeted cells undergoes a membrane recovery process, important to retain their viability. The results signify the prospects of antibody functionalized nanostar-mediated optoporation as a simple and realistic gene delivery approach for future clinical practices.
Collapse
Affiliation(s)
| | - Leonidas Agiotis
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| | - Isabelle Largillière
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| | - Sergiy Patskovsky
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| | - Michel Meunier
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| |
Collapse
|
8
|
Daniel MG, Song J, Ali Safiabadi Tali S, Dai X, Zhou W. Sub-10 nm Nanolaminated Al 2O 3/HfO 2 Coatings for Long-Term Stability of Cu Plasmonic Nanodisks in Physiological Environments. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31952-31961. [PMID: 32544317 DOI: 10.1021/acsami.0c06941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By supporting localized plasmon modes, metal-based plasmonic nanostructures can confine optical fields at deep-subwavelength scale in various applications, such as biological and chemical sensing, nanoscale light emission, and solar energy harvesting. While Cu is a low-cost complementary metal oxide semiconductor (CMOS) compatible material, its poor chemical stability limits the use of Cu plasmonic nanodevices in corrosive biochemical aqueous environments. In this paper, we demonstrate that sub-10 nm Al2O3/HfO2 nanolaminated coatings can significantly extend the lifetime of Cu nanodisk arrays from ∼5 h to ∼180 days in the physiological environment of 1× phosphate-buffered saline (PBS) at 37 °C. Cu nanodisk arrays are fabricated using freestanding Au nanohole array films as the physical vapor deposition masks and sub-10 nm nanolaminated coatings composed of alternating Al2O3 and HfO2 nanolayers are grown on Cu nanodisk arrays by atomic layer deposition (ALD). Time-dependent optical extinction measurements of Cu nanodisk arrays are conducted in 1× solutions at 37 °C to investigate the anticorrosion performance for different pure and nanolaminated ALD coatings. We observe a linear relationship between the lifetime of Cu nanodisk arrays in 1× PBS at 37 °C and the nanolaminated coating thickness, and ∼1.3 nm nanolaminated coatings of ∼10 ALD cycles can extend the lifetime of Cu plasmonics up to ∼20 days. Furthermore, we find that the anticorrosion performance of Al2O3/HfO2 nanolaminated ALD coatings strongly depends on the processing and the geometric parameters, such as the annealing temperature and the nanolaminated backbone unit size.
Collapse
Affiliation(s)
| | - Junyeob Song
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Seied Ali Safiabadi Tali
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaochuan Dai
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Yao C, Rudnitzki F, He Y, Zhang Z, Hüttmann G, Rahmanzadeh R. Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods. JOURNAL OF BIOPHOTONICS 2020; 13:e202000017. [PMID: 32306554 DOI: 10.1002/jbio.202000017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The delivery of macromolecules into living cells is challenging since in most cases molecules are endocytosed and remain in the endo-lysosomal pathway where they are degraded before reaching their target. Here, a method is presented to selectively improve cell membrane permeability by nanosecond laser irradiation of gold nanorods (GNRs) with visible or near-infrared irradiation in order to deliver proteins across the plasma membrane, avoiding the endo lysosomal pathway. GNRs were labeled with the anti-EGFR (epidermal growth factor receptor) antibody Erbitux to target human ovarian carcinoma cells OVCAR-3. Irradiation with nanosecond laser pulses at wavelengths of 532 nm or 730 nm is used for transient permeabilization of the cell membranes. As a result of the irradiation, the uptake of an anti-Ki-67 antibody was observed in about 50 % of the cells. The results of fluorescence lifetime imaging show that the GNR detached from the membrane after irradiation.
Collapse
Affiliation(s)
- Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Institute of Biomedical Optics, University of lübeck, Lübeck, Germany
| | - Florian Rudnitzki
- Institute of Biomedical Optics, University of lübeck, Lübeck, Germany
| | - Yida He
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for lung Research (dZl), Kiel, Germany
| | | |
Collapse
|
10
|
Camacho SA, Kobal MB, Almeida AM, Toledo KA, Oliveira ON, Aoki PHB. Molecular-level effects on cell membrane models to explain the phototoxicity of gold shell-isolated nanoparticles to cancer cells. Colloids Surf B Biointerfaces 2020; 194:111189. [PMID: 32580142 DOI: 10.1016/j.colsurfb.2020.111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Metallic nanoparticles are promising agents for photothermal cancer therapy (PTT) owing to their photostability and efficient light-to-heat conversion, but their possible aggregation remains an issue. In this paper, we report on the photoinduced heating of gold shell-isolated nanoparticles (AuSHINs) in in vitro experiments to kill human oropharyngeal (HEp-2) and breast (BT-474 and MCF-7) carcinoma cells, with cell viability reducing below 50 % with 2.2 × 1012 AuSHINs/mL and 6 h of incubation. This toxicity to cancer cells is significantly higher than in previous works with gold nanoparticles. Considering the AuSHINs dimensions we hypothesize that cell uptake is not straightforward, and the mechanism of action involves accumulation on phospholipid membranes as the PTT target for photoinduced heating and subsequent generation of reactive oxygen species (ROS). Using Langmuir monolayers as simplified membrane models, we confirmed that AuSHINs have a larger effect on 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), believed to represent cancer cell membranes, than on 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) taken as representative of healthy eukaryotic cells. In particular, data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) revealed an increased conformational order of DOPS tails due to the stronger adsorption of AuSHINs. Furthermore, light irradiation reduced the stability of AuSHINs containing DOPC and DOPS monolayers owing to oxidative reactions triggered by ROS upon photoinduced heating. Compared to DOPC, DOPS lost nearly twice as much material to the subphase, which is consistent with a higher rate of ROS formation in the vicinity of the DOPS monolayer.
Collapse
Affiliation(s)
- Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil; São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Mirella B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Alexandre M Almeida
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil.
| |
Collapse
|
11
|
Schneckenburger H. Laser-assisted optoporation of cells and tissues - a mini-review. BIOMEDICAL OPTICS EXPRESS 2019; 10:2883-2888. [PMID: 31259058 PMCID: PMC6583334 DOI: 10.1364/boe.10.002883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/08/2023]
Abstract
Laser microbeam techniques are presented, which permit the introduction of molecules or small particles into living cells. Possible mechanisms - including photochemical, photothermal and opto-mechanical interactions (ablations) - are induced by continuous wave (cw) or pulsed lasers of different wavelength, power, and mode of operation. Laser-assisted optoporation permits the uptake of fluorescent dyes as well as DNA plasmids for cell transfection, and, in addition to its broad application to cultivated cells, may have some clinical potential.
Collapse
|
12
|
Doppenberg A, Meunier M, Boutopoulos C. A needle-like optofluidic probe enables targeted intracellular delivery by confining light-nanoparticle interaction on single cell. NANOSCALE 2018; 10:21871-21878. [PMID: 30457139 DOI: 10.1039/c8nr03895c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intracellular delivery of molecular cargo is the basis for a plethora of therapeutic applications, including gene therapy and cancer treatment. A very efficient method to perform intracellular delivery is the photo-activation of nanomaterials that have been previously directed to the cell vicinity and bear releasable molecular cargo. However, potential in vivo applications of this method are limited by our ability to deliver nanomaterials and light in tissue. Here, we demonstrate intracelullar delivery using a needle-like optofluidic probe capable of penetrating soft tissue. Firstly, we used the optofluidic probe to confine an intracellular delivery mixture, composed of 100 nm gold nanoparticles (AuNP) and membrane-impermeable calcein, in the vicinity of cancer cells. Secondly, we delivered nanosecond (ns) laser pulses (wavelength: 532 nm; duration: 5 ns) using the same probe and without introducing a AuNP cells incubation step. The AuNP photo-activation caused localized and reversible disruption of the cell membrane, enabling calcein delivery into the cytoplasm. We measured 67% intracellular delivery efficacy and showed that the optofluidic probe can be used to treat cells with single-cell precision. Finally, we demonstrated targeted delivery in tissue (mouse retinal explant) ex vivo. We expect that this method can enable nanomaterial-assisted intracellular delivery applications in soft tissue (e.g. brain, retina) of small animals.
Collapse
Affiliation(s)
- Andrew Doppenberg
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
13
|
Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng FG, Chang HY, Nagai M, Santra TS. Current Trends of Microfluidic Single-Cell Technologies. Int J Mol Sci 2018; 19:E3143. [PMID: 30322072 PMCID: PMC6213733 DOI: 10.3390/ijms19103143] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
The investigation of human disease mechanisms is difficult due to the heterogeneity in gene expression and the physiological state of cells in a given population. In comparison to bulk cell measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. In this review, we describe the recent advances in single-cell technologies and their applications in single-cell manipulation, diagnosis, and therapeutics development.
Collapse
Affiliation(s)
- Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Loganathan Mohan
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Amogh Kumar
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Anjali Maddi
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Alexander N Patananan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan.
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| |
Collapse
|
14
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
15
|
Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles. Sci Rep 2017; 7:10872. [PMID: 28883606 PMCID: PMC5589803 DOI: 10.1038/s41598-017-11491-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 01/30/2023] Open
Abstract
Photothermal Therapy (PTT) impact in cancer therapy has been increasing due to the enhanced photothermal capabilities of a new generation of nanoscale photothermal agents. Among these nanoscale agents, gold nanoshells and nanorods have demonstrated optimal properties for translation of near infra-red radiation into heat at the site of interest. However, smaller spherical gold nanoparticles (AuNPs) are easier to produce, less toxic and show improved photoconversion capability that may profit from the irradiation in the visible via standard surgical green lasers. Here we show the efficient light-to-heat conversion of spherical 14 nm AuNPs irradiated in the visible region (at the surface plasmons resonance peak) and its application to selectively obliterate cancer cells. Using breast cancer as model, we show a synergistic interaction between heat (photoconversion at 530 nm) and cytotoxic action by doxorubicin with clear advantages to those of the individual therapy approaches.
Collapse
|
16
|
Yao C, Rudnitzki F, Hüttmann G, Zhang Z, Rahmanzadeh R. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation. Int J Nanomedicine 2017; 12:5659-5672. [PMID: 28848345 PMCID: PMC5557627 DOI: 10.2147/ijn.s140620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs) attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. MATERIALS AND METHODS AuNPs (30 nm) were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell-AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate-dextran uptake. RESULTS Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. CONCLUSION Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium, and cell-AuNP incubation time.
Collapse
Affiliation(s)
- Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Biomedical Optics, University of Lübeck, Lübeck
| | | | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | |
Collapse
|
17
|
Bucharskaya A, Maslyakova G, Terentyuk G, Yakunin A, Avetisyan Y, Bibikova O, Tuchina E, Khlebtsov B, Khlebtsov N, Tuchin V. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles. Int J Mol Sci 2016; 17:E1295. [PMID: 27517913 PMCID: PMC5000692 DOI: 10.3390/ijms17081295] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 01/24/2023] Open
Abstract
Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells.
Collapse
Affiliation(s)
- Alla Bucharskaya
- Research Institute for Fundamental and Clinical Uronephrology, Saratov State Medical University, n.a. V.I. Razumovsky, 410012 Saratov, Russia.
| | - Galina Maslyakova
- Research Institute for Fundamental and Clinical Uronephrology, Saratov State Medical University, n.a. V.I. Razumovsky, 410012 Saratov, Russia.
| | - Georgy Terentyuk
- Research Institute for Fundamental and Clinical Uronephrology, Saratov State Medical University, n.a. V.I. Razumovsky, 410012 Saratov, Russia.
- Research-Education Institute of Optics and Biophotonics, Saratov National Research State University, 410012 Saratov, Russia.
| | - Alexander Yakunin
- Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia.
| | - Yuri Avetisyan
- Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia.
| | - Olga Bibikova
- Research-Education Institute of Optics and Biophotonics, Saratov National Research State University, 410012 Saratov, Russia.
- Artphotonics GmbH, 12489 Berlin, Germany.
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90014 Oulu, Finland.
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany.
| | - Elena Tuchina
- Department of Biology, Saratov National Research State University, 410012 Saratov, Russia.
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 410049 Saratov, Russia.
- Department of Nano- and Biomedical Technologies, Saratov National Research State University, 410012 Saratov, Russia.
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 410049 Saratov, Russia.
- Department of Nano- and Biomedical Technologies, Saratov National Research State University, 410012 Saratov, Russia.
| | - Valery Tuchin
- Research-Education Institute of Optics and Biophotonics, Saratov National Research State University, 410012 Saratov, Russia.
- Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia.
- Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050 Tomsk, Russia.
| |
Collapse
|
18
|
Rau LR, Huang WY, Liaw JW, Tsai SW. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells. Int J Nanomedicine 2016; 11:3461-73. [PMID: 27555768 PMCID: PMC4968862 DOI: 10.2147/ijn.s108152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period.
Collapse
Affiliation(s)
- Lih-Rou Rau
- Graduate Institute of Biochemical and Biomedical Engineering
| | - Wan-Yu Huang
- Graduate Institute of Biochemical and Biomedical Engineering
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering; Center for Biomedical Engineering, Chang Gung University; Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan; Center for Advanced Molecular Imaging and Translation
| | - Shiao-Wen Tsai
- Graduate Institute of Biochemical and Biomedical Engineering; Center for Biomedical Engineering, Chang Gung University; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan, Republic of China
| |
Collapse
|
19
|
Krawinkel J, Torres-Mapa ML, Werelius K, Heisterkamp A, Rüttermann S, Romanos GE, Gerhardt-Szép S. Gold Nanoparticle-Mediated Delivery of Molecules into Primary Human Gingival Fibroblasts Using ns-Laser Pulses: A Pilot Study. MATERIALS 2016; 9:ma9050397. [PMID: 28773519 PMCID: PMC5503001 DOI: 10.3390/ma9050397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022]
Abstract
Interaction of gold nanoparticles (AuNPs) in the vicinity of cells’ membrane with a pulsed laser (λ = 532 nm, τ = 1 ns) leads to perforation of the cell membrane, thereby allowing extracellular molecules to diffuse into the cell. The objective of this study was to develop an experimental setting to deliver molecules into primary human gingival fibroblasts (pHFIB-G) by using ns-laser pulses interacting with AuNPs (study group). To compare the parameters required for manipulation of pHFIB-G with those needed for cell lines, a canine pleomorphic adenoma cell line (ZMTH3) was used (control group). Non-laser-treated cells incubated with AuNPs and the delivery molecules served as negative control. Laser irradiation (up to 35 mJ/cm2) resulted in a significant proportion of manipulated fibroblasts (up to 85%, compared to non-irradiated cells: p < 0.05), while cell viability (97%) was not reduced significantly. pHFIB-G were perforated as efficiently as ZMTH3. No significant decrease of metabolic cell activity was observed up to 72 h after laser treatment. The fibroblasts took up dextrans with molecular weights up to 500 kDa. Interaction of AuNPs and a pulsed laser beam yields a spatially selective technique for manipulation of even primary cells such as pHFIB-G in high throughput.
Collapse
Affiliation(s)
- Judith Krawinkel
- Institute of Applied Optics, Friedrich-Schiller-University Jena, Fröbelstieg 1, Jena 07743, Germany.
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, Hannover 30167, Germany.
| | - Kristian Werelius
- Department of Postgraduate Education, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany.
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, Hannover 30167, Germany.
| | - Stefan Rüttermann
- Department of Operative Dentistry, Carolinum Dental University-Institute GmbH, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany.
| | - Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
- Department of Oral Surgery and Implant Dentistry, Carolinum Dental University-Institute GmbH, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany.
| | - Susanne Gerhardt-Szép
- Department of Operative Dentistry, Carolinum Dental University-Institute GmbH, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany.
| |
Collapse
|
20
|
Bergeron E, Boutopoulos C, Martel R, Torres A, Rodriguez C, Niskanen J, Lebrun JJ, Winnik FM, Sapieha P, Meunier M. Cell-specific optoporation with near-infrared ultrafast laser and functionalized gold nanoparticles. NANOSCALE 2015; 7:17836-47. [PMID: 26459958 DOI: 10.1039/c5nr05650k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm(2) and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44(+) MDA-MB-231 and CD44(+) ARPE-19 cells than to non-targeted CD44(-) 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm(-2) at 250 Hz or 60-80 mJ cm(-2) at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions.
Collapse
Affiliation(s)
- Eric Bergeron
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montreal, QC H3C 3A7, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yakunin AN, Avetisyan YA, Tuchin VV. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051030. [PMID: 25629389 DOI: 10.1117/1.jbo.20.5.051030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
This paper discusses one of the key problems of laser-induced tissue/cell hyperthermia mediated by gold nanoparticles, namely, quantifying and precise prediction of the light exposure to provide a controllable local heating impact on living organisms. The distributions of such parameters as an efficiency factor of absorption, differential and integral absorbing power of a nanoparticle, temperature increment, and Arrhenius damage integral were used to quantify nanoparticle effectiveness in the two-dimensional coordinate space “laser wavelength (λ) × radius of gold nanoparticles (R).” It was found that the fulfillment of required spatial and temporal characteristics of temperature fields in the vicinity of nanoparticle determines the optimal λ and R. As a result, the area in the space (λ × R) with a minimal criticality to alterations of the local hyperthermia may be significantly displaced from the position of the plasmonic resonance. The aspects of generalization of the proposed methodology for the analysis of local hyperthermia using nanoparticles of different shapes (nanoshells, nanorods, nanostars) and short pulse laser radiation are discussed.
Collapse
Affiliation(s)
- Alexander N Yakunin
- Russian Academy of Sciences, Institute of Precise Mechanics and Control, 24 Rabochaya Street, Saratov 410028, RussiabN.G. Chernyshevsky Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Yuri A Avetisyan
- Russian Academy of Sciences, Institute of Precise Mechanics and Control, 24 Rabochaya Street, Saratov 410028, RussiabN.G. Chernyshevsky Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Valery V Tuchin
- Russian Academy of Sciences, Institute of Precise Mechanics and Control, 24 Rabochaya Street, Saratov 410028, RussiabN.G. Chernyshevsky Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
22
|
Sada T, Fujigaya T, Nakashima N. Manipulation of cell membrane using carbon nanotube scaffold as a photoresponsive stimuli generator. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2014; 15:045002. [PMID: 27877703 PMCID: PMC5090691 DOI: 10.1088/1468-6996/15/4/045002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/07/2014] [Accepted: 06/12/2014] [Indexed: 06/06/2023]
Abstract
We describe, for the first time, the perforation of the cell membrane in the targeted single cell based on the nanosecond pulsed near-infrared (NIR) laser irradiation of a thin film of carbon nanotubes that act as an effective photon absorber as well as stimuli generator. When the power of NIR laser is over 17.5 μJ/pulse, the cell membrane after irradiation is irreversibly disrupted and results in cell death. In sharp contrast, the perforation of the cell membrane occurs at suitable laser power (∼15 μJ/pulse) without involving cell termination.
Collapse
Affiliation(s)
- Takao Sada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Japan
| | - Naotoshi Nakashima
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Japan
- Core Research for Evolutionary Science and Technology (JST-CREST), 5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
23
|
Khlebtsov BN, Khanadeev VA, Ye J, Sukhorukov GB, Khlebtsov NG. Overgrowth of gold nanorods by using a binary surfactant mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1696-703. [PMID: 24460392 DOI: 10.1021/la404399n] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Seed-mediated surfactant-assisted growth is widely used as the most effective method for gold nanorod (NR) synthesis. Using prepared nanorods as seeds for further overgrowth can increase the dimensional tunability of the final particles. However, overgrowth in usual cetyltrimethylammonium bromide (CTAB) surfactant solutions leads to poor control of the final particle shape and size. In this work, we report an improved strategy to demonstrate the controllable overgrowth of gold NRs in the binary surfactant mixture sodium oleate (NaOL) + CTAB. This approach overcomes the difficulty of growing NR suspensions with small amounts of impurities. By controlling the total amount of added NR seeds, it is possible to tune the average length, diameter, and plasmon resonances of overgrown particles in a wide range. Together with the original NaOL + CTAB method developed by Murray and co-workers ( Nano Lett. 2013 , 13 , 555 ), this overgrowth approach expands the dimensional and plasmonic tunability of the fabrication technology without any decrease in the monodispersity and purity of samples.
Collapse
Affiliation(s)
- Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences , 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | | | | | | | |
Collapse
|