1
|
Baez HC, LaPorta JM, Walker AD, Fischer WS, Hollar R, Patterson SS, DiLoreto DA, Gullapalli V, Mcgregor JE. Inner limiting Membrane Peel Extends In vivo Calcium Imaging of Retinal Ganglion Cell Activity Beyond the Fovea in Non-Human Primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.02.597041. [PMID: 38854047 PMCID: PMC11160754 DOI: 10.1101/2024.06.02.597041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
PURPOSE Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates (NHP), hindering both therapeutic intervention and physiological study of the retina. To address this, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye. METHODS Five eyes from Macaca fascicularis (age 3-10; n=3; 2 males, 1 female) underwent vitrectomy and ILM peel centered on the fovea prior to intravitreal delivery of 7m8:SNCG:GCaMP8s. RGC responses to visual flicker were evaluated using AOSLO calcium imaging 1-6 months post intravitreal injection. RESULTS Calcium activity was observed in RGCs throughout the ILM peeled area in all eyes, representing a mean 8-fold increase in accessible recording area relative to a representative control eye. RGC responses in the ILM peeled and control eyes were comparable and showed no significant decrease over the 6 months following the procedure. In addition, we demonstrated that activity can be recorded directly from the retinal nerve fiber layer. CONCLUSIONS Peeling the ILM is a viable strategy to expand viral access to the GCL for gene therapies in NHP. Overall, this approach has potential to advance visual neuroscience, including pre-clinical evaluation of retinal function, detection of vision loss, and assessment of therapeutic interventions.
Collapse
|
2
|
Song T, Wang Y, Zhou Y, Zhou M, Ma Y, Ma D, Qu J, Zhang J, Zhang P. Real-time frame-registered resonant fluorescence scanning laser ophthalmoscopy for quantifying static and dynamic cellular properties in the mouse retina. OPTICS LETTERS 2025; 50:1329-1332. [PMID: 39951796 DOI: 10.1364/ol.546343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/12/2025] [Indexed: 02/16/2025]
Abstract
Fluorescence labeling offers excellent contrast for cell imaging within living mouse eyes. High-speed, high-resolution imaging with a large field of view (FOV) is always desirable. A high-speed scanning laser ophthalmoscopy (SLO) system has been developed, equipped with real-time desinusoiding correction and frame registration for fluorescence imaging of mouse retinas. Precise calibration using a standard raster grid compensates for scanning hysteresis and image lateral distortion caused by the sinusoidal motion of the resonant scanner. More importantly, a strip-based registration method has been developed to correct frame distortions induced by breathing and pupil drift, enabling effective real-time and post-processing frame averaging. This system captures images at 1024 × 1024 pixels, with a temporal resolution of 16 Hz and a lateral resolution of 1.8 µm, and a FOV of up to 50° (35 µm/degree), which facilitates accurate measurement of both static and dynamic cellular properties, such as microglia cell density, diameter, spacing, and blood hemodynamics, within living mouse eyes.
Collapse
|
3
|
Patterson SS, Cai Y, Yang Q, Merigan WH, Williams DR. Asymmetric Activation of Retinal ON and OFF Pathways by AOSLO Raster-Scanned Visual Stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628952. [PMID: 39763934 PMCID: PMC11702774 DOI: 10.1101/2024.12.17.628952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) enables high-resolution retinal imaging, eye tracking, and stimulus delivery in the living eye. AOSLO-mediated visual stimuli are created by temporally modulating the excitation light as it scans across the retina. As a result, each location within the field of view receives a brief flash of light during each scanner cycle (every 33-40 ms). Here we used in vivo calcium imaging with AOSLO to investigate the impact of this intermittent stimulation on the retinal ON and OFF pathways. Raster-scanned backgrounds exaggerated existing ON-OFF pathway asymmetries leading to high baseline activity in ON cells and increased response rectification in OFF cells.
Collapse
Affiliation(s)
- Sara S Patterson
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, NY, 14642
| | - Yongyi Cai
- Institute of Optics, University of Rochester, Rochester, NY, 14627
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY, 14627
| | - William H Merigan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
- Center for Visual Science, University of Rochester, Rochester, NY, 14627
| | - David R Williams
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
- Institute of Optics, University of Rochester, Rochester, NY, 14627
- Center for Visual Science, University of Rochester, Rochester, NY, 14627
| |
Collapse
|
4
|
Xu Z, Kunala K, Murphy P, Patak L, Puthussery T, McGregor J. Foveal Retinal Ganglion Cells Develop Altered Calcium Dynamics Weeks After Photoreceptor Ablation. OPHTHALMOLOGY SCIENCE 2024; 4:100520. [PMID: 38881601 PMCID: PMC11179405 DOI: 10.1016/j.xops.2024.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 06/18/2024]
Abstract
Purpose Physiological changes in retinal ganglion cells (RGCs) have been reported in rodent models of photoreceptor (PR) loss, but this has not been investigated in primates. By expressing both a calcium indicator (GCaMP6s) and an optogenetic actuator (ChrimsonR) in foveal RGCs of the macaque, we reactivated RGCs in vivo and assessed their response in the weeks and years after PR loss. Design We used an in vivo calcium imaging approach to record optogenetically evoked activity in deafferented RGCs in primate fovea. Cellular scale recordings were made longitudinally over a 10-week period after PR ablation and compared with responses from RGCs that had lost PR input >2 years prior. Participants Three eyes received PR ablation, the right eye of a male Macaca mulatta (M1), the left eye of a female Macaca fascicularis (M2), and the right eye of a male Macaca fascicularis (M3). Two animals were used for in vivo recording, 1 for histological assessment. Methods Cones were ablated with an ultrafast laser delivered through an adaptive optics scanning light ophthalmoscope (AOSLO). A 0.5 second pulse of 25 Hz 660 nm light optogenetically stimulated RGCs, and the resulting GCaMP fluorescence signal was recorded using an AOSLO. Measurements were repeated over 10 weeks immediately after PR ablation, at 2.3 years and in control RGCs. Main Outcome Measures The calcium rise time, decay constant, and sensitivity index of optogenetic-mediated RGC were derived from GCaMP fluorescence recordings from 221 RGCs (animal M1) and 218 RGCs (animal M2) in vivo. Results After PR ablation, the mean decay constant of the calcium response in RGCs decreased 1.5-fold (standard deviation 1.6 ± 0.5 seconds to 0.6 ± 0.3 seconds) over the 10-week observation period in subject 1 and 2.1-fold (standard deviation 2.5 ± 0.5 seconds to 1.2 ± 0.2 seconds) within 8 weeks in subject 2. Calcium rise time and sensitivity index were stable. Optogenetic reactivation remained possible 2.3 years after PR ablation. Conclusions Altered calcium dynamics developed in primate foveal RGCs in the weeks after PR ablation. The mean decay constant of optogenetic-mediated calcium responses decreased 1.5- to twofold. This is the first report of this phenomenon in primate retina and further work is required to understand the role these changes play in cell survival and activity. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Zhengyang Xu
- Institute of Optics, University of Rochester, Rochester, New York
| | - Karteek Kunala
- Center for Visual Science, University of Rochester Medical Center, Rochester, New York
| | - Peter Murphy
- Institute of Optics, University of Rochester, Rochester, New York
| | - Laura Patak
- Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, California
- Vision Science Graduate Program, University of California Berkeley, Berkeley, California
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, California
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California
| | - Juliette McGregor
- Center for Visual Science, University of Rochester Medical Center, Rochester, New York
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
5
|
Power D, Elstrott J, Schallek J. Photoreceptor loss does not recruit neutrophils despite strong microglial activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595864. [PMID: 38854151 PMCID: PMC11160676 DOI: 10.1101/2024.05.25.595864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In response to central nervous system (CNS) injury, tissue resident immune cells such as microglia and circulating systemic neutrophils are often first responders. The degree to which these cells interact in response to CNS damage is poorly understood, and even less so, in the neural retina which poses a challenge for high resolution imaging in vivo. In this study, we deploy fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) to study fluorescent microglia and neutrophils in mice. We simultaneously track immune cell dynamics using label-free phase-contrast AOSLO at micron-level resolution. Retinal lesions were induced with 488 nm light focused onto photoreceptor (PR) outer segments. These lesions focally ablated PRs, with minimal collateral damage to cells above and below the plane of focus. We used in vivo (AOSLO, SLO and OCT) imaging to reveal the natural history of the microglial and neutrophil response from minutes-to-months after injury. While microglia showed dynamic and progressive immune response with cells migrating into the injury locus within 1-day after injury, neutrophils were not recruited despite close proximity to vessels carrying neutrophils only microns away. Post-mortem confocal microscopy confirmed in vivo findings. This work illustrates that microglial activation does not recruit neutrophils in response to acute, focal loss of photoreceptors, a condition encountered in many retinal diseases.
Collapse
|
6
|
Godat T, Kohout K, Parkins K, Yang Q, McGregor JE, Merigan WH, Williams DR, Patterson SS. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Noncardinal Color Directions. J Neurosci 2024; 44:e1738232024. [PMID: 38548340 PMCID: PMC11063829 DOI: 10.1523/jneurosci.1738-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.
Collapse
Affiliation(s)
- Tyler Godat
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Institute of Optics, University of Rochester, Rochester, New York 14611
| | - Kendall Kohout
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - William H Merigan
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Institute of Optics, University of Rochester, Rochester, New York 14611
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| |
Collapse
|
7
|
Xu Z, Kunala K, Murphy P, Patak L, Puthussery T, McGregor J. Foveal RGCs develop altered calcium dynamics weeks after photoreceptor ablation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542908. [PMID: 37398439 PMCID: PMC10312553 DOI: 10.1101/2023.05.30.542908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Objective or purpose Physiological changes in retinal ganglion cells (RGCs) have been reported in rodent models of photoreceptor (PR) loss but this has not been investigated in primates. By expressing both a calcium indicator (GCaMP6s) and an optogenetic actuator (ChrimsonR) in foveal RGCs of the macaque, we reactivated RGCs in vivo and assessed their response in the weeks and years following PR loss. Design We used an in vivo calcium imaging approach to record optogenetically evoked activity in deafferented RGCs in primate fovea. Cellular scale recordings were made longitudinally over a 10 week period following photoreceptor ablation and compared to responses from RGCs that had lost photoreceptor input more than two years prior. Participants Three eyes received photoreceptor ablation, OD of a male Macaca mulatta (M1), OS of a female Macaca fascicularis (M2) and OD of a male Macaca fascicularis (M3). Two animals were used for in vivo recording, one for histological assessment. Methods Cones were ablated with an ultrafast laser delivered through an adaptive optics scanning light ophthalmoscope (AOSLO). A 0.5 s pulse of 25Hz 660nm light optogenetically stimulated RGCs, and the resulting GCaMP fluorescence signal was recorded using AOSLO. Measurements were repeated over 10 weeks immediately after PR ablation, at 2.3 years and in control RGCs. Main Outcome measures The calcium rise time, decay constant and sensitivity index of optogenetic mediated RGC were derived from GCaMP fluorescence recordings from 221 RGCs (Animal M1) and 218 RGCs (Animal M2) in vivo. Results Following photoreceptor ablation, the mean decay constant of the calcium response in RGCs decreased 1.5 fold (1.6±0.5 s to 0.6±0.3 s SD) over the 10 week observation period in subject 1 and 2.1 fold (2.5±0.5 s to 1.2±0.2 s SD) within 8 weeks in subject 2. Calcium rise time and sensitivity index were stable. Optogenetic reactivation remained possible 2.3 years after PR ablation. Conclusions Altered calcium dynamics developed in primate foveal RGCs in the weeks after photoreceptor ablation. The mean decay constant of optogenetic mediated calcium responses decreased 1.5 - 2-fold. This is the first report of this phenomenon in primate retina and further work is required to understand the role these changes play in cell survival and activity.
Collapse
Affiliation(s)
- Zhengyang Xu
- Institute of Optics, University of Rochester, Rochester, New York, UNITED STATES
| | - Karteek Kunala
- Center for Visual Science, University of Rochester Medical Center, Rochester, New York, UNITED STATES
| | - Peter Murphy
- Institute of Optics, University of Rochester, Rochester, New York, UNITED STATES
| | - Laura Patak
- Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, California, UNITED STATES
- Vision Science Graduate Program, University of California Berkeley, Berkeley, California, UNITED STATES
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, California, UNITED STATES
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, UNITED STATES
| | - Juliette McGregor
- Center for Visual Science, University of Rochester Medical Center, Rochester, New York, UNITED STATES
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, UNITED STATES
| |
Collapse
|
8
|
Zhang J, Sabarinathan R, Bubel T, Jia W, Williams DR, Hunter JJ. Spectral Dependence of Light Exposure on Retinal Pigment Epithelium Disruption in Living Primate Retina. Invest Ophthalmol Vis Sci 2024; 65:43. [PMID: 38416456 PMCID: PMC10910637 DOI: 10.1167/iovs.65.2.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024] Open
Abstract
Purpose RPE disruption with light exposures below or close to the American National Standards Institute (ANSI) photochemical maximum permissible exposure (MPE) have been observed, but these findings were limited to two wavelengths. We have extended the measurements across the visible spectrum. Methods Retinal imaging with fluorescence adaptive optics scanning light ophthalmoscopy (FAOSLO) was used to provide an in vivo measure of RPE disruption at a cellular level. The threshold retinal radiant exposures (RREs) for RPE disruption (localized detectable change in the fluorescence image) were determined at 460, 476, 488, 530, 543, 561, 594, 632, and 671 nm (uniform 0.5° square exposure) using multiples locations in 4 macaques. Results FAOSLO is sensitive in detecting RPE disruption. The visible light action spectrum dependence for RPE disruption with continuous wave (CW) extended field exposures was determined. It has a shallower slope than the current ANSI blue-light hazard MPE. At all wavelengths beyond 530 nm, the disruption threshold is below the ANSI blue-light hazard MPE. There is reciprocity of exposure irradiance and duration for exposures at 460 and 594 nm. Conclusions We measured with FAOSLO the action spectrum dependence for photochemical RPE disruption across the visible light spectrum. Using this in vivo measure of phototoxicity provided by FAOSLO, we find that thresholds are lower than previously measured. The wavelength dependence in our data is considerably shallower than the spectral dependence of the traditional ANSI blue-light hazard, emphasizing the need for more caution with increasing wavelength than expected.
Collapse
Affiliation(s)
- Jie Zhang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Robotrak Technologies, Nanjing, Jiangsu, China
| | - Ranjani Sabarinathan
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Tracy Bubel
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Wuao Jia
- The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Liu R, Wang X, Hoshi S, Zhang Y. Substrip-based registration and automatic montaging of adaptive optics retinal images. BIOMEDICAL OPTICS EXPRESS 2024; 15:1311-1330. [PMID: 38404341 PMCID: PMC10890855 DOI: 10.1364/boe.514447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Precise registration and montage are critical for high-resolution adaptive optics retinal image analysis but are challenged by rapid eye movement. We present a substrip-based method to improve image registration and facilitate the automatic montaging of adaptive optics scanning laser ophthalmoscopy (AOSLO). The program first batches the consecutive images into groups based on a translation threshold and selects an image with minimal distortion within each group as the reference. Within each group, the software divides each image into multiple strips and calculates the Normalized Cross-Correlation with the reference frame using two substrips at both ends of the whole strip to estimate the strip translation, producing a registered image. Then, the software aligns the registered images of all groups also using a substrip based registration, thereby generating a montage with cell-for-cell precision in the overlapping areas of adjacent frames. The algorithm was evaluated with AOSLO images acquired in human subjects with normal macular health and patients with age-related macular degeneration (AMD). Images with a motion amplitude of up to 448 pixels in the fast scanner direction over a frame of 512 × 512 pixels can be precisely registered. Automatic montage spanning up to 22.6 degrees on the retina was achieved on a cell-to-cell precision with a low misplacement rate of 0.07% (11/16,501 frames) in normal eyes and 0.51% (149/29,051 frames) in eyes with AMD. Substrip based registration significantly improved AOSLO registration accuracy.
Collapse
Affiliation(s)
- Ruixue Liu
- Doheny Eye Institute, Pasadena, CA 91103, USA
| | | | - Sujin Hoshi
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA 90024, USA
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Yuhua Zhang
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
10
|
Godat T, Kohout K, Yang Q, Parkins K, McGregor JE, Merigan WH, Williams DR, Patterson SS. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Non-Cardinal Color Directions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557995. [PMID: 37745616 PMCID: PMC10516013 DOI: 10.1101/2023.09.15.557995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A long-standing question in vision science is how the three cone photoreceptor types - long (L), medium (M) and short (S) wavelength sensitive - combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L+S and L vs. M+S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds are L vs. M and S vs. L+M. The cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in cortex. However, small populations with the appropriate M vs. L+S and L vs. M+S cone-opponency have been reported in large surveys of cone inputs to primate RGCs and their projections to the lateral geniculate nucleus (LGN) yet their existence continues to be debated. Resolving this long-standing open question is needed as a complete account of the cone-opponency in the retinal output is critical for efforts to understand how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to longitudinally and noninvasively measurements of the foveal RGC light responses in the living macaque eye. We confirm the presence of L vs. M+S and M vs. L+S neurons with non-cardinal cone-opponency and demonstrate that cone-opponent signals in the retinal output are substantially more diverse than classically thought.
Collapse
Affiliation(s)
- Tyler Godat
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Institute of Optics, University of Rochester, Rochester, NY, 14627
| | - Kendall Kohout
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Juliette E. McGregor
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - William H. Merigan
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Institute of Optics, University of Rochester, Rochester, NY, 14627
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - Sara S. Patterson
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| |
Collapse
|
11
|
Murphy PJ, McGregor JE, Xu Z, Yang Q, Merigan W, Williams DR. Optogenetic Stimulation of Single Ganglion Cells in the Living Primate Fovea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550081. [PMID: 37546797 PMCID: PMC10401937 DOI: 10.1101/2023.07.21.550081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Though the responses of the rich variety of retinal ganglion cells (RGCs) reflect the totality of visual processing in the retina and provide the sole conduit for those processed responses to the brain, we have much to learn about how the brain uses these signals to guide behavior. An impediment to developing a comprehensive understanding of the role of retinal circuits in behavior is the paucity of causal studies in the intact primate visual system. Here we demonstrate the ability to optogenetically activate individual RGCs with flashes of light focused on single RGC somas in vivo , without activation of neighboring cells. The ability to selectively activate specific cells is the first step toward causal experiments that directly link retinal circuits to visual experience and behavior.
Collapse
Affiliation(s)
- Peter J. Murphy
- The Institute of Optics, University of Rochester, Rochester, New York
- Center for Visual Science, University of Rochester, Rochester, New York
| | - Juliette E. McGregor
- Center for Visual Science, University of Rochester, Rochester, New York
- Flaum Eye Institute, University of Rochester, Rochester, New York
| | - Zhengyang Xu
- The Institute of Optics, University of Rochester, Rochester, New York
- Center for Visual Science, University of Rochester, Rochester, New York
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York
- Flaum Eye Institute, University of Rochester, Rochester, New York
| | - William Merigan
- The Institute of Optics, University of Rochester, Rochester, New York
- Flaum Eye Institute, University of Rochester, Rochester, New York
| | - David R. Williams
- The Institute of Optics, University of Rochester, Rochester, New York
- Center for Visual Science, University of Rochester, Rochester, New York
| |
Collapse
|
12
|
Ashourizadeh H, Fakhri M, Hassanpour K, Masoudi A, Jalali S, Roshandel D, Chen FK. Pearls and Pitfalls of Adaptive Optics Ophthalmoscopy in Inherited Retinal Diseases. Diagnostics (Basel) 2023; 13:2413. [PMID: 37510157 PMCID: PMC10377978 DOI: 10.3390/diagnostics13142413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Adaptive optics (AO) retinal imaging enables individual photoreceptors to be visualized in the clinical setting. AO imaging can be a powerful clinical tool for detecting photoreceptor degeneration at a cellular level that might be overlooked through conventional structural assessments, such as spectral-domain optical coherence tomography (SD-OCT). Therefore, AO imaging has gained significant interest in the study of photoreceptor degeneration, one of the most common causes of inherited blindness. Growing evidence supports that AO imaging may be useful for diagnosing early-stage retinal dystrophy before it becomes apparent on fundus examination or conventional retinal imaging. In addition, serial AO imaging may detect structural disease progression in early-stage disease over a shorter period compared to SD-OCT. Although AO imaging is gaining popularity as a structural endpoint in clinical trials, the results should be interpreted with caution due to several pitfalls, including the lack of standardized imaging and image analysis protocols, frequent ocular comorbidities that affect image quality, and significant interindividual variation of normal values. Herein, we summarize the current state-of-the-art AO imaging and review its potential applications, limitations, and pitfalls in patients with inherited retinal diseases.
Collapse
Affiliation(s)
| | - Maryam Fakhri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Sciences, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| | - Kiana Hassanpour
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Sciences, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sattar Jalali
- Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran 19558, Iran
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
13
|
Feng G, Joseph A, Dholakia K, Shang F, Pfeifer CW, Power D, Padmanabhan K, Schallek J. High-resolution structural and functional retinal imaging in the awake behaving mouse. Commun Biol 2023; 6:572. [PMID: 37248385 PMCID: PMC10227058 DOI: 10.1038/s42003-023-04896-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The laboratory mouse has provided tremendous insight to the underpinnings of mammalian central nervous system physiology. In recent years, it has become possible to image single neurons, glia and vascular cells in vivo by using head-fixed preparations combined with cranial windows to study local networks of activity in the living brain. Such approaches have also succeeded without the use of general anesthesia providing insights to the natural behaviors of the central nervous system. However, the same has not yet been developed for the eye, which is constantly in motion. Here we characterize a novel head-fixed preparation that enables high-resolution adaptive optics retinal imaging at the single-cell level in awake-behaving mice. We reveal three new functional attributes of the normal eye that are overlooked by anesthesia: 1) High-frequency, low-amplitude eye motion of the mouse that is only present in the awake state 2) Single-cell blood flow in the mouse retina is reduced under anesthesia and 3) Mouse retinae thicken in response to ketamine/xylazine anesthesia. Here we show key benefits of the awake-behaving preparation that enables study of retinal physiology without anesthesia to study the normal retinal physiology in the mouse.
Collapse
Affiliation(s)
- Guanping Feng
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14620, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Aby Joseph
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY, 14620, USA
| | - Kosha Dholakia
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14620, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Fei Shang
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA
| | - Charles W Pfeifer
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Krishnan Padmanabhan
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA
- Intellectual and Developmental Disabilities Research Center, University of Rochester, Rochester, NY, 14642, USA
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA.
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA.
- Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
14
|
In vivo chromatic and spatial tuning of foveolar retinal ganglion cells in Macaca fascicularis. PLoS One 2022; 17:e0278261. [PMID: 36445926 PMCID: PMC9707781 DOI: 10.1371/journal.pone.0278261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/13/2022] [Indexed: 11/30/2022] Open
Abstract
The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.
Collapse
|
15
|
Hu X, Yang Q. Real-time correction of image rotation with adaptive optics scanning light ophthalmoscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1663-1672. [PMID: 36215635 DOI: 10.1364/josaa.465889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Fixational eye motion includes typical translation and torsion. In the registration of images from adaptive optics scanning light ophthalmoscopy (AOSLO), image rotation due to eye torsion and/or head rotation is often ignored because (a) the amount of rotation is trivial compared to translation within a short duration of imaging or recording time and (b) computational cost increases substantially when the registration algorithm involves simultaneous detection of rotation and translation. However, it becomes critically important under cases such as long exposure, functional measurements, and precise motion tracking. We developed a fast method to detect and correct rotation from AOSLO images, together with the detection of strip-level motion translation. The computational cost for rotation detection and correction alone is about 5 ms/frame (512×512 pixels) on an nVidia GTX960M GPU. Image quality is compared with and without rotation correction from 10 healthy human subjects and 8 diseased eyes with a total of 180 videos. The results show that residual image motions between the reference images and the registered images with rotation correction are a fraction of those without rotation correction, and the ratio is 0.74-0.89 at the image center and 0.37-0.51 at the four corners of the images.
Collapse
|
16
|
Abstract
The eye, the photoreceptive organ used to perceive the external environment, is of great importance to humans. It has been proven that some diseases in humans are accompanied by fundus changes; therefore, the health status of people may be interpreted from retinal images. However, the human eye is not a perfect refractive system for the existence of ocular aberrations. These aberrations not only affect the ability of human visual discrimination and recognition, but restrict the observation of the fine structures of human eye and reduce the possibility of exploring the mechanisms of eye disease. Adaptive optics (AO) is a technique that corrects optical wavefront aberrations. Once integrated into ophthalmoscopes, AO enables retinal imaging at the cellular level. This paper illustrates the principle of AO in correcting wavefront aberrations in human eyes, and then reviews the applications and advances of AO in ophthalmology, including the adaptive optics fundus camera (AO-FC), the adaptive optics scanning laser ophthalmoscope (AO-SLO), the adaptive optics optical coherence tomography (AO-OCT), and their combined multimodal imaging technologies. The future development trend of AO in ophthalmology is also prospected.
Collapse
|
17
|
Tang JAH, Granger CE, Kunala K, Parkins K, Huynh KT, Bowles-Johnson K, Yang Q, Hunter JJ. Adaptive optics fluorescence lifetime imaging ophthalmoscopy of in vivo human retinal pigment epithelium. BIOMEDICAL OPTICS EXPRESS 2022; 13:1737-1754. [PMID: 35414970 PMCID: PMC8973160 DOI: 10.1364/boe.451628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 05/18/2023]
Abstract
The intrinsic fluorescence properties of lipofuscin - naturally occurring granules that accumulate in the retinal pigment epithelium - are a potential biomarker for the health of the eye. A new modality is described here which combines adaptive optics technology with fluorescence lifetime detection, allowing for the investigation of functional and compositional differences within the eye and between subjects. This new adaptive optics fluorescence lifetime imaging ophthalmoscope was demonstrated in 6 subjects. Repeated measurements between visits had a minimum intraclass correlation coefficient of 0.59 Although the light levels were well below maximum permissible exposures, the safety of the imaging paradigm was tested using clinical measures; no concerns were raised. This new technology allows for in vivo adaptive optics fluorescence lifetime imaging of the human RPE mosaic.
Collapse
Affiliation(s)
- Janet A. H. Tang
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Contributed equally
| | - Charles E. Granger
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Contributed equally
| | - Karteek Kunala
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Kristen Bowles-Johnson
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Jennifer J. Hunter
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
18
|
Walters S, Feeks JA, Huynh KT, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of photoreceptors and retinal pigment epithelium in the living non-human primate eye. BIOMEDICAL OPTICS EXPRESS 2022; 13:389-407. [PMID: 35154879 PMCID: PMC8803039 DOI: 10.1364/boe.444550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 05/18/2023]
Abstract
Fluorescence lifetime imaging has demonstrated promise as a quantitative measure of cell health. Adaptive optics two-photon excited fluorescence (TPEF) ophthalmoscopy enables excitation of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle, providing in vivo visualization of retinal structure and function at the cellular scale. Combining these technologies revealed that macaque cones had a significantly longer mean TPEF lifetime than rods at 730 nm excitation. At 900 nm excitation, macaque photoreceptors had a significantly longer mean TPEF lifetime than the retinal pigment epithelium layer. AOFLIO can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes.
Collapse
Affiliation(s)
- Sarah Walters
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - James A. Feeks
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Jennifer J. Hunter
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
19
|
Kowalski B, Huang X, Steven S, Dubra A. Hybrid FPGA-CPU pupil tracker. BIOMEDICAL OPTICS EXPRESS 2021; 12:6496-6513. [PMID: 34745752 PMCID: PMC8548015 DOI: 10.1364/boe.433766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
An off-axis monocular pupil tracker designed for eventual integration in ophthalmoscopes for eye movement stabilization is described and demonstrated. The instrument consists of light-emitting diodes, a camera, a field-programmable gate array (FPGA) and a central processing unit (CPU). The raw camera image undergoes background subtraction, field-flattening, 1-dimensional low-pass filtering, thresholding and robust pupil edge detection on an FPGA pixel stream, followed by least-squares fitting of the pupil edge pixel coordinates to an ellipse in the CPU. Experimental data suggest that the proposed algorithms require raw images with a minimum of ∼32 gray levels to achieve sub-pixel pupil center accuracy. Tests with two different cameras operating at 575, 1250 and 5400 frames per second trained on a model pupil achieved 0.5-1.5 μm pupil center estimation precision with 0.6-2.1 ms combined image download, FPGA and CPU processing latency. Pupil tracking data from a fixating human subject show that the tracker operation only requires the adjustment of a single parameter, namely an image intensity threshold. The latency of the proposed pupil tracker is limited by camera download time (latency) and sensitivity (precision).
Collapse
Affiliation(s)
| | - Xiaojing Huang
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
- Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - Samuel Steven
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
- Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
| |
Collapse
|
20
|
Abstract
The high power of the eye and optical components used to image it result in "static" distortion, remaining constant across acquired retinal images. In addition, raster-based systems sample points or lines of the image over time, suffering from "dynamic" distortion due to the constant motion of the eye. We recently described an algorithm which corrects for the latter problem but is entirely blind to the former. Here, we describe a new procedure termed "DIOS" (Dewarp Image by Oblique Shift) to remove static distortion of arbitrary type. Much like the dynamic correction method, it relies on locating the same tissue in multiple frames acquired as the eye moves through different gaze positions. Here, the resultant maps of pixel displacement are used to form a sparse system of simultaneous linear equations whose solution gives the common warp seen by all frames. We show that the method successfully handles torsional movement of the eye. We also show that the output of the previously described dynamic correction procedure may be used as input for this new procedure, recovering an image of the tissue that is, in principle, a faithful replica free of any type of distortion. The method could be extended beyond ocular imaging, to any kind of imaging system in which the image can move or be made to move across the detector.
Collapse
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Andrew Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Salmon AE, Cooper RF, Chen M, Higgins B, Cava JA, Chen N, Follett HM, Gaffney M, Heitkotter H, Heffernan E, Schmidt TG, Carroll J. Automated image processing pipeline for adaptive optics scanning light ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:3142-3168. [PMID: 34221651 PMCID: PMC8221964 DOI: 10.1364/boe.418079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 06/11/2023]
Abstract
To mitigate the substantial post-processing burden associated with adaptive optics scanning light ophthalmoscopy (AOSLO), we have developed an open-source, automated AOSLO image processing pipeline with both "live" and "full" modes. The live mode provides feedback during acquisition, while the full mode is intended to automatically integrate the copious disparate modules currently used in generating analyzable montages. The mean (±SD) lag between initiation and montage placement for the live pipeline was 54.6 ± 32.7s. The full pipeline reduced overall human operator time by 54.9 ± 28.4%, with no significant difference in resultant cone density metrics. The reduced overhead decreases both the technical burden and operating cost of AOSLO imaging, increasing overall clinical accessibility.
Collapse
Affiliation(s)
- Alexander E. Salmon
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Translational Imaging Innovations, Inc., Hickory, NC 28601, USA
| | - Robert F. Cooper
- Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53233, USA
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Min Chen
- Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Higgins
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Jenna A. Cava
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Nickolas Chen
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Hannah M. Follett
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Mina Gaffney
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Heather Heitkotter
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elizabeth Heffernan
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Taly Gilat Schmidt
- Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53233, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53233, USA
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI 53226, USA
| |
Collapse
|
22
|
Zhang M, Gofas-Salas E, Leonard BT, Rui Y, Snyder VC, Reecher HM, Mecê P, Rossi EA. Strip-based digital image registration for distortion minimization and robust eye motion measurement from scanned ophthalmic imaging systems. BIOMEDICAL OPTICS EXPRESS 2021; 12:2353-2372. [PMID: 33996234 PMCID: PMC8086453 DOI: 10.1364/boe.418070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 05/22/2023]
Abstract
Retinal image-based eye motion measurement from scanned ophthalmic imaging systems, such as scanning laser ophthalmoscopy, has allowed for precise real-time eye tracking at sub-micron resolution. However, the constraints of real-time tracking result in a high error tolerance that is detrimental for some eye motion measurement and imaging applications. We show here that eye motion can be extracted from image sequences when these constraints are lifted, and all data is available at the time of registration. Our approach identifies and discards distorted frames, detects coarse motion to generate a synthetic reference frame and then uses it for fine scale motion tracking with improved sensitivity over a larger area. We demonstrate its application here to tracking scanning laser ophthalmoscopy (TSLO) and adaptive optics scanning light ophthalmoscopy (AOSLO), and show that it can successfully capture most of the eye motion across each image sequence, leaving only between 0.1-3.4% of non-blink frames untracked, while simultaneously minimizing image distortions induced from eye motion. These improvements will facilitate precise measurement of fixational eye movements (FEMs) in TSLO and longitudinal tracking of individual cells in AOSLO.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Denotes that each of these authors contributed equally to this work
| | - Elena Gofas-Salas
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Denotes that each of these authors contributed equally to this work
| | - Bianca T Leonard
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yuhua Rui
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Eye center of Xiangya Hospital, Central South University; Hunan Key Laboratory of Ophthalmology; Changsha, Hunan 410008, China
| | - Valerie C Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hope M Reecher
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pedro Mecê
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
23
|
Luo T, Warner RL, Sapoznik KA, Walker BR, Burns SA. Template free eye motion correction for scanning systems. OPTICS LETTERS 2021; 46:753-756. [PMID: 33577506 PMCID: PMC8447858 DOI: 10.1364/ol.415285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 05/18/2023]
Abstract
Scanning imaging systems are susceptible to image warping in the presence of target motion occurring within the time required to acquire an individual image frame. In this Letter, we introduce the use of a dual raster scanning approach to correct for motion distortion without the need for prior knowledge of the undistorted image. In the dual scanning approach, the target is imaged simultaneously with two imaging beams from the same imaging system. The two imaging beams share a common pupil but have a spatial shift between the beams on the imaging plane. The spatial shift can be used to measure high speed events, because it measures an identical region at two different times within the time required for acquisition of a single frame. In addition, it provides accurate spatial information, since two different regions on the target are imaged simultaneously, providing an undistorted estimate of the spatial relation between regions. These spatial and temporal relations accurately measure target motion. Data from adaptive optics scanning laser ophthalmoscope (AOSLO) imaging of the human retina are used to demonstrate this technique. We apply the technique to correct the shearing of retinal images produced by eye motion. Three control subjects were measured while imaging different retinal layers and retinal locations to qualify the effectiveness of the algorithm. Since the time shift between channels is readily adjustable, this method can be tuned to match different imaging situations. The major requirement is the need to separate the two images; in our case, we used different near infrared spectral regions and dichroic filters.
Collapse
Affiliation(s)
- Ting Luo
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Raymond L. Warner
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Kaitlyn A Sapoznik
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Brittany R. Walker
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Stephen A. Burns
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| |
Collapse
|
24
|
Akyol E, Hagag AM, Sivaprasad S, Lotery AJ. Adaptive optics: principles and applications in ophthalmology. Eye (Lond) 2021; 35:244-264. [PMID: 33257798 PMCID: PMC7852593 DOI: 10.1038/s41433-020-01286-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022] Open
Abstract
This is a comprehensive review of the principles and applications of adaptive optics (AO) in ophthalmology. It has been combined with flood illumination ophthalmoscopy, scanning laser ophthalmoscopy, as well as optical coherence tomography to image photoreceptors, retinal pigment epithelium (RPE), retinal ganglion cells, lamina cribrosa and the retinal vasculature. In this review, we highlight the clinical studies that have utilised AO to understand disease mechanisms. However, there are some limitations to using AO in a clinical setting including the cost of running an AO imaging service, the time needed to scan patients, the lack of normative databases and the very small size of area imaged. However, it is undoubtedly an exceptional research tool that enables visualisation of the retina at a cellular level.
Collapse
Affiliation(s)
- Engin Akyol
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ahmed M Hagag
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Andrew J Lotery
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
25
|
Aboualizadeh E, Phillips MJ, McGregor JE, DiLoreto DA, Strazzeri JM, Dhakal KR, Bateman B, Jager LD, Nilles KL, Stuedemann SA, Ludwig AL, Hunter JJ, Merigan WH, Gamm DM, Williams DR. Imaging Transplanted Photoreceptors in Living Nonhuman Primates with Single-Cell Resolution. Stem Cell Reports 2020; 15:482-497. [PMID: 32707075 PMCID: PMC7419740 DOI: 10.1016/j.stemcr.2020.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Stem cell-based transplantation therapies offer hope for currently untreatable retinal degenerations; however, preclinical progress has been largely confined to rodent models. Here, we describe an experimental platform for accelerating photoreceptor replacement therapy in the nonhuman primate, which has a visual system much more similar to the human. We deployed fluorescence adaptive optics scanning light ophthalmoscopy (FAOSLO) to noninvasively track transplanted photoreceptor precursors over time at cellular resolution in the living macaque. Fluorescently labeled photoreceptors generated from a CRX+/tdTomato human embryonic stem cell (hESC) reporter line were delivered subretinally to macaques with normal retinas and following selective ablation of host photoreceptors using an ultrafast laser. The fluorescent reporter together with FAOSLO allowed transplanted photoreceptor precursor survival, migration, and neurite formation to be monitored over time in vivo. Histological examination suggested migration of photoreceptor precursors to the outer plexiform layer and potential synapse formation in ablated areas in the macaque eye.
Collapse
Affiliation(s)
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | | | - David A DiLoreto
- Center for Visual Science, University of Rochester, Rochester, NY, USA; Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Jennifer M Strazzeri
- Center for Visual Science, University of Rochester, Rochester, NY, USA; Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Kamal R Dhakal
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Brittany Bateman
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | | | - Kelsy L Nilles
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | | | | | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, NY, USA; Flaum Eye Institute, University of Rochester, Rochester, NY, USA; The Institute of Optics, University of Rochester, Rochester, NY, USA
| | - William H Merigan
- Center for Visual Science, University of Rochester, Rochester, NY, USA; Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, NY, USA; The Institute of Optics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
26
|
Dhakal KR, Walters S, McGregor JE, Schwarz C, Strazzeri JM, Aboualizadeh E, Bateman B, Huxlin KR, Hunter JJ, Williams DR, Merigan WH. Localized Photoreceptor Ablation Using Femtosecond Pulses Focused With Adaptive Optics. Transl Vis Sci Technol 2020; 9:16. [PMID: 32832223 PMCID: PMC7414617 DOI: 10.1167/tvst.9.7.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/09/2020] [Indexed: 02/03/2023] Open
Abstract
Purpose The development of new approaches to human vision restoration could be greatly accelerated with the use of nonhuman primate models; however, there is a paucity of primate models of outer retina degeneration with good spatial localization. To limit ablation to the photoreceptors, we developed a new approach that uses a near-infrared ultrafast laser, focused using adaptive optics, to concentrate light in a small focal volume within the retina. Methods In the eyes of eight anesthetized macaques, 187 locations were exposed to laser powers from 50 to 210 mW. Laser exposure locations were monitored for up to 18 months using fluorescein angiography (FA), optical coherence tomography (OCT), scanning laser ophthalmoscopy (SLO), adaptive optics scanning laser ophthalmoscope (AOSLO) reflectance imaging, two-photon excited fluorescence (TPEF) ophthalmoscopy, histology, and calcium responses of retinal ganglion cells. Results This method produced localized photoreceptor loss with minimal axial spread of damage to other retinal layers, verified by in-vivo structural imaging and histologic examination, although in some cases evidence of altered autofluorescence was found in the adjacent retinal pigment epithelium (RPE). Functional assessment using blood flow imaging of the retinal plexus and calcium imaging of the response of ganglion cells above the photoreceptor loss shows that inner retinal circuitry was preserved. Conclusions Although different from a genetic model of retinal degeneration, this model of localized photoreceptor loss may provide a useful testbed for vision restoration studies in nonhuman primates. Translational Relevance With this model, a variety of vision restoration methods can be tested in the non-human primate.
Collapse
Affiliation(s)
- Kamal R Dhakal
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Sarah Walters
- Center for Visual Science, University of Rochester, Rochester, NY, USA.,The Institute of Optics, University of Rochester, Rochester, NY, USA
| | | | - Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, NY, USA.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | - Brittany Bateman
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Krystel R Huxlin
- Center for Visual Science, University of Rochester, Rochester, NY, USA.,The Institute of Optics, University of Rochester, Rochester, NY, USA.,Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, NY, USA.,The Institute of Optics, University of Rochester, Rochester, NY, USA.,Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, NY, USA.,The Institute of Optics, University of Rochester, Rochester, NY, USA
| | - William H Merigan
- Center for Visual Science, University of Rochester, Rochester, NY, USA.,Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| |
Collapse
|
27
|
Bartuzel MM, Wróbel K, Tamborski S, Meina M, Nowakowski M, Dalasiński K, Szkulmowska A, Szkulmowski M. High-resolution, ultrafast, wide-field retinal eye-tracking for enhanced quantification of fixational and saccadic motion. BIOMEDICAL OPTICS EXPRESS 2020; 11:3164-3180. [PMID: 32637248 PMCID: PMC7316009 DOI: 10.1364/boe.392849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 05/23/2023]
Abstract
We introduce a novel, noninvasive retinal eye-tracking system capable of detecting eye displacements with an angular resolution of 0.039 arcmin and a maximum velocity of 300°/s across an 8° span. Our system is designed based on a confocal retinal imaging module similar to a scanning laser ophthalmoscope. It utilizes a 2D MEMS scanner ensuring high image frame acquisition frequencies up to 1.24 kHz. In contrast with leading eye-tracking technology, we measure the eye displacements via the collection of the observed spatial excursions for all the times corresponding a full acquisition cycle, thus obviating the need for both a baseline reference frame and absolute spatial calibration. Using this approach, we demonstrate the precise measurement of eye movements with magnitudes exceeding the spatial extent of a single frame, which is not possible using existing image-based retinal trackers. We describe our retinal tracker, tracking algorithms and assess the performance of our system by using programmed artificial eye movements. We also demonstrate the clinical capabilities of our system with in vivo subjects by detecting microsaccades with angular extents as small as 0.028°. The rich kinematic ocular data provided by our system with its exquisite degree of accuracy and extended dynamic range opens new and exciting avenues in retinal imaging and clinical neuroscience. Several subtle features of ocular motion such as saccadic dysfunction, fixation instability and abnormal smooth pursuit can be readily extracted and inferred from the measured retinal trajectories thus offering a promising tool for identifying biomarkers of neurodegenerative diseases associated with these ocular symptoms.
Collapse
Affiliation(s)
- Maciej M. Bartuzel
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, Toruń 87-100, Poland
- Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Krystian Wróbel
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, Toruń 87-100, Poland
| | - Szymon Tamborski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, Toruń 87-100, Poland
| | - Michał Meina
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, Toruń 87-100, Poland
- AM2M Ltd. L.P., Mickiewicza 7/17, Toruń 87-100, Poland
| | | | | | | | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, Toruń 87-100, Poland
| |
Collapse
|
28
|
Chen H, He Y, Wei L, Yang J, Li X, Shi G, Zhang Y. Polynomial transformation model for frame-to-frame registration in an adaptive optics confocal scanning laser ophthalmoscope. BIOMEDICAL OPTICS EXPRESS 2019; 10:4589-4606. [PMID: 31565511 PMCID: PMC6757461 DOI: 10.1364/boe.10.004589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 05/14/2023]
Abstract
The adaptive optics (AO) technique has been integrated in confocal scanning laser ophthalmoscopy (SLO) to obtain near diffraction-limited high-resolution retinal images. However, the quality of AOSLO images is decreased by various sources of noise and fixational eye movements. To improve image quality and remove distortions in AOSLO images, the multi-frame averaging method is usually utilized, which relies on an accurate image registration. The goal of image registrations is finding the optimal transformation to best align the input image sequences. However, current methods for AOSLO image registration have some obvious defects due to the limitation of transformation models. In this paper, we first established the retina motion model by using the Taylor series and polynomial expansion. Then we generated the polynomial transformation model and provided its close-form solution for consecutively frame-to-frame AOSLO retina image registration, allowing one to consider more general retinal motions such as scale changes, shearing and rotation motions, and so on. The experimental results demonstrated that higher-order polynomial transformation models are helpful to achieve more accurate registration, and the fourth-order polynomial transformation model is preferred to accomplish an efficient registration with a satisfying computational complexity. In addition, the AKAZE feature detection method was adopted and improved to achieve more accurate image registrations, and a new strategy was validated to exclude those unsuccessful registered regions to promote the robustness of image registration.
Collapse
Affiliation(s)
- Hao Chen
- The Key Laboratory on Adaptive Optics, Institute of Optics and Electronics, No. 1 Guangdian Avenue, Chengdu, 610207, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Beijing, 100049, China
| | - Yi He
- The Key Laboratory on Adaptive Optics, Institute of Optics and Electronics, No. 1 Guangdian Avenue, Chengdu, 610207, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou, Jiangsu, 215163, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, China
| | - Ling Wei
- The Key Laboratory on Adaptive Optics, Institute of Optics and Electronics, No. 1 Guangdian Avenue, Chengdu, 610207, China
| | - Jinsheng Yang
- The Key Laboratory on Adaptive Optics, Institute of Optics and Electronics, No. 1 Guangdian Avenue, Chengdu, 610207, China
| | - Xiqi Li
- The Key Laboratory on Adaptive Optics, Institute of Optics and Electronics, No. 1 Guangdian Avenue, Chengdu, 610207, China
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou, Jiangsu, 215163, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, China
| | - Yudong Zhang
- The Key Laboratory on Adaptive Optics, Institute of Optics and Electronics, No. 1 Guangdian Avenue, Chengdu, 610207, China
| |
Collapse
|
29
|
AbdelAl O, Ashraf M, Sampani K, Sun JK. "For Mass Eye and Ear Special Issue" Adaptive Optics in the Evaluation of Diabetic Retinopathy. Semin Ophthalmol 2019; 34:189-197. [PMID: 31188056 DOI: 10.1080/08820538.2019.1620794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinal imaging is a fundamental tool for clinical and research efforts in the evaluation and management of diabetic retinopathy. Adaptive optics (AO) is an imaging technique that enables correction of over 90% of the optical aberrations of an individual eye induced primarily by the tear film, cornea and lens. The two major tasks of any AO system are to measure the optical imperfections of the eye and to then compensate for these aberrations to generate a corrected wavefront of reflected light from the eye. AO scanning laser ophthalmoscopy (AOSLO) provides a theoretical lateral resolution limit of 1.4 μm, allowing the study of microscopic features of the retinal vascular and neural tissue. AOSLO studies have revealed irregularities of the photoreceptor mosaic, vascular loss, and details of vascular lesions in diabetic eyes that may provide new insight into development, regression, and response to therapy of diabetic eye disease.
Collapse
Affiliation(s)
- Omar AbdelAl
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Mohammed Ashraf
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Konstantina Sampani
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Jennifer K Sun
- a Beetham Eye Institute , Joslin Diabetes Center , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
30
|
Granger CE, Yang Q, Song H, Saito K, Nozato K, Latchney LR, Leonard BT, Chung MM, Williams DR, Rossi EA. Human Retinal Pigment Epithelium: In Vivo Cell Morphometry, Multispectral Autofluorescence, and Relationship to Cone Mosaic. Invest Ophthalmol Vis Sci 2019; 59:5705-5716. [PMID: 30513531 PMCID: PMC6280915 DOI: 10.1167/iovs.18-24677] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To characterize in vivo morphometry and multispectral autofluorescence of the retinal pigment epithelial (RPE) cell mosaic and its relationship to cone cell topography across the macula. Methods RPE cell morphometrics were computed in regularly spaced regions of interest (ROIs) from contiguous short-wavelength autofluorescence (SWAF) and photoreceptor reflectance images collected across the macula in one eye of 10 normal participants (23–65 years) by using adaptive optics scanning light ophthalmoscopy (AOSLO). Infrared autofluorescence (IRAF) images of the RPE were collected with AOSLO in seven normal participants (22–65 years), with participant overlap, and compared to SWAF quantitatively and qualitatively. Results RPE cell statistics could be analyzed in 84% of SWAF ROIs. RPE cell density consistently decreased with eccentricity from the fovea (participant mean ± SD: 6026 ± 1590 cells/mm2 at fovea; 4552 ± 1370 cells/mm2 and 3757 ± 1290 cells/mm2 at 3.5 mm temporally and nasally, respectively). Mean cone-to-RPE cell ratio decreased rapidly from 16.6 at the foveal center to <5 by 1 mm. IRAF revealed cells in six of seven participants, in agreement with SWAF RPE cell size and location. Differences in cell fluorescent structure, contrast, and visibility beneath vasculature were observed between modalities. Conclusions Improvements in AOSLO autofluorescence imaging permit efficient visualization of RPE cells with safe light exposures, allowing individual characterization of RPE cell morphometry that is variable between participants. The normative dataset and analysis of RPE cell IRAF and SWAF herein are essential for understanding microscopic characteristics of cell fluorescence and may assist in interpreting disease progression in RPE cells.
Collapse
Affiliation(s)
- Charles E Granger
- Center for Visual Science, University of Rochester, Rochester, New York, United States.,The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hongxin Song
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, National Engineering Research Center for Ophthalmic Equipment, Beijing, China
| | - Kenichi Saito
- Canon U.S.A., Inc., Melville, New York, United States
| | - Koji Nozato
- Canon U.S.A., Inc., Melville, New York, United States
| | - Lisa R Latchney
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Bianca T Leonard
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Mina M Chung
- Center for Visual Science, University of Rochester, Rochester, New York, United States.,Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States.,The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Ethan A Rossi
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
31
|
Hu X, Yang Q. Modeling and optimization of closed-loop retinal motion tracking in scanning light ophthalmoscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:716-721. [PMID: 31044997 DOI: 10.1364/josaa.36.000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
A model of closed-loop retinal motion tracking in an adaptive optics scanning light ophthalmoscope (AOSLO) was built, and the tracking performance was optimized by minimizing the root-mean-square of residual motion. We started with an evaluation of the fidelity of the retinal motion measurement, and then analyzed the transfer function of the system and power spectral density of retinal motion from human eyes, to achieve optimal control gain and sampling frequency. The performance was further enhanced by incorporating retinal motion prediction during the period in which the slow scanner was retracing. After optimization, residual image motion performance was improved by 33% with a nearly 50% reduction in computational cost in comparison to our previous setup, reaching a 3 dB bandwidth of 15-17 Hz, which is close to the frame rate (∼21 fps) of this AOSLO system.
Collapse
|
32
|
Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. Adaptive optics imaging of the human retina. Prog Retin Eye Res 2019; 68:1-30. [PMID: 30165239 PMCID: PMC6347528 DOI: 10.1016/j.preteyeres.2018.08.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
Adaptive Optics (AO) retinal imaging has provided revolutionary tools to scientists and clinicians for studying retinal structure and function in the living eye. From animal models to clinical patients, AO imaging is changing the way scientists are approaching the study of the retina. By providing cellular and subcellular details without the need for histology, it is now possible to perform large scale studies as well as to understand how an individual retina changes over time. Because AO retinal imaging is non-invasive and when performed with near-IR wavelengths both safe and easily tolerated by patients, it holds promise for being incorporated into clinical trials providing cell specific approaches to monitoring diseases and therapeutic interventions. AO is being used to enhance the ability of OCT, fluorescence imaging, and reflectance imaging. By incorporating imaging that is sensitive to differences in the scattering properties of retinal tissue, it is especially sensitive to disease, which can drastically impact retinal tissue properties. This review examines human AO retinal imaging with a concentration on the use of the Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO). It first covers the background and the overall approaches to human AO retinal imaging, and the technology involved, and then concentrates on using AO retinal imaging to study the structure and function of the retina.
Collapse
Affiliation(s)
- Stephen A Burns
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States.
| | - Ann E Elsner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Kaitlyn A Sapoznik
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Raymond L Warner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Thomas J Gast
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
33
|
Grieve K, Gofas-Salas E, Ferguson RD, Sahel JA, Paques M, Rossi EA. In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation. BIOMEDICAL OPTICS EXPRESS 2018; 9:5946-5961. [PMID: 31065405 PMCID: PMC6490976 DOI: 10.1364/boe.9.005946] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 05/06/2023]
Abstract
We demonstrate near-infrared autofluorescence (NIRAF) imaging of retinal pigment epithelial (RPE) cells in vivo in healthy volunteers and patients using a 757 nm excitation source in adaptive optics scanning laser ophthalmoscopy (AOSLO). NIRAF excited at 757 nm and collected in an emission band from 778 to 810 nm produced a robust NIRAF signal, presumably arising from melanin, and revealed the typical hexagonal mosaic of RPE cells at most eccentricities imaged within the macula of normal eyes. Several patterns of altered NIRAF structure were seen in patients, including disruption of the NIRAF over a drusen, diffuse hyper NIRAF signal with loss of individual cell delineation in a case of non-neovascular age-related macular degeneration (AMD), and increased visibility of the RPE mosaic under an area showing loss of photoreceptors. In some participants, a superposed cone mosaic was clearly visible in the fluorescence channel at eccentricities between 2 and 6° from the fovea. This was reproducible in these participants and existed despite the use of emission filters with an optical attenuation density of 12 at the excitation wavelength, minimizing the possibility that this was due to bleed through of the excitation light. This cone signal may be a consequence of cone waveguiding on either the ingoing excitation light and/or the outgoing NIRAF emitted by fluorophores within the RPE and/or choroid and warrants further investigation. NIRAF imaging at 757 nm offers efficient signal excitation and detection, revealing structural alterations in retinal disease with good contrast and shows promise as a tool for monitoring future therapies at the level of single RPE cells.
Collapse
Affiliation(s)
- Kate Grieve
- Vision Institute and Quinze Vingts National Ophthalmology Hospital, PARIS group, 28 rue de Charenton, 75712, Paris, France
| | - Elena Gofas-Salas
- Vision Institute and Quinze Vingts National Ophthalmology Hospital, PARIS group, 28 rue de Charenton, 75712, Paris, France
- DOTA, ONERA, Université Paris Saclay F-91123 Palaisea, France
| | | | - José Alain Sahel
- Vision Institute and Quinze Vingts National Ophthalmology Hospital, PARIS group, 28 rue de Charenton, 75712, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michel Paques
- Vision Institute and Quinze Vingts National Ophthalmology Hospital, PARIS group, 28 rue de Charenton, 75712, Paris, France
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
| |
Collapse
|
34
|
Mecê P, Jarosz J, Conan JM, Petit C, Grieve K, Paques M, Meimon S. Fixational eye movement: a negligible source of dynamic aberration. BIOMEDICAL OPTICS EXPRESS 2018; 9:717-727. [PMID: 29552407 PMCID: PMC5854073 DOI: 10.1364/boe.9.000717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 05/06/2023]
Abstract
To evaluate the contribution of fixational eye movements to dynamic aberration, 50 healthy eyes were examined with an original custom-built Shack-Hartmann aberrometer, running at a temporal frequency of 236Hz, with 22 lenslets across a 5mm pupil, synchronized with a 236Hz pupil tracker. A comparison of the dynamic behavior of the first 21 Zernike modes (starting from defocus) with and without digital pupil stabilization, on a 3.4s sequence between blinks, showed that the contribution of fixational eye movements to dynamic aberration is negligible. Therefore we highlighted the fact that a pupil tracker coupled to an Adaptive Optics Ophthalmoscope is not essential to achieve diffraction-limited resolution.
Collapse
Affiliation(s)
- Pedro Mecê
- ONERA – the French Aerospace Lab, Châtillon,
France
- Quantel Medical, Cournon d’Auvergne,
France
| | - Jessica Jarosz
- ONERA – the French Aerospace Lab, Châtillon,
France
- Quantel Medical, Cournon d’Auvergne,
France
| | | | - Cyril Petit
- ONERA – the French Aerospace Lab, Châtillon,
France
| | - Kate Grieve
- Clinical Investigation Center-CIC 1423 INSERM, Quinze-Vingts National Eye Hospital,Paris,
France
- Institut de la Vision, Paris,
France
| | - Michel Paques
- Clinical Investigation Center-CIC 1423 INSERM, Quinze-Vingts National Eye Hospital,Paris,
France
- Institut de la Vision, Paris,
France
| | - Serge Meimon
- ONERA – the French Aerospace Lab, Châtillon,
France
| |
Collapse
|
35
|
Vienola KV, Damodaran M, Braaf B, Vermeer KA, de Boer JF. In vivo retinal imaging for fixational eye motion detection using a high-speed digital micromirror device (DMD)-based ophthalmoscope. BIOMEDICAL OPTICS EXPRESS 2018; 9:591-602. [PMID: 29552396 PMCID: PMC5854061 DOI: 10.1364/boe.9.000591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 05/04/2023]
Abstract
Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts.
Collapse
Affiliation(s)
- Kari V. Vienola
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, HV Amsterdam, The Netherlands
| | - Mathi Damodaran
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, HV Amsterdam, The Netherlands
| | - Boy Braaf
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, HV Amsterdam, The Netherlands
| | - Koenraad A. Vermeer
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160D, 3011 BH Rotterdam, The Netherlands
| | - Johannes F. de Boer
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, HV Amsterdam, The Netherlands
| |
Collapse
|
36
|
Feeks JA, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice. BIOMEDICAL OPTICS EXPRESS 2017; 8:2483-2495. [PMID: 28663886 PMCID: PMC5480493 DOI: 10.1364/boe.8.002483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 05/05/2023]
Abstract
In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina.
Collapse
Affiliation(s)
- James A. Feeks
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, NY 14627, USA
| |
Collapse
|
37
|
Bedggood P, Metha A. De-warping of images and improved eye tracking for the scanning laser ophthalmoscope. PLoS One 2017; 12:e0174617. [PMID: 28369065 PMCID: PMC5378343 DOI: 10.1371/journal.pone.0174617] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/12/2017] [Indexed: 11/18/2022] Open
Abstract
A limitation of scanning laser ophthalmoscopy (SLO) is that eye movements during the capture of each frame distort the retinal image. Various sophisticated strategies have been devised to ensure that each acquired frame can be mapped quickly and accurately onto a chosen reference frame, but such methods are blind to distortions in the reference frame itself. Here we explore a method to address this limitation in software, and demonstrate its accuracy. We used high-speed (200 fps), high-resolution (~1 μm), flood-based imaging of the human retina with adaptive optics to obtain “ground truth” information on the retinal image and motion of the eye. This information was used to simulate SLO video sequences at 20 fps, allowing us to compare various methods for eye-motion recovery and subsequent minimization of intra-frame distortion. We show that a) a single frame can be near-perfectly recovered with perfect knowledge of intra-frame eye motion; b) eye motion at a given time point within a frame can be accurately recovered by tracking the same strip of tissue across many frames, due to the stochastic symmetry of fixational eye movements. This approach is similar to, and easily adapted from, previously suggested strip-registration approaches; c) quality of frame recovery decreases with amplitude of eye movements, however, the proposed method is affected less by this than other state-of-the-art methods and so offers even greater advantages when fixation is poor. The new method could easily be integrated into existing image processing software, and we provide an example implementation written in Matlab.
Collapse
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Andrew Metha
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Lu J, Gu B, Wang X, Zhang Y. High-speed adaptive optics line scan confocal retinal imaging for human eye. PLoS One 2017; 12:e0169358. [PMID: 28257458 PMCID: PMC5336222 DOI: 10.1371/journal.pone.0169358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/15/2016] [Indexed: 01/03/2023] Open
Abstract
Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.
Collapse
Affiliation(s)
- Jing Lu
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Boyu Gu
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiaolin Wang
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuhua Zhang
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
39
|
Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc Natl Acad Sci U S A 2017; 114:586-591. [PMID: 28049835 DOI: 10.1073/pnas.1613445114] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although imaging of the living retina with adaptive optics scanning light ophthalmoscopy (AOSLO) provides microscopic access to individual cells, such as photoreceptors, retinal pigment epithelial cells, and blood cells in the retinal vasculature, other important cell classes, such as retinal ganglion cells, have proven much more challenging to image. The near transparency of inner retinal cells is advantageous for vision, as light must pass through them to reach the photoreceptors, but it has prevented them from being directly imaged in vivo. Here we show that the individual somas of neurons within the retinal ganglion cell (RGC) layer can be imaged with a modification of confocal AOSLO, in both monkeys and humans. Human images of RGC layer neurons did not match the quality of monkey images for several reasons, including safety concerns that limited the light levels permissible for human imaging. We also show that the same technique applied to the photoreceptor layer can resolve ambiguity about cone survival in age-related macular degeneration. The capability to noninvasively image RGC layer neurons in the living eye may one day allow for a better understanding of diseases, such as glaucoma, and accelerate the development of therapeutic strategies that aim to protect these cells. This method may also prove useful for imaging other structures, such as neurons in the brain.
Collapse
|
40
|
Schwarz C, Sharma R, Fischer WS, Chung M, Palczewska G, Palczewski K, Williams DR, Hunter JJ. Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans. BIOMEDICAL OPTICS EXPRESS 2016; 7:5148-5169. [PMID: 28018732 PMCID: PMC5175559 DOI: 10.1364/boe.7.005148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 05/18/2023]
Abstract
Two-photon ophthalmoscopy has potential for in vivo assessment of function of normal and diseased retina. However, light safety of the sub-100 fs laser typically used is a major concern and safety standards are not well established. To test the feasibility of safe in vivo two-photon excitation fluorescence (TPEF) imaging of photoreceptors in humans, we examined the effects of ultrashort pulsed light and the required light levels with a variety of clinical and high resolution imaging methods in macaques. The only measure that revealed a significant effect due to exposure to pulsed light within existing safety standards was infrared autofluorescence (IRAF) intensity. No other structural or functional alterations were detected by other imaging techniques for any of the exposures. Photoreceptors and retinal pigment epithelium appeared normal in adaptive optics images. No effect of repeated exposures on TPEF time course was detected, suggesting that visual cycle function was maintained. If IRAF reduction is hazardous, it is the only hurdle to applying two-photon retinal imaging in humans. To date, no harmful effects of IRAF reduction have been detected.
Collapse
Affiliation(s)
- Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Robin Sharma
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | | | - Mina Chung
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | | | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
- The Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
41
|
Guevara-Torres A, Joseph A, Schallek JB. Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye. BIOMEDICAL OPTICS EXPRESS 2016; 7:4228-4249. [PMID: 27867728 PMCID: PMC5102544 DOI: 10.1364/boe.7.004228] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 05/02/2023]
Abstract
Measuring blood cell dynamics within the capillaries of the living eye provides crucial information regarding the health of the microvascular network. To date, the study of single blood cell movement in this network has been obscured by optical aberrations, hindered by weak optical contrast, and often required injection of exogenous fluorescent dyes to perform measurements. Here we present a new strategy to non-invasively image single blood cells in the living mouse eye without contrast agents. Eye aberrations were corrected with an adaptive optics camera coupled with a fast, 15 kHz scanned beam orthogonal to a capillary of interest. Blood cells were imaged as they flowed past a near infrared imaging beam to which the eye is relatively insensitive. Optical contrast of cells was optimized using differential scatter of blood cells in the split-detector imaging configuration. Combined, these strategies provide label-free, non-invasive imaging of blood cells in the retina as they travel in single file in capillaries, enabling determination of cell flux, morphology, class, velocity, and rheology at the single cell level.
Collapse
Affiliation(s)
- A. Guevara-Torres
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - A. Joseph
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - J. B. Schallek
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Tam J, Liu J, Dubra A, Fariss R. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy. Invest Ophthalmol Vis Sci 2016; 57:4376-84. [PMID: 27564519 PMCID: PMC5015921 DOI: 10.1167/iovs.16-19503] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. METHODS A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. RESULTS The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. CONCLUSIONS Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells.
Collapse
Affiliation(s)
- Johnny Tam
- Ophthalmic Genetics and Visual Function Branch National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jianfei Liu
- Ophthalmic Genetics and Visual Function Branch National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Alfredo Dubra
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
43
|
Alexander NS, Palczewska G, Stremplewski P, Wojtkowski M, Kern TS, Palczewski K. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina. BIOMEDICAL OPTICS EXPRESS 2016; 7:2671-91. [PMID: 27446697 PMCID: PMC4948621 DOI: 10.1364/boe.7.002671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/11/2016] [Accepted: 06/11/2016] [Indexed: 05/18/2023]
Abstract
Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [Palczewska G., Nat Med.20, 785 (2014) Sharma R., Biomed. Opt. Express4, 1285 (2013)].
Collapse
Affiliation(s)
- Nathan S Alexander
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | | | - Patrycjusz Stremplewski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Maciej Wojtkowski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Timothy S Kern
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Polgenix Inc., 11000 Cedar Ave, Cleveland, Ohio 44106, USA;
| |
Collapse
|
44
|
Lens-based wavefront sensorless adaptive optics swept source OCT. Sci Rep 2016; 6:27620. [PMID: 27278853 PMCID: PMC4899788 DOI: 10.1038/srep27620] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022] Open
Abstract
Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.
Collapse
|
45
|
Merino D, Loza-Alvarez P. Adaptive optics scanning laser ophthalmoscope imaging: technology update. Clin Ophthalmol 2016; 10:743-55. [PMID: 27175057 PMCID: PMC4854423 DOI: 10.2147/opth.s64458] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it.
Collapse
Affiliation(s)
- David Merino
- The Institute of Photonic Sciences (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- The Institute of Photonic Sciences (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| |
Collapse
|
46
|
Sharma R, Williams DR, Palczewska G, Palczewski K, Hunter JJ. Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye. Invest Ophthalmol Vis Sci 2016; 57:632-46. [PMID: 26903224 PMCID: PMC4771181 DOI: 10.1167/iovs.15-17961] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/30/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Although extrinsic fluorophores can be introduced to label specific cell types in the retina, endogenous fluorophores, such as NAD(P)H, FAD, collagen, and others, are present in all retinal layers. These molecules are a potential source of optical contrast and can enable noninvasive visualization of all cellular layers. We used a two-photon fluorescence adaptive optics scanning light ophthalmoscope (TPF-AOSLO) to explore the native autofluorescence of various cell classes spanning several layers in the unlabeled retina of a living primate eye. METHODS Three macaques were imaged on separate occasions using a custom TPF-AOSLO. Two-photon fluorescence was evoked by pulsed light at 730 and 920 nm excitation wavelengths, while fluorescence emission was collected in the visible range from several retinal layers and different locations. Backscattered light was recorded simultaneously in confocal modality and images were postprocessed to remove eye motion. RESULTS All retinal layers yielded two-photon signals and the heterogeneous distribution of fluorophores provided optical contrast. Several structural features were observed, such as autofluorescence from vessel walls, Müller cell processes in the nerve fibers, mosaics of cells in the ganglion cell and other nuclear layers of the inner retina, as well as photoreceptor and RPE layers in the outer retina. CONCLUSIONS This in vivo survey of two-photon autofluorescence throughout the primate retina demonstrates a wider variety of structural detail in the living eye than is available through conventional imaging methods, and broadens the use of two-photon imaging of normal and diseased eyes.
Collapse
Affiliation(s)
- Robin Sharma
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - David R. Williams
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | | | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
47
|
Yu Y, Zhang T, Meadway A, Wang X, Zhang Y. High-speed adaptive optics for imaging of the living human eye. OPTICS EXPRESS 2015; 23:23035-52. [PMID: 26368408 PMCID: PMC4646518 DOI: 10.1364/oe.23.023035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 05/18/2023]
Abstract
The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye.
Collapse
Affiliation(s)
- Yongxin Yu
- Department of Ophthalmology, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tianjiao Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Alexander Meadway
- Department of Ophthalmology, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| | - Xiaolin Wang
- Department of Ophthalmology, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| | - Yuhua Zhang
- Department of Ophthalmology, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
48
|
Sheehy CK, Tiruveedhula P, Sabesan R, Roorda A. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope. BIOMEDICAL OPTICS EXPRESS 2015; 6. [PMID: 26203370 PMCID: PMC4505698 DOI: 10.1364/boe.6.002412] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone.
Collapse
Affiliation(s)
- Christy K. Sheehy
- Vision Science Graduate Group, University of California, Berkeley; Berkeley, CA 94720, USA
- School of Optometry, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Pavan Tiruveedhula
- School of Optometry, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Ramkumar Sabesan
- School of Optometry, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Austin Roorda
- Vision Science Graduate Group, University of California, Berkeley; Berkeley, CA 94720, USA
- School of Optometry, University of California, Berkeley; Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Zhang J, Yang Q, Saito K, Nozato K, Williams DR, Rossi EA. An adaptive optics imaging system designed for clinical use. BIOMEDICAL OPTICS EXPRESS 2015; 6:2120-37. [PMID: 26114033 PMCID: PMC4473748 DOI: 10.1364/boe.6.002120] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 05/18/2023]
Abstract
Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2-3 arc minutes, (arcmin) 2) ~0.5-0.8 arcmin and, 3) ~0.05-0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3-5 arcmin, 2) ~0.7-1.1 arcmin and 3) ~0.07-0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing.
Collapse
Affiliation(s)
- Jie Zhang
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
- Equal contribution first authors
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
- Equal contribution first authors
| | - Kenichi Saito
- Healthcare Solutions Division, Business Imaging Solution Group, Canon U.S.A. Inc., Melville, NY, 11747, USA
| | - Koji Nozato
- Healthcare Solutions Division, Business Imaging Solution Group, Canon U.S.A. Inc., Melville, NY, 11747, USA
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
- The Institute of Optics, University of Rochester, Rochester, NY, 14642, USA
| | - Ethan A. Rossi
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
50
|
Ryle JP, Vohnsen B, Sheridan JT. Simultaneous drift, microsaccades, and ocular microtremor measurement from a single noncontact far-field optical sensor. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:27004. [PMID: 25674709 DOI: 10.1117/1.jbo.20.2.027004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
We report on the combined far-field measurement of the three involuntary eye movements, drift, microsaccades, and ocular microtremor (OMT), using a noncontact far-field optical method. We review the significance of the smallest and least measured, and thus least understood, of the three, OMT. Using modern digital imaging techniques, we perform detailed analysis, present experimental results, and examine the extracted parameters using a noncontact far-field sensor. For the first time, in vivo noncontact measurements of all fixational in-plane movements of the human eye are reported, which simultaneously provide both the horizontal (left-right) and vertical (up-down) displacement results.
Collapse
Affiliation(s)
- James P Ryle
- Maynooth University, The Callan Institute, Department of Electronic Engineering, Maynooth, County Kildare, Republic of Ireland
| | - Brian Vohnsen
- University College Dublin, College of Science, School of Physics, Belfield, Dublin 4, Republic of Ireland
| | - John T Sheridan
- University College Dublin, College of College of Engineering & Architecture, School of Electrical, Electronic and Communications Engineering, Communications and Optoelectronic Research Centre, SFI Strategic Research Cluster in Solar Energy Conversion, Bel
| |
Collapse
|