1
|
Noltes ME, Bader M, Metman MJH, Vonk J, Steinkamp PJ, Kukačka J, Westerlaan HE, Dierckx RAJO, van Hemel BM, Brouwers AH, van Dam GM, Jüstel D, Ntziachristos V, Kruijff S. Towards in vivo characterization of thyroid nodules suspicious for malignancy using multispectral optoacoustic tomography. Eur J Nucl Med Mol Imaging 2023; 50:2736-2750. [PMID: 37039901 PMCID: PMC10317911 DOI: 10.1007/s00259-023-06189-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/05/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Patient-tailored management of thyroid nodules requires improved risk of malignancy stratification by accurate preoperative nodule assessment, aiming to personalize decisions concerning diagnostics and treatment. Here, we perform an exploratory pilot study to identify possible patterns on multispectral optoacoustic tomography (MSOT) for thyroid malignancy stratification. For the first time, we directly correlate MSOT images with histopathology data on a detailed level. METHODS We use recently enhanced data processing and image reconstruction methods for MSOT to provide next-level image quality by means of improved spatial resolution and spectral contrast. We examine optoacoustic features in thyroid nodules associated with vascular patterns and correlate these directly with reference histopathology. RESULTS Our methods show the ability to resolve blood vessels with diameters of 250 μm at depths of up to 2 cm. The vessel diameters derived on MSOT showed an excellent correlation (R2-score of 0.9426) with the vessel diameters on histopathology. Subsequently, we identify features of malignancy observable in MSOT, such as intranodular microvascularity and extrathyroidal extension verified by histopathology. Despite these promising features in selected patients, we could not determine statistically relevant differences between benign and malignant thyroid nodules based on mean oxygen saturation in thyroid nodules. Thus, we illustrate general imaging artifacts of the whole field of optoacoustic imaging that reduce image fidelity and distort spectral contrast, which impedes quantification of chromophore presence based on mean concentrations. CONCLUSION We recommend examining optoacoustic features in addition to chromophore quantification to rank malignancy risk. We present optoacoustic images of thyroid nodules with the highest spatial resolution and spectral contrast to date, directly correlated to histopathology, pushing the clinical translation of MSOT.
Collapse
Affiliation(s)
- Milou E Noltes
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maximilian Bader
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Madelon J H Metman
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jasper Vonk
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter J Steinkamp
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Kukačka
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henriette E Westerlaan
- Department of Radiology, University Medical Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bettien M van Hemel
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gooitzen M van Dam
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- AxelaRx/TRACER Europe BV, Groningen, the Netherlands
| | - Dominik Jüstel
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | - Schelto Kruijff
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Chen H, Agrawal S, Osman M, Minotto J, Mirg S, Liu J, Dangi A, Tran Q, Jackson T, Kothapalli SR. A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging. BME FRONTIERS 2022; 2022:9871098. [PMID: 37850172 PMCID: PMC10521654 DOI: 10.34133/2022/9871098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/28/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional, and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improve diagnostic sensitivity and specificity. Introduction. Currently, combining ultrasound, photoacoustic, and optical imaging modalities is challenging because conventional ultrasound transducer arrays are optically opaque. As a result, complex geometries are used to coalign both optical and ultrasound waves in the same field of view. Methods. One elegant solution is to make the ultrasound transducer transparent to light. Here, we demonstrate a novel transparent ultrasound transducer (TUT) linear array fabricated using a transparent lithium niobate piezoelectric material for real-time multimodal imaging. Results. The TUT-array consists of 64 elements and centered at ~6 MHz frequency. We demonstrate a quad-mode ultrasound, Doppler ultrasound, photoacoustic, and fluorescence imaging in real-time using the TUT-array directly coupled to the tissue mimicking phantoms. Conclusion. The TUT-array successfully showed a multimodal imaging capability and has potential applications in diagnosing cancer, neurological, and vascular diseases, including image-guided endoscopy and wearable imaging.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sumit Agrawal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mohamed Osman
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Josiah Minotto
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shubham Mirg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jinyun Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ajay Dangi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Quyen Tran
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas Jackson
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, The Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Manwar R, Lara JB, Prakash R, Ranjbaran SM, Avanaki K. Randomized multi-angle illumination for improved linear array photoacoustic computed tomography in brain. JOURNAL OF BIOPHOTONICS 2022; 15:e202200016. [PMID: 35285133 DOI: 10.1002/jbio.202200016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
One of the key challenges in linear array transducer-based photoacoustic computed tomography is to image structures embedded deep within the biological tissue with limited optical energy. Here, we utilized a manually controlled multi-angle illumination technique to allow the incident photons to interact with the imaging targets for longer periods of time and diffuse further in all directions. We have developed and optimized a compact probe that enables manual changes to the angle of illumination while acquiring photoacoustic signals. The performance has been demonstrated and evaluated by imaging complex blood vessel mimicking phantoms in-vitro and sheep brain samples ex-vivo. For effective image reconstruction from the data acquired by multi-angle illumination method, we have utilized a method based on the extraction of maximum intensity. In both cases, multi-angle illumination has out-performed the conventional fixed angle illumination technique to improve the overall image quality. Specifically, extraction of the imaging targets located at greater axial depths was possible using this multi-angle illumination technique.
Collapse
Affiliation(s)
- Rayyan Manwar
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Juliana Benavides Lara
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ravi Prakash
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Seyed Mohsen Ranjbaran
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Dermatology and Pediatric, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Sun Z, Zhang X. Suppression of acoustic reflection artifact in endoscopic photoacoustic tomographic images based on approximation of ideal signals. Technol Health Care 2022; 30:201-214. [PMID: 35124597 PMCID: PMC9028649 DOI: 10.3233/thc-228019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: In endoscopic photoacoustic tomography (EPAT), the photoacoustically induced ultrasonic wave reflects at tissue boundaries due to the acoustic inhomogeneity of the imaged tissue, resulting in reflection artifacts (RAs) in the reconstructed images. OBJECTIVE: To suppress RAs in EPAT image reconstruction for improving the image quality. METHODS: A method was presented to render the cross-sectional images of the optical absorption with reduced RAs from acoustic measurements. The ideal photoacoustic signal was recovered from acoustic signals collected by the detector through solving a least square problem. Then, high-quality images of the optical absorption distribution were reconstructed from the ideal signal. RESULTS: The results demonstrated the improvement in the quality of the images rendered by this method in comparison with the conventional back-projection (BP) reconstructions. Compared with the short lag spatial coherence (SLSC) method, the peak signal-to-noise ratio (PSNR), normalized mean square absolute distance (NMSAD), and structural similarity (SSIM) were improved by up to 8%, 20%, and 5%, respectively. CONCLUSIONS: This method was capable of rendering images displaying the complex tissue types with reduced RAs and lower computational burden in comparison with previously developed methods.
Collapse
Affiliation(s)
- Zheng Sun
- Corresponding author: Zheng Sun, Department of Electronic and Communication Engineering, North China Electric Power University, P.O. Box 21, No. 619 Yonghua North Street, Baoding, Hebei 071003, China. Tel.: +86 15930929260; Fax: +86 3127522272; E-mail:
| | | |
Collapse
|
5
|
Towards Transabdominal Functional Photoacoustic Imaging of the Placenta: Improvement in Imaging Depth Through Optimization of Light Delivery. Ann Biomed Eng 2021; 49:1861-1873. [PMID: 33909192 PMCID: PMC8373763 DOI: 10.1007/s10439-021-02777-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Functional photoacoustic imaging of the placenta could provide an innovative tool to diagnose preeclampsia, monitor fetal growth restriction, and determine the developmental impacts of gestational diabetes. However, transabdominal photoacoustic imaging is limited in imaging depth due to the tissue's scattering and absorption of light. The aim of this paper was to investigate the impact of geometry and wavelength on transabdominal light delivery. Our methods included the development of a multilayer model of the abdominal tissue and simulation of the light propagation using Monte Carlo methods. A bifurcated light source with varying incident angle of light, distance between light beams, and beam area was simulated to analyze the effect of light delivery geometry on the fluence distribution at depth. The impact of wavelength and the effects of variable thicknesses of adipose tissue and muscle were also studied. Our results showed that the beam area plays a major role in improving the delivery of light to deep tissue, in comparison to light incidence angle or distance between the bifurcated fibers. Longer wavelengths, with incident fluence at the maximum permissible exposure limit, also increases fluence within deeper tissue. We validated our simulations using a commercially available light delivery system and ex vivo human placental tissue. Additionally, we compared our optimized light delivery to a commercially available light delivery system, and conclude that our optimized geometry could improve imaging depth more than 1.6×, bringing the imaging depth to within the needed range for transabdominal imaging of the human placenta.
Collapse
|
6
|
Multiangle Long-Axis Lateral Illumination Photoacoustic Imaging Using Linear Array Transducer. SENSORS 2020; 20:s20144052. [PMID: 32708170 PMCID: PMC7411732 DOI: 10.3390/s20144052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022]
Abstract
Photoacoustic imaging (PAI) combines optical contrast with ultrasound spatial resolution and can be obtained up to a depth of a few centimeters. Hand-held PAI systems using linear array usually operate in reflection mode using a dark-field illumination scheme, where the optical fiber output is attached to both sides of the elevation plane (short-axis) of the transducer. More recently, bright-field strategies where the optical illumination is coaxial with acoustic detection have been proposed to overcome some limitations of the standard dark-field approach. In this paper, a novel multiangle long-axis lateral illumination is proposed. Monte Carlo simulations were conducted to evaluate light delivery for three different illumination schemes: bright-field, standard dark-field, and long-axis lateral illumination. Long-axis lateral illumination showed remarkable improvement in light delivery for targets with a width smaller than the transducer lateral dimension. A prototype was developed to experimentally demonstrate the feasibility of the proposed approach. In this device, the fiber bundle terminal ends are attached to both sides of the transducer’s long-axis and the illumination angle of each fiber bundle can be independently controlled. The final PA image is obtained by the coherent sum of subframes acquired using different angles. The prototype was experimentally evaluated by taking images from a phantom, a mouse abdomen, forearm, and index finger of a volunteer. The system provided light delivery enhancement taking advantage of the geometry of the target, achieving sufficient signal-to-noise ratio at clinically relevant depths.
Collapse
|
7
|
Kuriakose M, Nguyen CD, Kuniyil Ajith Singh M, Mallidi S. Optimizing Irradiation Geometry in LED-Based Photoacoustic Imaging with 3D Printed Flexible and Modular Light Delivery System. SENSORS 2020; 20:s20133789. [PMID: 32640683 PMCID: PMC7374354 DOI: 10.3390/s20133789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Photoacoustic (PA) imaging–a technique combining the ability of optical imaging to probe functional properties of the tissue and deep structural imaging ability of ultrasound–has gained significant popularity in the past two decades for its utility in several biomedical applications. More recently, light-emitting diodes (LED) are being explored as an alternative to bulky and expensive laser systems used in PA imaging for their portability and low-cost. Due to the large beam divergence of LEDs compared to traditional laser beams, it is imperative to quantify the angular dependence of LED-based illumination and optimize its performance for imaging superficial or deep-seated lesions. A custom-built modular 3-D printed hinge system and tissue-mimicking phantoms with various absorption and scattering properties were used in this study to quantify the angular dependence of LED-based illumination. We also experimentally calculated the source divergence of the pulsed-LED arrays to be 58° ± 8°. Our results from point sources (pencil lead phantom) in non-scattering medium obey the cotangential relationship between the angle of irradiation and maximum PA intensity obtained at various imaging depths, as expected. Strong dependence on the angle of illumination at superficial depths (−5°/mm at 10 mm) was observed that becomes weaker at intermediate depths (−2.5°/mm at 20 mm) and negligible at deeper locations (−1.1°/mm at 30 mm). The results from the tissue-mimicking phantom in scattering media indicate that angles between 30–75° could be used for imaging lesions at various depths (12 mm–28 mm) where lower LED illumination angles (closer to being parallel to the imaging plane) are preferable for deep tissue imaging and superficial lesion imaging is possible with higher LED illumination angles (closer to being perpendicular to the imaging plane). Our results can serve as a priori knowledge for the future LED-based PA system designs employed for both preclinical and clinical applications.
Collapse
Affiliation(s)
- Maju Kuriakose
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | - Christopher D. Nguyen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
- Correspondence:
| |
Collapse
|
8
|
Sowers T, Yoon H, Emelianov S. Investigation of light delivery geometries for photoacoustic applications using Monte Carlo simulations with multiple wavelengths, tissue types, and species characteristics. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-16. [PMID: 31975577 PMCID: PMC6976898 DOI: 10.1117/1.jbo.25.1.016005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/18/2019] [Indexed: 05/24/2023]
Abstract
Combined ultrasound and photoacoustic imaging systems are being developed for biomedical and clinical applications. One common probe configuration is to use a linear transducer array with external light delivery to produce coregistered ultrasound and photoacoustic images. The diagnostic capability of these systems is dependent on the effectiveness of light delivery to the imaging target. We use Monte Carlo modeling to investigate the optimal design geometry of an integrated probe. Simulations are conducted with multiple tissue compositions and wavelengths. The effect of a skin layer with the thickness of a mouse or a human is also considered. The model was validated using a tissue-mimicking gelatin phantom and corresponding Monte Carlo simulations. The optimal illumination angle is shallower with human skin thickness, whereas intermediate angles are ideal with mouse skin thickness. The effect of skin thickness explains differences in the results of prior work. The simulations also indicate that even with identical hardware and imaging parameters, light delivery will be up to 3 × smaller in humans than in mice, due to the increased scattering from thicker skin. Our findings have clear implications for the many researchers using mice to test and develop imaging methods for clinical translation.
Collapse
Affiliation(s)
- Timothy Sowers
- Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States
| | - Heechul Yoon
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
| | - Stanislav Emelianov
- Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine and Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
9
|
Vogt WC, Zhou X, Andriani R, Wear KA, Pfefer TJ, Garra BS. Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation. BIOMEDICAL OPTICS EXPRESS 2019; 10:449-464. [PMID: 30800492 PMCID: PMC6377872 DOI: 10.1364/boe.10.000449] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 05/18/2023]
Abstract
Multispectral photoacoustic oximetry imaging (MPOI) is an emerging hybrid modality that enables the spatial mapping of blood oxygen saturation (SO2) to depths of several centimeters. To facilitate MPOI device development and clinical translation, well-validated performance test methods and improved quantitative understanding of physical processes and best practices are needed. We developed a breast-mimicking blood flow phantom with tunable SO2 and used this phantom to evaluate a custom MPOI system. Results provide quantitative evaluation of the impact of phantom medium properties (Intralipid versus polyvinyl chloride plastisol) and device design parameters (different transducers) on SO2 measurement accuracy, especially depth-dependent performance degradation due to fluence artifacts. This approach may guide development of standardized test methods for evaluating MPOI devices.
Collapse
Affiliation(s)
- William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Xuewen Zhou
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Rudy Andriani
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Brian S. Garra
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Sangha GS, Hale NJ, Goergen CJ. Adjustable photoacoustic tomography probe improves light delivery and image quality. PHOTOACOUSTICS 2018; 12:6-13. [PMID: 30175045 PMCID: PMC6118042 DOI: 10.1016/j.pacs.2018.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 05/07/2023]
Abstract
One cause for suboptimal photoacoustic tomography (PAT) penetration depth is attenuation of incident light by soft tissue. To better understand this problem, we investigated the effects of illumination fiber optic bundle geometry on PAT penetration depth and signal-to-noise ratio. An adjustable, motorized PAT probe was used to reduce probe-skin reflection artifacts and improve light distribution in the image acquisition plane by tuning fiber orientation. We validated our motorized PAT probe through Monte Carlo simulations and ex vivo imaging of a tissue mimicking phantom, and in vivo imaging of murine periaortic fat. Overall, our ex vivo results showed a several millimeter improvement in penetration depth and in vivo results showed a >62% increase in lipid signal-to-noise ratio. Our PAT probe also utilized a 7-μm aluminum filter to block in vivo probe-skin reflection artifacts. Together, these findings showed the importance of optimizing illumination geometry to enhance PAT image quality.
Collapse
Affiliation(s)
- Gurneet S. Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Nicholas J. Hale
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Petrosyan T, Theodorou M, Bamber J, Frenz M, Jaeger M. Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT. PHOTOACOUSTICS 2018; 10:20-30. [PMID: 29755937 PMCID: PMC5945922 DOI: 10.1016/j.pacs.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/22/2017] [Accepted: 02/13/2018] [Indexed: 05/07/2023]
Abstract
Epi-style optoacoustic (OA) imaging provides flexibility by integrating the irradiation optics and ultrasound receiver, yet clutter generated by optical absorption near the probe obscures deep OA sources. Localised vibration tagging (LOVIT) retrieves OA signal from images that are acquired with and without a preceding ultrasonic pushing beam: Radiation force leads to a phase shift of signals coming from the focal area resulting in their visibility in a difference image, whereas clutter from outside the pushing beam is eliminated. Disadvantages of a single-focus approach are residual clutter from inside the pushing beam above the focus, and time-intensive scanning of the focus to retrieve a large field-of-view. To speed up acquisition, we propose to create multiple foci in parallel, forming comb-shaped ARF patterns. By subtracting OA images obtained with interleaved combs, this technique moreover results in greatly improved clutter reduction in phantoms mimicking optical, acoustic and elastic properties of breast tissue.
Collapse
Affiliation(s)
- Tigran Petrosyan
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Maria Theodorou
- Joint Department of Physics and CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research, and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Jeff Bamber
- Joint Department of Physics and CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research, and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Michael Jaeger
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| |
Collapse
|
12
|
Petrosyan T, Theodorou M, Bamber J, Frenz M, Jaeger M. Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT. PHOTOACOUSTICS 2018; 10:20-30. [PMID: 29755937 DOI: 10.1109/ultsym.2017.8092699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/22/2017] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
Epi-style optoacoustic (OA) imaging provides flexibility by integrating the irradiation optics and ultrasound receiver, yet clutter generated by optical absorption near the probe obscures deep OA sources. Localised vibration tagging (LOVIT) retrieves OA signal from images that are acquired with and without a preceding ultrasonic pushing beam: Radiation force leads to a phase shift of signals coming from the focal area resulting in their visibility in a difference image, whereas clutter from outside the pushing beam is eliminated. Disadvantages of a single-focus approach are residual clutter from inside the pushing beam above the focus, and time-intensive scanning of the focus to retrieve a large field-of-view. To speed up acquisition, we propose to create multiple foci in parallel, forming comb-shaped ARF patterns. By subtracting OA images obtained with interleaved combs, this technique moreover results in greatly improved clutter reduction in phantoms mimicking optical, acoustic and elastic properties of breast tissue.
Collapse
Affiliation(s)
- Tigran Petrosyan
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Maria Theodorou
- Joint Department of Physics and CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research, and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Jeff Bamber
- Joint Department of Physics and CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research, and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Michael Jaeger
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| |
Collapse
|
13
|
van den Berg PJ, Daoudi K, Bernelot Moens HJ, Steenbergen W. Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system. PHOTOACOUSTICS 2017; 8:8-14. [PMID: 28913168 PMCID: PMC5587869 DOI: 10.1016/j.pacs.2017.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/21/2017] [Accepted: 08/28/2017] [Indexed: 05/05/2023]
Abstract
We evaluate a portable ultrasound and photoacoustic imaging (PAI) system for the feasibility of a point-of-care assessment of clinically evident synovitis. Inflamed and non-inflamed proximal interphalangeal joints of 10 patients were examined and compared with joints from 7 healthy volunteers. PAI scans, ultrasound power Doppler (US-PD), and clinical examination were performed. We quantified the amount of photoacoustic (PA) signal using a region of interest (ROI) drawn over the hypertrophic joint space. PAI response was increased 4 to 10 fold when comparing inflamed with contralateral non-inflamed joints and with joints from healthy volunteers (p < 0.001 for both). US-PD and PAI were strongly correlated (Spearman's ρ = 0.64, with 95% CI: 0.42, 0.79). Hence, PAI using a compact handheld probe is capable of detecting clinically evident synovitis. This motivates further investigation into the predictive value of PAI, including multispectral PAI, with other established modalities such as US-PD or MRI.
Collapse
Affiliation(s)
- Pim J. van den Berg
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Khalid Daoudi
- Medical Ultrasound Imaging Center, department of Radiology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hein J. Bernelot Moens
- Ziekenhuisgroep Twente, Department of Rheumatology, Postbus 546, 7550 AM Hengelo, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
14
|
Vogt WC, Jia C, Wear KA, Garra BS, Pfefer TJ. Phantom-based image quality test methods for photoacoustic imaging systems. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-14. [PMID: 28901055 DOI: 10.1117/1.jbo.22.9.095002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/15/2017] [Indexed: 05/07/2023]
Abstract
As photoacoustic imaging (PAI) technologies advance and applications arise, there is increasing need for standardized approaches to provide objective, quantitative performance assessment at various stages of the product development and clinical translation process. We have developed a set of performance test methods for PAI systems based on breast-mimicking tissue phantoms containing embedded inclusions. Performance standards for mature imaging modalities [magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound] were used to guide selection of critical PAI image quality characteristics and experimental methods. Specifically, the tests were designed to address axial, lateral, and elevational spatial resolution, signal uniformity, penetration depth, sensitivity, spatial measurement accuracy, and PAI-ultrasound coregistration. As an initial demonstration of the utility of these test methods, we characterized the performance of a modular, bimodal PAI-ultrasound system using four clinical ultrasound transducers with varying design specifications. Results helped to inform optimization of acquisition and data processing procedures while providing quantitative elucidation of transducer-dependent differences in image quality. Comparison of solid, tissue-mimicking polymer phantoms with those based on Intralipid indicated the superiority of the former approach in simulating real-world conditions for PAI. This work provides a critical foundation for the establishment of well-validated test methods that will facilitate the maturation of PAI as a medical imaging technology.
Collapse
Affiliation(s)
- William C Vogt
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| | - Congxian Jia
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| | - Keith A Wear
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| | - Brian S Garra
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| | - T Joshua Pfefer
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| |
Collapse
|
15
|
Periyasamy V, Pramanik M. Advances in Monte Carlo Simulation for Light Propagation in Tissue. IEEE Rev Biomed Eng 2017; 10:122-135. [PMID: 28816674 DOI: 10.1109/rbme.2017.2739801] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monte Carlo (MC) simulation for light propagation in tissue is the gold standard for studying the light propagation in biological tissue and has been used for years. Interaction of photons with a medium is simulated based on its optical properties. New simulation geometries, tissue-light interaction methods, and recording techniques recently have been designed. Applications, such as whole mouse body simulations for fluorescence imaging, eye modeling for blood vessel imaging, skin modeling for terahertz imaging, and human head modeling for sinus imaging, have emerged. Here, we review the technical advances and recent applications of MC simulation.
Collapse
|
16
|
Sivasubramanian K, Periyasamy V, Wen KK, Pramanik M. Optimizing light delivery through fiber bundle in photoacoustic imaging with clinical ultrasound system: Monte Carlo simulation and experimental validation. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:41008. [PMID: 27997016 DOI: 10.1117/1.jbo.22.4.041008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/28/2016] [Indexed: 05/04/2023]
Abstract
Translating photoacoustic (PA) imaging into clinical setup is a challenge. We report an integrated PA and ultrasound imaging system by combining the light delivery to the tissue with the ultrasound probe. First, Monte Carlo simulations were run to study the variation in absorbance within tissue for different angles of illumination, fiber-to-probe distance (FPD), and fiber-to-tissue distance (FTD). This is followed by simulation for different depths of the embedded sphere (object of interest). Several probe holders were designed for different light launching angles. Phantoms were developed to mimic a sentinel lymph node imaging scenario. It was observed that, for shallower imaging depths, the variation in signal-to-noise ratio (SNR) values could be as high as 100% depending on the angle of illumination at a fixed FPD and FTD. Results confirm that different light illumination angles are required for different imaging depths to get the highest SNR PA images. The results also validate that one can use Monte Carlo simulation as a tool to optimize the probe holder design depending on the imaging needs. This eliminates a trial-and-error approach generally used for designing a probe holder.
Collapse
Affiliation(s)
- Kathyayini Sivasubramanian
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Vijitha Periyasamy
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Kew Kok Wen
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
17
|
Singh MKA, Jaeger M, Frenz M, Steenbergen W. Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach. BIOMEDICAL OPTICS EXPRESS 2017; 8:2245-2260. [PMID: 28736669 PMCID: PMC5516831 DOI: 10.1364/boe.8.002245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 05/07/2023]
Abstract
Reflection artifacts caused by acoustic inhomogeneities constitute a major problem in epi-mode biomedical photoacoustic imaging. Photoacoustic transients from the skin and superficial optical absorbers traverse into the tissue and reflect off echogenic structures to generate reflection artifacts. These artifacts cause difficulties in the interpretation of images and reduce contrast and imaging depth. We recently developed a method called PAFUSion (photoacoustic-guided focused ultrasound) to circumvent the problem of reflection artifacts in photoacoustic imaging. We already demonstrated that the photoacoustic signals can be backpropagated using synthetic aperture pulse-echo data for identifying and reducing reflection artifacts in vivo. In this work, we propose an alternative variant of PAFUSion in which synthetic backpropagation of photoacoustic signals is based on multi-angled plane-wave ultrasound measurements. We implemented plane-wave and synthetic aperture PAFUSion in a handheld ultrasound/photoacoustic imaging system and demonstrate reduction of reflection artifacts in phantoms and in vivo measurements on a human finger using both approaches. Our results suggest that, while both approaches are equivalent in terms of artifact reduction efficiency, plane-wave PAFUSion requires less pulse echo acquisitions when the skin absorption is the main cause of reflection artifacts.
Collapse
Affiliation(s)
- Mithun Kuniyil Ajith Singh
- Biomedical Photonic Imaging Group, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Michael Jaeger
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging Group, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
18
|
Abstract
CLINICAL/METHODICAL ISSUE Imaging modalities play an increasing role in today's medical diagnostics. Among them, ultrasound (US) is one the most widespread techniques although it has relatively poor soft tissue contrast. Furthermore, US is poorly suited as a modality for molecular imaging (MI). STANDARD RADIOLOGICAL METHODS Methods such as Doppler and contrast-enhanced US (CEUS) allow functional imaging of the vasculature; however, ultrasound-based MI remains limited to the vascular network due to the size of available contrast agents. METHODICAL INNOVATIONS Optoacoustic imaging combines the benefits of optics (high contrast) with those of acoustics (low scattering and high resolution). In this technique, signals are generated in tissue with high contrast depending on the local optical absorption coefficient and detected with an acoustic procedure. PERFORMANCE Optoacoustic imaging can intrinsically be scaled in terms of resolution and is therefore usable in various applications from in vitro microscopy, to preclinical small animal imaging up to clinical imaging. With a resolution in the range of clinical ultrasound systems (100-400 µm), highly scattering tissue can be imaged up to several centimeters in depth. ACHIEVEMENTS In contrast to conventional ultrasound imaging, optoacoustic techniques are highly suitable for MI. Various contrast agents as well as different technical implementations of the approach have already been preclinically evaluated. The technique is currently close to being transferred to clinical implementation and the first studies have already been started. PRACTICAL RECOMMENDATIONS Clinical studies are ongoing with respect to early diagnosis of breast cancer and arthritis. Furthermore, the suitability of the technique for skin imaging is currently being investigated.
Collapse
Affiliation(s)
- M Fournelle
- Fraunhofer Institut für Biomedizinische Technik IBMT, Ensheimer Str. 48, 66386, St. Ingbert, Deutschland.
| | - S Tretbar
- Fraunhofer Institut für Biomedizinische Technik IBMT, Ensheimer Str. 48, 66386, St. Ingbert, Deutschland
| |
Collapse
|
19
|
Singh MKA, Jaeger M, Frenz M, Steenbergen W. In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion). BIOMEDICAL OPTICS EXPRESS 2016; 7:2955-72. [PMID: 27570690 PMCID: PMC4986806 DOI: 10.1364/boe.7.002955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 05/07/2023]
Abstract
Reflection artifacts caused by acoustic inhomogeneities are a critical problem in epi-mode biomedical photoacoustic imaging. High light fluence beneath the probe results in photoacoustic transients, which propagate into the tissue and reflect back from echogenic structures. These reflection artifacts cause problems in image interpretation and significantly impact the contrast and imaging depth. We recently proposed a method called PAFUSion (Photoacoustic-guided focused ultrasound) to identify such reflection artifacts in photoacoustic imaging. In its initial version, PAFUSion mimics the inward-travelling wavefield from small blood vessel-like PA sources by applying ultrasound pulses focused towards these sources, and thus provides a way to identify the resulting reflection artifacts. In this work, we demonstrate reduction of reflection artifacts in phantoms and in vivo measurements on human volunteers. In view of the spatially distributed PA sources that are found in clinical applications, we implemented an improved version of PAFUSion where photoacoustic signals are backpropagated to imitate the inward travelling wavefield and thus the reflection artifacts. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can strongly reduce these artifacts to improve deep-tissue photoacoustic imaging.
Collapse
Affiliation(s)
- Mithun Kuniyil Ajith Singh
- Biomedical Photonic Imaging Group, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Michael Jaeger
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging Group, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
20
|
Held KG, Jaeger M, Rička J, Frenz M, Akarçay HG. Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging. PHOTOACOUSTICS 2016; 4:70-80. [PMID: 27766211 PMCID: PMC5066091 DOI: 10.1016/j.pacs.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/02/2016] [Accepted: 05/26/2016] [Indexed: 05/06/2023]
Abstract
Spectral optoacoustic (OA) imaging enables spatially-resolved measurement of blood oxygenation levels, based on the distinct optical absorption spectra of oxygenated and de-oxygenated blood. Wavelength-dependent optical attenuation in the bulk tissue, however, distorts the acquired OA spectrum and thus makes quantitative oxygenation measurements challenging. We demonstrate a correction for this spectral distortion without requiring a priori knowledge of the tissue optical properties, using the concept of multiple irradiation sensing: recording the OA signal amplitude of an absorbing structure (e.g. blood vessel), which serves as an intrinsic fluence detector, as function of irradiation position. This permits the reconstruction of the bulk effective optical attenuation coefficient μeff,λ . If performed at various irradiation wavelengths, a correction for the wavelength-dependent fluence attenuation is achieved, revealing accurate spectral information on the absorbing structures. Phantom studies were performed to show the potential of this technique for handheld clinical combined OA and ultrasound imaging.
Collapse
|
21
|
Schwab HM, Beckmann MF, Schmitz G. Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements. BIOMEDICAL OPTICS EXPRESS 2016; 7:1468-78. [PMID: 27446669 PMCID: PMC4929655 DOI: 10.1364/boe.7.001468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 05/20/2023]
Abstract
Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered.
Collapse
Affiliation(s)
| | | | - Georg Schmitz
- Medical Engineering, Ruhr-Universität Bochum, Bochum, 44780,
Germany
| |
Collapse
|
22
|
Kuniyil Ajith Singh M, Steenbergen W. Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging. PHOTOACOUSTICS 2015; 3:123-131. [PMID: 31467843 PMCID: PMC6713059 DOI: 10.1016/j.pacs.2015.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/22/2015] [Accepted: 09/23/2015] [Indexed: 05/04/2023]
Abstract
Influence of acoustic inhomogeneities and resulting reflection artifacts is an important problem in reflection-mode photoacoustic imaging. Absorption of light by skin and superficial optical absorbers will generate photoacoustic transients, which traverse into the tissue and get reflected from structures having different acoustic impedance. These reflected photoacoustic signals, when reconstructed, may appear in the region of interest, which causes difficulties in image interpretation. We propose a novel method to identify and potentially eliminate reflection artifacts in photoacoustic images using photoacoustic-guided focused ultrasound [PAFUSion]. Our method uses focused ultrasound pulses to mimic the wave field produced by photoacoustic sources and thus provides a way to identify reflection artifacts in clinical combined photoacoustic and pulse-echo ultrasound. Simulation and phantom results are presented to demonstrate the validity and impact of this method. Results show that PAFUSion can identify reflections in photoacoustic images and thus envisages potential for improving photoacoustic imaging of acoustically inhomogeneous tissue.
Collapse
Affiliation(s)
- Mithun Kuniyil Ajith Singh
- Biomedical Photonic Imaging Group, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | |
Collapse
|
23
|
Zabihian B, Weingast J, Liu M, Zhang E, Beard P, Pehamberger H, Drexler W, Hermann B. In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies. BIOMEDICAL OPTICS EXPRESS 2015; 6:3163-78. [PMID: 26417489 PMCID: PMC4574645 DOI: 10.1364/boe.6.003163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 05/18/2023]
Abstract
Vascular abnormalities serve as a key indicator for many skin diseases. Currently available methods in dermatology such as histopathology and dermatoscopy analyze underlying vasculature in human skin but are either invasive, time-consuming, and laborious or incapable of providing 3D images. In this work, we applied for the first time dual-modality photoacoustic and optical coherence tomography that provides complementary information about tissue morphology and vasculature of patients with different types of dermatitis. Its noninvasiveness and relatively short imaging time and the wide range of diseases that it can detect prove the merits of the dual-modality imaging system and show the great potential of its clinical use in the future.
Collapse
Affiliation(s)
- Behrooz Zabihian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Jessika Weingast
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Edward Zhang
- Department of Medical Physics & Biomedical Engineering, University College London, Gower Street, London, UK
| | - Paul Beard
- Department of Medical Physics & Biomedical Engineering, University College London, Gower Street, London, UK
| | - Hubert Pehamberger
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Boris Hermann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| |
Collapse
|
24
|
Real-time clinical clutter reduction in combined epi-optoacoustic and ultrasound imaging. ACTA ACUST UNITED AC 2014. [DOI: 10.1515/plm-2014-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractFlexible imaging of the human body, a requirement for broad clinical application, is obtained by direct integration of optoacoustic (OA) imaging with echo ultrasound (US) in a multimodal epi-illumination system. Up to date, successful deep epi-OA imaging is difficult to achieve owing to clutter. Clutter signals arise from optical absorption in the region of tissue irradiation and strongly reduce contrast and imaging depth. Recently, we developed a displacement-compensated averaging (DCA) technique for clutter reduction based on the clutter decorrelation that occurs when palpating the tissue. To gain first clinical experience on the practical value of DCA, we implemented this technique in a combined clinical OA and US imaging system. Our experience with freehand scanning of human volunteers reveals that real-time feedback on the clutter-reduction outcome is a key factor for achieving superior contrast and imaging depth.
Collapse
|