1
|
Draxinger W, Detrez N, Strenge P, Danicke V, Theisen-Kunde D, Schützeck L, Spahr-Hess S, Kuppler P, Kren J, Wieser W, Mario Bonsanto M, Brinkmann R, Huber R. Microscope integrated MHz optical coherence tomography system for neurosurgery: development and clinical in-vivo imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:5960-5979. [PMID: 39421776 PMCID: PMC11482179 DOI: 10.1364/boe.530976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024]
Abstract
Neurosurgical interventions on the brain are impeded by the requirement to keep damages to healthy tissue at a minimum. A new contrast channel enhancing the visual separation of malign tissue should be created. A commercially available surgical microscope was modified with adaptation optics adapting the MHz speed optical coherence tomography (OCT) imaging system developed in our group. This required the design of a scanner optics and beam delivery system overcoming constraints posed by the mechanical and optical parameters of the microscope. High quality volumetric OCT C-scans with dense sample spacing can be acquired in-vivo as part of surgical procedures within seconds and are immediately available for post-processing.
Collapse
Affiliation(s)
- Wolfgang Draxinger
- Universität zu Lübeck, Institut für Biomedizinische Optik (BMO), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Optores GmbH, Gollierstr. 70, 80339 Munich, Germany
| | - Nicolas Detrez
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Paul Strenge
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Veit Danicke
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Dirk Theisen-Kunde
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Lion Schützeck
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Sonja Spahr-Hess
- Universitätsklinikum Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Patrick Kuppler
- Universitätsklinikum Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jessica Kren
- Universitätsklinikum Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | - Matteo Mario Bonsanto
- Universitätsklinikum Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Ralf Brinkmann
- Universität zu Lübeck, Institut für Biomedizinische Optik (BMO), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum Lübeck GmbH (MLL), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Robert Huber
- Universität zu Lübeck, Institut für Biomedizinische Optik (BMO), Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Optores GmbH, Gollierstr. 70, 80339 Munich, Germany
| |
Collapse
|
2
|
Wang Q, Gong P, Afsharan H, Joo C, Morellini N, Fear M, Wood F, Ho H, Silva D, Cense B. In vivo burn scar assessment with speckle decorrelation and joint spectral and time domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:126001. [PMID: 38074217 PMCID: PMC10704265 DOI: 10.1117/1.jbo.28.12.126001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 12/18/2023]
Abstract
Significance Post-burn scars and scar contractures present significant challenges in burn injury management, necessitating accurate evaluation of the wound healing process to prevent or minimize complications. Non-invasive and accurate assessment of burn scar vascularity can offer valuable insights for evaluations of wound healing. Optical coherence tomography (OCT) and OCT angiography (OCTA) are promising imaging techniques that may enhance patient-centered care and satisfaction by providing detailed analyses of the healing process. Aim Our study investigates the capabilities of OCT and OCTA for acquiring information on blood vessels in burn scars and evaluates the feasibility of utilizing this information to assess burn scars. Approach Healthy skin and neighboring scar data from nine burn patients were obtained using OCT and processed with speckle decorrelation, Doppler OCT, and an enhanced technique based on joint spectral and time domain OCT. These methods facilitated the assessment of vascular structure and blood flow velocity in both healthy skin and scar tissues. Analyzing these parameters allowed for objective comparisons between normal skin and burn scars. Results Our study found that blood vessel distribution in burn scars significantly differs from that in healthy skin. Burn scars exhibit increased vascularization, featuring less uniformity and lacking the intricate branching network found in healthy tissue. Specifically, the density of the vessels in burn scars is 67% higher than in healthy tissue, while axial flow velocity in burn scar vessels is 25% faster than in healthy tissue. Conclusions Our research demonstrates the feasibility of OCT and OCTA as burn scar assessment tools. By implementing these technologies, we can distinguish between scar and healthy tissue based on its vascular structure, providing evidence of their practicality in evaluating burn scar severity and progression.
Collapse
Affiliation(s)
- Qiang Wang
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, Perth, Western Australia, Australia
| | - Peijun Gong
- Harry Perkins Institute of Medical Research, BRITElab, QEII Medical Centre, Nedlands, Western Australia, Australia
- The University of Western Australia, Centre for Medical Research, Perth, Western Australia, Australia
- The University of Western Australia, School of Engineering, Department of Electrical, Electronic & Computer Engineering, Perth, Western Australia, Australia
| | - Hadi Afsharan
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, Perth, Western Australia, Australia
- The University of Western Australia, Centre for Medical Research, Perth, Western Australia, Australia
| | - Chulmin Joo
- Yonsei University, Department of Mechanical Engineering, Seoul, Republic of Korea
| | - Natalie Morellini
- The University of Western Australia, Burn Injury Research Unit, School of Biomedical Sciences, Perth, Western Australia, Australia
- Fiona Stanley Hospital, Fiona Wood Foundation, Murdoch, Western Australia, Australia
| | - Mark Fear
- The University of Western Australia, Burn Injury Research Unit, School of Biomedical Sciences, Perth, Western Australia, Australia
- Fiona Stanley Hospital, Fiona Wood Foundation, Murdoch, Western Australia, Australia
| | - Fiona Wood
- The University of Western Australia, Burn Injury Research Unit, School of Biomedical Sciences, Perth, Western Australia, Australia
- Fiona Stanley Hospital, Fiona Wood Foundation, Murdoch, Western Australia, Australia
- Fiona Stanley Hospital, Burns Service of Western Australia, Western Australia Department of Health, Murdoch, Western Australia, Australia
| | - Hao Ho
- Harry Perkins Institute of Medical Research, BRITElab, QEII Medical Centre, Nedlands, Western Australia, Australia
- The University of Western Australia, Centre for Medical Research, Perth, Western Australia, Australia
- The University of Western Australia, School of Engineering, Department of Electrical, Electronic & Computer Engineering, Perth, Western Australia, Australia
| | - Dilusha Silva
- The University of Western Australia, Department of Electrical, Electronic and Computer Engineering, Microelectronics Research Group, Perth, Western Australia, Australia
| | - Barry Cense
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, Perth, Western Australia, Australia
- Yonsei University, Department of Mechanical Engineering, Seoul, Republic of Korea
| |
Collapse
|
3
|
Hao S, Ren C, Wang F, Park K, Volmert BD, Aguirre A, Zhou C. Dual-modality imaging system for monitoring human heart organoids beating in vitro. OPTICS LETTERS 2023; 48:3929-3932. [PMID: 37527085 PMCID: PMC10707703 DOI: 10.1364/ol.493824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
To reveal the three-dimensional microstructure and calcium dynamics of human heart organoids (hHOs), we developed a dual-modality imaging system combining the advantages of optical coherence tomography (OCT) and fluorescence microscopy. OCT provides high-resolution volumetric structural information, while fluorescence imaging indicates the electrophysiology of the hHOs' beating behavior. We verified that concurrent OCT motion mode (M-mode) and calcium imaging retrieved the same beating pattern from the heart organoids. We further applied dynamic contrast OCT (DyC-OCT) analysis to strengthen the verification and localize the beating clusters inside the hHOs. This imaging platform provides a powerful tool for studying and assessing hHOs in vitro, with potential applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Senyue Hao
- Department of Electrical & Systems Engineering, Washington University in Saint Louis, USA
| | - Chao Ren
- Program of Ph.D. in Imaging Science, Washington University in Saint Louis, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Kibeom Park
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Brett D. Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, USA
| | - Chao Zhou
- Department of Electrical & Systems Engineering, Washington University in Saint Louis, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| |
Collapse
|
4
|
Asghari H. Visible wavelength time-stretch optical coherence tomography. OPTICS EXPRESS 2023; 31:24085-24096. [PMID: 37475244 DOI: 10.1364/oe.492753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Visible light optical coherence tomography (OCT) is an emerging non-invasive imaging modality that offers new opportunities for anatomical and functional imaging of biological tissues. Time-stretch dispersive Fourier transform, also known as photonic time-stretch, is an all-optical processing method that enables real-time Fourier transformation of ultrafast optical signals and allows for OCT at high A-scan rates. In this work, a working prototype of a photonic time-stretch OCT (TS-OCT) method in the visible wavelength region is proposed and experimentally demonstrated. The proposed visible-light TS-OCT system achieves unprecedented throughput of 100 giga voxels/second and OCT volume rate of 4,000 volumes/second and can be used to expand the range of applications of TS-OCT systems.
Collapse
|
5
|
Image enhancement of wide-field retinal optical coherence tomography angiography by super-resolution angiogram reconstruction generative adversarial network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Huang D, Shi Y, Li F, Wai PKA. Fourier Domain Mode Locked Laser and Its Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:3145. [PMID: 35590839 PMCID: PMC9105910 DOI: 10.3390/s22093145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The sweep rate of conventional short-cavity lasers with an intracavity-swept filter is limited by the buildup time of laser signals from spontaneous emissions. The Fourier domain mode-locked (FDML) laser was proposed to overcome the limitations of buildup time by inserting a long fiber delay in the cavity to store the whole swept signal and has attracted much interest in both theoretical and experimental studies. In this review, the theoretical models to understand the dynamics of the FDML laser and the experimental techniques to realize high speed, wide sweep range, long coherence length, high output power and highly stable swept signals in FDML lasers will be discussed. We will then discuss the applications of FDML lasers in optical coherence tomography (OCT), fiber sensing, precision measurement, microwave generation and nonlinear microscopy.
Collapse
Affiliation(s)
- Dongmei Huang
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Yihuan Shi
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Feng Li
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - P. K. A. Wai
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
7
|
Bouma B, de Boer J, Huang D, Jang I, Yonetsu T, Leggett C, Leitgeb R, Sampson D, Suter M, Vakoc B, Villiger M, Wojtkowski M. Optical coherence tomography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:79. [PMID: 36751306 PMCID: PMC9901537 DOI: 10.1038/s43586-022-00162-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Optical coherence tomography (OCT) is a non-contact method for imaging the topological and internal microstructure of samples in three dimensions. OCT can be configured as a conventional microscope, as an ophthalmic scanner, or using endoscopes and small diameter catheters for accessing internal biological organs. In this Primer, we describe the principles underpinning the different instrument configurations that are tailored to distinct imaging applications and explain the origin of signal, based on light scattering and propagation. Although OCT has been used for imaging inanimate objects, we focus our discussion on biological and medical imaging. We examine the signal processing methods and algorithms that make OCT exquisitely sensitive to reflections as weak as just a few photons and that reveal functional information in addition to structure. Image processing, display and interpretation, which are all critical for effective biomedical imaging, are discussed in the context of specific applications. Finally, we consider image artifacts and limitations that commonly arise and reflect on future advances and opportunities.
Collapse
Affiliation(s)
- B.E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Institute for Medical Engineering and Physics, Massachusetts Institute of Technology, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA,Corresponding author:
| | - J.F. de Boer
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D. Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - I.K. Jang
- Harvard Medical School, Boston, MA, USA,Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - T. Yonetsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - C.L. Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - R. Leitgeb
- Institute of Medical Physics, University of Vienna, Wien, Austria
| | - D.D. Sampson
- School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - M. Suter
- Harvard Medical School, Boston, MA, USA,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - B. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Wojtkowski
- Institute of Physical Chemistry and International Center for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland,Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
8
|
Maloca PM, Carvalho ER, Hasler PW, Balaskas K, Inglin N, Petzold A, Egan C, Tufail A, Scholl HPN, Valmaggia P. Dynamic volume-rendered optical coherence tomography pupillometry. Acta Ophthalmol 2021; 100:654-664. [PMID: 34750988 DOI: 10.1111/aos.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To assess intrapupillary space (IPS) changes in healthy subjects with regard to decreased iris motility in patients with pseudoexfoliation glaucoma (PEXG) or non-arteritic anterior ischaemic optic neuropathy (NAION) in a feasibility study in a clinical environment. METHODS Scotopic and photopic IPS measurements using three-dimensionally rendered swept-source optical coherence tomography (SS-OCT) data were obtained and compared for all subjects. Intrapupillary space (IPS) parameters were evaluated such as absolute volumetric differences, relative light response for volumetric ratios and pupillary ejection fraction (PEF) for functional contraction measurements. RESULTS From a total of 122 IPS from 66 subjects, 106 IPS were eligible for comparison providing values for 72 normal, 30 PEXG and 4 NAION eyes. In healthy, PEXG and NAION subjects, scotopic overall mean IPS was 8.90, 3.45 and 4.16 mm3 , and photopic overall mean IPS was 0.87, 0.74 and 1.13 mm3 , respectively. Three-dimensional contractility showed a mean absolute difference of 8.03 mm3 for normals (defined as 100% contractility), 2.72 mm3 for PEXG (33.88% of normal) and 3.03 mm3 for NAION (38.50% of normal) with a relative light response ratio between scotopic and photopic volumes of 10.26 (100%), 4.69 (45.70%) and 3.67 (35.78%), respectively. Pupillary ejection fraction (PEF) showed a contractile pupillary emptying of 88.11% for normals, 76.92% for PEXG and 70.91% for NAION patients. CONCLUSION This 3D pupillometry OCT assessment allows for quantitative measurements of pupil function, contractility and response to light. More specifically, PEF is presented as a potential (neuro)-pupillary outcome measure that could be useful in the monitoring of ophthalmic disorders that affect pupillary function.
Collapse
Affiliation(s)
- Peter M. Maloca
- Institute of Molecular and Clinical Ophthalmology Basel (IOB) Basel Switzerland
- OCTlab Department of Ophthalmology University Hospital Basel Basel Switzerland
- Department of Ophthalmology University of Basel Basel Switzerland
- Moorfields Eye Hospital London UK
| | | | - Pascal W. Hasler
- OCTlab Department of Ophthalmology University Hospital Basel Basel Switzerland
- Department of Ophthalmology University of Basel Basel Switzerland
| | | | - Nadja Inglin
- Institute of Molecular and Clinical Ophthalmology Basel (IOB) Basel Switzerland
| | - Axel Petzold
- Moorfields Eye Hospital London UK
- National Hospital for Neurology and Neurosurgery UCLH & UCL Institute of Neurology Queen Square London UK
- Dutch Expertise Centre Neuro‐ophthalmology Amsterdam UMC The Netherlands
| | | | | | - Hendrik P. N. Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB) Basel Switzerland
- OCTlab Department of Ophthalmology University Hospital Basel Basel Switzerland
- Department of Ophthalmology University of Basel Basel Switzerland
| | - Philippe Valmaggia
- Institute of Molecular and Clinical Ophthalmology Basel (IOB) Basel Switzerland
- OCTlab Department of Ophthalmology University Hospital Basel Basel Switzerland
- Department of Ophthalmology University of Basel Basel Switzerland
| |
Collapse
|
9
|
Thampi A, Hitchman S, Coen S, Vanholsbeeck F. Towards real time assessment of intramuscular fat content in meat using optical fiber-based optical coherence tomography. Meat Sci 2021; 181:108411. [DOI: 10.1016/j.meatsci.2020.108411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022]
|
10
|
Choi S, Ota T, Nin F, Shioda T, Suzuki T, Hibino H. Rapid optical tomographic vibrometry using a swept multi-gigahertz comb. OPTICS EXPRESS 2021; 29:16749-16768. [PMID: 34154231 DOI: 10.1364/oe.425972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We propose a rapid tomographic vibrometer technique using an optical comb to measure internal vibrations, transient phenomena, and tomographic distributions in biological tissue and microelectromechanical system devices at high frequencies. This method allows phase-sensitive tomographic measurement in the depth direction at a multi-MHz scan rate using a frequency-modulated broadband electrooptic multi-GHz supercontinuum comb. The frequency spacing was swept instantaneously in time and axisymmetrically about the center wavelength via a dual-drive Mach-Zehnder modulator driven by a variable radio frequency signal. This unique sweeping method permits direct measurement of fringe-free interferometric amplitude and phase with arbitrarily changeable measurement range and scan rate. Therefore, a compressive measurement can be made in only the depth region where the vibration exists, reducing the number of measurement points. In a proof-of-principle experiment, the interferometric amplitude and phase were investigated for in-phase and quadrature phase-shifted interferograms obtained by a polarization demodulator. Tomographic transient displacement measurements were performed using a 0.12 mm thick glass film and piezo-electric transducer oscillating at 10-100 kHz with scan rates in the range 1-20 MHz. The depth resolution and precision of the vibrometer were estimated to be approximately 25 µm and 1.0 nm, respectively.
Collapse
|
11
|
Zhang J, Nguyen T, Potsaid B, Jayaraman V, Burgner C, Chen S, Li J, Liang K, Cable A, Traverso G, Mashimo H, Fujimoto JG. Multi-MHz MEMS-VCSEL swept-source optical coherence tomography for endoscopic structural and angiographic imaging with miniaturized brushless motor probes. BIOMEDICAL OPTICS EXPRESS 2021; 12:2384-2403. [PMID: 33996236 PMCID: PMC8086463 DOI: 10.1364/boe.420394] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 05/02/2023]
Abstract
Swept source optical coherence tomography (SS-OCT) enables volumetric imaging of subsurface structure. However, applications requiring wide fields of view (FOV), rapid imaging, and higher resolutions have been challenging because multi-MHz axial scan (A-scan) rates are needed. We describe a microelectromechanical systems vertical cavity surface-emitting laser (MEMS-VCSEL) SS-OCT technology for A-scan rates of 2.4 and 3.0 MHz. Sweep to sweep calibration and resampling are performed using dual channel acquisition of the OCT signal and a Mach Zehnder interferometer signal, overcoming inherent optical clock limitations and enabling higher performance. We demonstrate ultrahigh speed structural SS-OCT and OCT angiography (OCTA) imaging of the swine gastrointestinal tract using a suite of miniaturized brushless motor probes, including a 3.2 mm diameter micromotor OCT catheter, a 12 mm diameter tethered OCT capsule, and a 12 mm diameter widefield OCTA probe. MEMS-VCSELs promise to enable ultrahigh speed SS-OCT with a scalable, low cost, and manufacturable technology, suitable for a diverse range of imaging applications.
Collapse
Affiliation(s)
- Jason Zhang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally to this work
| | - Tan Nguyen
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally to this work
| | - Benjamin Potsaid
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Advanced Imaging Group, Thorlabs Inc., Newton, NJ 07860, USA
| | | | | | - Siyu Chen
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinxi Li
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaicheng Liang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alex Cable
- Advanced Imaging Group, Thorlabs Inc., Newton, NJ 07860, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hiroshi Mashimo
- Harvard Medical School, Boston, MA 02115, USA
- Veterans Affairs Boston Healthcare System, Boston, MA 02132, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Kim TS, Joo J, Shin I, Shin P, Kang WJ, Vakoc BJ, Oh WY. 9.4 MHz A-line rate optical coherence tomography at 1300 nm using a wavelength-swept laser based on stretched-pulse active mode-locking. Sci Rep 2020; 10:9328. [PMID: 32518256 PMCID: PMC7283258 DOI: 10.1038/s41598-020-66322-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
In optical coherence tomography (OCT), high-speed systems based at 1300 nm are among the most broadly used. Here, we present 9.4 MHz A-line rate OCT system at 1300 nm. A wavelength-swept laser based on stretched-pulse active mode locking (SPML) provides a continuous and linear-in-wavenumber sweep from 1240 nm to 1340 nm, and the OCT system using this light source provides a sensitivity of 98 dB and a single-sided 6-dB roll-off depth of 2.5 mm. We present new capabilities of the 9.4 MHz SPML-OCT system in three microscopy applications. First, we demonstrate high quality OCTA imaging at a rate of 1.3 volumes/s. Second, by utilizing its inherent phase stable characteristics, we present wide dynamic range en face Doppler OCT imaging with multiple time intervals ranging from 0.25 ms to 2.0 ms at a rate of 0.53 volumes/s. Third, we demonstrate video-rate 4D microscopic imaging of a beating Xenopus embryo heart at a rate of 30 volumes/s. This high-speed and high-performance OCT system centered at 1300 nm suggests that it can be one of the most promising high-speed OCT platforms enabling a wide range of new scientific research, industrial, and clinical applications at speeds of 10 MHz.
Collapse
Affiliation(s)
- Tae Shik Kim
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - JongYoon Joo
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Inho Shin
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Paul Shin
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Woo Jae Kang
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea. .,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Wei X, Hormel TT, Guo Y, Hwang TS, Jia Y. High-resolution wide-field OCT angiography with a self-navigation method to correct microsaccades and blinks. BIOMEDICAL OPTICS EXPRESS 2020; 11:3234-3245. [PMID: 32637251 PMCID: PMC7316026 DOI: 10.1364/boe.390430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
In this study, we demonstrate a novel self-navigated motion correction method that suppresses eye motion and blinking artifacts on wide-field optical coherence tomographic angiography (OCTA) without requiring any hardware modification. Highly efficient GPU-based, real-time OCTA image acquisition and processing software was developed to detect eye motion artifacts. The algorithm includes an instantaneous motion index that evaluates the strength of motion artifact on en face OCTA images. Areas with suprathreshold motion and eye blinking artifacts are automatically rescanned in real-time. Both healthy eyes and eyes with diabetic retinopathy were imaged, and the self-navigated motion correction performance was demonstrated.
Collapse
Affiliation(s)
- Xiang Wei
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Biomedical Engineer, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Tristan T. Hormel
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Yukun Guo
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Thomas S. Hwang
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Biomedical Engineer, Oregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
14
|
Liu J, Li Y, Yu Y, Yuan X, Lv H, Liu L, Zhao Y, Wang Y, Ma Z. Simultaneous detection of cerebral blood perfusion and cerebral edema using swept-source optical coherence tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960087. [PMID: 31702865 DOI: 10.1002/jbio.201960087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
The progression of ischemic cerebral edema (CE) is closely related to the level of cerebral blood perfusion (CBP) and affects each other. Simultaneous detection of CBP and CE is helpful in understanding the mechanisms of ischemic CE development. In this article, a wide field of view swept-source optical coherence tomography system was used to detect CE status and CBP levels simultaneously in middle cerebral artery occlusion rats. Images reflecting these two physiological states can be reconstructed with only one C-scan. We quantify these two physiological states into four parameters, which contain two vascular parameters (vascular displacement distance and vascular perfusion density) and two edema parameters (optical attenuation coefficient and edema area). The association between the two vascular parameters and the two edema parameters was analyzed. The results show that there is a strong linear relationship between blood flow parameters and edema parameters. This work provides a new option for CE in vivo detection, and is very likely to play an important role in the development of relevant drugs or in selection of treatment options.
Collapse
Affiliation(s)
- Jian Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yan Li
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yao Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Xincheng Yuan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Hongyu Lv
- Department of Ophthalmology, Maternal and Child Health Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yuqian Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yi Wang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Zhenhe Ma
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
15
|
Duan Y, Dong X, Zhang L, Li Y, Lei Z, Chen L, Zhou X, Zhang C, Zhang X. Ultrafast discrete swept source based on dual chirped combs for microscopic imaging. OPTICS EXPRESS 2019; 27:2621-2631. [PMID: 30732297 DOI: 10.1364/oe.27.002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
An inertial-free, ultrafast frequency comb source based on two chirped optical frequency combs (OFCs) is proposed and experimentally demonstrated. The high linearity frequency sweeping is realized by the Vernier effect between the two OFCs rather than any mechanical motion component, so that good stability and reliability are ensured and no recalibration or resampling process is required. Swept rate up to 1 MHz is realized while keeping a narrow instantaneous linewidth of 0.03 nm, thanks to the extra-cavity frequency sweeping method. The wavelength step is proportional to the swept rate (3.8 pm at 10 kHz), and can be tuned by changing the repetition rate difference between the two OFCs. This swept source is applied for high-speed wavelength encoded imaging and achieves 4.4-μm spatial resolution at a 329-kHz frame rate. Compared with the traditional time-stretch microscopy, the signal acquisition bandwidth decreased from 3.8 GHz to below 90 MHz to achieve the same spatial resolution. Furthermore, the exposure time for a specific wavelength is much longer due to the discrete sweeping feature, which is a benefit for higher sensitivity. This discrete swept source provided a promising low-cost option for high-speed biomedical imaging systems and high-accuracy spectroscopy.
Collapse
|
16
|
Xu J, Li Y, Song S, Cepurna W, Morrison J, Wang RK. Evaluating changes of blood flow in retina, choroid, and outer choroid in rats in response to elevated intraocular pressure by 1300 nm swept-source OCT. Microvasc Res 2019; 121:37-45. [PMID: 30267716 PMCID: PMC6286199 DOI: 10.1016/j.mvr.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023]
Abstract
We report the development of a 1300 nm swept-source optical coherence tomography (SS-OCT) system specifically designed to perform OCT imaging and optical microangiography (OMAG) in rat eyes in vivo and its use in evaluating the effects of intraocular pressure (IOP) elevation on ocular circulation. The swept laser is operated in single longitude mode with a 90 nm bandwidth centered at 1300 nm and 200 kHz A-line rate, providing remarkable sensitivity fall-off performance along the imaging depth, a larger field of view of 2.5 × 2.5 mm2 (approximately 35°), and more time-efficient imaging acquisition. The advantage of the SS-OCT/OMAG is highlighted by an increased imaging depth of the entire posterior thickness of optic nerve head (ONH) and its surrounding vascular anatomy, to include, for the first time in vivo, the vasculature at the scleral opening, allowing visualization of the circle of Zinn-Haller and posterior ciliary arteries (PCAs). Furthermore, the capillary-level resolution angiograms achieved at the retinal and choroidal layers over a larger field of view enable a significantly improved quantification of the response of vascular area density (VAD) to elevated IOP. The results indicate that reduction in perfusion of the choroid in response to elevated IOP is delayed compared to that seen in the retina; while choroidal VAD doesn't reach 50% of baseline until ~70 mmHg, the same effect is seen for the retinal VAD at ~60 mmHg. The superior image quality offered by SS-OCT may allow more comprehensive investigation of IOP-related ocular perfusion changes and their pathological roles in glaucomatous optic nerve damage.
Collapse
Affiliation(s)
- Jingjiang Xu
- University of Washington, Department of Bioengineering, Seattle, WA 98195, USA
| | - Yuandong Li
- University of Washington, Department of Bioengineering, Seattle, WA 98195, USA
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, WA 98195, USA
| | - William Cepurna
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K Wang
- University of Washington, Department of Bioengineering, Seattle, WA 98195, USA; University of Washington, Department of Ophthalmology, Seattle, WA 98104, USA.
| |
Collapse
|
17
|
Lei C, Kobayashi H, Wu Y, Li M, Isozaki A, Yasumoto A, Mikami H, Ito T, Nitta N, Sugimura T, Yamada M, Yatomi Y, Di Carlo D, Ozeki Y, Goda K. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc 2018; 13:1603-1631. [DOI: 10.1038/s41596-018-0008-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Tozburun S, Blatter C, Siddiqui M, Meijer EFJ, Vakoc BJ. Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser. BIOMEDICAL OPTICS EXPRESS 2018; 9:952-961. [PMID: 29541496 PMCID: PMC5846541 DOI: 10.1364/boe.9.000952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 05/18/2023]
Abstract
We present a swept-wavelength optical coherence tomography (OCT) system with a 19 MHz laser source and electronic phase-locking of the source, acquisition clock, and beam scanning mirrors. The laser is based on stretched-pulse active mode-locking using an electro-optic modulator. Beam scanning in the fast axis uses a resonant micro-electromechanical systems (MEMS) -based mirror at ~23.8 kHz. Acquisition is performed at 1.78 Gigasamples per second using an external fixed clock. Phase sensitive imaging without need for k-clocking, A-line triggers, or phase-calibration methods is demonstrated. The system was used to demonstrate inter-frame and inter-volume Doppler imaging in the mouse ear and brain at 4D acquisition rates of 1, 30, 60 and 100 volumes/sec (V-scans/s). Angiography based on inter-frame and inter-volume methods are presented. The platform offers extremely fast and phase-stable measurements that can be used in preclinical angiographic and Doppler investigations of perfusion dynamics.
Collapse
Affiliation(s)
- Serhat Tozburun
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova, Izmir, Turkey
| | - Cedric Blatter
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Meena Siddiqui
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| | - Eelco F. J. Meijer
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Benjamin J. Vakoc
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
19
|
Kang J, Feng P, Wei X, Lam EY, Tsia KK, Wong KKY. 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography. OPTICS EXPRESS 2018; 26:4370-4381. [PMID: 29475287 DOI: 10.1364/oe.26.004370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A swept source with both high repetition-rate and broad bandwidth is indispensable to enable optical coherence tomography (OCT) with high imaging rate and high axial resolution. However, available swept sources are commonly either limited in speed (sub-MHz) by inertial or kinetic component, or limited in bandwidth (<100 nm) by the gain medium. Here we report an ultrafast broadband (over 100 nm centered at 1.55-µm) all-fiber inertial-free swept source built upon a high-power dispersion-managed fiber laser in conjunction with an optical time-stretch module which bypasses complex optical amplification scheme, which result in a portable and compact implementation of time-stretch OCT (TS-OCT) at A-scan rate of 44.5-MHz, axial resolution of 14 µm in air (or 10 µm in tissue), and flat sensitivity roll-off within 4.3 mm imaging range. Together with the demonstration of two- and three-dimensional OCT imaging of a mud-fish eye anterior segment, we also perform comprehensive studies on the imaging depth, receiver bandwidth, and group velocity dispersion condition. This all-fiber inertia-free swept source could provide a promising source solution for SS-OCT system to realize high-performance volumetric OCT imaging in real time.
Collapse
|
20
|
Siddiqui M, Nam AS, Tozburun S, Lippok N, Blatter C, Vakoc BJ. High-speed optical coherence tomography by circular interferometric ranging. NATURE PHOTONICS 2018; 12:111-116. [PMID: 29657576 PMCID: PMC5894866 DOI: 10.1038/s41566-017-0088-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/18/2017] [Indexed: 05/17/2023]
Abstract
Existing three-dimensional optical imaging methods excel in controlled environments but are difficult to deploy over large, irregular and dynamic fields. This has limited imaging in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography (OCT) to efficiently interrogate sparse scattering fields, i.e., those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in OCT are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.
Collapse
Affiliation(s)
- Meena Siddiqui
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard-MIT Health Sciences & Technology (HST), Cambridge, Massachusetts 02139, USA
| | - Ahhyun S. Nam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Serhat Tozburun
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Norman Lippok
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Cedric Blatter
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Benjamin J. Vakoc
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard-MIT Health Sciences & Technology (HST), Cambridge, Massachusetts 02139, USA
- Correspondence to: Benjamin J. Vakoc
| |
Collapse
|
21
|
Xu J, Song S, Men S, Wang RK. Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-11. [PMID: 29185292 PMCID: PMC5712670 DOI: 10.1117/1.jbo.22.11.116007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/08/2017] [Indexed: 05/07/2023]
Abstract
There is an increasing demand for imaging tools in clinical dermatology that can perform in vivo wide-field morphological and functional examination from surface to deep tissue regions at various skin sites of the human body. The conventional spectral-domain optical coherence tomography-based angiography (SD-OCTA) system is difficult to meet these requirements due to its fundamental limitations of the sensitivity roll-off, imaging range as well as imaging speed. To mitigate these issues, we demonstrate a swept-source OCTA (SS-OCTA) system by employing a swept source based on a vertical cavity surface-emitting laser. A series of comparisons between SS-OCTA and SD-OCTA are conducted. Benefiting from the high system sensitivity, long imaging range, and superior roll-off performance, the SS-OCTA system is demonstrated with better performance in imaging human skin than the SD-OCTA system. We show that the SS-OCTA permits remarkable deep visualization of both structure and vasculature (up to ∼2 mm penetration) with wide field of view capability (up to 18×18 mm2), enabling a more comprehensive assessment of the morphological features as well as functional blood vessel networks from the superficial epidermal to deep dermal layers. It is expected that the advantages of the SS-OCTA system will provide a ground for clinical translation, benefiting the existing dermatological practice.
Collapse
Affiliation(s)
- Jingjiang Xu
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Shaojie Men
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | | |
Collapse
|
22
|
Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, Toth CA. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery. Invest Ophthalmol Vis Sci 2017; 57:OCT37-50. [PMID: 27409495 PMCID: PMC4968921 DOI: 10.1167/iovs.16-19277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions.
Collapse
Affiliation(s)
| | - Brenton Keller
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Christian Viehland
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Liangbo Shen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Michael I Seider
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Joseph A Izatt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States 2Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Cynthia A Toth
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States 2Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
23
|
Wang RK, Zhang Q, Li Y, Song S. Optical coherence tomography angiography-based capillary velocimetry. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66008. [PMID: 28617921 PMCID: PMC5472241 DOI: 10.1117/1.jbo.22.6.066008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/19/2017] [Indexed: 05/05/2023]
Abstract
Challenge persists in the field of optical coherence tomography (OCT) when it is required to quantify capillary blood flow within tissue beds in vivo. We propose a useful approach to statistically estimate the mean capillary flow velocity using a model-based statistical method of eigendecomposition (ED) analysis of the complex OCT signals obtained with the OCT angiography (OCTA) scanning protocol. ED-based analysis is achieved by the covariance matrix of the ensemble complex OCT signals, upon which the eigenvalues and eigenvectors that represent the subsets of the signal makeup are calculated. From this analysis, the signals due to moving particles can be isolated by employing an adaptive regression filter to remove the eigencomponents that represent static tissue signals. The mean frequency (MF) of moving particles can be estimated by the first lag-one autocorrelation of the corresponding eigenvectors. Three important parameters are introduced, including the blood flow signal power representing the presence of blood flow (i.e., OCTA signals), the MF indicating the mean velocity of blood flow, and the frequency bandwidth describing the temporal flow heterogeneity within a scanned tissue volume. The proposed approach is tested using scattering phantoms, in which microfluidic channels are used to simulate the functional capillary vessels that are perfused with the scattering intralipid solution. The results indicate a linear relationship between the MF and mean flow velocity. In vivo animal experiments are also conducted by imaging mouse brain with distal middle cerebral artery ligation to test the capability of the method to image the changes in capillary flows in response to an ischemic insult, demonstrating the practical usefulness of the proposed method for providing important quantifiable information about capillary tissue beds in the investigations of neurological conditions in vivo.
Collapse
Affiliation(s)
- Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| | - Qinqin Zhang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Yuandong Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|
24
|
Klein T, Huber R. High-speed OCT light sources and systems [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:828-859. [PMID: 28270988 PMCID: PMC5330584 DOI: 10.1364/boe.8.000828] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 05/18/2023]
Abstract
Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.
Collapse
Affiliation(s)
- Thomas Klein
- Optores GmbH, Gollierstr. 70, 80339 Munich, Germany
| | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| |
Collapse
|
25
|
Moon S, Choi ES. VCSEL-based swept source for low-cost optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:1110-1121. [PMID: 28271006 PMCID: PMC5330579 DOI: 10.1364/boe.8.001110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 05/03/2023]
Abstract
We present a novel wavelength-swept laser source for optical coherence tomography (OCT) which is based on the conventional laser diode technology of the vertical-cavity surface-emitting laser (VCSEL). In our self-heating sweep VCSEL (SS-VCSEL), a VCSEL device is simply driven by ramped pulses of currents in direct intensity modulation. The intrinsic property of VCSEL produces a frequency-swept output through the self-heating effect. By the injected current, the temperature of the active region is gradually increased in this effect. Consequently, it changes the wavelength of the laser output by itself. In this study, various characteristics of our SS-VCSEL were experimentally investigated for low-cost instrumentation of a swept source OCT system. A low-cost SS-VCSEL-based OCT system was demonstrated in this research that provided an axial resolution of 135 μm in air, sensitivity of -91 dB and a maximum imaging range longer than 10 cm when our source was operated at a sweep repetition rate of 5 kHz with an output power of 0.41 mW. Based on the experimental observations, we believe that our SS-VCSEL swept source can be an economic alternative in some of low-cost or long-range applications of OCT.
Collapse
Affiliation(s)
- Sucbei Moon
- Department of Physics, Kookmin University, Seoul, 02707, South Korea
| | - Eun Seo Choi
- Department of Physics, Chosun University, Gwangju, 61452, South Korea
| |
Collapse
|
26
|
Xu J, Song S, Wei W, Wang RK. Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source. BIOMEDICAL OPTICS EXPRESS 2017; 8:420-435. [PMID: 28101428 PMCID: PMC5231310 DOI: 10.1364/boe.8.000420] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 05/03/2023]
Abstract
Wide-field vascular visualization in bulk tissue that is of uneven surface is challenging due to the relatively short ranging distance and significant sensitivity fall-off for most current optical coherence tomography angiography (OCTA) systems. We report a long ranging and ultra-wide-field OCTA (UW-OCTA) system based on an akinetic swept laser. The narrow instantaneous linewidth of the swept source with its high phase stability, combined with high-speed detection in the system enable us to achieve long ranging (up to 46 mm) and almost negligible system sensitivity fall-off. To illustrate these advantages, we compare the basic system performances between conventional spectral domain OCTA and UW-OCTA systems and their functional imaging of microvascular networks in living tissues. In addition, we show that the UW-OCTA is capable of different depth-ranging of cerebral blood flow within entire brain in mice, and providing unprecedented blood perfusion map of human finger in vivo. We believe that the UW-OCTA system has promises to augment the existing clinical practice and explore new biomedical applications for OCT imaging.
Collapse
|
27
|
Song S, Xu J, Wang RK. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source. BIOMEDICAL OPTICS EXPRESS 2016; 7:4734-4748. [PMID: 27896012 PMCID: PMC5119612 DOI: 10.1364/boe.7.004734] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 05/19/2023]
Abstract
Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm2. The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm2). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications.
Collapse
Affiliation(s)
- Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA
| | - Jingjiang Xu
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA
| |
Collapse
|
28
|
Lei C, Ito T, Ugawa M, Nozawa T, Iwata O, Maki M, Okada G, Kobayashi H, Sun X, Tiamsak P, Tsumura N, Suzuki K, Di Carlo D, Ozeki Y, Goda K. High-throughput label-free image cytometry and image-based classification of live Euglena gracilis. BIOMEDICAL OPTICS EXPRESS 2016; 7:2703-8. [PMID: 27446699 PMCID: PMC4948623 DOI: 10.1364/boe.7.002703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 05/12/2023]
Abstract
We demonstrate high-throughput label-free single-cell image cytometry and image-based classification of Euglena gracilis (a microalgal species) under different culture conditions. We perform it with our high-throughput optofluidic image cytometer composed of a time-stretch microscope with 780-nm resolution and 75-Hz line rate, and an inertial-focusing microfluidic device. By analyzing a large number of single-cell images from the image cytometer, we identify differences in morphological and intracellular phenotypes between E. gracilis cell groups and statistically classify them under various culture conditions including nitrogen deficiency for lipid induction. Our method holds promise for real-time evaluation of culture techniques for E. gracilis and possibly other microalgae in a non-invasive manner.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Chemistry, University of Tokyo, Tokyo, Japan; Department of Electronic Engineering, Tsinghua University, Beijing, China;
| | - Takuro Ito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Masashi Ugawa
- Department of Chemistry, University of Tokyo, Tokyo, Japan
| | - Taisuke Nozawa
- Department of Chemistry, University of Tokyo, Tokyo, Japan
| | | | - Masanori Maki
- Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
| | - Genki Okada
- Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
| | | | - Xinlei Sun
- Department of Chemistry, University of Tokyo, Tokyo, Japan; Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Pimsiri Tiamsak
- Department of Chemistry, University of Tokyo, Tokyo, Japan; Department of Medicine, Thammasat University, Bangkok, Thailand
| | - Norimichi Tsumura
- Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
| | | | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, USA; California NanoSystems Institute, University of California, Los Angeles, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, University of Tokyo, Tokyo, Japan
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, Japan; Department of Electrical Engineering, University of California, Los Angeles, USA; Japan Science and Technology Agency, Tokyo, Japan;
| |
Collapse
|
29
|
Ultrafast measurements of optical spectral coherence by single-shot time-stretch interferometry. Sci Rep 2016; 6:27937. [PMID: 27295560 PMCID: PMC4904794 DOI: 10.1038/srep27937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/27/2016] [Indexed: 11/22/2022] Open
Abstract
The palette of laser technology has significantly been enriched by the innovations in ultrafast optical pulse generation. Our knowledge of the complex pulse dynamics, which is often highly nonlinear and stochastic in nature, is however limited by the scarcity of technologies that can measure fast variation/fluctuation of the spectral phase (or coherence) and amplitude in real-time, continuously. To achieve this goal, we demonstrate ultrafast interferometry enabled by optical time-stretch for real- time spectral coherence characterization with microsecond-resolution. Accessing the single-shot interferograms continuously, it further reveals the degree of second-order coherence, defined by the cross-spectral density function, at high speed-a capability absent in any existing spectroscopic measurement tools. As the technique can simultaneously measure both the high-speed variations of spectrally resolved coherence and intensity, time-stretch interferometry could create a new arena for ultrafast pulse characterization, especially favorable for probing and understanding the non-repetitive or stochastic dynamics in real-time.
Collapse
|
30
|
Hu S, Yao J, Liu M, Luo AP, Luo ZC, Xu WC. Gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy. OPTICS EXPRESS 2016; 24:10786-10796. [PMID: 27409899 DOI: 10.1364/oe.24.010786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ultrafast time-stretch microscopy has been proposed to enhance the temporal resolution of a microscopy system. The optical source is a key component for ultrafast time-stretch microscopy system. Herein, we reported on the gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy. By virtue of the excellent characteristics of the gain-guided soliton, the output power and the 3-dB bandwidth of the stable mode-locked soliton could be up to 3 mW and 33.7 nm with a high-quality rectangle shape, respectively. With the proposed robust optical source, the ultrafast time-stretch microscopy with the 49.6 μm resolution and a scan rate of 11 MHz was achieved without the external optical amplification. The obtained results demonstrated that the gain-guided soliton fiber laser could be used as an alternative high-quality optical source for ultrafast time-stretch microscopy and will introduce some applications in fields such as biology, chemical, and optical sensing.
Collapse
|
31
|
Xu J, Wei W, Song S, Qi X, Wang RK. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications. BIOMEDICAL OPTICS EXPRESS 2016; 7:1905-19. [PMID: 27231630 PMCID: PMC4871090 DOI: 10.1364/boe.7.001905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 05/03/2023]
Abstract
Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm(2)), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm(2). Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications.
Collapse
|
32
|
Wei W, Xu J, Baran U, Song S, Qin W, Qi X, Wang RK. Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:36005. [PMID: 26968387 PMCID: PMC5996864 DOI: 10.1117/1.jbo.21.3.036005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/11/2016] [Indexed: 05/19/2023]
Abstract
We demonstrate in vivo volumetric optical microangiography at ∼ 200 volumes/s by the use of 1.6 MHz Fourier domain mode-locking swept source optical coherence tomography and an effective 36 kHz microelectromechanical system (MEMS) scanner. We propose an intervolume analysis strategy to contrast the dynamic blood flow signal from the static tissue background. The proposed system is demonstrated by imaging cerebral blood flow in mice in vivo. For the first time, imaging speed, sensitivity, and temporal resolution become possible for a direct four-dimensional observation of microcirculations within live body parts.
Collapse
Affiliation(s)
- Wei Wei
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Jingjiang Xu
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Utku Baran
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195, United States
- University of Washington, Department of Electrical Engineering, 185 Stevens Way, Seattle, Washington 98195, United States
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Wan Qin
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Xiaoli Qi
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|
33
|
Ugawa M, Lei C, Nozawa T, Ideguchi T, Di Carlo D, Ota S, Ozeki Y, Goda K. High-throughput optofluidic particle profiling with morphological and chemical specificity. OPTICS LETTERS 2015; 40:4803-6. [PMID: 26469624 DOI: 10.1364/ol.40.004803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We present a method for high-throughput optofluidic particle analysis that provides both the morphological and chemical profiles of individual particles in a large heterogeneous population. This method is based on an integration of a time-stretch optical microscope with a submicrometer spatial resolution of 780 nm and a three-color fluorescence analyzer on top of an inertial-focusing microfluidic device. The integrated system can perform image- and fluorescence-based screening of particles with a high throughput of 10,000 particles/s, exceeding previously demonstrated imaging particle analyzers in terms of specificity without sacrificing throughput.
Collapse
|