1
|
Malone J, Hill C, Tanskanen A, Liu K, Ng S, MacAulay C, Poh CF, Lane PM. Imaging Biomarkers of Oral Dysplasia and Carcinoma Measured with In Vivo Endoscopic Optical Coherence Tomography. Cancers (Basel) 2024; 16:2751. [PMID: 39123478 PMCID: PMC11311571 DOI: 10.3390/cancers16152751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Optical coherence tomography is a noninvasive imaging technique that provides three-dimensional visualization of subsurface tissue structures. OCT has been proposed and explored in the literature as a tool to assess oral cancer status, select biopsy sites, or identify surgical margins. Our endoscopic OCT device can generate widefield (centimeters long) imaging of lesions at any location in the oral cavity-but it is challenging for raters to quantitatively assess and score large volumes of data. Leveraging a previously developed epithelial segmentation network, this work develops quantifiable biomarkers that provide direct measurements of tissue properties in three dimensions. We hypothesize that features related to morphology, tissue attenuation, and contrast between tissue layers will be able to provide a quantitative assessment of disease status (dysplasia through carcinoma). This work retrospectively assesses seven biomarkers on a lesion-contralateral matched OCT dataset of the lateral and ventral tongue (40 patients, 70 sites). Epithelial depth and loss of epithelial-stromal boundary visualization provide the strongest discrimination between disease states. The stroma optical attenuation coefficient provides a distinction between benign lesions from dysplasia and carcinoma. The stratification biomarkers visualize subsurface changes, which provides potential for future utility in biopsy site selection or treatment margin delineation.
Collapse
Affiliation(s)
- Jeanie Malone
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Chloe Hill
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Adrian Tanskanen
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kelly Liu
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 350-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samson Ng
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 350-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Calum MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- Department of Pathology and Laboratory Medicine, University of British Columbia and Vancouver General Hospital, G227-2211 Wesbrook Mall, Vancouver, BC V6 T 1Z7, Canada
| | - Catherine F. Poh
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 350-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Pierre M. Lane
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
2
|
Hill C, Malone J, Liu K, Ng SPY, MacAulay C, Poh C, Lane P. Three-Dimension Epithelial Segmentation in Optical Coherence Tomography of the Oral Cavity Using Deep Learning. Cancers (Basel) 2024; 16:2144. [PMID: 38893263 PMCID: PMC11172075 DOI: 10.3390/cancers16112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
This paper aims to simplify the application of optical coherence tomography (OCT) for the examination of subsurface morphology in the oral cavity and reduce barriers towards the adoption of OCT as a biopsy guidance device. The aim of this work was to develop automated software tools for the simplified analysis of the large volume of data collected during OCT. Imaging and corresponding histopathology were acquired in-clinic using a wide-field endoscopic OCT system. An annotated dataset (n = 294 images) from 60 patients (34 male and 26 female) was assembled to train four unique neural networks. A deep learning pipeline was built using convolutional and modified u-net models to detect the imaging field of view (network 1), detect artifacts (network 2), identify the tissue surface (network 3), and identify the presence and location of the epithelial-stromal boundary (network 4). The area under the curve of the image and artifact detection networks was 1.00 and 0.94, respectively. The Dice similarity score for the surface and epithelial-stromal boundary segmentation networks was 0.98 and 0.83, respectively. Deep learning (DL) techniques can identify the location and variations in the epithelial surface and epithelial-stromal boundary in OCT images of the oral mucosa. Segmentation results can be synthesized into accessible en face maps to allow easier visualization of changes.
Collapse
Affiliation(s)
- Chloe Hill
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada; (C.H.); (J.M.); (K.L.); (C.M.); (C.P.)
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Jeanie Malone
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada; (C.H.); (J.M.); (K.L.); (C.M.); (C.P.)
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kelly Liu
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada; (C.H.); (J.M.); (K.L.); (C.M.); (C.P.)
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada;
| | - Samson Pak-Yan Ng
- Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada;
| | - Calum MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada; (C.H.); (J.M.); (K.L.); (C.M.); (C.P.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
| | - Catherine Poh
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada; (C.H.); (J.M.); (K.L.); (C.M.); (C.P.)
- Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada;
| | - Pierre Lane
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada; (C.H.); (J.M.); (K.L.); (C.M.); (C.P.)
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Wang A, Qi W, Gao T, Tang X. Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine. Int J Mol Sci 2022; 23:ijms23063038. [PMID: 35328454 PMCID: PMC8949853 DOI: 10.3390/ijms23063038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
The growing need to understand the molecular mechanisms of diseases has prompted the revolution in molecular imaging techniques along with nanomedicine development. Conventional optical coherence tomography (OCT) is a low-cost in vivo imaging modality that provides unique high spatial and temporal resolution anatomic images but little molecular information. However, given the widespread adoption of OCT in research and clinical practice, its robust molecular imaging extensions are strongly desired to combine with anatomical images. A range of relevant approaches has been reported already. In this article, we review the recent advances of molecular contrast OCT imaging techniques, the corresponding contrast agents, especially the nanoparticle-based ones, and their applications. We also summarize the properties, design criteria, merit, and demerit of those contrast agents. In the end, the prospects and challenges for further research and development in this field are outlined.
Collapse
|
4
|
Xu Y, Deng X, Sun Y, Wang X, Xiao Y, Li Y, Chen Q, Jiang L. Optical Imaging in the Diagnosis of OPMDs Malignant Transformation. J Dent Res 2022; 101:749-758. [PMID: 35114846 DOI: 10.1177/00220345211072477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oral potentially malignant disorders (OPMDs) are a heterogeneous group of oral lesions with a variable risk of malignant transformation to oral squamous cell carcinoma. The current OPMDs malignant transformation screening depends on conventional oral examination (COE) and is confirmed by biopsy and histologic examination. However, early malignant lesions with subtle mucosal changes are easily unnoticed by COE based on visual inspection and palpation. Optical techniques have been used to determine the biological structure, composition, and function of cells and tissues noninvasively by analyzing the changes in their optical properties. The oral epithelium and stroma undergo persistent structural, functional, and biochemical alterations during malignant transformation, leading to variations in optical tissue properties; optical techniques are thus powerful tools for detecting OPMDs malignant transformation. The optical imaging methods already used to detect OPMDs malignant transformation in vivo include autofluorescence imaging, narrowband imaging, confocal reflectance microscopy, and optical coherence tomography. They exhibit advantages over COE in detecting biochemical or morphologic changes at the molecular or cellular level in vivo; however, limitations also exist. This article comprehensively reviews the various real-time in vivo optical imaging methods used in the adjunctive diagnosis of OPMDs malignant transformation. We focus on the principles of these techniques, review their clinical application, and compare and summarize their advantages and disadvantages. Finally, we conclude with a discussion of current challenges and future directions of this field.
Collapse
Affiliation(s)
- Y Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Thampi A, Hitchman S, Coen S, Vanholsbeeck F. Towards real time assessment of intramuscular fat content in meat using optical fiber-based optical coherence tomography. Meat Sci 2021; 181:108411. [DOI: 10.1016/j.meatsci.2020.108411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022]
|
6
|
Malone J, Lee AMD, Hohert G, Nador RG, Lane P. Small airway dilation measured by endoscopic optical coherence tomography correlates with chronic lung allograft dysfunction. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210057R. [PMID: 34263577 PMCID: PMC8278781 DOI: 10.1117/1.jbo.26.7.076005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Chronic lung allograft dysfunction (CLAD) is the leading cause of death in transplant patients who survive past the first year post-transplant. Current diagnosis is based on sustained decline in lung function; there is a need for tools that can identify CLAD onset. AIM Endoscopic optical coherence tomography (OCT) can visualize structural changes in the small airways, which are of interest in CLAD progression. We aim to identify OCT features in the small airways of lung allografts that correlate with CLAD status. APPROACH Imaging was conducted with an endoscopic rotary pullback OCT catheter during routine bronchoscopy procedures (n = 54), collecting volumetric scans of three segmental airways per patient. Six features of interest were identified, and four blinded raters scored the dataset on the presence and intensity of each feature. RESULTS Airway dilation (AD) was the only feature found to significantly (p < 0.003) correlate with CLAD diagnosis (R = 0.40 to 0.61). AD could also be fairly consistently scored between raters (κinter-rater = 0.48, κintra-rater = 0.64). There is a stronger relationship between AD and the combined obstructive and restrictive (BOS + RAS) phenotypes than the obstructive-only (BOS) phenotype for two raters (R = 0.92 , 0.94). CONCLUSIONS OCT examination of small AD shows potential as a diagnostic indicator for CLAD and CLAD phenotype and merits further exploration.
Collapse
Affiliation(s)
- Jeanie Malone
- British Columbia Cancer Research Institute, Department of Integrative Oncology, Imaging Unit, Vancouver, BC, Canada
| | - Anthony M. D. Lee
- British Columbia Cancer Research Institute, Department of Integrative Oncology, Imaging Unit, Vancouver, BC, Canada
| | - Geoffrey Hohert
- British Columbia Cancer Research Institute, Department of Integrative Oncology, Imaging Unit, Vancouver, BC, Canada
| | - Roland G. Nador
- University of British Columbia, Division of Respiratory Medicine, Faculty of Medicine, Vancouver, BC, Canada
- Vancouver General Hospital, Lung Transplant Program, Vancouver, BC, Canada
| | - Pierre Lane
- British Columbia Cancer Research Institute, Department of Integrative Oncology, Imaging Unit, Vancouver, BC, Canada
| |
Collapse
|
7
|
Kaur J, Srivastava R, Borse V. Recent advances in point-of-care diagnostics for oral cancer. Biosens Bioelectron 2021; 178:112995. [PMID: 33515983 DOI: 10.1016/j.bios.2021.112995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Early-stage diagnosis is a crucial step in reducing the mortality rate in oral cancer cases. Point-of-care (POC) devices for oral cancer diagnosis hold great future potential in improving the survival rates as well as the quality of life of oral cancer patients. The conventional oral examination followed by needle biopsy and histopathological analysis have limited diagnostic accuracy. Besides, it involves patient discomfort and is not feasible in resource-limited settings. POC detection of biomarkers and diagnostic adjuncts has emerged as non- or minimally invasive tools for the diagnosis of oral cancer at an early stage. Various biosensors have been developed for the rapid detection of oral cancer biomarkers at the point-of-care. Several optical imaging methods have also been employed as adjuncts to detect alterations in oral tissue indicative of malignancy. This review summarizes the different POC platforms developed for the detection of oral cancer biomarkers, along with various POC imaging and cytological adjuncts that aid in oral cancer diagnosis, especially in low resource settings. Various immunosensors and nucleic acid biosensors developed to detect oral cancer biomarkers are summarized with examples. The different imaging methods used to detect oral tissue malignancy are also discussed herein. Additionally, the currently available commercial devices used as adjuncts in the POC detection of oral cancer are emphasized along with their characteristics. Finally, we discuss the limitations and challenges that persist in translating the developed POC techniques in the clinical settings for oral cancer diagnosis, along with future perspectives.
Collapse
Affiliation(s)
- Jasmeen Kaur
- NanoBios Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Rohit Srivastava
- NanoBios Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vivek Borse
- NanoBioSens Laboratory, Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Karnowski K, Li Q, Poudyal A, Villiger M, Farah CS, Sampson DD. Influence of tissue fixation on depth-resolved birefringence of oral cavity tissue samples. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200071R. [PMID: 32914607 PMCID: PMC7481436 DOI: 10.1117/1.jbo.25.9.096003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE To advance our understanding of the contrast observed when imaging with polarization-sensitive optical coherence tomography (PS-OCT) and its correlation with oral cancerous pathologies, a detailed comparison with histology provided via ex vivo fixed tissue is required. The effects of tissue fixation, however, on such polarization-based contrast have not yet been investigated. AIM A study was performed to assess the impact of tissue fixation on depth-resolved (i.e., local) birefringence measured with PS-OCT. APPROACH A PS-OCT system based on depth-encoded polarization multiplexing and polarization-diverse detection was used to measure the Jones matrix of a sample. A wide variety of ex vivo samples were measured freshly after excision and 24 h after fixation, consistent with standard pathology. Some samples were also measured 48 h after fixation. RESULTS The tissue fixation does not diminish the birefringence contrast. Statistically significant changes were observed in 11 out of 12 samples; these changes represented an increase in contrast, overall, by 11% on average. CONCLUSIONS We conclude that the fixed samples are suitable for studies seeking a deeper understanding of birefringence contrast in oral tissue pathology. The enhancement of contrast removes the need to image immediately postexcision and will facilitate future investigations with PS-OCT and other advanced polarization-sensitive microscopy methods, such as mapping of the local optic axis with PS-OCT and PS-optical coherence microscopy.
Collapse
Affiliation(s)
- Karol Karnowski
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic, and Computer Engineering, Perth, Western Australia, Australia
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Qingyun Li
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic, and Computer Engineering, Perth, Western Australia, Australia
| | - Anima Poudyal
- The University of Western Australia, UWA Dental School, Perth, Western Australia, Australia
| | - Martin Villiger
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United Sates
| | - Camile S. Farah
- The University of Western Australia, UWA Dental School, Perth, Western Australia, Australia
- Australian Centre for Oral Oncology Research and Education, Perth, Western Australia, Australia
- Fiona Stanley Hospital, Oral, Maxillofacial, and Dental Surgery, Murdoch, Western Australia, Australia
| | - David D. Sampson
- University of Surrey, Surrey Biophotonics, School of Physics, Guilford, United Kingdom
- University of Surrey, Surrey Biophotonics, School of Biosciences and Medicine, Guilford, United Kingdom
| |
Collapse
|
9
|
Detection of Oral Dysplastic and Early Cancerous Lesions by Polarization-Sensitive Optical Coherence Tomography. Cancers (Basel) 2020; 12:cancers12092376. [PMID: 32842568 PMCID: PMC7564531 DOI: 10.3390/cancers12092376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Detection of oral dysplastic and early-stage cancerous lesions is difficult with the current tools. Half of oral cancers are diagnosed in a late stage. Detection of early stromal change to predict malignant transformation is a new direction in the diagnosis of early-stage oral cancer. The application of new optical tools to image stroma in vivo is under investigation, and polarization-sensitive optical coherence tomography (PS-OCT) is potentially one of those tools. This is a preliminary study to sequentially image oral stromal changes from normal, hyperplasia, and dysplasia to early-stage cancer by PS-OCT in vivo. We used 4-Nitroquinoline-1-oxide drinking water to induce dysplasia and early-stage oral cancer in 19 K14-EGFP-miR-211-GFP transgenic mice. A total of 8 normal, 12 hyperplastic, 11 dysplastic, and 4 early-stage cancerous lesions were enrolled. A new analytic process of PS-OCT imaging was proposed, called an en-face birefringence map. From the birefringence map, the sensitivity, specificity, positive predictive value, and negative predictive values to detect dysplasia and early-stage cancer were 100.00%, 95.00%, 93.75%, and 100.00%, respectively, and the kappa value of these images between two investigators was 0.942. The mean size of malignant lesions detected in this study is 1.66 ± 0.93 mm. This pilot animal study validates the use of PS-OCT to detect small and early-stage oral malignancy with high accuracy and consistency.
Collapse
|
10
|
Wang G, Le NM, Hu X, Cheng Y, Jacques SL, Subhash H, Wang RK. Semi-automated registration and segmentation for gingival tissue volume measurement on 3D OCT images. BIOMEDICAL OPTICS EXPRESS 2020; 11:4536-4547. [PMID: 32923062 PMCID: PMC7449737 DOI: 10.1364/boe.396599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 05/17/2023]
Abstract
The change in gingival tissue volume may be used to indicate changes in gingival inflammation, which may be useful for the clinical assessment of gingival health. Properly quantifying gingival tissue volume requires a robust technique for accurate registration and segmentation of longitudinally captured 3-dimensional (3D) images. In this paper, a semi-automated registration and segmentation method for micrometer resolution measurement of gingival-tissue volume is proposed for 3D optical coherence tomography (OCT) imaging. For quantification, relative changes in gingiva tissue volume are measured based on changes in the gingiva surface height using the tooth surface as a reference. This report conducted repeatability tests on this method drawn from repeated scans in one patient, indicating an error of the point cloud registration method for oral OCT imaging is 63.08 ± 4.52µm (1σ), and the measurement error of the gingival tissue average thickness is -3.40 ± 21.85µm (1σ).
Collapse
Affiliation(s)
- Geng Wang
- University of Washington, Department of
Bioengineering, Seattle, WA 98195, USA
| | - Nhan Minh Le
- University of Washington, Department of
Bioengineering, Seattle, WA 98195, USA
| | - Xiaohui Hu
- University of Washington, Department of
Bioengineering, Seattle, WA 98195, USA
| | - Yuxuan Cheng
- University of Washington, Department of
Bioengineering, Seattle, WA 98195, USA
| | - Steven L. Jacques
- University of Washington, Department of
Bioengineering, Seattle, WA 98195, USA
| | - Hrebesh Subhash
- Clinical Method Development - Oral Care,
Colgate-Palmolive Company, Piscataway, NJ 08854, USA
| | - Ruikang K. Wang
- University of Washington, Department of
Bioengineering, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Li K, Yang Z, Liang W, Shang J, Liang Y, Wan S. Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-13. [PMID: 32314560 PMCID: PMC7167599 DOI: 10.1117/1.jbo.25.4.046003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE Optical coherence tomography (OCT) has proven useful for detecting various oral maxillofacial abnormalities. To apply it to clinical applications including biopsy guidance and routine screening, a handheld imaging probe is indispensable. OCT probes reported for oral maxillofacial imaging were either based on a bulky galvanometric mirror pair (not compact or long enough) or a distal-end microelectromechanical systems (MEMS) scanner (raised safety concerns), or adapted from fiber-optic catheters (ill-suited for oral cavity geometry). AIM To develop a handheld probe featuring great compactness and excellent maneuverability for oral maxillofacial tissue imaging. APPROACH A dual-axis MEMS scanner was deployed at the proximal end of the probe and the scanned beam was relayed to the distal end through a 4f configuration. Such design provides both a perfect dual-axis telecentric scan and excellent compactness. RESULTS A handheld probe with a rigid part 70 mm in length and 7 mm in diameter and weighing 25 g in total was demonstrated through both ex vivo and in vivo experiments, including structural visualization of various oral maxillofacial tissues and monitoring the recovery process of an oral mucosa canker sore. CONCLUSIONS The proposed probe exhibits excellent maneuverability and imaging performance showing great potential in clinical applications.
Collapse
Affiliation(s)
- Kaiyan Li
- Southeast University, School of Biological Science and Medical Engineering, Nanjing, Jiangsu, China
| | - Zihan Yang
- Nankai University, Institute of Modern Optics, Tianjin, China
| | - Wenxuan Liang
- Columbia University, Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Jianwei Shang
- Nankai University, Tianjin Stomatological Hospital, Hospital of Stomatology, Department of Oral Pathology, Tianjin, China
| | - Yanmei Liang
- Nankai University, Institute of Modern Optics, Tianjin, China
- Address all correspondence to Yanmei Liang, E-mail: ; Suiren Wan, E-mail:
| | - Suiren Wan
- Southeast University, School of Biological Science and Medical Engineering, Nanjing, Jiangsu, China
- Address all correspondence to Yanmei Liang, E-mail: ; Suiren Wan, E-mail:
| |
Collapse
|
12
|
Diagnostic Adjuncts for Oral Cavity Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-32316-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Stasio DD, Lauritano D, Iquebal H, Romano A, Gentile E, Lucchese A. Measurement of Oral Epithelial Thickness by Optical Coherence Tomography. Diagnostics (Basel) 2019; 9:diagnostics9030090. [PMID: 31390841 PMCID: PMC6787684 DOI: 10.3390/diagnostics9030090] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Optical coherence tomography (OCT) is a real-time, in-situ, non-invasive imaging device that is able to perform a cross-sectional evaluation of tissue microstructure based on the specific intensity of back-scattered and reflected light. The aim of the present study was to define normal values of epithelial thickness within the oral cavity. OCT measurements of epithelial thickness were performed in 28 healthy patients at six different locations within the oral cavity. Image analysis was performed using Image J 1.52 software. The healthy epithelium has a mean thickness of 335.59 ± 150.73 µm. According to its location within the oral cavity, the epithelium showed highest values in the region of the buccal mucosa (659.79 µm) and the thinnest one was observed in the mouth’s floor (100.07 µm). OCT has been shown to be useful for the evaluation of oral mucosa in vivo and in real time. Our study provides reference values for the epithelial thickness of multiple sites within the oral cavity. Knowledge of the thickness values of healthy mucosa is, therefore, of fundamental importance.
Collapse
Affiliation(s)
- Dario Di Stasio
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania-Luigi Vanvitelli, 80138 Naples, Italy
| | - Dorina Lauritano
- Department of Medicine and Surgery, Centre of Neuroscience of Milan, University of Milano-Bicocca, 20126 Milan, Italy.
| | - Hasan Iquebal
- ECU School of Dental Medicine, 1851 MacGregor Downs Road, Greenville, NC 27834, USA
| | - Antonio Romano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania-Luigi Vanvitelli, 80138 Naples, Italy
| | - Enrica Gentile
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania-Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania-Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
14
|
Walther J, Li Q, Villiger M, Farah CS, Koch E, Karnowski K, Sampson DD. Depth-resolved birefringence imaging of collagen fiber organization in the human oral mucosa in vivo. BIOMEDICAL OPTICS EXPRESS 2019; 10:1942-1956. [PMID: 31086712 PMCID: PMC6484997 DOI: 10.1364/boe.10.001942] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/02/2018] [Accepted: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Stromal collagen organization has been identified as a potential prognostic indicator in a variety of cancers and other diseases accompanied by fibrosis. Changes in the connective tissue are increasingly considered for grading dysplasia and progress of oral squamous cell carcinoma, investigated mainly ex vivo by histopathology. In this study, polarization-sensitive optical coherence tomography (PS-OCT) with local phase retardation imaging is used for the first time to visualize depth-resolved (i.e., local) birefringence of healthy human oral mucosa in vivo. Depth-resolved birefringence is shown to reveal the expected local collagen organization. To demonstrate proof-of-principle, 3D image stacks were acquired at labial and lingual locations of the oral mucosa, chosen as those most commonly affected by cancerous alterations. To enable an intuitive evaluation of the birefringence images suitable for clinical application, color depth-encoded en-face projections were generated. Compared to en-face views of intensity or conventional cumulative phase retardation, we show that this novel approach offers improved visualization of the mucosal connective tissue layer in general, and reveals the collagen fiber architecture in particular. This study provides the basis for future prospective pathological and comparative in vivo studies non-invasively assessing stromal changes in conspicuous and cancerous oral lesions at different stages.
Collapse
Affiliation(s)
- Julia Walther
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Department of Medical Physics and Biomedical Engineering, 01307 Dresden, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, 01307 Dresden, Germany
| | - Qingyun Li
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Martin Villiger
- Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, USA
| | - Camile S. Farah
- UWA Dental School, The University of Western Australia, Perth, WA 6009, Australia
- Australian Centre for Oral Oncology Research and Education, Perth, WA 6009, Australia
| | - Edmund Koch
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, 01307 Dresden, Germany
| | - Karol Karnowski
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
- University of Surrey, Guilford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
15
|
Yang EC, Tan MT, Schwarz RA, Richards-Kortum RR, Gillenwater AM, Vigneswaran N. Noninvasive diagnostic adjuncts for the evaluation of potentially premalignant oral epithelial lesions: current limitations and future directions. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:670-681. [PMID: 29631985 PMCID: PMC6083875 DOI: 10.1016/j.oooo.2018.02.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
Potentially premalignant oral epithelial lesions (PPOELs) are a group of clinically suspicious conditions, of which a small percentage will undergo malignant transformation. PPOELs are suboptimally diagnosed and managed under the current standard of care. Dysplasia is the most well-established marker to distinguish high-risk PPOELs from low-risk PPOELs, and performing a biopsy to establish dysplasia is the diagnostic gold standard. However, a biopsy is limited by morbidity, resource requirements, and the potential for underdiagnosis. Diagnostic adjuncts may help clinicians better evaluate PPOELs before definitive biopsy, but existing adjuncts, such as toluidine blue, acetowhitening, and autofluorescence imaging, have poor accuracy and are not generally recommended. Recently, in vivo microscopy technologies, such as high-resolution microendoscopy, optical coherence tomography, reflectance confocal microscopy, and multiphoton imaging, have shown promise for improving PPOEL patient care. These technologies allow clinicians to visualize many of the same microscopic features used for histopathologic assessment at the point of care.
Collapse
Affiliation(s)
- Eric C Yang
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Melody T Tan
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Ann M Gillenwater
- Department of Head and Neck Surgery, M.D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry, Houston, TX, USA.
| |
Collapse
|
16
|
Walther J, Golde J, Kirsten L, Tetschke F, Hempel F, Rosenauer T, Hannig C, Koch E. In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-17. [PMID: 29264891 DOI: 10.1117/1.jbo.22.12.121717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/27/2017] [Indexed: 05/21/2023]
Abstract
Since optical coherence tomography (OCT) provides three-dimensional high-resolution images of biological tissue, the benefit of polarization contrast in the field of dentistry is highlighted in this study. Polarization-sensitive OCT (PS OCT) with phase-sensitive recording is used for imaging dental and mucosal tissues in the human oral cavity in vivo. An enhanced polarization contrast of oral structures is reached by analyzing the signals of the co- and crosspolarized channels of the swept source PS OCT system quantitatively with respect to reflectivity, retardation, optic axis orientation, and depolarization. The calculation of these polarization parameters enables a high tissue-specific contrast imaging for the detailed physical interpretation of human oral hard and soft tissues. For the proof-of-principle, imaging of composite restorations and mineralization defects at premolars as well as gingival, lingual, and labial oral mucosa was performed in vivo within the anterior oral cavity. The achieved contrast-enhanced results of the investigated human oral tissues by means of polarization-sensitive imaging are evaluated by the comparison with conventional intensity-based OCT.
Collapse
Affiliation(s)
- Julia Walther
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Department of Medical Physics and Biomedical Engi, Germany
| | - Jonas Golde
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
| | - Lars Kirsten
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
| | - Florian Tetschke
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Policlinic of Operative and Pediatric Dentistry,, Germany
| | - Franz Hempel
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
| | - Tobias Rosenauer
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Policlinic of Operative and Pediatric Dentistry,, Germany
| | - Christian Hannig
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Policlinic of Operative and Pediatric Dentistry,, Germany
| | - Edmund Koch
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
| |
Collapse
|
17
|
Wang J, Xu Y, Boppart SA. Review of optical coherence tomography in oncology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-23. [PMID: 29274145 PMCID: PMC5741100 DOI: 10.1117/1.jbo.22.12.121711] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 05/06/2023]
Abstract
The application of optical coherence tomography (OCT) in the field of oncology has been prospering over the past decade. OCT imaging has been used to image a broad spectrum of malignancies, including those arising in the breast, brain, bladder, the gastrointestinal, respiratory, and reproductive tracts, the skin, and oral cavity, among others. OCT imaging has initially been applied for guiding biopsies, for intraoperatively evaluating tumor margins and lymph nodes, and for the early detection of small lesions that would often not be visible on gross examination, tasks that align well with the clinical emphasis on early detection and intervention. Recently, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This paper reviews the evolution of OCT technologies for the clinical application of OCT in surgical and noninvasive interventional oncology procedures and concludes with a discussion of the future directions for OCT technologies, with particular emphasis on their applications in oncology.
Collapse
Affiliation(s)
- Jianfeng Wang
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Yang Xu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle–Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
18
|
Tsai MT, Chen Y, Lee CY, Huang BH, Trung NH, Lee YJ, Wang YL. Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:5001-5012. [PMID: 29188097 PMCID: PMC5695947 DOI: 10.1364/boe.8.005001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/26/2017] [Accepted: 10/09/2017] [Indexed: 05/03/2023]
Abstract
In this study, we demonstrated the feasibility of using a handheld optical coherence tomography (OCT) for in vivo visualizations of the microstructural and microvascular features of various oral mucosal types. To scan arbitrary locations of the oral mucosa, a scanning probe was developed, composed of a probe body fabricated by a 3D printer, miniaturized two-axis galvanometer, relay lenses, and reflective prism. With a 3D printing technique, the probe weight and the system volume were greatly reduced, enabling the effective improvement of imaging artifacts from unconscious motion and system complexity. Additionally, in our design, the distal end of the probe can be switched to fit various oral conditions, and the optical parameters of the probe, such as the transverse resolution, working distance, and probe length can be easily varied. The results showed that the epithelium and lamina propria layers, as well as the fungiform papilla and salivary gland, were differentiated. Moreover, various microcirculation features at different mucosal sites were identified that are potentially effective indicators for the diagnosis of premalignant lesions. The demonstrated results indicate that the developed OCT system is a promising tool for noninvasive imaging of oral mucosae.
Collapse
Affiliation(s)
- Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, 33302 Taiwan
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, 33305 Taiwan
| | - Yingdan Chen
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, 33302 Taiwan
- School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, 31108 China
| | - Cheng-Yu Lee
- Department of Electrical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
| | - Bo-Huei Huang
- Department of Electrical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
| | - Nguyen Hoang Trung
- Department of Electrical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
| | - Ya-Ju Lee
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, 11677 Taiwan
| | - Yen-Li Wang
- Department of Periodontics, Chang Gung Memorial Hospital, Taoyuan, 33378 Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33302 Taiwan
| |
Collapse
|
19
|
Wei W, Choi WJ, Wang RK. Microvascular imaging and monitoring of human oral cavity lesions in vivo by swept-source OCT-based angiography. Lasers Med Sci 2017; 33:123-134. [PMID: 29038969 DOI: 10.1007/s10103-017-2350-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/01/2017] [Indexed: 01/23/2023]
Abstract
We report the development of optical coherence tomography- (OCT) based angiography (OCTA) to image blood flow within microcirculatory tissue beds in human oral cavity in vivo with a field of view at 10 mm × 10 mm. Three-dimensional (3D) structural and vascular images of labial mucosa tissue are obtained at a single 3D acquisition. Pathologic mucosal sites with mouth ulcers are examined using the OCT tomograms and angiograms, upon which to monitor the lesion healing process over a period of 2 weeks. Quantitative metrics of the capillary loop density within the lamina propria layer are evaluated, providing statistically significant difference between healthy and diseased conditions over time. Furthermore, tissue anatomy and vessel morphology of other susceptible sites to ulcer, such as tongue, alveolar mucosa, and labial frenulum, are also imaged to demonstrate the promise of the proposed method as a clinically useful tool for the diagnosis and monitoring of therapeutic treatment of oral tissue abnormalities.
Collapse
Affiliation(s)
- Wei Wei
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Woo June Choi
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA.
| |
Collapse
|
20
|
Lee AMD, Hohert G, Angkiriwang PT, MacAulay C, Lane P. Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters. OPTICS EXPRESS 2017; 25:22164-22177. [PMID: 29041505 DOI: 10.1364/oe.25.022164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/18/2017] [Indexed: 05/23/2023]
Abstract
We present a new paradigm for performing two-dimensional scanning called dual-beam manually-actuated distortion-corrected imaging (DMDI). DMDI operates by imaging the same object with two spatially-separated beams that are being mechanically scanned rapidly in one dimension with slower manual actuation along a second dimension. Registration of common features between the two imaging channels allows remapping of the images to correct for distortions due to manual actuation. We demonstrate DMDI using a 4.7 mm OD rotationally scanning dual-beam micromotor catheter (DBMC). The DBMC requires a simple, one-time calibration of the beam paths by imaging a patterned phantom. DMDI allows for distortion correction of non-uniform axial speed and rotational motion of the DBMC. We show the utility of this technique by demonstrating en face OCT image distortion correction of a manually-scanned checkerboard phantom and fingerprint scan.
Collapse
|
21
|
Lee HC, Ahsen OO, Liu JJ, Tsai TH, Huang Q, Mashimo H, Fujimoto JG. Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76001. [PMID: 28687822 PMCID: PMC5499807 DOI: 10.1117/1.jbo.22.7.076001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/08/2017] [Indexed: 05/08/2023]
Abstract
Radiofrequency ablation (RFA) is widely used for the eradication of dysplasia and the treatment of early stage esophageal carcinoma in patients with Barrett’s esophagus (BE). However, there are several factors, such as variation of BE epithelium (EP) thickness among individual patients and varying RFA catheter-tissue contact, which may compromise RFA efficacy. We used a high-speed optical coherence tomography (OCT) system to identify and monitor changes in the esophageal tissue architecture from RFA. Two different OCT imaging/RFA application protocols were performed using an <italic<ex vivo</italic< swine esophagus model: (1) post-RFA volumetric OCT imaging for quantitative analysis of the coagulum formation using RFA applications with different energy settings, and (2) M-mode OCT imaging for monitoring the dynamics of tissue architectural changes in real time during RFA application. Post-RFA volumetric OCT measurements showed an increase in the coagulum thickness with respect to the increasing RFA energies. Using a subset of the specimens, OCT measurements of coagulum and coagulum + residual EP thickness were shown to agree with histology, which accounted for specimen shrinkage during histological processing. In addition, we demonstrated the feasibility of OCT for real-time visualization of the architectural changes during RFA application with different energy settings. Results suggest feasibility of using OCT for RFA treatment planning and guidance.
Collapse
Affiliation(s)
- Hsiang-Chieh Lee
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
| | - Osman O. Ahsen
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
| | - Jonathan J. Liu
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
| | - Tsung-Han Tsai
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
| | - Qin Huang
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - James G. Fujimoto
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
- Address all correspondence to: James G. Fujimoto, E-mail:
| |
Collapse
|
22
|
Gentile E, Maio C, Romano A, Laino L, Lucchese A. The potential role of in vivo optical coherence tomography for evaluating oral soft tissue: A systematic review. J Oral Pathol Med 2017; 46:864-876. [PMID: 28477348 DOI: 10.1111/jop.12589] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The introduction of optical coherence tomography (OCT) in dentistry enabled the integration of already existing clinical and laboratory investigations in the study of the oral cavity. This systematic review presents an overview of the literature, to evaluate the usefulness of in vivo OCT for diagnosing oral soft tissues lesions, to compare the OCT results with traditional histology, and to identify limitations in prior studies so as to improve OCT applications. METHODS We performed a review of the literature using different search engines (PubMed, ISI Web of Science, and the Cochrane Library) employing MeSH terms such as "optical coherence tomography" and "OCT" in conjunction with other terms. We utilized the Population, Intervention, Comparison, Outcomes, and Study design (PICOS) method to define our study eligibility criteria. RESULTS Initial results were 3155. In conclusion, there were only 27 studies which met our selection criteria. We decided to allocate the 27 selected items into three groups: healthy mucosa; benign, premalignant, and malignant lesions; and oral manifestations of systemic therapies or pathological conditions. CONCLUSIONS Although the OCT is an easy-to-perform test and it offers an attractive diagnostic and monitoring prospect for soft tissues of the oral cavity, further studies are needed to complete the current knowledge of this imaging technique.
Collapse
Affiliation(s)
- Enrica Gentile
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| | - Claudio Maio
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| | - Antonio Romano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| | - Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
23
|
Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7050474] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Human ex-vivo oral tissue imaging using spectral domain polarization sensitive optical coherence tomography. Lasers Med Sci 2016; 32:143-150. [PMID: 27807650 DOI: 10.1007/s10103-016-2096-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/13/2016] [Indexed: 12/25/2022]
Abstract
We report the use of spectral domain polarization sensitive optical coherence tomography for ex-vivo imaging of human oral mandibular tissue samples. Our results show that compared to the changes observed in the epithelium thickness and the decay constant of A-scan intensity profile, a much larger degree of change was observed in the phase retardation for tissue sites progressing from normal to the malignant state. These results suggest that monitoring of tissue retardance can help in better differentiation of normal and cancerous oral tissue sites.
Collapse
|
25
|
Barroso EM, Smits RWH, van Lanschot CGF, Caspers PJ, Ten Hove I, Mast H, Sewnaik A, Hardillo JA, Meeuwis CA, Verdijk R, Noordhoek Hegt V, Baatenburg de Jong RJ, Wolvius EB, Bakker Schut TC, Koljenović S, Puppels GJ. Water Concentration Analysis by Raman Spectroscopy to Determine the Location of the Tumor Border in Oral Cancer Surgery. Cancer Res 2016; 76:5945-5953. [PMID: 27530325 DOI: 10.1158/0008-5472.can-16-1227] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Adequate resection of oral cavity squamous cell carcinoma (OCSCC) means complete tumor removal with a clear margin of more than 5 mm. For OCSCC, 85% of the surgical resections appear inadequate. Raman spectroscopy is an objective and fast tool that can provide real-time information about the molecular composition of tissue and has the potential to provide an objective and fast intraoperative assessment of the entire resection surface. A previous study demonstrated that OCSCC can be discriminated from healthy surrounding tissue based on the higher water concentration in tumor. In this study, we investigated how the water concentration changes across the tumor border toward the healthy surrounding tissue on freshly excised specimens from the oral cavity. Experiments were performed on tissue sections from 20 patients undergoing surgery for OCSCC. A transition from a high to a lower water concentration, from tumor (76% ± 8% of water) toward healthy surrounding tissue (54% ± 24% of water), takes place over a distance of about 4 to 6 mm across the tumor border. This was accompanied by an increase of the heterogeneity of the water concentration in the surrounding healthy tissue. The water concentration distributions between the regions were significantly different (P < 0.0001). This new finding highlights the potential of Raman spectroscopy for objective intraoperative assessment of the resection margins. Cancer Res; 76(20); 5945-53. ©2016 AACR.
Collapse
Affiliation(s)
- Elisa M Barroso
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Roeland W H Smits
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Cornelia G F van Lanschot
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J Caspers
- Center for Optical Diagnostics & Therapy, Department of Dermatology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands. RiverD International BV, Rotterdam, The Netherlands
| | - Ivo Ten Hove
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Hetty Mast
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Aniel Sewnaik
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - José A Hardillo
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Cees A Meeuwis
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rob Verdijk
- Department of Pathology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | | | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Eppo B Wolvius
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Tom C Bakker Schut
- Center for Optical Diagnostics & Therapy, Department of Dermatology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands. RiverD International BV, Rotterdam, The Netherlands.
| | - Senada Koljenović
- Department of Pathology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Gerwin J Puppels
- Center for Optical Diagnostics & Therapy, Department of Dermatology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands. RiverD International BV, Rotterdam, The Netherlands
| |
Collapse
|