1
|
Roudeau S, Carmona A, Ortega R. Multimodal and multiscale correlative elemental imaging: From whole tissues down to organelles. Curr Opin Chem Biol 2023; 76:102372. [PMID: 37487424 DOI: 10.1016/j.cbpa.2023.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
Chemical elements, especially metals, play very specific roles in the life sciences. The implementation of correlative imaging methods, of elements on the one hand and of molecules or biological structures on the other hand, is the subject of recent developments. The most commonly used spectro-imaging techniques for metals are synchrotron-induced X-ray fluorescence, mass spectrometry and fluorescence imaging of metal molecular sensors. These imaging methods can be correlated with a wide variety of other analytical techniques used for structural imaging (e.g., electron microscopy), small molecule imaging (e.g., molecular mass spectrometry) or protein imaging (e.g., fluorescence microscopy). The resulting correlative imaging is developed at different scales, from biological tissue to the subcellular level. The fields of application are varied, with some major research topics, the role of metals in the aetiology of neurodegenerative diseases and the use of metals for medical imaging or cancer treatment.
Collapse
Affiliation(s)
| | | | - Richard Ortega
- Univ. Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France.
| |
Collapse
|
2
|
San Martín Molina I, Fratini M, Campi G, Burghammer M, Grünewald TA, Salo RA, Narvaez O, Aggarwal M, Tohka J, Sierra A. A multiscale tissue assessment in a rat model of mild traumatic brain injury. J Neuropathol Exp Neurol 2022; 82:71-83. [PMID: 36331507 PMCID: PMC9764078 DOI: 10.1093/jnen/nlac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diffusion tensor imaging (DTI) has demonstrated the potential to assess the pathophysiology of mild traumatic brain injury (mTBI) but correlations of DTI findings and pathological changes in mTBI are unclear. We evaluated the potential of ex vivo DTI to detect tissue damage in a mild mTBI rat model by exploiting multiscale imaging methods, histology and scanning micro-X-ray diffraction (SμXRD) 35 days after sham-operation (n = 2) or mTBI (n = 3). There were changes in DTI parameters rostral to the injury site. When examined by histology and SμXRD, there was evidence of axonal damage, reduced myelin density, gliosis, and ultrastructural alterations in myelin that were ongoing at the experimental time point of 35 days postinjury. We assessed the relationship between the 3 imaging modalities by multiple linear regression analysis. In this analysis, DTI and histological parameters were moderately related, whereas SμXRD parameters correlated weakly with DTI and histology. These findings suggest that while DTI appears to distinguish tissue changes at the microstructural level related to the loss of myelinated axons and gliosis, its ability to visualize alterations in myelin ultrastructure is limited. The use of several imaging techniques represents a novel approach to reveal tissue damage and provides new insights into mTBI detection.
Collapse
Affiliation(s)
| | - Michela Fratini
- Institute of Nanotechnology-CNR c/o Physics Department, Sapienza University of Rome, Rome, Italy,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | - Tilman A Grünewald
- European Synchrotron Radiation Facility, Grenoble Cedex, France,Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Raimo A Salo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Omar Narvaez
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- Send correspondence to: Alejandra Sierra, PhD, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland (Kuopio Campus), PO Box 1627, Neulaniementie 2, FI-70211 Kuopio, Finland; E-mail:
| |
Collapse
|
3
|
Zee DZ, MacRenaris KW, O'Halloran TV. Quantitative imaging approaches to understanding biological processing of metal ions. Curr Opin Chem Biol 2022; 69:102152. [PMID: 35561425 PMCID: PMC9329216 DOI: 10.1016/j.cbpa.2022.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Faster, more sensitive, and higher resolution quantitative instrumentation are aiding a deeper understanding of how inorganic chemistry regulates key biological processes. Researchers can now image and quantify metals with subcellular resolution, leading to a vast array of new discoveries in organismal development, pathology, and disease. Metals have recently been implicated in several diseases such as Parkinson's, Alzheimers, ischemic stroke, and colorectal cancer that would not be possible without these advancements. In this review, instead of focusing on instrumentation we focus on recent applications of label-free elemental imaging and quantification and how these tools can lead to a broader understanding of metals role in systems biology and human pathology.
Collapse
Affiliation(s)
- David Z Zee
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Keith W MacRenaris
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA; Department of Chemistry, Michigan State University, East Lansing, MI, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Department of Chemistry, Northwestern University, Evanston, IL, USA; Elemental Health Institute, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Liu J, Makowski L. Scanning x-ray microdiffraction: In situ molecular imaging of tissue and materials. Curr Opin Struct Biol 2022; 75:102421. [PMID: 35834949 PMCID: PMC11317818 DOI: 10.1016/j.sbi.2022.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Scanning x-ray microdiffraction of complex tissues and materials is an emerging method for the study of macromolecular structures in situ, providing information on the way molecular constituents are arranged and interact with their microenvironment. Acting as a bridge between high-resolution images of individual constituents and lower resolution microscopies that generate global views of material, scanning microdiffraction provides an approach to study the functioning of complex tissues across multiple length scales. Here, we discuss the methodology, summarize results from recent studies, and discuss the potential of the technique for future studies coordinated with other biophysical techniques.
Collapse
Affiliation(s)
- Jiliang Liu
- The European Radiation Synchrotron Facility (ESRF), Grenoble, France
| | - Lee Makowski
- Bioengineering Department, Northeastern University, Boston, MA, USA.
| |
Collapse
|
5
|
de Jesus JM, Costa C, Burton A, Palitsin V, Webb R, Taylor A, Nikula C, Dexter A, Kaya F, Chambers M, Dartois V, Goodwin RJA, Bunch J, Bailey MJ. Correlative Imaging of Trace Elements and Intact Molecular Species in a Single-Tissue Sample at the 50 μm Scale. Anal Chem 2021; 93:13450-13458. [PMID: 34597513 DOI: 10.1021/acs.analchem.1c01927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Elemental and molecular imaging play a crucial role in understanding disease pathogenesis. To accurately correlate elemental and molecular markers, it is desirable to perform sequential elemental and molecular imaging on a single-tissue section. However, very little is known about the impact of performing these measurements in sequence. In this work, we highlight some of the challenges and successes associated with performing elemental mapping in sequence with mass spectrometry imaging. Specifically, the feasibility of molecular mapping using the mass spectrometry imaging (MSI) techniques matrix-assisted laser desorption ionization (MALDI) and desorption electrospray ionization (DESI) in sequence with the elemental mapping technique particle-induced X-ray emission (PIXE) is explored. Challenges for integration include substrate compatibility, as well as delocalization and spectral changes. We demonstrate that while sequential imaging comes with some compromises, sequential DESI-PIXE imaging is sufficient to correlate sulfur, iron, and lipid markers in a single tissue section at the 50 μm scale.
Collapse
Affiliation(s)
| | - Catia Costa
- University of Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH, U.K
| | - Amy Burton
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Vladimir Palitsin
- University of Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH, U.K
| | - Roger Webb
- University of Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH, U.K
| | - Adam Taylor
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Chelsea Nikula
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Alex Dexter
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Firat Kaya
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark 07102, United States
| | - Mark Chambers
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Veronique Dartois
- Center for Discovery and Innovation, Hackensack School of Medicine, Nutley, New Jersey 07110, United States.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark 07102, United States
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge CB2 0AA U.K.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Josephine Bunch
- The National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | - Melanie J Bailey
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, U.K
| |
Collapse
|
6
|
Maiti S, Frielinghaus H, Gräßel D, Dulle M, Axer M, Förster S. Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering. Sci Rep 2021; 11:17306. [PMID: 34453063 PMCID: PMC8397781 DOI: 10.1038/s41598-021-92995-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
The structural connectivity of the brain has been addressed by various imaging techniques such as diffusion weighted magnetic resonance imaging (DWMRI) or specific microscopic approaches based on histological staining or label-free using polarized light (e.g., three-dimensional Polarized Light Imaging (3D-PLI), Optical Coherence Tomography (OCT)). These methods are sensitive to different properties of the fiber enwrapping myelin sheaths i.e. the distribution of myelin basic protein (histology), the apparent diffusion coefficient of water molecules restricted in their movements by the myelin sheath (DWMRI), and the birefringence of the oriented myelin lipid bilayers (3D-PLI, OCT). We show that the orientation and distribution of nerve fibers as well as myelin in thin brain sections can be determined using scanning small angle neutron scattering (sSANS). Neutrons are scattered from the fiber assembly causing anisotropic diffuse small-angle scattering and Bragg peaks related to the highly ordered periodic myelin multilayer structure. The scattering anisotropy, intensity, and angular position of the Bragg peaks can be mapped across the entire brain section. This enables mapping of the fiber and myelin distribution and their orientation in a thin brain section, which was validated by 3D-PLI. The experiments became possible by optimizing the neutron beam collimation to highest flux and enhancing the myelin contrast by deuteration. This method is very sensitive to small microstructures of biological tissue and can directly extract information on the average fiber orientation and even myelin membrane thickness. The present results pave the way toward bio-imaging for detecting structural aberrations causing neurological diseases in future.
Collapse
Affiliation(s)
- Santanu Maiti
- Jülich Centre of Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (JCNS-MLZ), Forschungszentrum Jülich GmbH, 85748, Garching, Germany
| | - David Gräßel
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Martin Dulle
- Jülich Centre of Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Stephan Förster
- Jülich Centre of Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Physical Chemistry, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
7
|
The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H 2O 2 through Regulating PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527475. [PMID: 34257805 PMCID: PMC8249132 DOI: 10.1155/2021/5527475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
8
|
Schiroli D, Marraccini C, Zanetti E, Ragazzi M, Gianoncelli A, Quartieri E, Gasparini E, Iotti S, Baricchi R, Merolle L. Imbalance of Mg Homeostasis as a Potential Biomarker in Colon Cancer. Diagnostics (Basel) 2021; 11:diagnostics11040727. [PMID: 33923883 PMCID: PMC8073761 DOI: 10.3390/diagnostics11040727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increasing evidences support a correlation between magnesium (Mg) homeostasis and colorectal cancer (CRC). Nevertheless, the role of Mg and its transporters as diagnostic markers in CRC is still a matter of debate. In this study we combined X-ray Fluorescence Microscopy and databases information to investigate the possible correlation between Mg imbalance and CRC. METHODS CRC tissue samples and their non-tumoural counterpart from four patients were collected and analysed for total Mg level and distribution by X-Ray Fluorescence Microscopy. We also reviewed the scientific literature and the main tissue expression databases to collect data on Mg transporters expression in CRC. RESULTS We found a significantly higher content of total Mg in CRC samples when compared to non-tumoural tissues. Mg distribution was also impaired in CRC. Conversely, we evidenced an uncertain correlation between Mg transporters expression and colon malignancies. DISCUSSION Although further studies are necessary to determine the correlation between different cancer types and stages, this is the first report proposing the measurement of Mg tissue localisation as a marker in CRC. This study represents thus a proof-of-concept that paves the way for the design of a larger prospective investigation of Mg in CRC.
Collapse
Affiliation(s)
- Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
| | - Chiara Marraccini
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
- Correspondence: ; Tel.: +39-0522-295057
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (E.Z.); (M.R.)
| | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (E.Z.); (M.R.)
| | | | - Eleonora Quartieri
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Elisa Gasparini
- Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Roberto Baricchi
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
| | - Lucia Merolle
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
| |
Collapse
|
9
|
Rodrigues PV, Tostes K, Bosque BP, de Godoy JVP, Amorim Neto DP, Dias CSB, Fonseca MDC. Illuminating the Brain With X-Rays: Contributions and Future Perspectives of High-Resolution Microtomography to Neuroscience. Front Neurosci 2021; 15:627994. [PMID: 33815039 PMCID: PMC8010130 DOI: 10.3389/fnins.2021.627994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The assessment of three-dimensional (3D) brain cytoarchitecture at a cellular resolution remains a great challenge in the field of neuroscience and constant development of imaging techniques has become crucial, particularly when it comes to offering direct and clear obtention of data from macro to nano scales. Magnetic resonance imaging (MRI) and electron or optical microscopy, although valuable, still face some issues such as the lack of contrast and extensive sample preparation protocols. In this context, x-ray microtomography (μCT) has become a promising non-destructive tool for imaging a broad range of samples, from dense materials to soft biological specimens. It is a new supplemental method to be explored for deciphering the cytoarchitecture and connectivity of the brain. This review aims to bring together published works using x-ray μCT in neurobiology in order to discuss the achievements made so far and the future of this technique for neuroscience.
Collapse
Affiliation(s)
- Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Dionisio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Carlos Sato Baraldi Dias
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
10
|
Madsen SJ, DiGiacomo PS, Zeng Y, Goubran M, Chen Y, Rutt BK, Born D, Vogel H, Sinclair R, Zeineh MM. Correlative Microscopy to Localize and Characterize Iron Deposition in Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:525-536. [PMID: 33532700 PMCID: PMC7835989 DOI: 10.3233/adr-200234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Recent evidence suggests that the accumulation of iron, specifically ferrous Fe2+, may play a role in the development and progression of neurodegeneration in Alzheimer’s disease (AD) through the production of oxidative stress. Objective: To localize and characterize iron deposition and oxidation state in AD, we analyzed human hippocampal autopsy samples from four subjects with advanced AD that have been previously characterized with correlative MRI-histology. Methods: We perform scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy (EELS) in the higher resolution transmission electron microscope on the surface and cross-sections of specific iron-rich regions of interest. Results: Specific previously analyzed regions were visualized using SEM and confirmed to be iron-rich deposits using EDS. Subsequent analysis using focused ion beam cross-sectioning and SEM characterized the iron deposition throughout the 3-D volumes, confirming the presence of iron throughout the deposits, and in two out of four specimens demonstrating colocalization with zinc. Analysis of traditional histology slides showed the analyzed deposits overlapped both with amyloid and tau deposition. Following higher resolution analysis of a single iron deposit using scanning transmission electron microscope (STEM), we demonstrated the potential of monochromated STEM-EELS to discern the relative oxidation state of iron within a deposit. Conclusion: These findings suggest that iron is present in the AD hippocampus and can be visualized and characterized using combined MRI and EM techniques. An altered relative oxidation state may suggest a direct link between iron and oxidative stress in AD. These methods thus could potentially measure an altered relative oxidation state that could suggest a direct link between iron and oxidative stress in AD. Furthermore, we have demonstrated the ability to analyze metal deposition alongside commonly used histological markers of AD pathology, paving the way for future insights into the molecular interactions between Aβ, tau, iron, and other putative metals, such as zinc.
Collapse
Affiliation(s)
- Steven J Madsen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Yuanxin Chen
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Brian K Rutt
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Donald Born
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
11
|
Dales JP, Desplat-Jégo S. Metal Imbalance in Neurodegenerative Diseases with a Specific Concern to the Brain of Multiple Sclerosis Patients. Int J Mol Sci 2020; 21:E9105. [PMID: 33266021 PMCID: PMC7730295 DOI: 10.3390/ijms21239105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that deregulation of metals contributes to a vast range of neurodegenerative diseases including multiple sclerosis (MS). MS is a chronic inflammatory disease of the central nervous system (CNS) manifesting disability and neurological symptoms. The precise origin of MS is unknown, but the disease is characterized by focal inflammatory lesions in the CNS associated with an autoimmune reaction against myelin. The treatment of this disease has mainly been based on the prescription of immunosuppressive and immune-modulating agents. However, the rate of progressive disability and early mortality is still worrisome. Metals may represent new diagnostic and predictive markers of severity and disability as well as innovative candidate drug targets for future therapies. In this review, we describe the recent advances in our understanding on the role of metals in brain disorders of neurodegenerative diseases and MS patients.
Collapse
Affiliation(s)
- Jean-Philippe Dales
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Pavillon Etoile, Pôle de Biologie, Service d’anatomie-pathologie, CEDEX 20, 13915 Marseille, France
| | - Sophie Desplat-Jégo
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Pôle de Biologie, Service d’Immunologie, 13005 Marseille, France
| |
Collapse
|
12
|
Nano-imaging trace elements at organelle levels in substantia nigra overexpressing α-synuclein to model Parkinson's disease. Commun Biol 2020; 3:364. [PMID: 32647232 PMCID: PMC7347932 DOI: 10.1038/s42003-020-1084-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Sub-cellular trace element quantifications of nano-heterogeneities in brain tissues offer unprecedented ways to explore at elemental level the interplay between cellular compartments in neurodegenerative pathologies. We designed a quasi-correlative method for analytical nanoimaging of the substantia nigra, based on transmission electron microscopy and synchrotron X-ray fluorescence. It combines ultrastructural identifications of cellular compartments and trace element nanoimaging near detection limits, for increased signal-to-noise ratios. Elemental composition of different organelles is compared to cytoplasmic and nuclear compartments in dopaminergic neurons of rat substantia nigra. They exhibit 150–460 ppm of Fe, with P/Zn/Fe-rich nucleoli in a P/S-depleted nuclear matrix and Ca-rich rough endoplasmic reticula. Cytoplasm analysis displays sub-micron Fe/S-rich granules, including lipofuscin. Following AAV-mediated overexpression of α-synuclein protein associated with Parkinson’s disease, these granules shift towards higher Fe concentrations. This effect advocates for metal (Fe) dyshomeostasis in discrete cytoplasmic regions, illustrating the use of this method to explore neuronal dysfunction in brain diseases. Lemelle et al. describe the use of TEM and synchrotron X-ray fluorescence for quasi-correlative nanoimaging and sub-cellular trace element quantification of rat brain tissue. They further observe elemental (iron and sulfur) dyshomeostasis in cytoplasmic granules when overexpressing α-synuclein protein associated with Parkinson’s disease, demonstrating the usefulness of this method to further explore dysfunctions at organelle levels in brain diseases.
Collapse
|
13
|
Joppe K, Nicolas JD, Grünewald TA, Eckermann M, Salditt T, Lingor P. Elemental quantification and analysis of structural abnormalities in neurons from Parkinson's-diseased brains by X-ray fluorescence microscopy and diffraction. BIOMEDICAL OPTICS EXPRESS 2020; 11:3423-3443. [PMID: 33014542 PMCID: PMC7510930 DOI: 10.1364/boe.389408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 05/11/2023]
Abstract
In this work we use scanning X-ray microscopy to study the structure and elemental composition of neuromelanin-positive neurons in substantia nigra tissue of Parkinson patients (PD) and controls. A total of 53 neurons were analyzed with X-ray fluorescence (XRF) and diffraction using sub-µm-focused synchrotron radiation. A statistical evaluation identified copper as the most group-discriminating element and indicated that interindividual and intraindividual variations are of great relevance in tissue measurements of diseased patients and prevent from automated group clustering. XRF analyses of two Lewy bodies (LBs) highlight a heterogeneity in elemental distributions in these LBs, whereas an innovative X-ray diffraction-based method approach was used to reveal β-sheet-rich crystalline structures in LBs. Overall, sub-µm-focus X-ray microscopy highlighted the elemental heterogeneity in PD pathology.
Collapse
Affiliation(s)
- Karina Joppe
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Von-Siebold-Straße 3a, 37075 Goettingen, Germany
- These authors contributed equally
| | - Jan-David Nicolas
- Institute for X-Ray Physics, Georg-August-University Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen, Germany
- These authors contributed equally
| | - Tilman A. Grünewald
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
- CNRS, Centrale Marseille, Institut Fresnel, Aix-Marseille University, 52 Avenue Escadrille Normandie Niemen, 13013 Marseille, France
| | - Marina Eckermann
- Institute for X-Ray Physics, Georg-August-University Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August-University Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Von-Siebold-Straße 3a, 37075 Goettingen, Germany
- Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
14
|
Susaki EA, Shimizu C, Kuno A, Tainaka K, Li X, Nishi K, Morishima K, Ono H, Ode KL, Saeki Y, Miyamichi K, Isa K, Yokoyama C, Kitaura H, Ikemura M, Ushiku T, Shimizu Y, Saito T, Saido TC, Fukayama M, Onoe H, Touhara K, Isa T, Kakita A, Shibayama M, Ueda HR. Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nat Commun 2020; 11:1982. [PMID: 32341345 PMCID: PMC7184626 DOI: 10.1038/s41467-020-15906-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
Whole-organ/body three-dimensional (3D) staining and imaging have been enduring challenges in histology. By dissecting the complex physicochemical environment of the staining system, we developed a highly optimized 3D staining imaging pipeline based on CUBIC. Based on our precise characterization of biological tissues as an electrolyte gel, we experimentally evaluated broad 3D staining conditions by using an artificial tissue-mimicking material. The combination of optimized conditions allows a bottom-up design of a superior 3D staining protocol that can uniformly label whole adult mouse brains, an adult marmoset brain hemisphere, an ~1 cm3 tissue block of a postmortem adult human cerebellum, and an entire infant marmoset body with dozens of antibodies and cell-impermeant nuclear stains. The whole-organ 3D images collected by light-sheet microscopy are used for computational analyses and whole-organ comparison analysis between species. This pipeline, named CUBIC-HistoVIsion, thus offers advanced opportunities for organ- and organism-scale histological analysis of multicellular systems.
Collapse
Affiliation(s)
- Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-5241, Japan.
| | - Chika Shimizu
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-5241, Japan
| | - Akihiro Kuno
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Xiang Li
- Neutron Science Laboratory, The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Kengo Nishi
- Neutron Science Laboratory, The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Ken Morishima
- Neutron Science Laboratory, The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Hiroaki Ono
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-5241, Japan
| | - Yuki Saeki
- Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunari Miyamichi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Chihiro Yokoyama
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hiroki Kitaura
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Mitsuhiro Shibayama
- Neutron Science Laboratory, The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-5241, Japan.
| |
Collapse
|
15
|
Georgiadis M, Schroeter A, Gao Z, Guizar-Sicairos M, Novikov DS, Fieremans E, Rudin M. Retrieving neuronal orientations using 3D scanning SAXS and comparison with diffusion MRI. Neuroimage 2019; 204:116214. [PMID: 31568873 DOI: 10.1016/j.neuroimage.2019.116214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
While diffusion MRI (dMRI) is currently the method of choice to non-invasively probe tissue microstructure and study structural connectivity in the brain, its spatial resolution is limited and its results need structural validation. Current ex vivo methods employed to provide 3D fiber orientations have limitations, including tissue-distorting sample preparation, small field of view or inability to quantify 3D fiber orientation distributions. 3D fiber orientation in tissue sections can be obtained from 3D scanning small-angle X-ray scattering (3D sSAXS) by analyzing the anisotropy of scattering signals. Here we adapt the 3D sSAXS method for use in brain tissue, exploiting the high sensitivity of the SAXS signal to the ordered molecular structure of myelin. We extend the characterization of anisotropy from vectors to tensors, employ the Funk-Radon-Transform for converting scattering information to real space fiber orientations, and demonstrate the feasibility of the method in thin sections of mouse brain with minimal sample preparation. We obtain a second rank tensor representing the fiber orientation distribution function (fODF) for every voxel, thereby generating fODF maps. Finally, we illustrate the potential of 3D sSAXS by comparing the result with diffusion MRI fiber orientations in the same mouse brain. We show a remarkably good correspondence, considering the orthogonality of the two methods, i.e. the different physical processes underlying the two signals. 3D sSAXS can serve as validation method for microstructural MRI, and can provide novel microstructural insights for the nervous system, given the method's orthogonality to dMRI, high sensitivity to myelin sheath's orientation and abundance, and the possibility to extract myelin-specific signal and to perform micrometer-resolution scanning.
Collapse
Affiliation(s)
- Marios Georgiadis
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, USA; Department of Radiology, Stanford Medicine, USA.
| | - Aileen Schroeter
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Zirui Gao
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Paul Scherrer Institute, Villigen, Switzerland
| | | | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, USA
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Imaging of post-mortem human brain tissue using electron and X-ray microscopy. Curr Opin Struct Biol 2019; 58:138-148. [PMID: 31349127 DOI: 10.1016/j.sbi.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Electron microscopy imaging of post-mortem human brain (PMHB) comes with a unique set of challenges due to numerous parameters beyond the researcher's control. Nevertheless, the wealth of information provided by the ultrastructural analysis of PMHB is proving crucial in our understanding of neurodegenerative diseases. This review highlights the importance of such studies and covers challenges, limitations and recent developments in the application of current EM imaging, including cryo-ET and correlative hybrid techniques, on PMHB.
Collapse
|