1
|
Barros BJ, Cunha JPS. Neurophotonics: a comprehensive review, current challenges and future trends. Front Neurosci 2024; 18:1382341. [PMID: 38765670 PMCID: PMC11102054 DOI: 10.3389/fnins.2024.1382341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
The human brain, with its vast network of billions of neurons and trillions of synapses (connections) between diverse cell types, remains one of the greatest mysteries in science and medicine. Despite extensive research, an understanding of the underlying mechanisms that drive normal behaviors and response to disease states is still limited. Advancement in the Neuroscience field and development of therapeutics for related pathologies requires innovative technologies that can provide a dynamic and systematic understanding of the interactions between neurons and neural circuits. In this work, we provide an up-to-date overview of the evolution of neurophotonic approaches in the last 10 years through a multi-source, literature analysis. From an initial corpus of 243 papers retrieved from Scopus, PubMed and WoS databases, we have followed the PRISMA approach to select 56 papers in the area. Following a full-text evaluation of these 56 scientific articles, six main areas of applied research were identified and discussed: (1) Advanced optogenetics, (2) Multimodal neural interfaces, (3) Innovative therapeutics, (4) Imaging devices and probes, (5) Remote operations, and (6) Microfluidic platforms. For each area, the main technologies selected are discussed according to the photonic principles applied, the neuroscience application evaluated and the more indicative results of efficiency and scientific potential. This detailed analysis is followed by an outlook of the main challenges tackled over the last 10 years in the Neurophotonics field, as well as the main technological advances regarding specificity, light delivery, multimodality, imaging, materials and system designs. We conclude with a discussion of considerable challenges for future innovation and translation in Neurophotonics, from light delivery within the brain to physical constraints and data management strategies.
Collapse
Affiliation(s)
- Beatriz Jacinto Barros
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - João P. S. Cunha
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Szwaj M, Davidson IA, Johnson PB, Jasion G, Jung Y, Sandoghchi SR, Herdzik KP, Bourdakos KN, Wheeler NV, Mulvad HC, Richardson DJ, Poletti F, Mahajan S. Double-Clad Antiresonant Hollow-Core Fiber and Its Comparison with Other Fibers for Multiphoton Micro-Endoscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:2482. [PMID: 38676099 PMCID: PMC11054428 DOI: 10.3390/s24082482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Label-free and multiphoton micro-endoscopy can transform clinical histopathology by providing an in situ tool for diagnostic imaging and surgical treatment in diseases such as cancer. Key to a multiphoton imaging-based micro-endoscopic device is the optical fiber, for distortion-free and efficient delivery of ultra-short laser pulses to the sample and effective signal collection. In this work, we study a new hollow-core (air-filled) double-clad anti-resonant fiber (DC-ARF) as a high-performance candidate for multiphoton micro-endoscopy. We compare the fiber characteristics of the DC-ARF with a single-clad anti-resonant fiber (SC-ARF) and a solid core fiber (SCF). In this work, while the DC-ARF and the SC-ARF enable low-loss (<0.2 dBm-1), close to dispersion-free excitation pulse delivery (<10% pulse width increase at 900 nm per 1 m fiber) without any induced non-linearities, the SCF resulted in spectral broadening and pulse-stretching (>2000% of pulse width increase at 900 nm per 1 m fiber). An ideal optical fiber endoscope needs to be several meters long and should enable both excitation and collection through the fiber. Therefore, we performed multiphoton imaging on endoscopy-compatible 1 m and 3 m lengths of fiber in the back-scattered geometry, wherein the signals were collected either directly (non-descanned detection) or through the fiber (descanned detection). Second harmonic images were collected from barium titanate crystals as well as from biological samples (mouse tail tendon). In non-descanned detection conditions, the ARFs outperformed the SCF by up to 10 times in terms of signal-to-noise ratio of images. Significantly, only the DC-ARF, due to its high numerical aperture (NA) of 0.45 and wide-collection bandwidth (>1 µm), could provide images in the de-scanned detection configuration desirable for endoscopy. Thus, our systematic characterization and comparison of different optical fibers under different image collection configurations, confirms and establishes the utility of DC-ARFs for high-performing label-free multiphoton imaging-based micro-endoscopy.
Collapse
Affiliation(s)
- Marzanna Szwaj
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Ian A. Davidson
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Peter B. Johnson
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Greg Jasion
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Yongmin Jung
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Seyed Reza Sandoghchi
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Krzysztof P. Herdzik
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Konstantinos N. Bourdakos
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Natalie V. Wheeler
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Hans Christian Mulvad
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - David J. Richardson
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Francesco Poletti
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Sumeet Mahajan
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
3
|
Bae H, Rodewald M, Meyer-Zedler T, Bocklitz TW, Matz G, Messerschmidt B, Press AT, Bauer M, Guntinas-Lichius O, Stallmach A, Schmitt M, Popp J. Feasibility studies of multimodal nonlinear endoscopy using multicore fiber bundles for remote scanning from tissue sections to bulk organs. Sci Rep 2023; 13:13779. [PMID: 37612362 PMCID: PMC10447453 DOI: 10.1038/s41598-023-40944-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Here, we report on the development and application of a compact multi-core fiber optical probe for multimodal non-linear imaging, combining the label-free modalities of Coherent Anti-Stokes Raman Scattering, Second Harmonic Generation, and Two-Photon Excited Fluorescence. Probes of this multi-core fiber design avoid moving and voltage-carrying parts at the distal end, thus providing promising improved compatibility with clinical requirements over competing implementations. The performance characteristics of the probe are established using thin cryo-sections and artificial targets before the applicability to clinically relevant samples is evaluated using ex vivo bulk human and porcine intestine tissues. After image reconstruction to counteract the data's inherently pixelated nature, the recorded images show high image quality and morpho-chemical conformity on the tissue level compared to multimodal non-linear images obtained with a laser-scanning microscope using a standard microscope objective. Furthermore, a simple yet effective reconstruction procedure is presented and demonstrated to yield satisfactory results. Finally, a clear pathway for further developments to facilitate a translation of the multimodal fiber probe into real-world clinical evaluation and application is outlined.
Collapse
Affiliation(s)
- Hyeonsoo Bae
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), PO Box 100239, 07702, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
| | - Marko Rodewald
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), PO Box 100239, 07702, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), PO Box 100239, 07702, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Thomas W Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Gregor Matz
- GRINTECH GmbH, Schillerstraße 1, 07745, Jena, Germany
| | | | - Adrian T Press
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Medical Faculty, Friedrich-Schiller University Jena, Kastanienstr. 1, 07747, Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), PO Box 100239, 07702, Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
| |
Collapse
|
4
|
Pence IJ, Evans CL. Translational biophotonics with Raman imaging: clinical applications and beyond. Analyst 2021; 146:6379-6393. [PMID: 34596653 PMCID: PMC8543123 DOI: 10.1039/d1an00954k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Clinical medicine continues to seek novel rapid non-invasive tools capable of providing greater insight into disease progression and management. Raman scattering based technologies constitute a set of tools under continuing development to address outstanding challenges spanning diagnostic medicine, surgical guidance, therapeutic monitoring, and histopathology. Here we review the mechanisms and clinical applications of Raman scattering, specifically focusing on high-speed imaging methods that can provide spatial context for translational biomedical applications.
Collapse
Affiliation(s)
- Isaac J Pence
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | - Conor L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
5
|
Allen CH, Hansson B, Raiche-Tanner O, Murugkar S. Coherent anti-Stokes Raman scattering imaging using silicon photomultipliers. OPTICS LETTERS 2020; 45:2299-2302. [PMID: 32287218 DOI: 10.1364/ol.390050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Silicon photomultipliers (SiPMs) are an emerging solid-state alternative to photomultiplier tubes (PMTs) for low light detection, with similar gain but lower cost and lower operating voltage. We demonstrate coherent anti-Stokes Raman scattering (CARS) imaging in a side-by-side comparison of an uncooled SiPM with an uncooled multialkali PMT as well as a state-of-the-art cooled GaAsP PMT. We determine the optimum reverse-bias voltage for acquiring the best signal-to-noise ratio (SNR) for CARS imaging of lipids at ${2850}\;{{\rm cm}^{ - 1}}$2850cm-1. We find that despite the higher dark counts, the SNR of CARS images acquired with the uncooled SiPM biased at an optimum voltage is better than that of the multialkali PMT and close to that of the cooled GaAsP PMT (${\sim}{1.5}$∼1.5 and ${\sim}{0.8}$∼0.8 times, respectively). This is due to the higher gain and lower excess noise factor related to the pulse height variability in the SiPM.
Collapse
|
6
|
Hiremath G, Locke A, Sivakumar A, Thomas G, Mahadevan-Jansen A. Clinical translational application of Raman spectroscopy to advance Benchside biochemical characterization to bedside diagnosis of esophageal diseases. J Gastroenterol Hepatol 2019; 34:1911-1921. [PMID: 31124184 DOI: 10.1111/jgh.14738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Esophageal diseases result in significant mortality, morbidity, and health care costs worldwide. Current approaches to detect and monitor esophageal diseases have severe limitations. Advanced imaging technologies are being developed to complement current approaches to improve diagnostic, therapeutic and surveillance protocols in order to advance the field. Raman spectroscopy-based technologies hold promise to increase the sensitivity for detection of diseased and high-risk lesions in vitro and in vivo in real time. This technique allows for the investigation of microstructural changes and also facilitates the discovery of disease-specific biochemical alterations with the potential to provide novel insights into the pathobiology of these conditions. Raman spectroscopy has been increasingly applied in precancerous and cancerous esophageal conditions. However, its application in benign esophageal diseases is still in the early stages. Continuing its application in cancerous and precancerous conditions and expanding its use to benign esophageal disorders could lay a foundation for integration of this technology in clinical practice and diagnostic paradigms and development of an accurate and cost-effective tool for use in a clinical setting. Furthermore, Raman spectroscopy can also be used as an innovative technique to advance our understanding of the biochemical transformations associated with esophageal diseases and answer a myriad of fundamental questions in the field. In this review, we described the principles of Raman spectroscopy and instrumentation while providing an overview of current applications, challenges, and future directions in the context of esophageal diseases with an emphasis on its clinical translational application.
Collapse
Affiliation(s)
- Girish Hiremath
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrea Locke
- Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Adithya Sivakumar
- Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Giju Thomas
- Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Zhang L, Zou X, Zhang B, Cui L, Zhang J, Mao Y, Chen L, Ji M. Label-free imaging of hemoglobin degradation and hemosiderin formation in brain tissues with femtosecond pump-probe microscopy. Theranostics 2018; 8:4129-4140. [PMID: 30128041 PMCID: PMC6096394 DOI: 10.7150/thno.26946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022] Open
Abstract
The degradation of hemoglobin in brain tissues results in the deposition of hemosiderin, which is a major form of iron-storage protein and closely related to neurological disorders such as epilepsy. Optical detection of hemosiderin is vitally important yet challenging for the understanding of disease mechanisms, as well as improving surgical resection of brain lesions. Here, we provide the first label-free microscopy study of sensitive hemosiderin detection in both an animal model and human brain tissues. Methods: We applied spectrally and temporally resolved femtosecond pump-probe microscopy, including transient absorption (TA) and stimulated Raman scattering (SRS) techniques, to differentiate hemoglobin and hemosiderin in brain tissues. The label-free imaging results were compared with Perls' staining to evaluate our method for hemosiderin detection. Results: Significant differences between hemoglobin and hemosiderin transient spectra were discovered. While a strong ground-state bleaching feature of hemoglobin appears in the near-infrared region, hemosiderin demonstrates pure excited-state absorption dynamics, which could be explained by our proposed kinetic model. Furthermore, simultaneous imaging of hemoglobin and hemosiderin can be rapidly achieved in both an intracerebral hemorrhage (ICH) rat model and human brain surgical specimens, with perfect correlation with Perls' staining. Conclusion: Our results suggest that rapid, label-free detection of hemosiderin in brain tissues could be realized by femtosecond pump-probe microscopy. Our method holds great potential in providing a new tool for intraoperative detection of hemosiderin during brain surgeries.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Collaborative Innovation Center of Genetics and Development, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bohan Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Collaborative Innovation Center of Genetics and Development, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Liyuan Cui
- State Key Laboratory of Medical Neurobiology, Institute of Bain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Bain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Collaborative Innovation Center of Genetics and Development, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Hirose K, Aoki T, Furukawa T, Fukushima S, Niioka H, Deguchi S, Hashimoto M. Coherent anti-Stokes Raman scattering rigid endoscope toward robot-assisted surgery. BIOMEDICAL OPTICS EXPRESS 2018; 9:387-396. [PMID: 29552380 PMCID: PMC5854045 DOI: 10.1364/boe.9.000387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 05/16/2023]
Abstract
Label-free visualization of nerves and nervous plexuses will improve the preservation of neurological functions in nerve-sparing robot-assisted surgery. We have developed a coherent anti-Stokes Raman scattering (CARS) rigid endoscope to distinguish nerves from other tissues during surgery. The developed endoscope, which has a tube with a diameter of 12 mm and a length of 270 mm, achieved 0.91% image distortion and 8.6% non-uniformity of CARS intensity in the whole field of view (650 μm diameter). We demonstrated CARS imaging of a rat sciatic nerve and visualization of the fine structure of nerve fibers.
Collapse
Affiliation(s)
- K. Hirose
- Graduate School of Engineering Science, Osaka University, Osaka,
Japan
| | - T. Aoki
- Graduate School of Engineering Science, Osaka University, Osaka,
Japan
| | - T. Furukawa
- Faculty of Engineering, Yokohama National University, Yokohama,
Japan
| | - S. Fukushima
- Graduate School of Engineering Science, Osaka University, Osaka,
Japan
| | - H. Niioka
- Graduate School of Engineering Science, Osaka University, Osaka,
Japan
| | - S. Deguchi
- Graduate School of Engineering Science, Osaka University, Osaka,
Japan
| | - M. Hashimoto
- Graduate School of Information Science and Technology, Hokkaido University, Hokkaido,
Japan
| |
Collapse
|
9
|
Lombardini A, Mytskaniuk V, Sivankutty S, Andresen ER, Chen X, Wenger J, Fabert M, Joly N, Louradour F, Kudlinski A, Rigneault H. High-resolution multimodal flexible coherent Raman endoscope. LIGHT, SCIENCE & APPLICATIONS 2018; 7:10. [PMID: 30839624 PMCID: PMC6107025 DOI: 10.1038/s41377-018-0003-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 05/21/2023]
Abstract
Coherent Raman scattering microscopy is a fast, label-free, and chemically specific imaging technique that shows high potential for future in vivo optical histology. However, the imaging depth in tissues is limited to the sub-millimeter range because of absorption and scattering. Realization of coherent Raman imaging using a fiber endoscope system is a crucial step towards imaging deep inside living tissues and providing information that is inaccessible with current microscopy tools. Until now, the development of coherent Raman endoscopy has been hampered by several issues, mainly related to the fiber delivery of the excitation pulses and signal collection. Here, we present a flexible, compact, coherent Raman, and multimodal nonlinear endoscope (4.2 mm outer diameter, 71 mm rigid length) based on a resonantly scanned hollow-core Kagomé-lattice double-clad fiber. The fiber design enables distortion-less, background-free delivery of femtosecond excitation pulses and back-collection of nonlinear signals through the same fiber. Sub-micrometer spatial resolution over a large field of view is obtained by combination of a miniature objective lens with a silica microsphere lens inserted into the fiber core. We demonstrate high-resolution, high-contrast coherent anti-Stokes Raman scattering, and second harmonic generation endoscopic imaging of biological tissues over a field of view of 320 µm at a rate of 0.8 frames per second. These results pave the way for intraoperative label-free imaging applied to real-time histopathology diagnosis and surgery guidance.
Collapse
Affiliation(s)
- Alberto Lombardini
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Vasyl Mytskaniuk
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Siddharth Sivankutty
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Esben Ravn Andresen
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Laboratoire de Physique des Lasers Atomes et Molécules, UMR 8523, CNRS, Université Lille, 59000 Lille, France
| | - Xueqin Chen
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Jérôme Wenger
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Marc Fabert
- CNRS, XLIM, UMR 7252, Université de Limoges, 87060 Limoges, France
| | - Nicolas Joly
- Department of Physics, Max Planck Institute for the Science of Light, University of Erlangen Nuremberg, 91058 Erlangen, Germany
| | | | - Alexandre Kudlinski
- Laboratoire de Physique des Lasers Atomes et Molécules, UMR 8523, CNRS, Université Lille, 59000 Lille, France
| | - Hervé Rigneault
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
10
|
Bijeesh MM, Shakhi PK, Arunkarthick S, Varier GK, Nandakumar P. Confocal imaging of single BaTiO 3 nanoparticles by two-photon photothermal microscopy. Sci Rep 2017; 7:1643. [PMID: 28490732 PMCID: PMC5431995 DOI: 10.1038/s41598-017-01548-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/31/2017] [Indexed: 01/25/2023] Open
Abstract
We report on the development of a nonlinear optical microscopic technique based on two-photon absorption induced photothermal effect capable of detecting individual nonfluorescent nanoparticles with high sensitivity. The method which is inherently confocal makes use of near infrared excitation at high repetition rates and would be of interest in deep tissue imaging. We demonstrate the applicability of the technique by imaging single BaTiO3 nanoparticles, a potential biomolecular label having high photostability, in a scattering environment at fast time scales with a pixel dwell time of 80 μs.
Collapse
Affiliation(s)
- M M Bijeesh
- Department of Physics, Birla Institute of Technology and Science, Pilani K. K. Birla Goa Campus, Goa, 403726, India
| | - P K Shakhi
- Department of Physics, Birla Institute of Technology and Science, Pilani K. K. Birla Goa Campus, Goa, 403726, India
| | - S Arunkarthick
- Department of Physics, Birla Institute of Technology and Science, Pilani K. K. Birla Goa Campus, Goa, 403726, India
| | - Geetha K Varier
- Department of Physics, Birla Institute of Technology and Science, Pilani K. K. Birla Goa Campus, Goa, 403726, India
| | - P Nandakumar
- Department of Physics, Birla Institute of Technology and Science, Pilani K. K. Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
11
|
Abstract
Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take.
Collapse
Affiliation(s)
- Chi Zhang
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907;
| | - Delong Zhang
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907;
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907;
| |
Collapse
|
12
|
Chen X, Xu X, McCormick DT, Wong K, Wong ST. Multimodal nonlinear endo-microscopy probe design for high resolution, label-free intraoperative imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6. [PMID: 26203361 PMCID: PMC4505689 DOI: 10.1364/boe.6.002283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present a portable, multimodal, nonlinear endo-microscopy probe designed for intraoperative oncological imaging. Application of a four-wave mixing noise suppression scheme using dual wavelength wave plates (DWW) and a polarization-maintaining fiber improves tissue signal collection efficiency, allowing for miniaturization. The probe, with a small 14 mm transversal diameter, includes a customized miniaturized two-axis MEMS (micro-electromechanical system) raster scanning mirror and micro-optics with an illumination laser delivered by a polarization-maintaining fiber. The probe can potentially be integrated into the arms of a surgical robot, such as da Vinci robotic surgery system, due to its minimal cross sectional area. It has the ability to incorporate multiple imaging modalities including CARS (coherent anti-Stokes Raman scattering), SHG (second harmonic generation), and TPEF (two-photon excited fluorescence) in order to allow the surgeon to locate tumor cells within the context of normal stromal tissue. The resolution of the endo-microscope is experimentally determined to be 0.78 µm, a high level of accuracy for such a compact probe setup. The expected resolution of the as-built multimodal, nonlinear, endo-microscopy probe is 1 µm based on the calculation tolerance allocation using Monte-Carlo simulation. The reported probe is intended for use in laparoscopic or radical prostatectomy, including detection of tumor margins and avoidance of nerve impairment during surgery.
Collapse
Affiliation(s)
- Xu Chen
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas 77030, USA
| | - Xiaoyun Xu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas 77030, USA
| | | | - Kelvin Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas 77030, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas 77030, USA
| | - Stephen T.C. Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas 77030, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas 77030, USA
| |
Collapse
|
13
|
Mostaço-Guidolin LB, Kohlenberg EK, Smith M, Hewko M, Major A, Sowa MG, Ko ACT. Quantitative nonlinear optical assessment of atherosclerosis progression in rabbits. Anal Chem 2014; 86:6346-54. [PMID: 24892226 DOI: 10.1021/ac5005635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Quantification of atherosclerosis has been a challenging task owing to its complex pathology. In this study, we validated a quantitative approach for assessing atherosclerosis progression in a rabbit model using a numerical matrix, optical index for plaque burden, derived directly from the nonlinear optical microscopic images captured on the atherosclerosis-affected blood vessel. A positive correlation between this optical index and the severity of atherosclerotic lesions, represented by the age of the rabbits, was established based on data collected from 21 myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits with age ranging between new-born and 27 months old. The same optical index also accurately identified high-risk locations for atherosclerotic plaque formation along the entire aorta, which was validated by immunohistochemical fluorescence imaging.
Collapse
Affiliation(s)
- Leila B Mostaço-Guidolin
- National Research Council Canada , Medical Devices Portfolio, 435 Ellice Avenue, Winnipeg, MB, Canada R3B 1Y6
| | | | | | | | | | | | | |
Collapse
|
14
|
Naji M, Murugkar S, Anis H. Determining optimum operating conditions of the polarization-maintaining fiber with two far-lying zero dispersion wavelengths for CARS microscopy. OPTICS EXPRESS 2014; 22:10800-10814. [PMID: 24921780 DOI: 10.1364/oe.22.010800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Single femtosecond laser-based coherent anti-Stokes Raman scattering (CARS) microscopy, using a photonic crystal fiber (PCF) pumped in the near-IR to generate a supercontinuum for the Stokes source, is rapidly being adopted as a cost-effective approach. A PCF with two closely-lying zero dispersion wavelengths is a popular choice for the Stokes source, but it is often limited to imaging lipids. A polarization-maintaining PCF with two far-lying zero dispersion wavelengths offers important advantages for polarization CARS microscopy, and for CARS imaging in the fingerprint region. This PCF fiber, though commercially available, has limited use for CARS microscopy in the C-H bond region. The main problem is that the supercontinuum from this fiber is typically noisier than that from a standard PCF with two closely-lying zero dispersion wavelengths. To overcome this, we determined the optimum operating conditions for generating a low-noise supercontinuum out of a PCF with two far-lying zero dispersion wavelengths, in terms of the input parameters of the excitation pulse. We measured the relative intensity noise (RIN) of the Stokes and the corresponding CARS signal as a function of the input laser parameters in this fiber. We showed that the results of CARS imaging using this alternate fiber are comparable to those achieved using the standard fiber, for input laser pulse conditions of low average power, narrow pulse width with slightly positive chirp, and polarization direction parallel to the slow axis of the selected fiber.
Collapse
|
15
|
Affiliation(s)
- Karen A. Antonio
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| | - Zachary D. Schultz
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| |
Collapse
|